Chapter 2
Nonlinearity Framework in Speech
Processing

2.1 Introduction

This chapter presents a survey of nonlinear methods for speech processing. Recent
developments in nonlinear science have already found their way into a wide range
of engineering disciplines, including digital signal processing. It is also important
and challenging to develop the nonlinear framework for speech processing because
of the well known nonlinearities in the human speech production mechanism.

2.2 Nonlinear Techniques in Speech Processing

The use of nonlinear techniques in speech processing is a rapidly growing area of
research. There are large variety of methods found in the literature, including lin-
earization as in the field of adaptive filtering, introduced by Haykin [1] and various
forms of oscillators and nonlinear predictors, as introduced by Kubin [2]. Nonlinear
predictors are part of the more general class of nonlinear autoregressive models.
Various approximations for nonlinear autoregressive models have been proposed
in two main categories: parametric and nonparametric methods. In [3], Kumar et al.
show how parametric methods are exemplified by polynomial approximation, locally
linear models and state dependent models. Another important group of parametric
methods is based on neural nets, radial basis functions approximations, as demon-
strated by Birgmeier [4, 5], de Maria and Figueiras [6], and Mann and McLoughlin
[7], multi-layer perceptrons as shown by Tishby [8], Wu et al. [9] and Thyssen
et al. [10] and recurrent neural nets, as seen in the work of Wu et al. [9] and Hussain
[11]. Nonparametric methods include various nearest neighbor methods [12] and
kernel-density estimates.

Another class of nonlinear speech processing methods include models and digital
signal processing algorithms proposed to analyze nonlinear phenomena of the fluid
dynamics type in the speech airflow during speech production as proposed by Teager
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[13]. The investigation of the speech airflow nonlinearities can result in development
of nonlinear signal processing systems suitable to extract related information of such
phenomena. Recent work by Maragos et al., includes speech resonances modeling
using AM-FM model [14]. Further, measuring the degree of turbulence in speech
sounds using fractals is explained by Maragos and Potamianos in [15]. The nonlinear
speech features are applied to the problem of speech recognition by Dimitriadis et al.
in [16], to speech vocoders by Maragos et al. [ 15] and Potamianos et al. [17]. We have
also applied it to the problem of speaker recognition [18, 19]. To understand various
linear and nonlinear techniques used for speech processing, it is very essential to
know about speech production and perception mechanisms.

2.3 Speech Production Mechanism

Speech is generated as one exhales air from the lungs while the articulators move.
Thus speech sound production is a filtering process in which a speech sound source
excites the vocal tract filter. The source either is periodic, causing voiced speech, or
is noisy (aperiodic), causing unvoiced speech. The source of the periodicity for the
former is found in the larynx, where vibrating vocal cords interrupt the airflow from
the lungs, producing pulses of air. The lungs provide the airflow and pressure source
for speech and the vocal cords usually modulate the airflow to create many sound
variations. However, it is the vocal tract that is the most important system component
in human speech production. Figure 2.1 shows the anatomy of the speech production
system. The vocal tract is a tube-like passageway made up of muscles and other
tissues and enables the production of different sounds. For most of the sounds, the
vocal tract modifies the temporal and spectral distribution of power in the sound
waves, which are initiated in the glottis.

After leaving the larynx, air from the lungs passes through the pharyngeal and
oral cavities, then exits at the lips. For nasal sounds, air is allowed to enter the
nasal cavity (by lowering the velum), at the boundary between the pharyngeal and
oral cavities. The velum (or soft palate) is kept in a raised position for most speech
sounds, blocking the nasal cavity from receiving air. During nasal sounds, as well as
during normal breathing, the velum lowers to allow air through the nostrils. In the
vocal tract, the tongue, the lower teeth and the lips undergo significant movements
during speech production.

Figure 2.2 shows the simplified model of the vocal tract with side branches [20].
The vocal tract anatomically divides into four segments: the hypopharyngeal cavities,
the mesopharynx, the oral cavity and the oral vestibule (lip tube). The hypopharyngeal
part of the vocal tract consists of the supraglottic laryngeal cavity and the bilateral
conical cavities of the piriform fossa. The mesopharynx extends from the aryepiglot-
tic fold to the anterior palatal arch. The oral cavity is the segment from the anterior
palatal arch to the incisors. The oral vestibule extends from the incisors to the lip
opening [20]. In the nasal cavity, there are a number of paranasal cavities that con-
tribute anti-resonances (zeros) to the transfer function of the vocal tract [21] and has
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Fig. 2.1 Anatomy of human speech production system

no movable structures. Its large interior surface area significantly attenuates speech
signal energy. The opening between the nasal and pharyngeal cavities controls the
amount of acoustic coupling between the cavities and hence the amount of energy
leaving the nostrils. Since the nasal cavity has a complicated structure and quite
large individual differences, it also provides a lot of speaker-specific information.
The piriform fossa is the entrance of the esophagus and is shaped like twin cone-like
cavities on the left and right sides of the larynx. Because of its obscure form and
function, the piriform fossa has usually been neglected in many speech production
models. However, introducing the piriform fossa module into the production model
causes spectral structure changes in frequency region between 4 kHz and 5 kHz,
which can fit the real acoustic speech spectrum well. In addition, the piriform fossa
cavities are speaker dependent and less changed during speech production. Dang and
Honda suggested that, piriform fossa should be regarded as one important ‘cue’ for
finding speaker-specific features [22]. Further they have tried to obtain such infor-
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mation using MRI measurements and noted that, the hypopharyngeal resonance, i.e.,
the resonance of the laryngeal cavity and the antiresonance of the piriform fossa, are
more stable than other formants among vowels of each speaker, while they vary to
a greater extent from speaker to speaker [23, 24]. Thus the hypopharyngeal cavity
also plays an important role to determine individual characteristics.

The most important aspect of speech production is the specification of different
phones via the filtering actions of the vocal tract described in terms of its resonances,
called formants, owing to poles in the vocal tract transfer function. The formants are
often abbreviated F; like 1 means the formant with the lowest frequency. In voiced
phones, the formants often decrease in power as a function of frequency (due to the
general low pass nature of the glottal excitation); thus Fj is usually the strongest
formant. For some phones, inverse singularities of the vocal tract transfer function
(zeros) exist and cause anti-resonances, where the speech power dips much more
than usual between formants.

2.4 Speech Perception Mechanism

In the past, several studies have been aimed at identifying perceptual cues used
by listeners, i.e., how human listener’s auditory system processes speech sounds?
The discipline of sound perception in general is referred to as psychoacoustics.
Techniques adopted from psychoacoustics are extensively used in audio and speech
processing systems for reducing the amount of perceptually irrelevant data [25].

Studies by Pickles, of the human hearing mechanism show that the processing
of speech and other signals in the auditory system begins with a frequency analysis
performed in the cochlea [26]. In the human peripheral auditory system, the input
stimulus is split into several frequency bands within which two frequencies are not
distinguishable. The ear averages the energies of the frequencies within each critical
band and thus forms a compressed representation of the original stimulus. This
observation has given impetus for designing perceptually motivated filter banks as
front-ends for speech and speaker recognition systems.
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Psychoacoustics studies have shown that human perception of the frequency con-
tent of sounds, either for pure tones or for speech signals, does not follow a linear
scale. This research has led to the idea of defining subjective pitch of pure tones.
Thus for each tone with an actual frequency, f, measured in Hz, a subjective pitch
is measured on a scale called the mel scale. As a reference point, the pitch of 1 kHz
tone, 40 db above the perceptual hearing threshold, is defined as 1000 mels. The
subjective pitch in mels increases less and less rapidly as the stimulus frequency
is increased linearly. The subjective pitch is essentially linear with the logarithmic
frequency beyond about 1000 Hz.

Another important subjective criterion of the frequency contents of a signal is the
critical band that refers to the bandwidth at which subjective responses, such as loud-
ness, becomes significantly different. The loudness of a band of noise at a constant
sound pressure remains constant as the noise bandwidth increases up to the width of
the critical band; after that increased loudness is perceived. Similarly, a subcritical
bandwidth complex sound (multitone) of constant intensity is about as loud as an
equally intense pure tone of a frequency lying at the center of the band, regardless of
the overall frequency separation of the multiple tones. When the separation exceeds
the critical bandwidth, the complex sound is perceived as becoming louder. It shows
the existence of an auditory filter in the vicinity of the tone that effectively blocks
extraneous information from interfering with the detection of the tone. This vicinity
is called a critical band and can be viewed as the bandwidth of each auditory filter. It
is known that the width of the critical band increases with the higher frequency of the
tone being masked [27]. The Bark scale is a good approximation to psychoacoustic
critical band measurement.

More recently, majority of the speech and speaker recognition systems have con-
verged to the use of feature vectors derived from a filter bank that has been designed
according to some model of the auditory system. There are number of forms used
for these filters, but all of them are based on a frequency scale that is roughly linear
below 1 kHz and roughly logarithmic above this point. Some of the widely used
frequency scales include the MEL scale [28], the BARK scale [28, 29] and the ERB
(Equivalent Rectangular Bandwidth) scale [30]. In general, the peripheral auditory
system can be modeled as a bank of bandpass filters, of approximately constant
bandwidth at low frequencies and of a bandwidth that increases in rough proportion
to frequency at higher frequencies. The popular Mel frequency cepstral coefficients
(MFCCs) incorporate the MEL scale, which is represented by the following equation
(since it is based on human experimental data, there are a number of approximations
and models that have been used.):

Fuet = 2595 log,o 1+ 212 @.1)
Mel = 210 700 .

where Fy, denotes the real frequency, and Fje denotes the perceived frequency.
The Mel scale is approximately linear up to 1000 Hz and logarithmic thereafter.
Another well-known mapping is the Bark-scale [28, 29]. For the Bark scale, several
analytical formulae have been proposed. One of them is the one proposed by Zwicker
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and Terhardt [31]:
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Another example of Bark-scale approximation is as following:

F
Faak = 6 sinh™! (6(‘;8) (2.3)

At the low end of the Bark scale (<1000 Hz), the bandwidths of the critical band
filters are found to be about 100 Hz and in higher frequencies the bandwidths reach
up to about 3000 Hz [32].

Moore and Glasberg proposed the ERB scale modifying Zwickers loudness model
[30]. The ERB scale is a measure that gives an approximation to the bandwidth of
filters in human hearing using rectangular bandpass filters. There are several different
approximations of the ERB scale exist. The following is one of such approximations

ERB = 21.4 log,, (1 +4.37 Fitz (2.4)
1000

Above discussion shows that, the human ear processes fundamental frequency
on a logarithmic scale rather than a linear scale. Therefore, the auditory frequency
analysis is most frequently modeled by a bank of bandpass filters whose bandwidths
increase with increasing frequency.

2.5 Conventional Speech Synthesis Approaches

Conventional methods of speech synthesis are discussed by Mclaughlin and
Maragosin in [33]. Conventionally, the approaches to speech synthesis depend on
the type of modeling used. This may be a model of the speech organs themselves
(articulatory synthesis), a model derived from the speech signal (waveform synthe-
sis), or alternatively the use of prerecorded segments extracted from a database and
joined together (concatenative synthesis).

Modeling the actual speech organs is an attractive approach, since it can be
regarded as being a model of the fundamental level of speech production. An accu-
rate articulatory model would allow all types of speech to be synthesized in a natural
manner, without having to make many of the assumptions required by other tech-
niques (such as attempting to separate the source and vocal tract parts out from one
signal). However, realistic articulatory synthesis is an extremely complex process
and as such, instead of using it in any commercial application it is still used as a
research tool.
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Waveform synthesizers derive a model from the speech signal as opposed to the
speech organs. This approach is derived from the linear source-filter theory of speech
production. The resulting quality is extremely poor for voiced speech, sounding very
robotic.

Concatenation methods involve joining together prerecorded units of speech
which are extracted from a database. The concatenation technique provides the best
quality synthesized speech. Although there is a good degree of naturalness in the
synthesized output, it is still clearly distinguishable from real human speech.

McAulay and Quatieri developed a speech generation model that is based on a
glottal excitation signal made up of a sum of sine waves [34]. Then, they used this
model to perform time-scale and pitch modification. Starting with the assumption
made in the linear model of speech that the speech waveform x(¢) is the output
generated by passing an excitation waveform e(¢) through a linear filter A(z), the
excitation is defined as a sum of sine waves of arbitrary amplitudes, frequencies, and
phases. A limitation of all these techniques is that they use the linear model of speech
as a basis.

2.6 Nonlinearity in Speech Production

Conventional theories of speech production are based on linearization of pressure
and volume velocity relations and it assumed constant within a given cross section
of the vocal tract, i.e., a one-dimensional planar wave assumption. We refer to this as
the linear source-filter theory. While these approximations have allowed a great deal
of progress to be made in understanding how speech sounds are produced and how
to analyze, modify, synthesize and recognize sounds, the approximations have led
to limitations. In reality, acoustic motion is not the only kind of air motion involved.
The air in the vocal tract system is not static, but moves from lungs out of the mouth,
carrying the sound field along with it, i.e., it contains a nonacoustic component. This
nonacoustic phenomena, yielding a difference from the linear source-filter theory and
have an impact on the fine structure in the speech waveform and thus how speech is
processed is explained by Quatieri in [28].

The linear assumption neglects the influence of any nonacoustic motion of the
fluid medium. In this model, the output acoustic pressure wave at the lips is due
solely to energy from an injection of air mass at the glottis. It is known that, in
this process, only a small fraction of the kinetic energy, in the flow at the glottis, is
converted to acoustic energy propagated by compression and rarefaction waves [28].
The vocal tract acts as a passive acoustic filter, selectively amplifying some bands
while attenuating others.

Fine structure refers to attributes in a speech waveform that can be modeled by
rapid variations of parameters of traditional speech models, where rapid means on a
time scale of a pitch period. For a source-filter model, the fine structure corresponds to
source as well as filter. In a source-filter model, both the spacing and the amplitude
of the source glottal pulses during voiced speech are considered fixed. However,
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these parameters are not fixed and leads to one kind of fine structure. The variation
of the fundamental period is called as jitter whereas period-to-period change in the
pulse amplitude is called as shimmer. Another type of fine structure, diplophonia, is
sometimes seen at the ends of utterances. In diplophonia, every other pitch period is
both scaled down in amplitude and shifted in time. These examples of fine structure
involve modifying locations and amplitudes of existing pitch pulses. Similarly, rapid
variations in the filter are actually caused by interaction between the glottis (source)
and the vocal tract. But the source-filter model assumes that the behavior in the glottis
is not influenced by effects in the vocal tract and vice-versa. Ananthapadmanabha et
al. described a model for such interactions and noted that, the effect of the glottis on
the first formant is to modulate both formant frequency and the bandwidth during
the open glottal phase and higher formants are less affected [35]. Such modulations
are speaker-dependent to the extent that they code differences in detailed glottal
behavior, resulting from physiological or other differences between speakers [36].

Even though the acoustic speech waveform and its interpretation in terms of pho-
netic theory is understood, models which mimic human speech production is not
completely understood. Some of the difficulties in this field are related to the inade-
quacy of a simple source-filter model of speech production where a highly stylized
source signal generator drives a slowly time-varying linear filter with negligible inter-
action between source and filter. Vocal fold oscillation, the turbulent sound source
and the interaction phenomena are the important aspects of physical modeling of
speech production and nonlinearity plays an important role in all of them. In the
following, these three aspects are discussed briefly.

2.6.1 Vocal Fold Oscillation

The vocal folds, together with the aerodynamics associated to the glottis and vocal
tract, constitute a self-excited biomechanical oscillator that acts as the sound source
during voice production. Under certain instability conditions for the biomechanical
parameters such as air pressure, vocal fold tension and glottal area, the air flow
through the glottis causes the oscillation, which in turn produces the air pressure
wave perceived as voice [37, 38]. Thus, it is a self-excited flow-induced oscillation,
which is the same phenomenon that produces the oscillation of buildings by action
of the wind, the vibration of airplane wings during flight and the generation of
sound in wind musical instruments [39]. This oscillator has a relatively complex
dynamical structure, as consequence of nonlinear viscoelastic characteristics of its
tissues, collisions between the opposite vocal folds and nonlinear interaction between
the airflow and the glottal area. Using mathematical models of that structure, past
works by Lucero, [40] and Herzel et al. [41], have shown the existence of several
nonlinear phenomena, such as multiple equilibrium positions and limit cycles and
several types of bifurcations and chaotic behavior.

Many of the acoustic and perceptual features of an individual’s voice are believed
to be due to specific characteristics of the quasi-periodic excitation signal provided
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by the vocal folds. These, in turn, depends on the morphology of the voice organ,
the larynx. The anatomy of the larynx is quite complicated and its descriptions may
be found in the literature [42]. From an engineering point of view, the larynx is the
structure that houses the vocal folds whose vibration provides the periodic excitation.
The space between the vocal folds, called the glottis, varies with the motion of the
vocal folds and thus modulates the flow of air through them. We now know that the
larynx is a self-oscillating acousto-mechanical oscillator. This oscillator is controlled
by several groups of tiny muscles housed in the larynx. Some of these muscles control
the rest position of the folds, others control their tension and still others control their
shape. During breathing and production of fricatives, for example, the folds are pulled
apart to allow free flow of air. To produce voiced speech, the vocal folds are brought
close together. When brought close enough together, they go into a spontaneous
periodic oscillation. These oscillations are driven by Bernoulli pressure (the same
mechanism that keeps airplanes aloft) created by the airflow through the glottis. If
the opening of the glottis is small enough, the Bernoulli pressure due to the rapid
flow of air is large enough to pull the folds toward each other, eventually closing
the glottis. This, of course, stops the flow and the laryngeal muscles pull the folds
apart. This sequence repeats itself until the folds are pulled far enough away or if
the lung pressure becomes too low. Besides the laryngeal muscles, the lung pressure
and the acoustic load of the vocal tract also affect the oscillation of the vocal folds.
These oscillations are driven from an almost stationary lung pressure. Linear time-
invariant systems are unable to produce such oscillations. If we exclude a hypothetical
time-varying nervous control input, it results into the conclusion that, the oscillation
process is nonlinear. This nonlinearity is routinely included even in simple methods
of vocal fold behavior as explained by Flanagan in [43], where it is attributed to
nonlinear feedback via the Bernoulli force.

The qualitative changes in the type of steady-state motion of a nonlinear dynam-
ical model such as the vocal folds are referred to as bifurcations. They show up
as discontinuities when a system parameter is moved across some threshold. For
instance, an equilibrium state (e.g. open glottis in unvoiced speech) may bifurcate to
a periodic limit-cycle motion (e.g. after a transition to voiced speech). It has become
popular to characterize vocal fold models in terms of their bifurcation diagrams
[44, 45]. The transition between the model and falsetto registers is also considered
a bifurcation [46]. Chaos refers to the steady-state motion of nonlinear dynamical
systems characterized by high sensitivity to initial conditions. These motions often
appear irregular and initial perturbations diverge exponentially.

Because of nonlinear behavior of vocal fold oscillations, it can be seen that the
spectral envelop of the glottal pulse changes with its pitch frequency and the spectral
content changes with its amplitude.
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2.6.2 The Turbulent Sound Source

Turbulence is the source of noise-like sound in speech. In the linear speech model
this has been dealt with by having a white noise source exciting the vocal tract
filter. Turbulence is the dominant source for frication, aspiration and whisper, and
a partial source in breathy voice and creaky voice. The common picture is that
turbulence is a nonlinear phenomenon with strong interaction between the airflow
and the acoustic sound field occurring at constrictions and obstacles. Turbulence is
one of the prominent examples where both theoretical explanation and experimental
evidence for chaos are available [47].

Turbulent airflow shows highly irregular fluctuations of particle velocity and pres-
sure. These fluctuations are audible as broadband noise. Turbulent excitation occurs
mainly at two locations in the vocal tract: near the glottis and at constriction(s)
between the glottis and the lips. Turbulent excitation at a constriction downstream of
the glottis produces fricative sounds or voiced fricatives depending on whether or not
voicing is simultaneously present. Measurements and models for turbulent excitation
are even more difficult to establish than for the periodic excitation produced by the
glottis because, usually, no vibrating surfaces are involved. Because of the lack of a
comprehensive model, much confusion exists over the proper sub-classification of
fricatives. The simplest model for turbulent excitation is a nozzle (narrow orifice)
releasing air into free space.

Experimental work has shown that half (or more) of the noise power generated by a
jet of air originates within the so-called mixing region that starts at the nozzle outlet
and extends as far as a distance four times the diameter of the orifice. The noise
source is therefore distributed. Distributed sources of turbulence can be modeled
by expanding them in terms of monopoles (i.e., pulsating spheres), dipoles (two
pulsating spheres in opposite phase), quadrupoles (two dipoles in opposite phase)
and higher-order representations. A much stronger noise source is created when
a jet of air hits an obstacle. Depending on the angle between the surface of the
obstacle and the direction of flow, the surface roughness and the obstacle geometry,
the noise generated can be up to 20 dB higher than that generated by the same jet in
free space. Because of the spatially concentrated source, modeling obstacle noise is
easier than modeling the noise in a free jet. Experiments reveal that obstacle noise
can be approximated by a dipole source located at the obstacle. The above theoretical
findings qualitatively explain the observed phenomenon that the fricatives “th” and
“f”” (and the corresponding voiced “dh” and “v”’) are weak compared to the fricatives
“s” and “sh”. The teeth (upper for “s” and lower for “sh”) provide the obstacle on
which the jet impinges to produce the higher noise levels. A fricative of intermediate
strength results from a distributed obstacle when the jet is forced along the roof of
the mouth.

Modern theories that attempts to explain turbulence predict the existence of eddies
(vortices with a characteristic size A) at multiple scales [48]. According to the
energy cascade theory, energy produced by eddies with large size A is transferred
hierarchically to the small-size eddies which actually dissipate this energy due to
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viscosity. This multiscale structure of turbulence can in some cases be quantified by
fractals.

2.6.3 Interaction Phenomenon

The linear, one-dimensional acoustic model is too tightly constrained to accurately
model many characteristics of vocal tract. The widely used linear predictive cep-
stral coefficient (LPCC) and Mel frequency cepstral coefficient (MFCC) features
are based on this linear speech production model and assume that the airflow prop-
agates in the vocal tract as a linear plane wave. There is an increasing collection
of evidence suggesting that nonaciustic fluid motion can significantly influence the
sound field. For example, measurements by Teager reveal the presence of separated
flow within the vocal tract [49]. Separated flow occurs when a region of fast mov-
ing fluid-a jet-detaches from regions of relatively stagnant fluid. When this occurs,
viscous forces (neglected by linear models) create a tendency for the fluid to ‘roll
up’ into rotational fluid structures commonly referred to as vortices as shown in
Fig. 2.3b. Teager suggested that the presence of traveling vortices, ‘smoke rings’
could result in additional acoustic sources throughout the vocal tract. This contribu-
tion of non-linear excitation sources is something neglected by source-filter theory
[50]. Figure 2.3a and b show the linear and nonlinear models of sound propagation
along the vocal tract, respectively [28, 51].

Motivated by the measurements of Teager, Kaiser hypothesized that the interaction
of the jet flow and the vortices with the vocal tract cavity is responsible for much of
the speech fine structure, particularly at high formant frequencies. Then he proposed
the need for time frequency analysis methods with greater resolution than short-time
Fourier transform (STFT) for measuring fine structure within a glottal cycle. He
further argues that the instantaneous formant frequencies may be more important
than the absolute spectral shape.

2.7 Common Signals of Interest

Signals that we often use in this book are defined in this section. In Chaps. 4 and 5,
we will see how some of the parameters of these signals can be estimated.

2.7.1 AM Signals

An amplitude modulated (AM) signal is the combination of two signals, where one
signal is the carrier, which is a single frequency sinusoidal signal and the other is the
information we want to transmit, i.e., the baseband signal. The amplitude modulated
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Fig. 2.3 a Linear and b nonlinear model of sound propagation along the vocal tract [28, 51]

signal can be modeled as:

a(t) = A[l + km(1)] (2.5)
sam () = a(t)cos(§2.1) (2.6)

where A is the signal amplitude, £2.. is the carrier frequency (in radians/second), m (t)
is the baseband signal and k is the modulation index.

2.7.2 FM Signals

Just like the AM signals, an FM signal is the combination of two signals, where one
is the single frequency sinusoidal signal, the carrier and the other is the baseband
signal, however, in FM signals the baseband signal is used to change the frequency
of the carrier signal.

A frequency modulated signal (FM signal) can be modeled as,

t
(1) = 2t + .Qm/ q(v)dt 46 2.7
0
sFm(t) = Acos(gp(1)) (2.8)
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where A is the signal amplitude, £2. is the carrier frequency, §2,, is the maximum
frequency deviation with £2,, € [0, £2.], g (¢) is the baseband signal with |g(¢)| < 1,
and 6 is the constant phase offset. The instantaneous frequency is defined as the
derivative of ¢ (¢):

d
) = ‘Zf)

= Q¢ + 2nq(t) (2.9)

2.7.3 AM-FM Signals

The AM-FM signal is the combination of both the AM and FM signals discussed
above and it can modeled as,

sam—rum () = a(t)cos[p ()]

t
=a(t)cos (.Qct + .Qm/ q(v)dt + 0) (2.10)
0

This signal can model the time-varying amplitude and frequency patterns in speech
resonances. szp—rym(t) is a cosine of carrier frequency §2, with a time-varying
amplitude signal a(¢) and a time varying instantaneous frequency signal £2; (¢).

2.7.4 Discrete Versions

We can get discrete versions of the AM, FM, and AM-FM signals above by sampling
them. We can derive new expressions for these if we substitute # by n7T and £2 by
w/T, where w is the digital frequency (in radians/sample), and 7 is the sampling
period. Finally, the integrations are replaced by sums.

2.8 Summary

This chapter described the speech production and perception mechanisms consider-
ing the nonlinearities present in them. Some important aspects of physical modeling
of speech production system like vocal fold oscillations, the turbulent sound source,
aerodynamics observations regarding nonlinear interactions between the air flow and
the acoustic field are discussed in this chapter.
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