
Chapter 2

Discrete Population Models

2.1 Introduction: Linear Models

In this chapter we shall consider populations with a fixed interval between gener-
ations or possibly a fixed interval between measurements. Thus, we shall describe
population size by a sequence {xn}, with x0 denoting the initial population size, x1
the population size at the next generation (at time t1), x2 the population size at the
second generation (at time t2), and so on. The underlying assumption will always be
that population size at each stage is determined by the population sizes in past gen-
erations, but that intermediate population sizes between generations are not needed.
Usually the time interval between generations is taken to be a constant.

For example, suppose the population changes only through births and deaths, so
that xn+1 − xn is the number of births minus the number of deaths over the time
interval from tn to tn+1. Suppose further that the birth and death rates are constants
b and d, respectively (that is, if the population size is x then there are bx births and
dx deaths in that generation). Then

xn+1 − xn = (b−d)xn,

or
xn+1 = xn +(b−d)xn = (1+b−d)xn.

We let r = 1+b−d and obtain the linear homogeneous difference equation

xn+1 = rxn.

This together with the prescribed initial population size x0 determines the population
size in each generation. By a solution of the difference equation xn+1 = rxn with
initial value x0 we mean a sequence {xn} such that xn+1 = rxn for n = 0,1,2, . . .,
with x0 as prescribed.

It is easy to solve the difference equation xn+1 = rxn algebraically. We begin by
observing that x1 = rx0, x2 = rx1 = r2x0, x3 = rx2 = r3x0, and then we guess (and
prove by induction) that the unique solution is xn = rnx0 (n = 0,1,2, . . .). It follows

, .  and 
OI 10.1007/978-1-4614-1686-9_2,

© Springer Science+Business Media, LLC 2012

F Brauer C. -Chavez Mathematical Models in Population Biology and Epidemiology,
Texts in Applied Mathematics 40, D

49 Castillo



50 2 Discrete Population Models

that if |r|< 1, then xn → 0 as n → ∞, while if |r|> 1, then xn grows unboundedly as
n→∞. More precisely, if 0≤ r < 1, xn decreases monotonically to zero; if −1< r <
0, xn oscillates, alternating between positive and negative values, but tends to zero;
if r > 1, xn increases to +∞; if r < −1,xn oscillates unboundedly. Negative values
of xn for this difference equation have no biological meaning, but we soon will
consider difference equations in which the unknown is a deviation from equilibrium
(which may be either positive or negative) rather than a population size. For this
reason we have used the difference equation xn+1 = rxn as our first example, even
though a more plausible model for a real population might be

xn+1 =

{
rxn for xn > 0,
0 for xn ≤ 0,

which says that the population becomes extinct once it becomes zero in any gener-
ation. This will occur if and only if r ≤ 0. The model xn+1 = rxn also arises under
the assumption that all members of each generation die, but there is a constant birth
rate b to form the next generation. In this case d = 1, so that r = b. We may form
a different model by allowing migration and assuming a constant migration rate
β per generation, with positive β denoting immigration and negative β denoting
emigration. This leads to the linear inhomogeneous difference equation

xn+1 = rxn +β ,

which may also be solved iteratively,

x1 = rx0 +β ,

x2 = rx1 +β = r(rx0 +β )+β = r2x0 + rβ +β ,

x3 = rx2 +β = r(r2x0 + rβ +β )+β = r3x0 + r2β + rβ +β
...

Again we may guess, and then prove by induction, that

xn = rnx0 +β (rn−1 + rn−2 + . . .+ r+1)

= rnx0 +
β (1− rn)

1− r
=
(

x0 − β
1− r

)
rn +

β
1− r

.

If r > 1, then xn grows unboundedly for β > −(r − 1)x0, but xn reaches zero
if β < −(r − 1)x0; thus sufficiently large emigration will wipe out a population
that would otherwise grow unboundedly. If 0 < r < 1, then xn tends to the limit
β/(1− r) > 0 for β > 0, while xn reaches zero for β < 0. Thus, immigration may
produce survival of a population that would otherwise become extinct.

The assumption of a constant growth rate independent of population size is un-
likely to be reasonable for real populations except possibly while the population size
is small enough not to be subject to the effects of overcrowding. Various nonlinear
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difference equation models have been proposed as more realistic. For example, the
difference equations

xn+1 =
rxn

xn +A
[Verhulst (1845)]

and

xn+1 =
rx2

n

x2
n +A

have been suggested as descriptions of populations that die out completely in each
generation and have birth rates that saturate for large population sizes. The differ-
ence equations

xn+1 = xn + rxn

(
1− xn

K

)
and xn+1 = rxn

(
1− xn

K

)
,

both called the logistic difference equation, and essentially equivalent, describe pop-
ulations with growth rates that decrease to zero as the population grows large. Nei-
ther should be taken too seriously for large population sizes since xn+1 becomes
negative if xn is too large. Another form, which could with some justification also
be called the logistic equation, is

xn+1 = xner
(

1−xn/K
)
.

Here the growth rate decreases to zero as xn → ∞, but xn+1 cannot become negative.
Other difference equations, which have in fact been used as models to try to fit field
data, are

xx+1 = rxn(1+αxn)
−β [Hassell (1975)]

and

xn+1 =

{
rεβ x1−β

n for xn > ε
rxn for xn < ε.

It should be recognized that none of these models is derived from actual population
growth laws. Rather, they are attempts to give quantitative expression to rough qual-
itative ideas about the biological laws governing the population. For this reason, we
should be skeptical of the biological significance of any deduction from a specific
model that holds only for that model. Our goal should be to formulate principles
that are robust, that is, valid for a large class of models (ideally for all models that
embody some set of qualitative hypotheses). In Section 2.5 we will describe some
difference equation models that have been used to model fish populations and that
are based on biological assumptions. Such models give some insight into the types
of qualitative hypotheses that may be realistic.
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Exercises

1. Find the solution of the difference equation xn+1 =
1
2 xn, x0 = 2.

2. Find the solution of the difference equation xn+1 =
1
2 xn +1, x0 = 2.

3. Find by calculating recursively the solution of the second-order difference
equation xn+2 =

1
2 xn, x0 = 1, x1 =−1.

4. Consider the second order difference equation

xn+2 −3xn+1 +2xn = 0.

a. Show that the general solution to the equation is of the form

xn = A1 +2nA2,

where A1 and A2 are any constants.
b. Suppose that x0 and x1 are given. Then A1 and A2 must satisfy the system

of equations

A1 +A2 = x0,

A1 +2A2 = x1.

c. From the general solution, solve for the specific solution with initial con-
ditions x0 = 10 and x1 = 20.

5. Find by calculating recursively the solution of the second-order difference
equation xn+2 = rxn, x0 = 1, x1 =−1.

6. Find the general form of the solution of the difference equation

xn+1 = c− xn

with c arbitrary for an arbitrary initial value x0 = a.
7. Consider the model

xn+1 = rxn

(
1− xn

K

)
, r > 0.

a. Show that xn+1 < 0 if and only if xn > K.
b. Show that xn+1 > K is possible with 0 < xn < K only for r > 4.
c. What conditions on x0 are necessary and sufficient to guarantee xn > 0 for

n = 1,2,3, . . .?

8. Find the general form of the solution of the difference equation

xn+1 = 1− xn

for an arbitrary initial value x0 = a.
9∗. The solution of the difference equation xn+2 = xn + xn+1, x0 = 0, x1 = 1 is

called the Fibonacci sequence (originally formulated by Leonardo Fibonacci
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(1202) to describe the number of pairs of rabbits under the hypothesis that
each pair of rabbits reproduces only at age one month and age two months and
produces exactly one pair of offspring on each of these two occasions, with all
rabbits living exactly two months).

a. Calculate the first eight terms of the Fibonacci sequence.
b. Suppose it can be shown that the ratio of successive terms xn+1/xn of the

Fibonacci sequence tends to a limit τ as n → ∞. Show that τ = 1
τ +1.

c. Deduce that τ = 1+
√

5
2 .

10∗. For a general, not necessarily linear, first-order difference equation

xn+1 = f (xn),

show that if a solution {xn} approaches a limit x∞ as n → ∞, then the limit x∞
must satisfy the equation

x∞ = f (x∞).

2.2 Graphical Solution of Difference Equations

There is a way of solving difference equations graphically, called the cobwebbing
method, which we illustrate for the simple linear homogeneous example xn+1 = rxn.
We begin by drawing the reproduction curve y = rx in the (x,y)-plane. Then we
mark x0, go vertically to the reproduction curve, and from there horizontally to the
line y = x at the point (x1,x1). Then we go vertically to the reproduction curve and
from there horizontally to the line y= x at the point (x2,x2), and so on. There are four
separate cases: r > 1, 0 < r < 1, −1 < r < 0, and r <−1, corresponding to different
relative positions of the reproduction curve y = rx and the line y = x. In each case,
the graphical solution illustrates the behavior already obtained analytically (Figure
2.1).

The cobwebbing method can be applied to any difference equation of the form
xn+1 = f (xn) using the reproduction curve y = f (x) and the line y = x; it gives
information about the behavior of solutions. This is particularly useful for difference
equations whose analytic solution is complicated. We give two more illustrative
examples.

Example 1. (Verhulst equation) For the equation

xn+1 =
rxn

xn +A
,

the reproduction curve is y = rx/(x+A). Its slope is given by dy/dx = rA/(x+A)2,
which has the value r/A at x = 0. This means that we must distinguish the cases
r < A, for which the line y = x lies below the reproduction curve, and r > A, for
which the line y = x intersects the reproduction curve (Figure 2.2).
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Fig. 2.1 Cobwebbing for a linear difference equation.

Fig. 2.2 Cobwebbing for the Verhulst equation

If r > A, every solution, regardless of the initial value x0, tends to the limit x∞ =
r−A where the line y = x and the reproduction curve y = rx/(x+A) intersect. If
r < A, every solution tends to the limit zero.

Example 2. For the equation

xn+1 =
rx2

n

x2
n +A

,

the reproduction curve is y = rx2/(x2 +A), which intersects the line y = x at x = 0
and at x = (r±√

r2 −4A)/2. Thus for r > 2
√

A there are three real intersections,
and for r < 2

√
A the only real intersection is at x = 0 (Figure 2.3).

If r > 2
√

A, all solutions with x0 < (r−√
r2 −4A)/2 tend to zero, and solutions

with x0 > (r−√
r2 −4A)/2 tend to the limit x∞ = (r+

√
r2 −4A)/2. If r < 2

√
A,
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Fig. 2.3 Cobwebbing for model with Allee effect.

all solutions tend to the limit zero. This model attempts to describe populations that
collapse if their initial size is too small but survive if their initial size is large enough.
This is analogous to the critical depensation model, or Allee effect , described for
continuous population models in Section 1.4.

Exercises

1. Use the cobwebbing method to sketch the first few terms of the solution of

xn+1 = xn + xn(1− xn), x0 =
1
2
.

2. Use the cobwebbing method to sketch the first few terms of the solution of

xn+1 = xn +2.2xn(1− xn), x0 =
1
2
.

3. Use the cobwebbing method to sketch the first few terms of the solution of

xn+1 = xn +3xn(1− xn), x0 =
1
2
.

4. Consider the difference equation

xn+1 =

{
x1/2

n for xn >
1
4 ,

2xn for xn <
1
4 .

Sketch the solutions for several different choices of x0 between zero and one.
5. [Kaplan & Glass (1995)] Assume that the density of flies in a swamp is de-

scribed by the equation
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xn+1 = Rxn − R
2000

x2
n.

Consider three values of R, where one value of R comes from each of the fol-
lowing ranges:
(1) 1 ≤ R < 3,
(2) 3 ≤ R < 3.449,
(3) 3.57 ≤ R < 4.
For each value of R graph xn+1 as a function of xn. Using the cobwebbing
method, follow xn for several generations. Describe the qualitative behavior
found for R = 2.

2.3 Equilibrium Analysis

In the examples of the preceeding section we observed a tendency for solutions to
approach a limit that is the x-coordinate of an intersection of the reproduction curve
and the line y = x. Such a value of x is a constant solution of the difference equation.
This motivates the following definition of equilibrium of a difference equation:

xn+1 = f (xn). (2.1)

Definition 2.1. An equilibrium of a difference equation (2.1) is a value x∞ such that
x∞ = f (x∞), so that xn = x∞ (n = 0,1,2, . . .) is a constant solution of the difference
equation.

In order to describe the behavior of solutions near an equilibrium, we introduce
the process of linearization just as we did in Section 1.4 for first-order differential
equations. If x∞ is an equilibrium of the difference equation xn+1 = f (xn), so that
x∞ = f (x∞), we make the change of variable un = xn − x∞ (n = 0,1,2, . . .). Thus un
represents deviation from the equilibrium value. Substitution gives

x∞ +un+1 = f (x∞ +un),

and application of Taylor’s theorem gives

x∞ +un+1 = f (x∞ +un) = f (x∞)+ f ′(x∞)un +
f ′′(cn)

2!
u2

n

for some cn between x∞ and x∞+un. We write h(un) = f ′′(cn)u2
n/2! and use the rela-

tion x∞ = f (x∞) to form the difference equation equivalent to the original difference
equation (2.1),

un+1 = f ′(x∞)un +h(un). (2.2)

The function h(u) is small for u, small in the sense that
∣∣h(u)/u

∣∣→ 0 as |u| → 0;
more precisely, for every ε > 0 there exists δ > 0 such that |h(u)|< ε|u| whenever
|u|< δ . The linearization of the difference equation xn+1 = f (xn) at the equilibrium
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x∞ is defined to be the linear homogeneous difference equation

vn+1 = f ′(x∞)vn, (2.3)

obtained by neglecting the higher-order term h(un) in (2.2). The importance of the
linearization lies in the fact that the behavior of its solutions describes the behavior
of solutions of the original equation (2.1) near the equilibrium. The behavior of
solutions of the linearization has been described completely in Section 2.1. The
following result explains the significance of the linearization at an equilibrium.

Theorem 2.1. If all solutions of the linearization (2.3) at an equilibrium x∞ tend to
zero as n → ∞, then all solutions of (2.1) with x0 sufficiently close to x∞ tend to the
equilibrium x∞ as n → ∞.

Proof. For convenience we write ρ = | f ′(x∞)|. The assumption that all solutions
of the linearization tend to zero is equivalent to ρ < 1. Now choose ε > 0 so that
ρ +ε < 1. The difference equation xn+1 = f (xn) is equivalent to un+1 = f ′(x∞)un +
h(un). Then

|un+1| ≤ | f ′(x∞)||un|+ |h(un)|< ρ|un|+ ε|un|
provided |un| < δ , where δ is determined by the condition that |h(u)| < ε|u| for
|u|< δ . Thus, |un+1| ≤ (ρ +ε)|un| provided |un|< δ . If |u0|< δ , it is easy to show
by induction that |un+1|< δ for n = 0,1,2, . . . . This establishes |un+1| ≤ (ρ +ε)|un|
for n = 0,1,2, . . . . Now it is easy to show, again by induction, that

|un| ≤ (ρ + ε)n|u0|, n = 0,1,2, . . . .

Since ρ + ε < 1, it follows that un → 0, and thus that xn → x∞ as n → ∞.

In Section 2.1 we observed that if | f ′(x∞)| < 1, then the solutions of vn+1 =
f ′(x∞)vn all tend to zero, and further that this approach is monotone if 0 < f ′(x∞)<
1 and oscillatory if −1 < f ′(x∞) < 0. It is possible to refine Theorem 2.1 to show
that the approach to an equilibrium x∞ of xn+1 = f (xn) is monotone if 0< f ′(x∞)< 1
and oscillatory if −1 < f ′(x∞)< 0. That this is true is suggested by the cobwebbing
method (Figure 2.4).

Fig. 2.4 Stability of equilibrium.



58 2 Discrete Population Models

The content of Theorem 2.1 is that an equilibrium x∞ with | f ′(x∞)| < 1 has the
property that every solution with x0 close enough to x∞ remains close to x∞ and
tends to x∞ as n → ∞. This property is called asymptotic stability of the equilibrium
x∞. The condition f ′(x∞) < 1 means that the curve y = f (x) crosses the line y = x
from above to below as x increases, while the condition f ′(x∞)>−1 means that the
curve y= f (x) cannot be too steep at the crossing. If | f ′(x∞)|> 1, it is not difficult to
show that except for the constant solution xn = x∞ (n = 0,1,2, . . .), solutions cannot
remain close to x∞. This property is called instability of the equilibrium x∞. An
unstable equilibrium has no biological significance, since any deviation, however
small, is enough to force solutions away.

We emphasize that Theorem 2.1 applies to solutions whose initial value x0 is
close enough to the equilibrium x∞. This is because the nonlinear term h(un) in
the difference equation un+1 = f ′(x∞)un +h(un) is small enough to have an almost
negligible effect on the solution only near the equilibrium x∞. Theorem 2.1 gives
no explicit method of computing how close to x∞ is close enough for the solution
with a given initial value to tend to x∞. Often this can be seen in practice using
the cobwebbing method of constructing solutions graphically, as we have shown in
Section 2.2. Proofs of the theorems in this section may be found in such books as
[Elaydi (1996)] and [Sandefur(1990)].

Example 1. For the logistic difference equation

xn+1 = xn + rxn

(
1− xn

K

)
with f (x)= (1+r)x−rx2/K and f ′(x)= (1+r)−2rx/K, it is easy to find equilibria
by solving the quadratic equation x = x+ rx

(
1− x/K

)
and obtaining the roots x =

0 and x = K. Since f ′(0) = 1+ r, the equilibrium x = 0 is asymptotically stable
if −1 < 1 + r < 1, or −2 < r < 0. Since r > 0 in applications, this means that
the equilibrium x = 0 is unstable. Since f ′(K) = 1− r, the equilibrium x = K is
asymptotically stable if 0 < r < 2. It is not difficult to show that for 0 < r < 2,
every solution tends to the equilibrium K. If r > 2, the equilibrium x = K is unstable
and there is no asymptotically stable equilibrium to which solutions can tend. In the
following section, we shall explore the behavior of solutions if r > 2 in more detail.

The logistic difference equation is sometimes presented in the form

xn+1 = rxn

(
1− xn

K

)
.

The study of the equation in this form is quite similar to the previous discussion;
there is an equilibrium at x = 0 that is asymptotically stable if r < 1, in which case
every solution tends to zero, and an equilibrium at x = K

(
1−1/r

)
that is asymptot-

ically stable if 1 < r < 3, in which case every solution tends to K
(
1− 1/r

)
, and if

r > 3 there is no asymptotically stable equilibrium.

Example 2. For the Verhulst equation
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xn+1 =
rxn

xn +A
,

we have f (x) = rx/(x+A); f ′(x) = rA/(x+A)2. The solution of x = rx/(x+A)
gives two roots, x = 0 and x = r −A. Thus, if r < A the only equilibrium corre-
sponding to a nonnegative population size is x = 0. Since f ′(0) = r/A < 1, this
equilibrium is asymptotically stable and every solution tends to zero. If r > A there
are two equilibria, x = 0, and x = x∞ = r−A. Since f ′(0) = r/A > 1, the equilib-
rium at x = 0 is unstable. Since f ′(x∞) = A/r < 1, the equilibrium x∞ is asymptot-
ically stable. We have seen in Section 2.2 (graphically) that in fact every solution
approaches x∞, that is, that the equilibrium x∞ is globally asymptotically stable.

Exercises

In Exercises 1 through 9 find each equilibrium of the given difference equation and
determine whether it is asymptotically stable or unstable.

1. xn+1 =
rx2

n
x2

n+A (r and A are nonnegative).

2. xn+1 = xner
(

1−xn/K
)
.

3. xn+1 = rxn(1+αxn)
−β .

4. xn+1 =

{
x1/2

n for xn >
1
4 ,

2xn for xn <
1
4 .

5. xn+1 =
2xn

1+xn
.

6. xn+1 = xn logxn.

7. xn+1 =
(

1
αxb

n

)
(λxn).

8. xn+1 = xn exp(r(1− xn
K )).

9. xn+1 =
λxn

(1+axn)b .

10. a. A population is governed by the difference equation

xn+1 = xne3−xn .

Show that all equilibria are unstable.
b. The population of part (a) is to be stabilized by removing a fraction p

(0 < p < 1) of the population in each time period after all births and deaths
have taken place, to give the model

xn+1 = (1− p)xne3−(1−p)xn .

For what values of p does the population have an asymptotically stable
positive equilibrium?
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11. a. In the Fibonacci equation (see Exercise 9, Section 2.1) xn+2 = xn + xn+1,
make the change of variable un = xn+1/xn and obtain the transformed dif-
ference equation un+1 = 1+1/un.

b. Find all equilibria of the transformed difference equation of part (a) and
determine which are asymptotically stable.

12. a. Find the nonnegative equilibria of a population governed by

xn+1 =
3x2

n

x2
n +2

and check for stability.
b. Suppose a fraction a is removed from the population in each generation, so

that the model becomes

xn+1 =
3x2

n

x2
n +2

−axn.

For what values of a is there a stable equilibrium only at x = 0?
13. [Kaplan & Glass (1995)] The following equation plays a role in the analysis

of nonlinear models of gene and neural networks:

xn+1 =
αxn

1+βxn
,

where α and β are positive numbers and xn ≥ 0.

a. Algebraically determine the fixed points. For each fixed point give the
range of α and β for which it exists, indicate whether the fixed point is
stable or unstable, and state whether the dynamics in the neighborhood of
the fixed point are monotonic or oscillatory. For parts (b) and (c) assume
α = β = 1.

b. Sketch the graph of xn+1 as a function of xn. Graphically iterate the equa-
tion starting from the initial condition x0 = 10. What happens as the num-
ber of iterates approaches ∞?

c. Algebraically determine xn+2 as a function of xn, and xn+3 as a function of
xn. Based on these computations what is the algebraic expression for xn+k
as a function of xn? What is the behavior of xn+k as k → ∞? This should
agree with what you found in part (b).

14. Consider the following pair of difference equations:

xn+1 = f (n,xn),

yn+1 = g(n,yn),

where f and g are nonnegative functions defined on [0,∞). Assume that
f (n,xn)≤ g(n,xn) for each nonnegative integer n and each nonnegative xn and
g(n,y(n)) is nondecreasing with respect to the second argument yn. Prove that
if {xn}n≥0 is a solution of the first equation and {yn}n≥0 is a solution of the
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second equation with x0 ≤ y0 , then xn ≤ yn for all n = 0,1,2,3, . . . .

15. Consider the single-species discrete-time population model

xn+1 = xneβ 1−xn
1+xn

where xn ≥ 0 is the nonnegative population density in generation n, and the pos-
itive constant β is greater than 4. Let {x1,x2} be a 2-cycle of this model, where
x1 > 0, x2 > 0 and x1 �= x2. Decide whether the 2-cycle {x1,x2} is asymptoti-
cally stable. Explain.

2.4 Period-Doubling and Chaotic Behavior

For the logistic difference equation

xn+1 = xn + rxn

(
1− xn

K

)
,

we have seen that the equilibrium x∞ = K is asymptotically stable for 0 < r < 2.
How do solutions behave if r > 2? We may think of r as a parameter that may be
varied, and as r passes through the value 2, there must be a fundamental change in
the behavior of solutions. While there is an equilibrium of K for all r, every solution
tends to this equilibrium if 0< r < 2, but no solution other than the constant solution
xn = K (n = 0,1,2, . . .) tends to this equilibrium if r > 2. What happens when r
increases past 2 is that a solution of period 2 appears. By this we mean that there
are two values, x+ and x−, with f (x+) = x−, f (x−) = x+ such that the alternating
sequence x+,x−,x+, . . . is a solution of the difference equation.

To establish the existence of this periodic solution, we take

f (x) = x+ rx
(

1− x
K

)
= (1+ r)x− r

K
x2

and define

f2(x) = f
(

f (x)
)
= (1+ r) f (x)− r

K

(
f (x)

)2

= (1+ r)2x− r(1+ r)
K

x2 − r
K

(
(1+ r)x− r

K
x2
)2

= (1+ r)2x− r(1+ r)(2+ r)
K

x2 +
2r2

K2 (1+ r)x3 − r3

K3 x4.

We now look for equilibria of the second-order difference equation

xn+2 = f2(xn).
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Such equilibria give solutions of period 2 for the original difference equation xn+1 =
f (xn). These equilibria are solutions of the fourth-degree polynomial equation

x = (1+ r)2x− r(r+1)(r+2)
K

x2 +
2r2(1+ r)

K2 x3 − r3

K3 x4,

giving

x
(

r3
( x

K

)3 −2r2(1+ r)
( x

K

)2
+ r(r+1)(r+2)

( x
K

)
− r(r+2)

)
= 0

or

x
(( x

K

)
−1

)(
r2
( x

K

)2 − r(r+2)
( x

K

)
+(r+2)

)
= 0.

There are four roots, namely x = 0, x = K, and the roots x+,x− of the quadratic
equation r2

(
x/K

)2 − r(r+2)
(
x/K

)
+(r+2) = 0. Thus

x+ =
(r+2)+

√
r2 −4

2r
K, x− =

(r+2)−√
r2 −4

2r
K,

and these roots are real if r ≥ 2. We also have

f (x+) = (1+ r)x+− r
K

x2
+

= (r+1)
r+2

2r
K +(r+1)

√
r2 −4
2r

K

− r
K

K2

4r2

(
(r+2)2 + r2 −4+2(r+2)

√
r2 −4

)
2r
K

f (x+) = (r+1)(r+2)+(r+1)
√

r2 −4

−1
2

(
r2 +4r+4+ r2 −4+2(r+2)

√
r2 −4

)
= (r+2)−

√
r2 −4 =

2r
K

x−.

Thus f (x+) = x− , and since f2(x+) = f
(

f (x+)
)
= x+, we have f (x−) = x+. We

have now shown that if r > 2, there is a periodic solution of period 2 of xn+1 = f (xn)
given by xn = x+ (if n is odd), xn = x− (if n is even).

In order to test the stability of this periodic solution, we must compute f ′2(x+),
which may be done by starting with

f2(x)− x = −rx
(( x

K

)
−1

)(
r2
( x

K

)2 − r(r+2)
( x

K

)
+(r+2)

)
= r

(
x− x2

K

)(
r2
( x

K

)2 − r(r+2)
( x

K

)
+(r+2)

)
.
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Differentiation (using the product rule) gives

f ′2(x)−1 = r
(

1− 2x
K

)(
r2
( x

K

)2 − r(r+2)
( x

K

)
+(r+2)

)
+r

(
x− x2

K

)(
2r

x
K2 − r(r+2)

K

)
.

Since r2
(
x+/K

)2 − r(r+2)
(
x+/K

)
r(r+2) = 0, we have

f ′2(x+)−1 = r
(

x+− x2
+

K

)(
2r

x+
K2 − −r(r+2)

K

)
=

r(r+2)+ r
√

r2 −4
2

(
1− (r+2)+

√
r2 −4

2r

)√
r2 −4

=
1
4

(
(r+2)+

√
r2 −4

)(
(r−2)−

√
r2 −4

)√
r2 −4

= 4− r2.

We now have f ′2(x+) = 5− r2. If we accept the theorem that a constant solution
xn = x̄ (n= 1,2, . . .) of the second-order difference equation xn+2 = f2(xn) is asymp-
totically stable if | f ′2(x̄)|< 1, a theorem analogous to the one established in Section
2.3 for first-order difference equations (which will be described further in Exercises
2 and 3 below), then we see that this periodic solution is asymptotically stable if
−1 < 5− r2 < 1, or 2 < r <

√
6 = 2.449. Thus, if 2 < r < 2.449, there is a solution

of period 2 to which every solution of xn+1 = f (xn) tends.
For r >

√
6, the solution of period 2 is unstable, but it can be shown that a solution

of period 4 appears and that this solution is asymptotically stable if
√

6 < r < 2.544.
When it becomes unstable, a solution of period 8 appears, which is asymptotically
stable for 2.544 < r < 2.564. This period-doubling phenomenon continues until
r = 2.570, when periodic solutions whose periods are not powers of 2 begin to
appear, but these solutions are unstable. In addition, for many values of r > 2.570
solutions are aperiodic , that is, they never settle down to either an equilibrium or a
periodic orbit [Strogatz (1994)]. It is possible to show analytically that a solution of
period 3 appears when r =

√
8= 2.828 [Saha and Strogatz (1995)]. For r >

√
8 there

is a periodic solution of period k for every integer k, but different initial values give
different solutions. There are also solutions whose behavior is apparently random;
such solutions are called chaotic (see Figure 2.5, a bifurcation diagram generated
by a program in (the virtual) Appendix C). The existence of a solution of period 3
implies chaotic behavior [Li and Yorke (1975)].

These facts, whose proofs require a close examination of the properties of contin-
uous functions and fixed points of iterates of continuous functions, are not restricted
to the logistic difference equation. It is a remarkably robust fact that for every differ-
ence equation xn+1 = r f (xn) with f (x) a function increasing to a unique maximum
and then decreasing, the period-doubling phenomenon and the onset of chaos occur.
In fact, if rn is the value of r for which the asymptotically stable solution of period
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Fig. 2.5 Bifurcation diagram

2n appears, then

lim
n→∞

rn+1− rn

rn+2− rn+1
= 4.6692016 . . . ,

the Feigenbaum constant. For the logistic equation, r1 = 2.000, r2 = 2.449, r3 =
2.544, and (r2− r1)/(r3− r2) = 4.73; usually the limiting value is approached very
rapidly. This says that the period-doubling values of r occur closer and closer to-
gether [Feigenbaum (1980)].

From a biological point of view, these results are also remarkable. One interpre-
tation is that even very simple models can produce apparently unpredictable behav-
ior and this suggests the possibility that the governing laws may be relatively simple
and therefore discoverable [May (1976)]. There do appear to be experimental obser-
vations supporting the possibility of chaotic behavior [Gurney, Blythe, and Nisbet
(1980)]. On the other hand, the fact that such simple models lead to unpredictable
results suggests that experimental results and observations may not be repeatable.
This suggests that one should focus on the range of values of r in which the behav-
ior is predictable and in the chaotic ranges look for properties of solutions, such as
upper and lower bounds, that are verifiable.

For models of the form xn+1 = r f (xn) with f (x) a bounded monotone increasing
functions, such as the Verhulst equation

xn+1 =
rxn

xn +A
,

it is easy to verify that since r f (x) is bounded while x is not, there is a largest equi-
librium x∞ at which y = r f (x) crosses the line y = x from above to below. This
implies 0 < r f ′(x∞)< 1, and shows that the equilibrium x∞ is asymptotically stable;
in fact solutions approach x∞ monotonically. Thus, there is no possibility of period-
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doubling or chaotic behavior, or even of stable oscillations. This fact is also robust
in that it is valid for all bounded increasing recruitment functions f (x). The biolog-
ical significance of the difference between recruitment functions that are monotone
increasing and recruitment functions that rise to a maximum and then fall involves
the nature of the intraspecies competition for resources. Recruitment functions with
a maximum correspond to scramble competition, in which resources are divided
among all members and excessive population sizes reduce the survival rate, while
monotone recruitment functions correspond to contest competition, in which some
members obtain enough resources for survival, while others do not and die as a
result. We now have a legitimate example of a biological assumption leading to
qualitative predictions of behavior that might be experimentally observable.

Exercises

1. For what value of r does a solution of period 2 appear for the difference equa-
tion

xn+1 = rxne1−xn?

2. Let {x+,x−} be a solution of period 2 of the difference equation

xn+1 = f (xn).

Show that both x+ and x1 are equilibria of the second-order difference equation

xn+2 = f
(

f (xn)
)
.

3. Define a new index k = n/2 for n even and the iterated function

f2(x) = f
(

f (x)
)
.

Show that x+ and x− from Exercise 2 are equilibria of the first order difference
equation

xk+1 = f2(xk).

[Remark: Exercise 3 together with Theorem 2.1 of Section 2.3 shows that an
equilibrium x∗ of the second order equation xn+2 = f2(xn) is asymptotically
stable if | f ′2(x∗)| < 1. Exercise 8 below gives another stability criterion for
the asymptotic stability of a solution of period 2 of the difference equation
xn+1 = f (xn).]

4. [Kaplan & Glass(1995)] Consider an ecological system described by the finite
difference equation

xn+1 =Cx2
n(2− xn), for 0 ≤ xn ≤ 2,
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where xn is the population density in year n and C is a positive constant that we
assume is equal to 25/16.

a. Sketch the graph of the right hand side of this equation. Indicate the max-
ima, minima, and inflection points.

b. Determine the fixed points of this system.
c. Determine the stability at each fixed point and describe the dynamics in a

neighborhood of the fixed points.
d. In a brief sentence or two describe the expected dynamics starting from

initial values of x0 = 1/3 and also x0 = 1 in the limit as n→∞. In particular,
comment on the possibility that the population may go to extinction or to
chaotic dynamics in the limit n → ∞.

5. [Kaplan and Glass(1995)] The following finite difference equation has been
considered as a mathematical model for a periodically stimulated biological
oscillator [Bélair and Glass (1983)].

φn+1 =

{
6φn −12φ 2

n for 0 ≤ φn < 0.5,
12φ 2

n −18φn +7 for 0.5 ≤ φn ≤ 1.

a. Sketch φn+1 as a function of φn for 0 ≤ φn ≤ 1. Be sure to show all maxima
and minima and compute the values of φn+1 at these extreme points.

b. Compute all fixed points. What are the qualitative dynamics in a neighbor-
hood of each fixed point?

c. If you have done part (a) right, you should be able to find a cycle of period
2. What is this cycle? Show it on your sketch.

6. For the logistic difference equation xn+1 = xn + rxn(1− xn/K) with r > 2,
show that

0 < x− < x∞ < x+ < K.

7∗. a. Let {x+,x−} be a solution of period 2 of the difference equation xn+1 =
f (xn). Use the chain rule of calculus to show that if f2(x) = f

(
f (x)

)
, then

f ′2(x+) =
d
dx

f
(

f (x)
)∣∣∣∣

x=x+
= f ′(x−) f ′(x+).

b. Deduce from part (a) that the solution of period 2 is asymptotically stable
if

| f ′(x−)| · | f ′(x+)|< 1.

8. [Kaplan and Glass (1995)] The finite difference equation

xn+1 = 0.5+α sin(2πxn), 0 ≤ x < 1,

where 0 ≤ α < 0.5, has been used as a mathematical model for periodic stim-
ulation of biological oscillators .
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a. There is one steady state. Determine this steady state and its stability as a
function of α .

b. Sketch xn+1 as a function of xn for α = 0.25. Be sure to indicate all max-
ima, minima, and inflection points.

c. For α = 0.25 there is a stable orbit of priod 2. What is it?

9∗. For what value of r does a solution of period 2 appear for the difference equa-
tion

xn+1 = rxne1−xn?

Hint: Let f (x) be the right-hand side function, i.e., f (x) = rxe1−x. Find the con-
dition for r under which f

(
f (x)

)
has fixed points. If you find that the condition

is r > e, you will find the solution.
10. The population of a species is described by the finite difference equation

xn+1 = axn exp(−xn) for xn ≥ 0,

where a is a positive constant.

a. Determine the fixed points.
b. Evaluate the stability of the fixed points.
c. For what value of a is there a period-doubling bifurcation (using the con-

clusion of the previous exercise).
d. For what values of a will the population become extinct starting from any

initial condition?

11. The objective of this problem is to get you to read and think about some of the
work on difference-equation models in population biology. Read [May (1976)].
Write a summary that deals with critical ideas, methods, and presentation in
that article. The questions you might wish to answer are these:

a. What is the main focus of this article? Is a particular question being ad-
dressed?

b. Do the mathematical models help illuminate the topics? If so, in what
ways?

c. Are there alternative methods or approaches that might have been suitable
for answering the questions the author addressed?

2.5 Discrete–Time Metered Models

In many populations there is a recruitment cycle in which the population size at
each stage is a function of the population size at the previous stage, but the form of
this function is determined by a continuous birth and death process. In this case the
population size is given by a difference equation

xn+1 = f (xn)
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describing what may be called the long-term dynamics of the model. The function
f (x) is constructed from assumptions on births and deaths occurring continuously in
the intervals between stages and incorporates the short-term dynamics of the model.
Such models are called metered models. As difference equations they may be ana-
lyzed by the methods of this chapter. What is new in this section is the use of models
of the type considered in Chapter 1 to establish specific forms for the reproductive
curve y = f (x). In many fish populations there is an annual birth process, with the
number of births depending on the adult population size at the time, followed by a
continuous death rate until the next birth cycle, at which time the survivors make up
the adult population. Such populations lend themselves naturally to metered models.

To describe the general form of a metered model, we let xn be the size of the
adult population at the nth stage. Suppose this parent stock gives rise to Bn young
and the survivors of this class at time T (often one year for fish populations) are
the xn+1 adults at the next stage. More generally, we may assume that there are Rn
surviving recruits of whom Hn are harvested with the remainder Rn −Hn forming
the adult population xn+1 at the next stage. This parent stock xn+1 is often called the
escapement by fishery biologists. This description assumes that none of the adults’
xn parents survive to the next stage, but it is not difficult to relax this restriction. It
also assumes that harvesting occurs just before the reproductive stage.

We shall assume constant fertility, that is, that the number of births Bn is propor-
tional to the number of adults xn, that is,

Bn = αxn.

We also assume that between birth times there is a per capita death rate that is a
function of the number of survivors from the Bn newborn members. This means that
if there are z(t) survivors at time t then there is a function φ(z) (the per capita death
rate) such that

dz
dt

=−zφ(z).

Then the recruitment Rn is the value for t = T of the solution of the initial value
problem

dz
dt

=−zφ(z), z(0) = Bn = αxn. (2.4)

Formally, we can solve by separation of variables, obtaining∫ Rn

αxn

dz
zφ(z)

=−T.

The function f in the metered model xn+1 = f (xn) is given implicitly by the relation∫ f (xn)

αxn

dz
zφ(z)

=−T.

Under harvesting, the model is
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xn+1 = Rn −Hn = f (xn)−Hn,

with the same function f .

Example 1. (The Beverton and Holt stock recruitment model) In some bottom-
feeding fish populations, including the North Atlantic plaice and haddock studied
by Beverton and Holt (1957), recruitment appears to be essentially unaffected by
fishing, and this is true over a wide range of fishing effort. These species have very
high fertility rates and very low survivorship to adulthood. The Beverton and Holt
model assumes a linear per capita mortality rate, so that the differential equation
describing survivorship has the form

dz
dt

=−z(μ1 +μ2z),

with μ1 and μ2 positive constants. Explicit solution of the initial value problem (2.4)
leads to a recruitment function of the form

Rn =
axn

1+bxn
,

where a and b are positive constants related to μ1 and μ2. In fact, the same form is
valid if μ1 and μ2 are arbitrary nonnegative functions of t. This leads to the Beverton
and Holt metered model

xn+1 =
axn

1+bxn
.

The reader should observe that this is equivalent to the Verhulst model

xn+1 =
rxn

xn +A

described earlier with a = r/A, b = 1/A. As we have seen for the Verhulst equation,
there is an asymptotically stable positive equilibrium only if r > A , or equivalently
if a > 1.

Example 2. (The Ricker stock recruitment model) It was observed by Ricker (1954,
1958) that some species of fish, including salmon, habitually cannibalize their eggs
and young. The Ricker model assumes a per capita death rate proportional to the
initial size of the young population. Then the survivorship differential equation has
the form

dz
dt

=−zBn =−αxnz, z(0) = αxn.

This has the solution
z = αxne−αxnt

and therefore
Rn = αxne−αT xn ,

which we write
Rn = αxne−βxn
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by letting β = αT. This leads to the Ricker metered model

xn+1 = αxne−βxn .

Exercises

1. a. Show that the Ricker model xn+1 = αxne−βxn has an equilibrium x = 0 and
a positive equilibrium x∞ = logα/β if α > 1.

b. Determine the range of values of the parameter α for which each of these
equilibria is asymptotically stable.

2. In the Beverton and Holt model

xn+1 =
axn

1+bxn
,

determine the constants a and b in terms of α and T if the survivorship differ-
ential equation is

dz
dt

=−dz2.

(Or μ1 = 0,μ2 = d.)
3. Analyze the behavior of the continuous analogue of the metered Ricker model,

dx
dt

= αxe−βx − x,

and compare with the behavior of the metered model.
4. Analyze the behavior of the continuous analogue of the metered Beverton and

Holt model
dx
dt

=
ax

1+bx
− x.

2.6 A Two-Age Group Model and Delayed Recruitment

Suppose we are interested in studying a population that in the nth generation con-
tains xn immature members and yn adult members, with a birth rate depending on
the number of adult members and a transition rate from immature to adult members
depending on the number of immature members. If the birth rate is α and the rate
of transition is β , we are led to a system of two difference equations,

xn+1 = αyn

yn+1 = βxn,
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assuming no survival of adult members to the next generation. Graphical methods
of solving this system are cumbersome, but the method of analytic solution is easy.
Iteration gives x1 = αy0, y1 = βx0; x2 = αy1 = αβx0, y2 = βx1 = αβy0, x3 =
αy2 = α2βy0, y3 = βx2 = αβ 2x0. The pattern becomes apparent if we introduce
vector–matrix notation. Define the two-dimensional column vector

zn =

(
xn
yn

)
and the reproduction matrix

A =

(
0 α
β 0

)
.

Then the system can be written

zn+1 = Azn,

and now iterative solution gives

zn = Anz0,

where An is the nth power of the matrix A. More generally, we could assume a
nonlinear birth function B(y) and a nonlinear mortality function D(y), that is, a
nonlinear system

xn+1 = B(yn)

yn+1 = αxn −D(yn).

An equilibrium of this system is a solution (x∞,y∞) of the system x∞ = B(y∞), y∞ =
αx∞ −D(y∞). We may linearize about the equilibrium and examine the asymptotic
stability of the equilibrium by studying the linearized system

un+1 = B′(y∞)vn,

vn+1 = αun −D′(y∞)vn,

with coefficient matrix

A =

(
0 B′(y∞)
α −D′(y∞)

)
.

Such a study requires the machinery of linear algebra, which we shall not undertake
here. Models with a larger number of age groups are also natural and their study
leads to systems of difference equations each with dimension equal to the number
of age groups. Again, the use of linear algebra is essential. In order to study a two-
age group model such as

xn+1 = B(yn), yn+1 = αxn −D(yn),
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without being forced to use linear algebra, we may eliminate by substituting B(yn−1)
for xn in the second equation. We then obtain a single second-order difference equa-
tion

yn+1 = αB(yn−1)−D(yn),

using the relation xn+1 = B(yn) to determine xn once this second-order equation has
been solved. An equilibrium of this second order equation is a value y∞ such that

y∞ = αB(y∞)−D(y∞).

The linearization at the equilibrium is the second-order linear homogeneous differ-
ence equation

un+1 = αB′(y∞)un−1 −D′(y∞)un.

In order to study the stability of an equilibrium of a difference equation of order
higher than one, we first state the following linearization theorem without proof.

Theorem 2.2. If x∞ is an equilibrium of the difference equation

xn+k = f (xn+k−1,xn+k−2, . . . ,xn+1,xn)

of order k, so that
x∞ = f (x∞,x∞, . . . ,x∞),

the equilibrium is asymptotically stable if all solutions of the linearization at the
equilibrium

un+k =
k

∑
j=1

a jun+k− j

(with a j = f j(x∞,x∞, . . . ,x∞) and f j denoting the partial derivative with respect to
the jth variable) tend to zero.

In order to determine whether all solutions of a linear difference equation tend
to zero, we look for solutions of the form xn = λ nx0 and obtain a characteristic
equation–a polynomial equation of degree k–for λ . For the difference equation
un+k = ∑k

j=1 a jun+k− j, this characteristic equation is λ n+k = ∑k
j=1 a jλ n+k− j, or

λ k −
k

∑
j=1

a jλ k− j = 0.

If the roots of this characteristic equation, say λ1,λ2, . . . ,λk, are distinct, then every
solution of the difference equation un+k = ∑k

j=1 a jun+k− j is a linear combination of
λ n

1 ,λ
n
2 , . . . ,λ

n
k . If the characteristic equation has multiple roots, then there are also

terms λ n
j logλ j, but in any case the condition that all solutions of a linear homo-

geneous difference equation tend to zero is that all roots λ j of the characteristic
equation satisfy |λ j|< 1.
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Combination of this information about the solutions of linear difference equa-
tions with Theorem 2.2 gives the following extension of Theorem 2.1 of Section
2.3.

Theorem 2.3. Let x∞ be an equilibrium of the following difference equation of order
k:

xn+k = f (xn+k−1,xn+k−2, . . . ,xn+1,xn).

If all roots of the characteristic equation

λ k −
k

∑
j=1

f j(x∞,x∞, . . . ,x∞)λ k− j = 0

of the linearization at this equilibrium satisfy |λ | < 1, then the equilibrium x∞ is
asymptotically stable.

For a first-order difference equation xn+1 = f (xn) the characteristic equation is
λ − f ′(x∞) = 0, and thus the condition for asymptotic stability is | f ′(x∞)| < 1, as
given in Theorem 2.1 of Section 2.3. For the equilibrium x+ of the second order
difference equation

xn+2 = f2(xn)

considered in Section 2.4 the characteristic equation is λ 2 − f ′2(x+) = 0, with
roots λ = ±√| f ′2(x+)| or λ = ±i

√| f ′2(x+)|, depending on whether f ′2(x+) > 0
or f ′2(x+) < 0. In either case the condition for asymptotic stability is | f ′2(x+)| < 1,
a fact used without proof in Section 2.4.

The results developed in Theorem 2.3 would enable us to study the delayed re-
cruitment model yn+1 = αB(yn−1)−D(yn) formulated at the beginning of this sec-
tion. However, we shall instead consider the model

xn+1 = axn +F(xn−τ),

which is often used to study whale populations. Here xn represents the adult breed-
ing population, a (0 ≤ a ≤ 1) the survival coefficient, and F(xn−τ) the recruitment
to the adult stage with a delay of τ years. Equilibrium population size is obtained
by solving

x∞ = ax∞ +F(x∞),

or F(x∞) = (1− a)x∞ = Mx∞, where M = 1− a is the annual mortality rate. More
generally, we could consider a model of the form xn+1 = G(xn) + F(xn−τ) with
equilibrium population size determined from x∞ = G(x∞) + F(x∞). To study the
stability of equilibrium, we linearize about the equilibrium by setting xn = un + x∞
and neglecting higher order terms, obtaining

un+1 = aun +F ′(x∞)un−τ .

We let b = F ′(x∞) to write this in the form

un+1 = aun +bun−τ .
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The characteristic equation is

λ τ+1 −aλ τ −b = 0,

and asymptotic stability of equilibrium requires |λ |< 1 for all roots of this equation.
If τ = 0, the characteristic equation is λ − a− b = 0 and the stability condition

is |a+b|< 1, or −1−a < b < 1−a.
If τ = 1, the characteristic equation is λ 2 −aλ −b = 0,which has roots

λ = a±
√

a2 +4b
2

.

If a2 + 4b ≥ 0, these roots are real, and the condition |λ | < 1 is equivalent to a+√
a2 +4b < 2 and a−√

a2 +4b >−2. These conditions give
√

a2 +4b < 2−a and√
a2 +4b < 2+ a. Since 2− a ≤ 2+ a, we have the single condition

√
a2 +4b <

2−a, or b < 1−a. If a2 +4b < 0, the roots are complex and |λ |2 = a2/4+(−a2 −
4b)4=−b. Since b< 0, we must have −1< b< 0. Combining the cases a2+4b< 0
and a2 + 4b ≥ 0, we see that for τ = 1, the equilibrium x∞ is asymptotically stable
if −1 < b < 1−a.

For values of τ > 1, the stability condition is more difficult to analyze, but it is
possible to establish the following result [Levin and May (1976)].

Theorem 2.4. There is a function zτ(a) ≤ −1+ a with zτ(a) ↗ −1+ a as τ → ∞
such that the equilibrium x∞ is asymptotically stable if

zτ(a)< b < 1−a.

We have shown that z0(a) = −1− a, z1(a) = −1. Since zτ(a) < −1+ a for all
τ, the equilibrium is certainly asymptotically stable if −1+a < b < 1−a, or |b|<
1−a.

The population of the Antarctic fin whale has been studied using this model with
F(x) = rx

(
1−x/K

)
, r = 0.12, a= 0.96, k = 600,000, β = 5. The equilibrium pop-

ulation size is given by rx∞(1− x∞/K) = (1− a)x∞, or x∞ = K
(
1− (1− a)/r

)
. If

we use M = 1−a, we have x∞ = K(1−M/r). Since F ′(x) = 4−2rx/K, F ′(x∞) =
2M− r. The equilibrium is certainly asymptotically stable if |2M− r|< 1−a = M,
or M < r < 3M. With K = 600,000, M = 0.04, r = 0.12, this condition is not sat-
isfied, since r = 3M. However, since zτ(a) is actually less than −1+a, the stability
condition is satisfied.

Discrete single-species models do not involve merely first-order difference equa-
tions. As we have seen, age-class models lead to systems of difference equations and
delayed-recruitment models lead to higher-order difference equations. For a unified
treatment, we would have to show how to write a difference equation of order k as
a system of k first-order difference equations, and then use vector–matrix notation
and methods of linear algebra to develop the theory of equilibria and asymptotic
stability.
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Exercises

1. Convert the system of difference equations

xn+1 = 2yn, yn+1 = 3xn

to a second-order difference equation and find the first three terms of the solu-
tion with x0 = y0 = 1.

2. Solve the second order difference equation

xn+2 − xn = 0

with x0 = 1,x1 =−1.
3. Solve the second-order difference equation

xn+2 + xn = 0

with x0 = 1,x1 =−1.

The Jury criterion states that the eigenvalues of a 2×2 matrix M have magni-
tude less than one if and only if |tr(M)|< det(M)+1 < 2. Use it in problems
4 and 5.

4. Assume that the population (P) of a parasite and that of its host population (H)
are modeled by the difference equations

Pt+1 = αHt
(
1− e−aPt

)
,

Ht+1 = αHte−aPt ,

where α,a are positive.

a. Calculate the equilibrium population sizes and show that they are positive
only if α > 1.

b. Use the Jury criterion to show that if α > 1, then the equilibrium is unsta-
ble. Hint: The following relation holds:

α
α −1

lnα > 1 for all α > 1.

5∗. Determine all equilibria and the stability of each equilibrium for the system

xn+1 = axne−byn ,

yn+1 = cxn(1− e−byn).

(This system is known as the Nicholson and Bailey model (1935) for a host–
parasite system; xn denotes the number of hosts and yn the number of parasites.)

6. One of the common discrete-time models for the growth of a single species is
the Pielou logistic equation
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xn+1 =
αxn

1+βxn
,

where xn ≥ 0 is the size of the population at generation n, α > 1, and β > 0.
If we assume that there is a delay of time period 1 in the response of growth
rate per individual to density change, we obtain the delay difference equation
model

xn+1 =
αxn

1+βxn−1
.

Determine the stability of all the nonnegative fixed points of this equation.

2.7 Systems of Two Difference Equations

In Section 2.6, we examined a system of two difference equations by reducing it to
a single second order difference equation. In Section 2.8 we shall examine a system
that cannot be reduced to a single equation of higher order. In this section, we shall
outline the main results of the analysis of stability of an equilibrium of a system of
two first-order difference equations.

We begin with a system of two difference equations,

xn+1 = f (xn,yn), (2.5)
yn+1 = g(xn,yn).

An equilibrium of the system (2.5) is a solution (x∞,y∞) of the system

f (x,y) = x, g(x,y) = y.

Generally, f (x,y) = x and g(x,y) = y are represented by curves in the (x,y)-plane,
and an equilibrium is an intersection of the two curves. If (x∞,y∞) is an equilibrium
of (2.5), then the system (2.5) has a constant solution xn = x∞, yn = y∞ (n= 1,2, . . .).

The description of the behavior of solutions near an equilibrium parallels the de-
scription given in Section 2.3 for a single first-order difference equation. If (x∞,y∞)
is an equilibrium of the system (2.5), we make the change of variables un = xn−x∞,
vn = yn − y∞ (n = 0,1,2, . . .), so that (un,vn) represents deviation from the equilib-
rium. We then have the system

un+1 = f (x∞ +un,y∞ + vn)− x∞ = f (x∞ +un,y∞ + vn)− f (x∞,y∞) (2.6)
vn+1 = g(x∞ +un,y∞ + vn)− y∞ = g(x∞ +un,y∞ + vn)−g(x∞,y∞).

If we use Taylor’s theorem to approximate the functions f (x∞ +un,y∞ + vn) and
g(x∞ +un,y∞ +vn) by their linear terms and neglect the remainder terms, we obtain
a linear system
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un+1 = fx(x∞,y∞)un + fy(x∞,y∞)vn, (2.7)
vn+1 = gx(x∞,y∞)un +gy(x∞,y∞)vn.

called the linearization of the system (2.5) at the equilibrium (x∞,y∞), which ap-
proximates the system (2.5) near the equilibrium. The analogue of Theorem 2.1,
Section 2.3, which explains the significance of the linearization at an equilibrium, is
valid.

Theorem 2.5. If all solutions of the linearization (2.7) of the system (2.5) at an
equilibrium (x∞,y∞) tend to zero as n → ∞, then all solutions of (2.7) with x0 and
y0 sufficiently close to x∞ and y∞ respectively tend to the equilibrium (x∞,y∞) as
n → ∞.

The proof is more complicated than that given in Section 2.3 for n = 1, and we
shall omit it.

The next problem is to determine conditions under which all solutions of the
linear system (2.7) approach zero. The idea behind the solution of this problem,
although there are some technical complications, is to look for solutions of the form
un = u0λ n, vn = v0λ n and then determine conditions under which all values of λ
for which this is possible satisfy

∣∣λ ∣∣ < 1. (Recall that if
∣∣λ ∣∣ < 1, then λ n → 0 as

n → ∞.) The basic fact is that all solutions of the linear system (2.7) approach zero
if all roots of the characteristic equation

λ 2 − trA(x∞,y∞)λ +detA(x∞,y∞) = 0

satisfy |λ |< 1. Here, trA and detA are the trace and determinant of the 2×2 matrix

A(x∞,y∞) =

(
fx(x∞,y∞) fy(x∞,y∞)
gx(x∞,y∞) gy(x∞,y∞)

)
.

This characteristic equation may also be written as a determinant, namely as

det
(

A(x∞,y∞)−λ I
)
= 0, (2.8)

where

I =
(

1 0
0 1

)
,

the identity matrix. It arises from the condition that

A(x∞,y∞)

(
u
v

)
= λ

(
u
v

)
has a nontrivial solution for the vector (

u
v

)
.
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In this vector–matrix form, the stability result generalizes to systems of arbitrary
order.

Theorem 2.6. If all roots of the characteristic equation (2.8) at an equilibrium sat-
isfy

∣∣λ ∣∣< 1, then all solutions of the system (2.5) with initial values sufficiently close
to an equilibrium approach the equilibrium.

A proof of this result may be found in books that explore the theory of difference
equations, such as Elaydi (1996) and Sandefur (1990).

The characteristic equation for a system of k difference equations at an equilib-
rium is a polynomial equation of degree k. Conditions are known under which all
roots of a polynomial equation have absolute value less than 1. These conditions
were originally derived to analyze some economic models[Samuelson (1941)]. For
a quadratic equation

f (λ ) = λ 2 +a1λ +a2 = 0, (2.9)

both roots satisfy
∣∣λ ∣∣< 1 if and only if

1+a1 +a2 > 0, 1−a1 +a2 > 0, 1+a2 > 0.

These three conditions can be combined and written as

0 <
∣∣a1

∣∣< a2 +1 < 2, (2.10)

which is the Jury criterion (Exercise 3, Section 2.6).
To establish the Jury criterion, we begin by noting that f (λ )→+∞ as λ →∞ and

λ →−∞. If f (−1)< 0, there is a root less than −1, and if f (1)< 0 there is a root
greater than 1. Further, the product of the roots of (2.9) is a2; thus we must have∣∣a2

∣∣ < 1, f (−1) > 0, f (1) > 0 in order to have all roots of (2.9) satisfy
∣∣λ ∣∣ < 1.

We may rewrite these conditions as −1 < a2 < 1, or 0 < a2 + 1 < 2, f (−1) =
1− a1 + a2 > 0, f (1) = 1+ a1 + a2 > 0. The conditions f (−1) > 0 and f (1) > 0
may be combined to give

−(1+a2)< a1 < 1+a2,

or
∣∣a1

∣∣< 1+a2. Thus, in order to have the roots of (2.9) satisfy
∣∣λ ∣∣< 1, the condi-

tions in (2.10) must be satisfied.
To prove that the conditions in (2.10) imply that the roots of (2.9) satisfy

∣∣λ ∣∣< 1,
we consider first the case that the roots of (2.9) are complex conjugate. In this case,
both roots have the same absolute value, and

∣∣a2
∣∣< 1 implies that this absolute value

is less than 1. If the roots of (2.9) are real and f (−1)> 0, f (1)> 0, then either both
roots are less than −1 (contradicted by

∣∣a2
∣∣ < 1), or both roots are greater than 1

(contradicted by
∣∣a2

∣∣< 1), or both roots are between −1 and 1. Thus the conditions
in (2.10) imply that both roots satisfy

∣∣λ ∣∣< 1, and the Jury criterion is established.
In the next section, we will examine a system of three first order-difference equa-

tions. It can be shown that the conditions under which the roots of a cubic equation

λ 3 +a1λ 2 +a2λ +a3 = 0
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satisfy
∣∣λ ∣∣< 1 are

1+a1 +a2 +a3 > 0, 1−a1 +a2 −a3 > 0, (2.11)

3+a1 −a2 −3a3 > 0, 1+a1a3 −a2 −a2
3 > 0

[Samuelson (1941)]. We will make use of this result.

Exercises

1. Find all equilibria of the system

xn+1 = B(yn),

yn+1 = αxn −D(yn),

treated as a single second-order difference equation in Section 2.6, and estab-
lish conditions for their stability.

2. For the delayed-recruitment model

xn+1 = axn +F(xn−r),

with 0 ≤ a ≤ 1, considered in Section 2.6, the characteristic equation at an
equilibrium x∞, that is, a solution of F(x∞) = (1−a)x∞, is

λ r+1 −aλ r −F ′(x∞) = 0.

Determine the conditions on a and F ′(x∞) for stability of equilibrium if r = 2
and write them in the form

zr(a)< F ′(x∞)< 1−a,

i.e., determine the function zr(a).
3. Consider the two-dimensional system

xn+1 =
αyn

1+(xn)2 ,

yn+1 =
βxn

1+(yn)2 ,

where α and β are positive constants. If α2 < 1 and β 2 < 1, prove that the ori-
gin (0,0) is globally asymptotically stable. [Global asymptotic stability means
that every solution approaches the origin, not just solutions starting close to the
origin.]

4. Consider the single-species, age-structured population model
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xn+1 = yn exp(r−axn − yn)

yn+1 = xn,

where xn ≥ 0, yn ≥ 0, and the constants a, r are positive. Show that all the
solutions are bounded. Interpret your result.

2.8 Oscillation in Flour Beetle Populations: A Case Study

Some recent experimental studies of flour beetles (Tribolium castaneum) have in-
dicated a possibility of behavior in the laboratory that appears to be chaotic [R.F.
Costantino, R.A. Desharnais, J.M. Cushing, B. Dennis, (1997), (1995)]. We shall
describe and attempt to analyze a model for such behavior, taking note of the prop-
erties of the life cycle of the flour beetle.

The life cycle consists of larval and pupal stages, each lasting approximately
two weeks, followed by an adult stage. Both larvae and adults are cannibalistic,
consuming eggs and thus reducing larval recruitment. In addition, there is adult
cannibalism of pupae. We take two weeks as the unit of time and formulate a discrete
model describing the larval population L, pupal population P, and adult population
A at two-week intervals.

If there were no cannibalism, we could begin with a linear model

Ln+1 = bAn,

Pn+1 = (1−μL)Ln,

An+1 = (1−μP)Pn +(1−μA)An,

where b is the larval recruitment rate per adult in unit time, and μL, μP, μA are
the death rates in the respective stages. However, in practice, μP = 0 since there is
no pupal mortality except for cannibalism. We assume that cannibalistic acts occur
randomly as the organisms move through the container of flour that forms their
environment. This suggests a metered model with cannibalism rates proportional
to the original size of the group being cannibalized, as in the Ricker fish model
(Section 2.5). We are led to a model

Ln+1 = bAne−cEAAne−cELLn ,

Pn+1 = (1−μL)Ln, (2.12)

An+1 = Pne−cPAAn +(1−μA)An,

with “cannibalism coefficients” cEA, cEL, cPA. The fractions e−cEAAn and e−cELLn are
the probabilities that an egg is not eaten in the presence of An adults and Ln larvae
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through the larval stage. The fraction e−cPAAn is the survival probability of a pupa
through the pupal stage in the presence of An adults.

Equilibria of our basic model (2.12) are solutions (L,P,A) of the system of equa-
tions

LecELL = bAe−cEAA,

P = (1−μL)L, (2.13)

μAecPAA = P.

This system has a solution (0,0,0) corresponding to extinction and also has a
solution with L > 0, P > 0, A > 0 corresponding to survival for some sets of param-
eter values. We are unable to find this survival equilibrium analytically, but we may
solve numerically for a given choice of parameters.

We may rewrite the equilibrium conditions by eliminating P as

(1−μL)L = μAAecPAA,

LecELL = bAe−cEAA.

Division of the second equation by the first gives

ecELL =
b(1−μL)

μA
e−(cEA+cPA)A. (2.14)

The left side of (2.14) increases with L and is greater than one for all positive L,
while the right side of (2.14) decreases with A and is between b(1− μL/)μA and
zero. Thus, if the quantity θ , defined by

θ =
b(1−μL)

μA
, (2.15)

is less than one, there cannot be a solution of (2.14) and thus there cannot be a
survival equilibrium. On the other hand, if θ is greater then one, the equation (2.14)
represents a straight line from (0, logθ/cEL) to (logθ/(cEA + cPA),0) in the (A,L)-
plane. An equilibrium is an intersection of this line with the curve (1 − μL)L =
μAecPAA, which starts from the origin and grows as A increases. Thus if θ > 1, there
is always a survival equilibrium.

Some experiments have been carried out with flour beetle populations and fit to
the model (2.12) with the parameter values b = 7, cEA = cEL = 0.01, cPA = 0.005,
μL = 0.2, μA = 0.01 [Costantino, Desharnais, Cushing, and Dennis (1997), (1995)].
Since experimental data are inevitably noisy, it is not possible to determine param-
eters exactly, but it is possible to obtain a confidence interval for the parameters.
We take these values as a baseline and then compare the model with the experiment
when some of the parameters are manipulated. For example, we may remove (har-
vest) some adults at each census and thus set μA arbitrarily. In real life outside the
laboratory, adult mortality may be changed by spraying with a pesticide. It is also
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possible to manipulate the cannibalism coefficient cPA by changing the supply of
food; increasing the food supply reduces the rate of cannibalism of pupae by adults.

With the parameter values given above, we find θ = 560, and there is a survival
equilibrium L = 36, P = 29, A = 398, as well as the extinction equilibrium L = 0,
P = 0, A = 0. In order to determine the stability of these equilibria, we must com-
pute the matrix of partial derivatives at an equilibrium and form the characteristic
equation as in Section 2.7.

At an equilibrium (L,P,A) this matrix is⎛⎝−cELbAe−cEAAe−cELL 0 be−cELLe−cEAA(1− cEAA)
1−μL 0 0

0 e−cPAA 1−μA − cPAPe−cPAA

⎞⎠ . (2.16)

At the extinction equilibrium (0,0,0), it reduces to⎛⎝ 0 0 b
1−μL 0 0

0 1 1−μA

⎞⎠ .

The characteristic equation at (0,0,0) is (after some manipulation of signs)

det

⎛⎝ −λ 0 b
1−μL −λ 0

0 1 1−μA −λ

⎞⎠= λ 2(λ − (1−μA)
)−b(1−μL) = 0,

or λ 3 − (1−μA)λ 2 −b(1−μL) = 0. Thus, it has the form λ 3 +a1λ 2 +a2λ +a3 =
0 with a1 = −(1− μA), a2 = 0, a3 = −b(1− μL). The conditions for asymptotic
stability ((2.11), Section 2.7) are

1+a1 +a2 +a3 > 0, 1−a1 +a2 −a3 > 0, (2.17)

3+a1 −a2 −3a3 > 0, 1+a1a3 −a2 −a2
3 > 0,

and these become

μA −b(1−μL)> 0,
2−μA +b(1−μL)> 0,

3− (1−μA)+3b(1−μL)> 0,

1+b(1−μL)(1−μA)−b2(1−μL)
2 > 0.

Because 0 ≤ μA ≤ 1, 0 ≤ μL ≤ 1, the second and third of these conditions are sat-
isfied automatically. The first condition is satisfied if and only if μA > b(1− μL),
which is equivalent to θ < 1.

The last condition, (
b(1−μL)

)2 −b(1−μL)(1−μA)< 1,



2.8 Oscillation in Flour Beetle Populations: A Case Study 83

is satisfied as well, since(
b(1−μL)

)2 −b(1−μL)(1−μA)< μ2
A −b(1−μL)(1−μA)< μ2

A < 1.

Thus, the extinction equilibrium is asymptotically stable if and only if θ < 1, that
is, if and only if the extinction equilibrium is the only equilibrium.

At a survival equilibrium we may use the equilibrium conditions (2.13) to sim-
plify the coefficient matrix (2.16) to⎛⎝−cELL 0 L

A − cEAL
1−μL 0 0

0 ecPAA 1−μA −μAcPAA

⎞⎠ .

In this case, the characteristic equation is

λ
(
λ + cELL

)(
λ − (1−μA −μAcPAA)

)−(
L
A
− cEAL

)(
1−μL

)
e−cPAA = 0,

or

λ 3 +
(
cELL+μAcPAA− (1−μA)

)
λ 2

−cELL(1−μA)λ −
(

L
A
− cEAL

)(
1−μL

)
e−cPAA = 0,

that is, a cubic equation λ 3 +a1λ 2 +a2λ +a3 = 0 with coefficients

a1 = cEL +μAAcPA − (1−μA),

a2 =−cELL(1−μA), (2.18)

a3 =−
(

L
A
− cEAL

)
(1−μL)e−cPAA.

We are unable to analyze the stability of the survival equilibrium in general, but
for a particular choice of parameters b, cEA, cEL, cPA, μL, μA we can calculate the
survival equilibrium (L,P,A) numerically and then use the values given by (2.18) to
check the stability condition (2.17).

With the baseline parameters b = 7, cEA = cEL = 0.01, cPA = 0.005, μL = 0.2,
μA = 0.01, the survival equilibrium is (36,29,398), and we find from (2.18) that
a1 =−0.61, a2 =−0.36, a3 = 0.43. The stability conditions (2.17) are satisfied, and
thus the survival equilibrium is asymptotically stable. This agrees with experimental
observations. However, this does not validate the model, since the parameter values
were chosen to fit the experimental data.

To obtain some validation of the basic model, we must manipulate some of the
parameter values and see whether experimental observations still agree with model
predictions. Thus, we set μA = 0.96, cPA = 0.5 by harvesting adults and reducing
the flour supply. With these parameter values, the model predicts a survival equilib-
rium (12,10,3), and (2.18) gives a1 = 1.52, a2 =−0.005, a3 =−0.69 in the cubic
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characteristic equation. Now the stability condition 1+ a1a3 − a2 − a2
3 > 0 is vio-

lated, and our model predicts instability of the survival equilibrium. A more detailed
study of the model indicates that with μA = 0.96, the dynamics are very sensitive to
changes in the cannibalism rate cPA. For cPA = 0.5 there is a solution of period 3 and
a chaotic attractor, while for cPA = 0.55 there are two attractors and a solution of pe-
riod 8. Experimental observations indicate chaotic behavior, but it is not possible to
be specific about the nature of the dynamics. Nevertheless, this does indicate some
validity for the model and supplies what appears to be genuinely chaotic behavior
in the laboratory.

Another way in which it is possible to perturb the model is to introduce periodic
forcing by varying the volume of flour. Experiments indicate that cannibalism rates
are inversely proportional to flour volume. Thus we may assume

cEL =
kEL

V
, cEA =

kEA

V
, cPA =

kPA

V
,

where V is the volume of flour. We make flow volume oscillate with period 2 and
amplitude αV0 about a mean V0, so that Vn =V0

(
1+α(−1)n

)
. Then the cannibalism

coefficients at stage n are

cEL =
kEL

V0
(
1+α(−1)n

) , cEA =
kEA

V0
(
1+α(−1)n

) , cPA =
kPA

V0
(
1+α(−1)n

) .
If we let cEL, cEA, cPA denote the cannibalism coefficients in the average flour

volume, cEL = kEL/V0, cEA = kEA/V0, cPA = kPA/V0, we obtain the periodic model

Ln+1 = bAn exp
(
−cELLn + cEAAn

1+α(−1)n

)
,

Pn+1 = (1−μL)Ln, (2.19)

An+1 = Pn exp
(
− cPAAn

1+α(−1)n

)
+(1−μA)An.

This model has an extinction equilibrium (0,0,0), which may be shown to be
asymptotically stable if θ < 1. If θ > 1, there is a solution of period 2 that is asymp-
totically stable if θ is close to 1, but for larger values of θ the dynamics may be
chaotic. In addition, population sizes are considerably larger than in the unforced
case, and this is borne out by experiment.

There are two important lessons that may be drawn from this model. The first
is that trying to control a pest population by removing adults may have unintended
consequences such as large fluctuations in the pest population size. The second is
that periodic variation in the environment may produce substantial increases in pop-
ulation size.

The analysis of the model (2.12) becomes considerably simpler if we neglect
cannibalism of eggs by larvae. Mathematically, this means taking cEL = 0. The
recruitment of larvae at equilibrium is then changed from bAne−cEAAne−cELLn to
bAne−cEAAn . In order to make the parameter values correspond, we should replace
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b by be−cELL∗ , where cEL is the original cannibalism coefficient and L∗ is the equi-
librium larval population. With our baseline parameters this would mean replacing
b = 7 by b∗ = 7e−0.36 = 4.88. We will not carry out the analysis of this reduced
model

Ln+1 = b∗AnecEAan ,

Pn+1 = (1−μL)Ln, (2.20)

An+1 = Pne−cPAAn +(1−μA)An,

but will indicate it in a sequence of exercises.

Exercises

1. a. Show that the survival equilibrium of (2.20) has

A =
1

cEA + cPA
logθ ,

and once A has been calculated,

L = b∗Ae−cEAA, P = b∗(1−μL)Ae−cEAA.

b. Calculate the equilibrium population sizes for the parameter values b∗ =
4.88, cEA = 0.01, μL = 0.2, and (i) μA = 0.81, cPA = 0.005, (ii) μA = 0.96,
cPA = 0.5.

2. Show that the extinction equilibrium of the model (2.20) is asymptotically sta-
ble if and only if θ < 1.

3. Show that at a survival equilibrium of (2.20) the characteristic equation is a
cubic polynomial with

a1 = μAcPAA− (1−μA),

a2 = 0,

a3 =−
(

L
A
− cEAL

)
(1−μL)e−cPAA.

4. Show that with parameter values b∗ = 4.88, cEA = 0.01, μL = 0.2, the survival
equilibrium of (2.20) is asymptotically stable if μA = 0.01, cPA = 0.005, and
unstable if μA = 0.96, cPA = 0.5.

5. Run simulations to compare the behaviors of the models (2.12) and (2.20) with
the two sets of parameter values used in this section and a variety of initial
values.

6. Show that it is possible to eliminate L and P from the model (2.20) and obtain
a single third-order difference equation,
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An+3 = b∗(1−μL)Ane−cEAAne−cPAAn+2 +(1−μA)An+2.

2.9 Project: A Discrete SIS Epidemic Model

In this project we outline of analysis of an SIS (susceptible infective suceptible)
discrete epidemic model in a human population with variable size. The SIS model
is given by the system

Sn+1 = f (Tn)+Snπ(n,n+1)h(In)+ Inπ(n,n+1)[1−ξ (n,n+1)],
In+1 = Snπ(n,n+1)[1−h(In)]+ Inπ(n,n+1)ξ (n,n+1)ζ (n,n+1),

with

Tn = Sn + In = f (Tn)+Tnπ(n,n+1)+ Inπ(n,n+1)[ζ (n,n+1)−1],

where π(n,n+1), ξ (n,n+1), ζ (n,n+1) are assumed to be constants with α,μ,σ
positive constants, that is,

1−π(n,n+1) = 1− e−μ

is the probability of death due to natural causes,

1−ξ (n,n+1) = 1− e−σ

is the probability of recovering,

1−ζ (n,n+1) = 1− e−ρ

is the probability of death due to infection,

h(In) = e−αIn

is the probability of not becoming infected, and f (Tn) is the birth or immigration
rate (two cases). In this project we take ρ = 0, that is, the disease is not fatal.

The model assumes that the time step is one generation; from generation n to
n + 1, infections occur before deaths; there are no infected offspring, that is, all
newborns or recruits enter into the susceptible class; in the case of nonconstant re-
cruitment, if there are no people, then there are no births, that is, f (0) = 0; if there
are too many people, then there are not enough resources to sustain further repro-
duction, that is, limTn→∞ f (Tn) = 0; the probability of not becoming infected when
there are no people is one, that is, h(0) = 1; the probability of not becoming infected
as the number of infected increases is a strictly decreasing function, h′(In) < 0; as
the number of infected people increases, the probability of not becoming infected
goes to zero, that is, limIn→∞ h(In) = 0.
Case A. Assume a constant recruitment rate, that is, let
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f (Tn) = Λ > 0,

where Λ is a constant (immigration rate).

1. Show that the model becomes:

Sn+1 = Λ +Sn e−μ e−αIn + Ine−μ [1− e−σ ] (2.21)
In+1 = Sne−μ [1− e−αIn ]+ Ine−μ e−σ ,

with

Tn+1 = Λ +Tne−μ .

2. Show that

Tn = e−μn
(

T0 − Λ
1− e−μ

)
+

Λ
1− e−μ

and that
lim
n→∞

Tn =
Λ

1− e−μ ≡ T∞.

3. Set T0 = T∞ (initial population size). This simply means that the population
starts at its asymptotic limit, that is, the population is at a demographic equilib-
rium. Now substitute Sn by Sn = T∞ − In into (2.21) and show that

In+1 = (T∞ − In)e−μ [1− e−αIn ]+ Ine−(μ+σ). (2.22)

4. Show that I∗ = 0 is a fixed point of (2.22) and also show that the basic repro-
ductive number is

R0 =
αT∞e−μ

1− e−(μ+σ)
.

5. Explain the biological meaning of R0.
6. Show that if R0 < 1, then I∗ = 0 is a global attractor of u(In).
7. Show that if R0 > 1, then the disease-free equilibrium is unstable.
8. Show that there exists a unique fixed point I∗ > 0 of v(In) for R0 > 1.

Case B. Assume a nonconstant recruitment rate of Ricker type, that is, let

f (Tn) = βTne−γTn .

Then

Sn+1 = βTne−γTn +Sne−αIne−μ + e−μ [1− e−σ ]In,

In+1 = Sne−μ [1− e−αIn ]+ Ine−μ e−σ , (2.23)

Tn+1 = Sn+1 + In+1 = βTne−γTn +Tne−μ

where β = maximal birth rate/person/generation
Let Rd = β/(1− e−μ).
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1. Show that if Rd < 1, then there is no positive fixed point.
2. Show that if Rd > 1, then there exist two fixed points, T ′

∞ = 0 and T 2
∞ > 0.

3. Show that if 1 < Rd < e2/(1−e−μ ), then T 2
∞ is locally stable.

4. What is the biological interpretation of Rd? Assume that (2.23) can be “re-
duced” to a single “equivalent” limiting equation

In+1 = (T∞ − In)e−μ(1− e−αIn)+ Ine−μ e−σ (2.24)

when 1 < Rd < e2/(1−e−μ ) and where T 2
∞ = 1

γ log(Rd).
5. Show that the basic reproductive number is

R0 =
αe−μ 1

γ logRd

1− e−(μ+σ)
.

6. Show that T 2
∞ is a global attractor if R0 < 1. Show that if R0 > 1, then the

endemic equilibrium of (2.24) is a global attractor.
7. Simulate the full system (2.23) in the region 1 < Rd < e2/(1−e−μ ), where T∞

is a fixed point, and in the regions Rd > e2/(1−e−μ ), where period-doubling
bifurcation occurs on the route to chaos. Does the demography drive the disease
dynamics?

References: Castillo-Chavez and Yakubu (2000b, 2000c, 2000d), Barrera, Cintron-
Arias, Davidenko, Denogean, and Franco (2000).

2.10 Project: A Discrete-Time Two-Sex Pair-Formation Model

1. Consider the following discrete-time two-sex pair-formation model:

x(t +1) = (βxμxμy +(1−μy)μx +(1−σ)μxμy)p(t)

+μxx(t)G(x(t),y(t), p(t)),

y(t +1) = (βyμyμx +(1−μx)μy +(1−σ)μxμy)p(t)

+μyy(t)H(x(t),y(t), p(t)),

p(t +1) = σ μxμy p(t)+μxx(t)(1−G(x(t),y(t), p(t))),

where the functions G : [0,∞)× [0,∞)× [0,∞)→ [0,1] and H : [0,∞)× [0,∞)×
[0,∞)→ [0,1] denote the state-dependent probability functions and satisfy the
equation

μxx(t)(1−G(x(t),y(t), p(t))) = μyy(t)(1−H(x(t),y(t), p(t)))

and where βx,βy,μx,μy, and σ are constants in the interval [0,1].
(a) Given that
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G(x(t),y(t), p(t)) =
p(t)

y(t)+ p(t)
,

where (x(t),y(t), p(t)) belong to the set Ω , where

Ω :=
{
(x(t),y(t), p(t)) | 0 ≤ x(t)

y(t)
≤ μy

μx(1−G(x(t),y(t), p(t)))

}
find

H(x(t),y(t), p(t)).

(b) For the given function in (a) find the marriage function φ : [0,∞)× [0,∞)×
[0,∞)→ [0,1] that satisfies the equation

φ(x(t),y(t), p(t))≡ μxx(t)(1−G(x(t),y(t), p(t)))

= μyy(t)(1−H(x(t),y(t), p(t))).

(c) Show that the marriage function in (b) satisfies the following properties for
all (x(t),y(t), p(t)) ∈ Ω and the constant k ∈ [0,∞):

(i)
φ(x(t),y(t), p(t))≥ 0,

(ii)
φ(kx(t),ky(t),kp(t)) = kφ(x(t),y(t), p(t)),

(iii)
φ(x(t),0, p(t)) = φ(0,y(t), p(t)) = 0.

(d) If βx = βy = μx = μy = σ , use the marriage function in (b) to solve the
following equation for the characteristic equation λ = λ ∗ :

−σ μxμy +λ = φ
(

βxμxμy

λ −μx
−1,

βyμyμx

λ −μy
−1,1

)
,

where
βxμxμy

λ −μx
−1 > 0 and

βyμyμx

λ −μy
−1 > 0.

2. Use the marriage function in (b) with ε = 0 and βx = βy = μx = μy = σ to find
a positive fixed point [ξ0,η0,1] ∈ Ω of the following system (if one exists):

ξ (t +1) =
βxμxμy +μx +μxξ (t)

σ μxμy +φ(ξ (t),η(t),1)
−1,

η(t +1) =
βyμxμy +μy +μyη(t)

σ μxμy +φ(ξ (t),η(t),1)
−1,

ς(t +1) = 1.
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3. Use the Jury test to find values of σ (if any exist) for which the fixed point
[ξ0,η0,1] is stable.

References: Castillo-Chavez and Yakubu (2000e, 2000f).
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