Chapter 2
Space Robot Control for Unknown
Target Handling

Shinichi Tsuda and Takuro Kobayashi

Abstract Space robot is now playing very important role in space activities.
Especially in space station a few robot arms are working for construction and
repairing. However these robots are so-called remote manipulators operated by
astronauts. For future applications the space robot must be autonomous and is
expected to maintain the failed satellites and to capture the space debris. This
chapter deals with space robot control for unknown target in robust manner. To
cope with unknown characteristics the sliding mode control is applied in this study.

Keywords Robust control ¢ Sliding mode control ¢ Space robot e Target
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1 Introduction

Space robot technology has been rapidly developed and extensively used in the
space station program. Most of these space robots are a kind of remote manipulator
systems controlled by astronauts from inside or outside of space station. In the
space application more intelligent system is desirable to reduce the workload and
hazardous risk of those astronauts. Therefore in the near future this technology will
be expected to perform the wider range of operations, such as to maintain failed
satellites and to capture space debris in the autonomous manner by the space robot.
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This capability will tremendously decrease the extravehicular operations of
astronauts, which are most time consuming and terribly exhausting. In this respect
the autonomy will be mandatory.

In the space robot operation there are a few features like the reactive behavior
of attitude motion of the space robot by robot arm operation and the parameter
change in attitude dynamic equations of motion by capturing the target and so on.
Generally speaking the failed target and debris will not be accurately known a priori
and freely rotating, that is, some of physical parameters are unknown. In the above
respect some kind of robustness of the space robot control must be incorporated [1].

This study deals with the space robot operation, i.e., controlling the attitude of
the space robot and controlling the robot arm under the changed mass property.
The sliding mode control [2] is applied to the control of attitude motion and the
robot arm in which the absolute supremum value method [3] was used to assure the
robustness.

2 Model of Space Robot

The model of a space robot is illustrated in Fig. 2.1. A robot arm is mounted on the
body of the spacecraft. The robot arm is articulated with three rotary joints and the
motion of the robot arm is assumed to be two dimensional.

Y
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Fig. 2.1 Model of : > X
space robot
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3 Equations of Motion

Dynamical equations of motion for space robot are derived using Lagrange formula.
It will be obtained as follows.

K is the kinetic energy and P is the potential energy, then, Lagrange equations
of motion is expressed in the following:

o _d (K 8K+8P .1
YA \d ) g b '
Both energies are given as below:
K= Lt + LT (2.2)
=_-m —o lw .
2" YT
P =mgl. (2.3)

where m, v, @ and I are mass, velocity vector, angular velocity vector and moment
of inertia, respectively.

Detailed Geometry of the space robot is illustrated in the Fig. 2.1.

Center of mass for the space robot and each link is given by six,s;y(i =
0, 1,2, 3). And the velocity is v;. a; expresses the length between the joint and link
center of mass, and b; gives the length between the joint and link center of mass.

Then we have the following relationships:

sox (1) = Xo(t)
soy (1) = Yo(t)
vo(r) = Sox >(1) + Soy *(1)
six (1) = Xo(t) + 1oCo + a1Cor
siy (1) = Yo(t) + loSo + a1So1
vi(t) = $1x 2(t) + $1v 2(0)
s2x (1) = Xo(t) + 1oCo + 11 Co1 + a2Cor2
s2y (1) = Yo(#) + LoSo + 11So1 + a2S012
va(t) = $ox 2(t) + Say 7 (1)
s3x (1) = Xo(t) + 1oCo + 11 Co1 + [2Co12 + a3Co123
say (1) = Yo(t) + LoSo + 11 So1 + LSo12 + asSoizs va(t) = $3x *(1) + $3y * (1)
2.4)
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The kinetic energies are described as below:

1 1
Ky = Emov% + Eloa)g

1 1
K, = Emlv% + 511 (wo + w1)2

1 1
K, = —mzv% + 512(0)0 —+ w; + 0)2)2

2
1 2 1 2
K; = §m3v3 + 513 (wo + w1 + Wy + w3) 2.5)

The potential energies for free floating bodies on the orbit are given by the
following:

Phy=P =P, =P;=0 (2.6)

Those equations are summarized as in (2.7) by substituting the above relations,
where M (0) is the inertia matrix and 4 (6, 0) includes centrifu gal and Coriolis terms.
u(t) is translational control force, attitude control and joint control torque vector for
space robot.

M(0)i(t) + h(8,6) = u(r) (2.7)

where
T
(]:[XYQ()QI 9293]
T

92 [9() 91 92 93] .
Further we assume the following relations:

M(6) = M°(0) + AM(6) (2.8)

h(0,0) = h°(0,0) + Ah(8, 6) (2.9)

In which M 0(9) anq Ko, é) are defined as nominal value matrix and vector,
AM(0) and Ah(6,0) are called deference from nominal values and absolute
supremum values are defined as bellow;

|AM;;(0)] < Mi;(0) (2.10)
‘Ahi(e, é)‘ < hi(0,6). 2.11)

And further, absolute supremum values of elements of time derivative M,;j(é?) of
matrix M (6) was also defined in the following manner;

|M;;(0)| < M;;(6). (2.12)
The absolute supremum value v; (¢, t) will be given as follows;

{M(6)Ga(0)};| < Vi(6.1). (2.13)
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4 Sliding Mode Control

The sliding mode control restricts the trajectory of plant states on a hyper plane by
the control and slides it to the equilibrium point in an asymptotic manner.

First let us design the switching hyper plane. The target trajectory is given by g4
and controlling errors are defined by the followings;

e(t) =q(t) —qa(1) (2.14)
é(t) = q(1) = qa (). (2.15)
And then we give the switching hyper plane as an (2.10).
o(t) = Ae(t) + é(t) (2.16)
where
A =diag(Ay,---,Ay) A > 0.

If o(¢) = 0 holds, then, e(¢) in (2.16) satisfies the asymptotic stable differential
equation and e(oco) — 0 is assured. In order to secure the state is approaching to
the hyper plane, the following Lyapunov function is introduced. And the negative
definiteness of its time derivative will be proved.

V(o) = %UTMU (2.17)

The time derivative of (2.17) is given by

1 .
V = EGTMCT +o'Mé

1.
EaTMo + ol (MAé+ Mg — Miy)

1 .
EchMa + 0T (MAé —h 4+ u— Miy). (2.18)
Let us define u(z) as follows;

u(t) = —M°(0)Aé + h°(H,0) — Po — Qsgn(o) (2.19)

where

P = diag(Pyi(t), -+, Pun(1)) Q= diag(Q11(2),+, Qun(?)),

then, we obtain
. 1 .
V= 5aTMcr + 0T [MAé —h — Mijy)

+ 0! [-M°Aé + h° — Po — Qsgn(o)]
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T .
=—0 |P—=-M|o
2
ol [~Osgn(o) + AMAé + Ah— Miy,). (2.20)

Here we choose P and Q which satisfy V (s) < 0.
In the first place elements of the diagonal matrix Q are determined as below;

Qir(t) = Y AMA |é| 4+ @21
j=1
Then we have
ol Qsgn(o) > 6T [AMAé — Ah— M§,], (2.22)

And the second term of (2.20) becomes negative semi-definite. In the next place if
we define elements of diagonal matrix P as follows;

Pi(t) = Zl Mij/2+ki. ki >0, (2.23)
=

then, the first term P — %M of (2.20) is given by the following,

n B . . .
> My — My, —M; M,
j=1
. n 5 . .
1 —M» > My — My —M>,
3 j=1 + K. (2.24)
. . n A
—iMinl —in2 Z M
By the Gershgorin’s theorem, for an arbitrary matrix A = [a;], if the following
inequality is satisfied;
aj = Y laul (2.25)
k=1k#i

then, the matrix A is positive semi-definite. Therefore if we apply k; > 0 to the
(2.24), then, we have the negative definiteness of the first term in (2.20). This means
V < 0. The above concludes the proof of the negative definiteness of the Lyapunov
function.

And in order to avoid the chattering phenomena, we introduce saturation function
in place of sgn function.

1 o>c¢
sat(o/e) =  o/e o] < ¢ (2.26)
-1 o< —¢
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5 Numerical Simulations

We conducted numerical simulations for the space robot model defined in Fig. 2.1.
And to perform the mission two phases are introduced.

5.1 Phasel

To capture the target the robot arm follows the motion of the target for 10 s. By this
operation grasping operation will be completed.

In order to realize to follow the target, a goal trajectory r,(¢) for the position
of endeffector of the robot arm is defined and then, the joint trajectory for g, (¢) is
calculated. The position of the center of targetis X, and Y;, and the distance between
the center of the target and the grasping point is given by r;. And the target has the
rotational motion. Then we have the following relations;

Xt+r -cos(% +37”)
ra(t) = | Yy +r; -sin(Z5 + ) (2.27)
Tt g
30 T 2
qa(®) =[000 014 024 034 | (2.28)

5.2 Phasell

After the grasping operation the velocity of the endeffector will be controlled to be
0 [m/s].

To realize the above operation a goal trajectory for the joint velocity is given by
linear functions of time which reduce the velocity to 0 [m/s] after the 30 [s]. The
joint velocity vector is given by (2.29).

The supremum value is determined by Table 2.1.

Ga(t) = [0 00 614(1) b24(t) 634 (1) ] (2.29)

In Table 2.2 parameters for the space robot are defined.

Table 2.1 Parameters of the target

Assumed value for deter-

Target mining the suremum value
Mass [Kg] 500 600
Moment of inertia [Kgm?] 333.33 400
Rotational velocity [deg/s] 0.5 0.5

Size 2 [m] X 2 [m] 2 [m] x 2 [m]
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Table 2.2 Parameters of the

Body Link1 Link2 Link3
space robot

Mass [Kg] 1,500 40 40 30
Link length [m] 1.5 1.5 1.5 1.0
Moment of inertia [Kgm?] 1,000 30 30 10
Initial angle [deg] 0 45 90 —45

Fig. 2.2 History of space x10°

robot position for phase 1 2

operation

Position [m]

Other parameters are assumed as follows;

ki =ky =ks = ks =ks = ke =100
M=d=15=104 =As=As =5

81=82=83=84=85=£6=0.05.

Some of the above parameters are determined by iterative manner.

Results of the Phase I are shown in Figs. 2.2-2.8. The performance of tracking
the target is satisfactory and the error of tracking was below 1 [mm].

Results of the Phase I are shown in Figs. 2.2-2.8. The performance of tracking
the target is satisfactory and the error of tracking was below 1 [mm].

Results of Phase II control are given by Figs. 2.9-2.18.

The control of position and velocity of the space robot is satisfactory and control
input for spacecraft position and joint angles is sufficiently small, for instance, the
maximum torque for both the space robot attitude control and joint control is smaller
than 1 [Nm]. These values are consistent with the space application.

In general mounted thruster forces are from 1 N to 10N for thousand kg class
spacecrafts and typical arm length for the torque will be 2m or 3 m. Furthermore,
typical toque capability by reaction wheel for the attitude control of spacecraft is
1 Nm. These facts validate the applicability of our approach.
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Fig. 2.3 History of control
force for space robot

Fig. 2.4 History of space
robot attitude angle for phase
1 operation

Fig. 2.5 History of control
input torque

Input [N]
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Fig. 2.6 History of joint

angles for phase 1 operation
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Fig. 2.12 History of space

robot attitude angle
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Fig. 2.15 History of joint
angles for space robot

Fig. 2.16 History of desired
joint velocities

Fig. 2.17 History of joint
angles

Joint Velocity [rad/s]
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Fig. 2.18 History of control
torque input

Input [Nm]

~o 200 400 600

6 Conclusion

In this study robust control of space robot for unknown target capturing operation
was discussed. The target initially has freely rotating motion, therefore we defined
two phases, in which we have operations of grasping the target and stabilizing both
the space robot and the target. The sliding mode control was applied to have the
robustness of control. Numerical simulations were conducted and the results show
the consistency with space application requirement. This validates our approach.
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