
2
Greedy Strategy

Someone reminded me that I once said, “Greed is good.”
Now it seems that it’s legal.

— Gordon Gekko (in Wall Street: Money Never Sleeps)

I think greed is healthy. You can be greedy
and still feel good about yourself.

— Ivan Boesky

The greedy strategy is a simple and popular idea in the design of approximation
algorithms. In this chapter, we study two general theories, based on the notions
of independent systems and submodular potential functions, about the analysis of
greedy algorithms, and present a number of applications of these methods.

2.1 Independent Systems

The basic idea of a greedy algorithm can be summarized as follows:

(1) We define an appropriate potential function f(A) on potential solution sets
A.

(2) Starting with A = ∅, we grow the solution set A by adding to it, at each stage,
an element that maximizes (or, minimizes) the value of f(A ∪ {x}), until
f(A) reaches the maximum (or, respectively, minimum) value.
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We first consider a simple setting, in which the potential function is the same as
the objective function. In the following, we write N

+ to denote the set of positive
integers, and R

+ the set of nonnegative real numbers.
Let E be a finite set and I a family of subsets of E. The pair (E, I) is called an

independent system if

(I1) I ∈ I and I′ ⊆ I ⇒ I′ ∈ I .

Each subset in I is called an independent subset. Let c : E → R
+ be a nonneg-

ative function. For every subset F of E, define c(F ) =
∑

e∈F
c(e). Consider the

following problem:

MAXIMUM INDEPENDENT SUBSET (MAX-ISS): Given an indepen-
dent system (E, I) and a cost function c : E → R

+,

maximize c(I)

subject to I ∈ I.

We remark that the family I has, in general, an exponential size and cannot be
given explicitly (and, hence, an exhaustive search for the maximum c(I) is imprac-
tical). In most applications, however, the system (E, I) is given in such a way that
the condition of whether I ∈ I can be determined in polynomial time. Under this
assumption, the following greedy algorithm, which uses the objective function c as
the potential function, works in polynomial time.

Algorithm 2.A (Greedy Algorithm for MAX-ISS)

Input: An independent system (E, I) and a cost function c : E → R
+.

(1) Sort all elements in E = {e1, e2, . . . , en} in the decreasing order of c. Without
loss of generality, assume that c(e1) ≥ c(e2) ≥ · · · ≥ c(en).

(2) Set I ← ∅.

(3) For i ← 1 to n do
if I ∪ {ei} ∈ I then I ← I ∪ {ei}.

(4) Output IG ← I.

For any instance (E, I, c) of the problem MAX-ISS, let I∗ be its optimal so-
lution and IG the independent set produced by Algorithm 2.A. We will see that
c(IG)/c(I∗) has a simple upper bound that is independent of the cost function c.

For any F ⊆ E, a set I ⊆ F is called a maximal independent subset of F if no
independent subset of F contains I as a proper subset. For any set I ⊆ E, let |I|
denote the number of elements in I. Define

u(F ) = min{|I| | I is a maximal independent subset of F },

v(F ) = max{|I| | I is an independent subset of F }.
(2.1)
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Theorem 2.1 The following inequality holds for any independent system (E, I)
and any function c : E → R

+:

1 ≤
c(I∗)

c(IG)
≤ max

F⊆E

v(F )

u(F )
.

Proof. Assume that E = {e1, e2, . . . , en}, and c(e1) ≥ · · · ≥ c(en). Denote Ei =
{e1, . . . , ei}. We claim that Ei ∩ IG is a maximal independent subset of Ei. To
see this, we assume, by way of contradiction, that this is not the case; that is, there
exists an element ej ∈ Ei \ IG such that (Ei ∩ IG) ∪ {ej} is independent. Now,
consider the jth iteration of the loop of step (3) of Algorithm 2.A. The set I at the
beginning of the jth iteration is a subset of IG, and so I ∪ {ej} must be a subset of
(Ei ∩ IG)∪ {ej} and, hence, is an independent set. Therefore, the algorithm should
have added ej to I in the jth iteration. This contradicts the assumption that ej �∈ IG.

From the above claim, we see that

|Ei ∩ IG| ≥ u(Ei).

Moreover, since Ei ∩ I∗ is independent, we have

|Ei ∩ I∗| ≤ v(Ei).

Now, we express c(IG) and c(I∗) in terms of |Ei∩IG| and |Ei∩I∗|, respectively.
We note that for each i = 1, 2, . . . , n,

|Ei ∩ IG| − |Ei−1 ∩ IG| =

{
1, if ei ∈ IG,

0, otherwise.

Therefore,

c(IG) =
∑

ei∈IG

c(ei) = c(e1) · |E1 ∩ IG| +
n∑

i=2

c(ei) · (|Ei ∩ IG| − |Ei−1 ∩ IG|)

=

n−1∑
i=1

|Ei ∩ IG| · (c(ei) − c(ei+1)) + |En ∩ IG| · c(en).

Similarly,

c(I∗) =

n−1∑
i=1

|Ei ∩ I∗| · (c(ei) − c(ei+1)) + |En ∩ I∗| · c(en).

Denote ρ = max
F ⊆ E

v(F )/u(F ). Then we have

c(I∗) ≤
n−1∑
i=1

v(Ei) · (c(ei) − c(ei+1)) + v(En) · c(en)

≤
n−1∑
i=1

ρ · u(Ei) · (c(ei) − c(ei+1)) + ρ · u(En) · c(en) ≤ ρ · c(IG). �
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Figure 2.1: Two maximal independent subsets I and J for the problem MAX-HC
(the thick lines indicate edges of I, the thin curves and dotted curves indicate the
edges of J , and the dotted curves indicate edges shared by I and J).

We note that the ratio ρ = max
F ⊆ E

v(F )/u(F ) depends only on the structure
of the family I and is independent of the cost function c. Thus, this upper bound
is often easy to calculate. We demonstrate the application of this property in two
examples.

First, consider the problem MAX-HC defined in Section 1.5. Each instance of
this problem consists of n vertices and a distance table on these n vertices. The
problem is to find a Hamiltonian circuit of the maximum total distance. Let E be
the edge set of the complete graph on the n vertices. Let I be the family of subsets
of E such that I ∈ I if and only if I is either a Hamiltonian circuit or a union of
disjoint paths (i.e., paths that do not share any common vertex). Clearly, (E, I) is an
independent system and whether or not I is in I can be determined in polynomial
time. That is, the problem MAX-HC is a special case of the problem MAX-ISS, and
Algorithm 2.A runs on MAX-HC in polynomial time.

Lemma 2.2 Let (E, I) be the independent system defined above, and F a subset of
E. Suppose that I and J are two maximal independent subsets of F . Then |J | ≤
2|I|.

Proof. For i = 1, 2, let Vi denote the set of vertices of degree i in I. That is, V1 is
the set of end vertices in I and V2 is the set of intermediate vertices in I. Clearly,
|I| = |V2| + |V1|/2. Since I is a maximal independent subset of F , every edge in
F either is incident on a vertex in V2 or connects two endpoints of a path in I. Let
J2 be the set of edges in J incident on a vertex in V2, and J1 = J \ J2. Since J is
an independent set, at most two edges in J2 could be incident on each vertex in V2.
That is, |J2| ≤ 2|V2|. Moreover, every edge in J1 must connect two endpoints in V1

in a path of I, and at most one edge in J1 could be incident on each vertex in V1.
Therefore, |J1| ≤ |V1|/2. (Figure 2.1 shows an example of maximal independent
subsets I and J .) Together, we have

|J | = |J1| + |J2| ≤
|V1|

2
+ 2|V2| ≤ 2|I|. �

Theorem 2.3 When it is applied to the problem MAX-HC, Algorithm 2.A is a
polynomial-time 2-approximation.
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Figure 2.2: Two maximal independent subsets I and J for the problem MAX-
DHP.

A similar application gives us a rather weaker performance ratio for the problem
MAX-DHP, also defined in Section 1.5. An instance of this problem consists of n

vertices and a directed distance table on these n vertices. The problem is to find a
directed Hamiltonian path of the maximum total distance. Let E be the set of edges
of the complete directed graph on the n vertices. Let I be the family of subsets of
E such that I ∈ I if and only if I is a union of disjoint paths. Clearly, (E, I) is an
independent system, and whether or not I is in I can be determined in polynomial
time.

Lemma 2.4 Let (E, I) be the independent system defined as above, and F a subset
of E. Suppose that I and J are two maximal independent subsets of F . Then |J | ≤
3|I|.

Proof. Since I is a maximal independent subset of F , every edge in F must have
one of the following properties:

(1) It shares a head with an edge in I;

(2) It shares a tail with an edge in I; or

(3) It connects from the head to the tail of a maximal path in I.

(Figure 2.2 shows an example of two maximal independent subsets I and J .)
Let J1, J2, and J3 be the subsets of edges in J that have properties (1), (2) and

(3), respectively. Since J is an independent subset, each edge in I can share its head
(or its tail) with at most one edge in J , and each maximal path in I can be connected
from the head to the tail by at most one edge in J . That is, |Ji| ≤ |I|, for i = 1, 2, 3.
Thus,

|J | = |J1| + |J2| + |J3| ≤ 3|I|. �

Theorem 2.5 When it is applied to the problem MAX-DHP, Algorithm 2.A is a
polynomial-time 3-approximation.

The following simple example shows that the performance ratio given by the
above theorem cannot be improved.

Example 2.6 Consider the following distance table on four vertices, in which the
parameter ε is a positive real number less than 1:



40 Greedy Strategy

a b c d

a 0 1 ε ε

b ε 0 1 ε

c ε 1 + ε 0 1

d ε ε ε 0

It is clear that the longest Hamiltonian path has distance 3 and yet the greedy algo-
rithm selects the edge (c, b) first and gets a path of total distance 1 + 3ε. The per-
formance ratio is, thus, equal to 3/(1+3ε), which approaches 3 when ε approaches
zero. �

2.2 Matroids

Let E be a finite set and I a family of subsets of E. The pair (E, I) is called a
matroid if

(I1) I ∈ I and I′ ⊆ I ⇒ I′ ∈ I; and

(I2) For any subset F of E, u(F ) = v(F ),

where u(F ) and v(F ) are the two functions defined in (2.1). Thus, an independent
system (E, I) is a matroid if and only if, for any subset F of E, all maximal inde-
pendent subsets of F have the same cardinality. From Theorem 2.1, we know that
Algorithm 2.A produces an optimal solution for the problem MAX-ISS if the input
instance (E, I) is a matroid. The next theorem shows that this property actually
characterizes the notion of matroids.

Theorem 2.7 An independent system (E, I) is a matroid if and only if for every
nonnegative function c : E → R

+, the greedy Algorithm 2.A produces an optimal
solution for the instance (E, I, c) of MAX-ISS.

Proof. The “only if” part is just Theorem 2.1. Now, we prove the “if” part. Suppose
that (E, I) is not a matroid. Then we can find a subset F of E such that F has two
maximal independent subsets I and I′ with |I| > |I′|. Define, for any e ∈ E,

c(e) =

⎧⎨⎩
1 + ε, if e ∈ I′,

1, if e ∈ I \ I′,

0, if e ∈ E \ (I ∪ I′),

where ε is a positive number less than 1/|I′| (so that c(I) > c(I′)). Clearly, for this
cost function c, Algorithm 2.A produces the solution set I′, which is not optimal. �

The following are some examples of matroids.

Example 2.8 Let E be a finite set of vectors and I the family of linearly indepen-
dent subsets of E. Then the size of the maximal independent subset of a subset
F ⊆ E is the rank of F and is unique. Thus, (E, I) is a matroid. �
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Example 2.9 Given a graph G = (V, E), let I be the family of edge sets of acyclic
subgraphs of G. Then it is clear that (E, I) is an independent system. We verify that
it is actually a matroid, which is usually called a graph matroid.

Consider a subset F of E. Suppose that the subgraph (V, F ) of G has m con-
nected components. We note that in each connected component C of (V, F ), a max-
imal acyclic subgraph is just a spanning tree of C , in which the number of edges
is exactly one less than the number of vertices in C . Thus, every maximal acyclic
subgraph of (V, F ) has exactly |V | − m edges. So, condition (I2) holds for the
independent system (E, I), and hence (E, I) is a matroid. �

Example 2.10 Consider a directed graph G = (V, E) and a nonnegative integer
function f on V . Let I be the family of edge sets of subgraphs whose out-degree at
any vertex u is no more than f(u). It is clear that (E, I) is an independent system.
We verify that (E, I) is actually a matroid.

For any subset F ⊆ E, let d+
F
(u) be the number of out-edges at u which belong

to F . Then, all maximal independent sets in F have the same size,∑
u∈V

min{f(u), d+
F
(u)}.

Therefore, (E, I) is a matroid. �

In a matroid, all maximal independent subsets have the same cardinality. They
are called bases. For instance, in a graph matroid defined by a connected graph
G = (V, E), every base is a spanning tree of G and they all have the same size
|V | − 1.

There is an interesting relationship between the intersection of matroids and in-
dependent systems.

Theorem 2.11 For any independent system (E, I), there exist a finite number of
matroids (E, Ii), 1 ≤ i ≤ k, such that I =

⋂
k

i=1 Ii.

Proof. Let C1, . . . , Ck be all minimal dependent sets of (E, I) (i.e, they are the
minimal sets among {F | F ⊆ E, F �∈ I}). For each i ∈ {1, 2, . . . , k}, define

Ii = {F ⊆ E | Ci �⊆ F }.

Then it is not hard to verify that I =
⋂

k

i=1 Ii. We next show that each (E, Ii) is a
matroid.

It is easy to see that (E, Ii) is an independent system. Thus, it suffices to show
that condition (I2) holds for (E, Ii). Consider F ⊆ E. If Ci �⊆ F , then F contains
a unique maximal independent set, which is itself. If Ci ⊆ F , then every maximal
independent subset of F is equal to F \ {u} for some u ∈ Ci and hence has size
|F | − 1. �

Theorem 2.12 Suppose the independent system (E, I) is the intersection of k ma-
troids (E, Ii), 1 ≤ i ≤ k; that is, I =

⋂
k

i=1 Ii. Then
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max
F⊆E

v(F )

u(F )
≤ k,

where u(F ) and v(F ) are the two functions defined in (2.1).

Proof. Let F ⊆ E. Consider two maximal independent subsets I and J of F with
respect to (E, I). For each 1 ≤ i ≤ k, let Ii be a maximal independent subset of
I ∪ J with respect to (E, Ii) that contains I. [Note that I is an independent subset
of I ∪ J with respect to (E, Ii), and so such a set Ii exists.] For any e ∈ J \ I, if
e ∈
⋂

k

i=1(Ii \ I), then I ∪ {e} ∈
⋂

k

i=1 Ii = I , contradicting the maximality of I.
Hence, e occurs in at most k − 1 different subsets Ii \ I. It follows that

k∑
i=1

|Ii| − k|I| =

k∑
i=1

|Ii \ I| ≤ (k − 1)|J \ I| ≤ (k − 1)|J |,

or
k∑

i=1

|Ii| ≤ k|I| + (k − 1)|J |.

Now, for each 1 ≤ i ≤ k, let Ji be a maximal independent subset of I ∪ J with
respect to (E, Ii) that contains J . Since, for each 1 ≤ i ≤ k, (E, Ii) is a matroid,
we must have |Ii| = |Ji|. In addition, for every 1 ≤ i ≤ k, |J | ≤ |Ji|. Therefore,
we get

k|J | ≤
k∑

i=1

|Ji| =

k∑
i=1

|Ii| ≤ k|I| + (k − 1)|J |.

It follows that |J | ≤ k|I|. �

Example 2.13 Consider the independent system (E, I) for MAX-DHP defined in
Section 2.1. Based on the analysis in the proof of Lemma 2.4 and Examples 2.9 and
2.10, we can see that I is actually the intersection of the following three matroids:

(1) The family I1 of all subgraphs with out-degree at most 1 at each vertex;

(2) The family I2 of all subgraphs with in-degree at most 1 at each vertex; and

(3) The family I3 of all subgraphs that do not contain a cycle when the edge
direction is ignored.

Thus, Theorem 2.5 can also be derived from Theorem 2.12.
On the other hand, for the independent system (E, I) for MAX-HC defined in

Section 2.1, the analysis in the proof of Lemma 2.2 uses a more complicated count-
ing argument and does not yield the simple property that (E, I) is the intersection
of two matroids. In fact, it can be proved that (E, I) is not the intersection of two
matroids. We remark that, in general, the problem MAX-ISS for an independent
system that is the intersection of two matroids can often be solved in polynomial
time. �
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Example 2.14 Let X, Y, Z be three sets. We say two elements (x1, y1, z1) and
(x2, y2, z2) in X × Y × Z are disjoint if x1 �= x2, y1 �= y2, and z1 �= z2. Consider
the following problem:

MAXIMUM 3-DIMENSIONAL MATCHING (MAX-3DM): Given three
disjoint sets X, Y , Z and a nonnegative weight function c on all triples
in X ×Y ×Z, find a collection F of disjoint triples with the maximum
total weight.

For given sets X, Y , and Z, let E = X × Y × Z. Also, let IX (IY , IZ) be the
family of subsets A of E such that no two triples in any subset share an element in
X (Y , Z, respectively). Then (E, IX), (E, IY ), and (E, IZ) are three matroids and
MAX-3DM is just the problem of finding the maximum-weight intersection of these
three matroids. By Theorem 2.12, we see that Algorithm 2.A is a polynomial-time
3-approximation for MAX-3DM. �

2.3 Quadrilateral Condition on Cost Functions

Theorem 2.7 gives us a tight relationship between matroids and the optimality of
greedy algorithms. It is interesting to point out that this tight relationship holds with
respect to arbitrary nonnegative objective functions c. That is, if (E, I) is a matroid,
then the greedy algorithm will find optimal solutions for all objective functions c.
On the other hand, if (E, I) is not a matroid, then the greedy algorithm may still
produce an optimal solution, but the optimality must depend on some specific prop-
erties of the objective functions. In this section, we present such a property.

Consider a directed graph G = (V, E) and a cost function c : E → R. We say
(G, c) satisfies the quadrilateral condition if, for any four vertices u, v, u′, v′ in V ,

c(u, v) ≥ max{c(u, v′), c(u′, v)}

=⇒ c(u, v) + c(u′, v′) ≥ c(u, v′) + c(u′, v).

The quadrilateral condition is quite useful in the analysis of greedy algorithms. The
following are some examples.

Let G = (V1, V2, E) be a complete bipartite graph with |V1| = |V2|. Let I be the
family of all matchings (recall that a matching of a graph is a set of edges that do
not share any common vertex). Clearly, (E, I) is an independent system. It is, how-
ever, not a matroid. In fact, for some subgraphs of G, maximal matchings may have
different cardinalities (although all maximal matchings for G always have the same
cardinality). A maximal matching in the bipartite graph is called an assignment.

MAXIMUM ASSIGNMENT (MAX-ASSIGN): Given a complete bipar-
tite graph G = (V1, V2, E) with |V1| = |V2|, and an edge weight func-
tion c : E → R

+, find a maximum-weight assignment.

Theorem 2.15 If the weight function c satisfies the quadrilateral condition for all
u, u′ ∈ V1 and v, v′ ∈ V2, then Algorithm 2.A produces an optimal solution for the
instance (G, c) of MAX-ASSIGN.
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Proof. Assume that V1 = {u1, u2, . . . , un} and V2 = {v1, v2, . . . , vn}. Also,
assume, without loss of generality, that M = {(ui, vi) | i = 1, 2, . . . , n} is the as-
signment found by Algorithm 2.A, in the order of (u1, v1), (u2, v2), . . . , (un, vn).
We claim that there must be an optimal assignment that contains the edge (u1, v1):
Let M∗ ⊆ E be an arbitrary optimal solution. If the edge (u1, v1) is not in
M∗, then M∗ must have two edges (u1, v

′) and (u′, v1), where v′ �= v1 and
u′ �= u1. From the greedy strategy of Algorithm 2.A, we know that c(u1, v1) ≥
max{c(u1, v

′), c(u′, v1)}. Therefore, by the quadrilateral condition,

c(u1, v1) + c(u′, v′) ≥ c(u1, v
′) + c(u′, v1).

This means that replacing edges (u1, v
′) and (u′, v1) in M∗ by (u1, v1) and (u′, v′)

does not decrease the total weight of the assignment. This completes the proof of
the claim.

Using the same argument, we can prove that for each i = 1, 2, . . . , n, there
exists an optimal assignment that contains all edges (u1, v1), . . . , (ui, vi). Thus, M

is actually an optimal solution. �

Next, let us come back to the problem MAX-DHP.

Theorem 2.16 For the problem MAX-DHP restricted to the graphs with distance
functions satisfying the quadrilateral condition, the greedy Algorithm 2.A is a
polynomial-time 2-approximation.

Proof. Assume that G = (V, E) is a directed graph, and c : E → R
+ is the distance

function. Let n = |V |. Let e1, e2, . . . , en−1 be the edges selected by Algorithm
2.A into the solution set H , in the order of their selection into H . They are, hence,
in nonincreasing order of their length. For each i = 1, 2, . . . , n − 1, let Pi be a
longest simple path in G that contains edges e1, e2, . . . , ei, and let Qi = Pi −
{e1, e2, . . . , ei}. In particular, Q0 = P0 is an optimal solution, and Qn−1 = ∅. For
any set T of edges in G, we write c(T ) to denote the total length of edges in T . We
claim that for i = 1, 2, . . . , n − 1,

c(Qi−1) ≤ c(Qi) + 2c(ei).

To prove the claim, let us consider the relationship between Pi−1 and Pi. If
Pi−1 = Pi, then Qi−1 = Qi ∪ {ei}, and so

c(Qi−1) = c(Qi) + c(ei) ≤ c(Qi) + 2c(ei).

If Pi−1 �= Pi, then we must have ei �∈ Pi−1. Assume that ei = (u, v). To add ei to
Pi−1 to form a simple path Pi, we must remove up to three edges from Pi−1 (and
add ei and some new edges):

(1) The edge in Pi−1 that begins with u;

(2) The edge in Pi−1 that ends with v; and

(3) An edge in the path from v to u if Pi−1 contains such a subpath.
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P i -1
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e i

New Path
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Figure 2.3: From path Pi−1 to a new path.

In addition, these edges are all in Qi−1 \ {ei}. Figure 2.3 shows an example of this
process.

From the greedy strategy of the algorithm, we know that c(ei) ≥ c(e) for any
edge e ∈ Qi−1. So, the total length of the edges removed is at most 3c(ei). We
consider two cases:

Case 1. We may form a new path passing through e1, . . . , ei from Pi−1 by re-
moving at most two edges, say, e′

j
and e′

k
. Then, c((Pi−1\{e′j, e

′
k
})∪{ei}) ≤ c(Pi).

Hence,
c(Qi−1) ≤ c(Qi) + c({e′

j
, e′

k
}) ≤ c(Qi) + 2c(ei).

Case 2. We must remove three edges from Pi−1 to form a new path passing
through e1, e2, . . . , ei. As discussed above, these three edges must be (u, v′), (u′, v),
for some u′, v′ ∈ V , and an edge e in the subpath from v to u in Pi−1, and u, v,
u′, and v′ are all distinct. This means that Pi−1 has a subpath from u′ to v′, which
contains these three edges. Thus, after deleting (u, v′), (u′, v), and e, we can add
edge (u′, v′) to form a new path (cf. Figure 2.3). Therefore, we have

c(Qi) ≥ c(Qi−1) − c({(u′, v), e, (u, v′)}) + c(u′, v′)

≥ c(Qi−1) − c(e) − c(u, v)

≥ c(Qi−1) − 2c(ei),

where the second inequality follows from the quadrilateral condition on u, v, u′, and
v′ and the fact that c(u, v) ≥ c(e′) for all e′ ∈ Qi−1. This completes the proof of
the claim.

Now, we note that Qn−1 = ∅, and so c(Qn−1) = 0. Thus, we have

c(P0) = c(Q0) ≤ c(Q1) + 2c(e1)

≤ c(Q2) + 2c(e1) + 2c(e2)

≤ · · · ≤ c(Qn−1) + 2

n−1∑
i=1

c(ei) = 2c(H). �
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The quadrilateral condition sometimes holds naturally. The following is an ex-
ample.

Recall that a (character) string is a sequence of characters from a finite alphabet
Σ. We say a string s is a superstring of t, or t is a substring of s, if there exist strings
u, v such that s = utv. If u is empty, we say t is a prefix of s, and if v is empty, then
we say t is a suffix of s. The length of a string s is the number of characters in s, and
is denoted by |s|.

SHORTEST SUPERSTRING (SS): Given a set of strings S = {s1, s2,
. . ., sn} in which no string si is a substring of any other string sj , j �= i,
find the shortest string s∗ that contains all strings in S as substrings.

The problem SS has important applications in computational biology and data
compression.

A string v is called an overlap of string s with respect to string t if v is both
a suffix of s and a prefix of t, that is, if s = uv and t = vw for some strings u

and w. We note that the overlap string may be an empty string. Also, the notion of
overlap strings is not symmetric. That is, an overlap of s with respect to t may not
be an overlap of t with respect to s. For any two strings s and t, we write ov (s, t) to
denote the longest overlap of s with respect to t.

To find an approximation algorithm for SS, we can transform the problem SS
into the problem MAX-DHP: First, for any set S = {s1, s2, . . . , sn} of strings, we
define the overlap graph G(S) = (S, E) to be the complete directed graph on the
vertex set S, with all self-loops removed. For each edge (si, sj) in E, we let its
length be c(si, sj) = |ov(si, sj)|.

Suppose that s∗ is a shortest superstring for S and that s1, s2, . . . , sn are the
strings in S in the order of occurrence from left to right in s∗. Then, for each
i = 1, . . . , n − 1, si and si+1 must have the maximal overlap in s∗ for, other-
wise, s∗ could be shortened and would not be the shortest superstring. It is not hard
to verify that the sequence (s1, s2, . . . , sn) forms a directed Hamiltonian path H in
the overlap graph G(S), whose total edge length, denoted by c(H), is equal to the
sum of the total length of all overlap strings in s∗:

c(H) =

n−1∑
i=1

|ov(si, si+1)|.

Next, consider an arbitrary directed Hamiltonian path H = (s
h(1), s

h(2), . . .,
s
h(n)) in G(S). We can construct a superstring for S from H as follows: For

each i = 1, 2, . . . , n − 1, let zi be the prefix of s
h(i) such that s

h(i) = zi ·
ov(s

h(i), sh(i+1)). Then, define p(H) = z1z2 · · ·zn−1sh(n). It is easy to check that
p(H) is a superstring of all s

h(i), for i = 1, 2, . . . , n (cf. Figure 2.4). Clearly,

p(H)| =

n−1∑
i=1

|zi| + |s
h(n)|

=

n−1∑
i=1

(|s
h(i)| − |ov(s

h(i), sh(i+1))|) + |s
h(n)|
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Figure 2.4: A superstring obtained from a Hamiltonian path.

=

n∑
i=1

|s
h(i)| −

n−1∑
i=1

|ov(s
h(i), sh(i+1))| =

n∑
i=1

|si| − c(H).

That is, the length of p(H) equals the total length of the strings in S minus the total
edge length of the path H . It follows that the string p(H) generated from a longest
directed Hamiltonian path H is a shortest superstring of S, and vice versa.

Theorem 2.17 If H is a longest directed Hamiltonian path in the overlap graph
G(S), then the string p(H) is a shortest superstring for S. Conversely, if s∗ is a
shortest superstring for S, then s∗ = p(H) for some longest directed Hamiltonian
path H in G(S).

From this relationship, we can convert Algorithm 2.A into an approximation al-
gorithm for the problem SS.

Algorithm 2.B (Greedy Algorithm for SS)

Input: A set S = {s1, s2, . . . , sn} of strings.

(1) Set G ← {s1, s2, . . . , sn}.

(2) While |G| > 1 do

select si, sj in G with the maximum |ov (si, sj)|;
let si ← siu, where sj = ov (si, sj)u;
G ← G \ {sj}.

(3) Output the only string s
G

left in G.

Tarhio and Ukkonen [1988] and Turner [1989] noticed independently that the
overlap graph G(S) satisfies the quadrilateral condition.
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Figure 2.5: Overlaps among four strings.

Lemma 2.18 Let G(S) be the overlap graph of a set S of strings. Let u, v, u′, and
v′ be four distinct strings in S. If |ov (u, v)| ≥ max{|ov(u, v′)|, |ov(u′, v)|}, then

|ov(u, v)| + |ov(u′, v′)| ≥ |ov (u, v′)| + |ov(u′, v)|.

Proof. The proof is trivial when |ov(u, v)| ≥ |ov(u, v′)| + |ov(u′, v)|. Thus, we
may assume that |ov(u, v)| < |ov(u, v′)| + |ov (u′, v)|.

Since both ov (u, v) and ov (u′, v) are prefixes of v, |ov (u′, v)| ≤ |ov (u, v)|
implies that ov(u′, v) is a prefix of ov (u, v). Similarly, we get that ov (u, v′) is a
postfix of ov (u, v) (see Figure 2.5). Because |ov(u, v)| < |ov (u, v′)| + |ov (u′, v)|,
we know that the overlap of ov(u′, v) with respect to ov(u, v′) is not empty. Let
w = ov(ov (u′, v), ov(u, v′)). Then, we have ov(u, v) = xwy, ov (u′, v) = xw and
ov(u, v′) = wy for some strings x and y (cf. Figure 2.5). That is, w is an overlap of
u′ with respect to v′. It follows that

|ov (u′, v′)| ≥ |w| = |ov (u, v′)| + |ov(u′, v)| − |ov(u, v)|. �

Theorem 2.19 Let s∗ be a shortest superstring for S. Let ‖S‖ be the total length of
strings in S. Then

‖S‖ − |s∗| ≤ 2(‖S‖ − sG),

where s
G

is the superstring generated by Algorithm 2.B.

Proof. The theorem follows immediately from Lemma 2.18 and Theorem 2.16. �

The following example shows that the bound on (‖S‖ − s∗)/(‖S‖ − sG) given
in Theorem 2.19 is the best possible.

Example 2.20 Let S = {abk, bk+1, bka}, where k ≥ 1. The shortest superstring for
S is abk+1a. However, Algorithm 2.B may generate a superstring abkabk+1 (by first
merging the string abk with bka). Thus, for this example, we have ‖S‖ − |sG| = k

and ‖S‖ − |s∗| = 2k. �
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In the above example, we also have |sG|/|s∗| = (2k + 3)/(k + 3). This means
that the performance ratio of Algorithm 2.B cannot be better than 2. It has been
conjectured that the performance ratio of Algorithm 2.B is indeed equal to 2; that
is, |sG| ≤ 2|s∗|, while the best known result is |sG| ≤ 4|s∗| [Blum et al., 1991].

In the above, we have seen a nice relationship between the problem SS and the
problem MAX-DHP. This relationship can be extended to an interesting transfor-
mation from the problem SS to the traveling salesman problem TSP on directed
graphs (called DIRECTED TSP).

Let S = {s1, s2, . . . , sn} be an instance of the problem SS. Let sn+1 be the
empty string. Consider a complete directed graph with vertex set V = S ∪ {sn+1},
and the distance function

d(si, sj) = |si| − |ov(si, sj)|,

for si, sj ∈ V . [Note that ov (sn+1, si) = ov(si, sn+1) = sn+1 for all 1 ≤ i ≤ n.]
It is easy to see that the shortest superstring for set S corresponds to a minimum
Hamiltonian circuit with respect to the above distance function, and vice versa.
Thus, a good approximation for this special case of DIRECTED TSP would also
be a good approximation for the problem SS. It has also been proved that the above
distance function satisfies the triangle inequality; that is, for any si, sj , and sk , with
1 ≤ i, j, k ≤ n + 1, d(si, sk) ≤ d(si, sj) + d(sj , sk) [Turner, 1989]. Based on this
relationship between the two problems DIRECTED TSP and SS, we will present,
in Chapter 6, a polynomial-time 3-approximation for SS, even though no constant-
ratio polynomial-time approximation for DIRECTED TSP is known.

2.4 Submodular Potential Functions

In the last three sections, we have applied the notion of independent systems to
study greedy algorithms. The readers may have noticed that most applications we
studied were about maximization problems. While minimization and maximization
look similar, the behaviors of approximation algorithms for them are quite different.
In this section, we introduce a different theory for the analysis of greedy algorithms
for minimization problems.

Consider a finite set E (called the ground set) and a function f : 2E → Z, where
2E denotes the power set of E (i.e., the family of all subsets of E). The function f

is said to be submodular if for any two sets A and B in 2E ,

f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B). (2.2)

Example 2.21 (a) The function f(A) = |A| is submodular since

|A| + |B| = |A ∩ B| + |A ∪ B|.

Actually, in this case, the equality always holds, and we call f a modular function.

(b) Let (E, I) be a matroid. For any A ∈ 2E , define the rank of A as
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rank(A) = max
I∈I,I⊆A

|I|.

Then, the function rank is a submodular function.
To see this, consider two subsets A and B of E. Let IA∩B be a maximal inde-

pendent subset of A∩B. Let I′ be a maximal independent subset in A that contains
IA∩B as a subset. Since all maximal independent subsets in A have the same cardi-
nality, we know that |I′| = rank(A). Next, let I′′ be a maximal independent subset
in A ∪ B that contains I′ as a subset. Similarly, we have |I′′| = rank(A ∪ B). Let
J = I′′ \ I′. We note that J must be a subset of B since I′ is a maximal indepen-
dent subset in A. Thus, IA∩B ∪ J ⊆ I′′ ∩ B is an independent subset in B. So,
|IA∩B ∪ J | = |IA∩B | + |J | ≤ rank(B). Or,

rank (A ∪ B) +rank (A ∩ B) − rank (A)

= |I′′| + |IA∩B | − |I′| = |J | + |IA∩B | ≤ rank(B). �

Assume that f is a submodular function on subsets of E. Define

ΔDf(C) = f(C ∪ D) − f(C)

for any subsets C and D of E; that is, ΔDf(C) is the extra amount of f value we
gain by adding D to C . Then, the submodularity property (2.2) may be expressed as

ΔDf(A ∩ B) ≥ ΔDf(B), (2.3)

where D = A \B. When D = {x} is a singleton, we simply write Δxf(C) instead
of Δ{x}f(C).

To see the role of submodular functions in the analysis of greedy algorithms, let
us study a specific problem:

MINIMUM SET COVER (MIN-SC): Given a set S and a collection C of
subsets of S such that

⋃
C∈C

C = S, find a subcollection A ⊆ C with
the minimum cardinality such that

⋃
C∈A C = S.

For any subcollection A ⊆ C, let ∪A denote the union of sets in A; i.e., ∪A =⋃
C∈A C , and define f(A) = | ∪ A|. Then f is a submodular function. To see this,

we verify that, for any two subcollections A and B of C, f(A) + f(B) − f(A ∪ B)
is equal to the number of elements in both ∪A and ∪B. Moreover, every element in
∪(A ∩ B) must appear in both ∪A and ∪B. Therefore,

f(A) + f(B) − f(A ∪ B) ≥ f(A ∩ B).

A function g on 2E is said to be monotone increasing if, for all A, B ⊆ E,

A ⊆ B =⇒ g(A) ≤ g(B).

It is easy to check that the above function f is monotone increasing. We can use this
function f as the potential function to design a greedy approximation for MIN-SC
as follows:
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Algorithm 2.C (Greedy Algorithm for MIN-SC)

Input: A set S and a collection C of subsets of S.

(1) A ← ∅.

(2) While f(A) < |S| do

Select a set C ∈ C to maximize f(A ∪ {C});

Set A ← A ∪ {C}.

(3) Output A.

This approximation algorithm can be analyzed as follows:

Theorem 2.22 Greedy Algorithm 2.C is a polynomial-time (1 + ln γ)-approxi-
mation for MIN-SC, where γ is the maximum cardinality of a subset in the input
collection C.

Proof. Let A1, . . . , Ag be the solution found by Algorithm 2.C, in the order of their
selection into the collection A. Denote Ai = {A1, . . . , Ai}, for i = 0, 1, . . . , g. Let
C1, C2, . . . , Cm be a minimum set cover (i.e., m = opt is the number of subsets
in a minimum set cover). By the greedy strategy, we know that Ai+1 covers the
maximum number of elements that are not yet covered by Ai. Let Ui denote the set
of elements in S that are not covered by Ai. Then the total number of elements in Ui

is |Ui| = |S| − f(Ai). The set Ui can be covered by the m subsets in the minimum
set cover {C1, . . . , Cm}. By the pigeonhole principle, there must be a subset Cj that
covers at least (|S| − f(Ai))/m elements in Ui. Therefore,

f(Ai+1) − f(Ai) ≥
|S| − f(Ai)

m
. (2.4)

Or, equivalently,

|S| − f(Ai+1) ≤ (|S| − f(Ai)) ·
(
1 −

1

m

)
.

By a simple induction, we get

|Ui| = |S| − f(Ai) ≤ |S| ·
(
1 −

1

m

)
i

≤ |S| · e−i/m.

We note that the size of Ui decreases from |S| to 0, and so there must be an
integer i ∈ {1, 2, . . . , g} such that |Ui+1| < m ≤ |Ui|. That is, after i + 1 iterations
of the while-loop of step (2) of Algorithm 2.C, there are at most m − 1 elements
left uncovered, and so the greedy Algorithm 2.C will halt after at most m − 1 more
iterations. That is, g ≤ i + m. In addition, we have m ≤ |Ui| ≤ |S|e−i/m, and so

i ≤ m · ln
( |S|

m

)
≤ m · lnγ

and
g ≤ i + m ≤ m(1 + lnγ). �
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In the above, we used the pigeonhole principle to prove inequality (2.4). It may
appear that the submodularity of the potential function f is not required in the proof.
It is important to point out that the above proof actually used the submodularity
property of f implicitly. To clarify this point, we present, in the following, an alter-
native proof that uses the submodularity property of f explicitly, and avoids the use
of the specific meaning of f about set coverings.

Alternative Proof for (2.4). Recall that {C1, . . . , Cm} is a minimum set cover. For
each j = 1, 2, . . . , m, let Cj = {C1, . . . , Cj}. By the greedy strategy, we have, for
each 1 ≤ j ≤ m,

f(Ai+1) − f(Ai) = ΔAi+1
f(Ai) ≥ ΔCj

f(Ai),

and so

f(Ai+1) − f(Ai) ≥
1

m
·

m∑
j=1

ΔCj
f(Ai).

On the other hand, we note that

|S| − f(Ai) = f(Ai ∪ Cm) − f(Ai) =

m∑
j=1

ΔCj
f(Ai ∪ Cj−1).

Therefore, to get (2.4), it suffices to have

ΔCj
f(Ai) ≥ ΔCj

f(Ai ∪ Cj−1),

which follows from the submodularity and monotone increasing properties of the
function f . �

The second proof above illustrates that the submodularity and monotone increas-
ing properties of the potential function are sufficient conditions for inequality (2.4).
In particular, for m = 2, inequality (2.4) is equivalent to

ΔC2
f(Ai) ≥ ΔC2

f(Ai ∪ C1).

We will show, in the following, that this is equivalent to the condition that f is
submodular and monotone increasing.

Lemma 2.23 Let f be a submodular function on 2E. Then, for all sets A, C ⊆ E,

ΔCf(A) ≤
∑
x∈C

Δxf(A).

Proof. Note that if x ∈ A, then Δxf(A) = 0. Thus, without loss of generality,
we may assume that A ∩ C = ∅. For any x ∈ C , set X = A ∪ {x} and Y =
A ∪ (C − {x}). Then, by the definition of submodular functions, we have
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f(C ∪ A) + f(A) = f(X ∪ Y ) + f(X ∩ Y )

≤ f(X) + f(Y ) = f(A ∪ {x}) + f(A ∪ (C − {x})).

It follows that
ΔCf(A) ≤ Δxf(A) + Δ

C−{x}f(A).

The lemma can now be derived easily from this inequality. �

Lemma 2.24 Let f be a function on all subsets of a set E. Then f is submodular if
and only if, for any two subsets A ⊆ B of E and any element x �∈ B,

Δxf(A) ≥ Δxf(B). (2.5)

Proof. From A ⊆ B and x �∈ B, we know that (A ∪ {x}) ∪ B = B ∪ {x} and
(A ∪ {x}) ∩ B = A. Therefore, if f is submodular, then

f(A ∪ {x}) + f(B) ≥ f(A) + f(B ∪ {x}).

That is,
Δxf(A) ≥ Δxf(B).

Conversely, suppose (2.5) holds for all subsets A ⊆ B and all x �∈ B. Consider
two arbitrary subsets A, B of E. Let D = A\B, and assume that D = {x1, . . . , xk}.
Then

ΔDf(A ∩ B) =

k∑
i=1

Δxi
f((A ∩ B) ∪ {x1, . . . , xi−1})

≥
k∑

i=1

Δxi
f(B ∪ {x1, . . . , xi−1}) = ΔDf(B).

(Note that D = A \ B, and so xi �∈ B for all i = 1, 2, . . . , n.) That is, inequality
(2.3) holds and hence f is submodular. �

Lemma 2.25 Let f be a function on all subsets of a set E. Then f is submodular
and monotone increasing if and only if, for any two subsets A ⊆ B and any element
x ∈ E,

Δxf(A) ≥ Δxf(B).

Proof. We note that f is monotone increasing if and only if, for any subset A ⊆ E

and any x ∈ E, Δxf(A) ≥ 0. Now, assume that f is also submodular. Then, for
any subsets A ⊆ B ⊆ E and any x ∈ E \ B, we have, by Lemma 2.24, Δxf(A) ≥
Δxf(B); and for x ∈ B, we also have, by monotonicity of f , Δxf(A) ≥ 0 =
Δxf(B).

Conversely, assume that Δxf(A) ≥ Δxf(B) for any subsets A ⊆ B ⊆ E and
any x ∈ E. Then, by Lemma 2.24, we know that f is submodular. In addition, set
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B = E; we get Δxf(A) ≥ Δxf(E) = 0 for all x ∈ E, which implies that f is
monotone increasing. �

A submodular function is normalized if f(∅) = 0. Every submodular function
f can be normalized by setting g(A) = f(A) − f(∅). We note that if f is a nor-
malized, monotone increasing submodular function, then f(A) ≥ 0 for every set
A ⊆ E. A normalized, monotone increasing, submodular function f is also called
a polymatroid function. If f is defined on 2E , then (E, f) is called a polymatroid.
There are close relationships among polymatroids, matroids, and independent sys-
tems; see Exercises 2.18–2.24.

Consider a submodular function f on 2E . Let Ωf = {C ⊆ E | (∀x ∈ E)
Δxf(C) = 0}. Intuitively, Ωf contains the maximal sets C under function f ; that
is, f(C ∪ B) = f(C) for all sets B.

Lemma 2.26 Let f be a monotone increasing, submodular potential function on
2E. Then, Ωf = {C | f(C) = f(E)}.

Proof. If C ∈ Ωf , then

0 ≤ f(E) − f(C) = ΔE−Cf(C) ≤
∑

x∈E−C

Δxf(C) = 0.

Therefore, f(C) = f(E).
Conversely, if f(C) = f(E), then, for any x ∈ E, f(C) ≤ f(C ∪{x}) ≤ f(E),

and so f(C) = f(C ∪ {x}). That is, for any x ∈ E, Δxf(C) = 0. �

We are now ready to present a general result about greedy approximations which
use a monotone increasing, submodular function as the potential function. Consider
the following minimization problem.

MINIMUM SUBMODULAR COVER (MIN-SMC): Given a finite set E,
a normalized, monotone increasing, submodular function f on 2E , and
a nonnegative cost function c on E,

minimize c(A) =
∑
x∈A

c(x),

subject to A ∈ Ωf .

This minimization problem is a general form for many problems. In most ap-
plications, the submodular function f is not given explicitly in the form of the in-
put/output pairs, but its value at any set A ⊆ E is computable in polynomial time.

Example 2.27 Consider the weighted version of the problem MIN-SC.

MINIMUM-WEIGHT SET COVER (MIN-WSC): Given a set S, a col-
lection C of subsets of S with ∪C = S, and a weight function w on all
sets C ∈ C, find a set cover with the minimum total weight.
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Following the discussion on MIN-SC, let the input collection C be the ground
set, and define, for any subcollection A of C, f(A) = | ∪ A|. Then, f is a submod-
ular function. Moreover, f is apparently monotone increasing. With this function f ,
ΔCf(A) = 0 if and only if C ⊆ ∪A. This means that a subcollection A belongs to
Ωf if and only if A is a set cover of S = ∪C. Thus, the problem MIN-WSC is just
the problem MIN-SMC with respect to this potential function f . �

Example 2.28 A hypergraph H = (V, C) is a pair of sets V and C, where C is a
family of subsets of V . Each element in V is called a vertex and each subset in C
is called an edge (and sometimes, to emphasize that it is an edge of a hypergraph,
called a hyperedge). The degree of a vertex is the number of edges that contain the
vertex.

A subset A of vertices is called a hitting set of the hypergraph H = (V, C) if
every edge in C contains at least one vertex from A. The following problem is the
weighted version of MIN-HS defined in Exercise 1.15:

MINIMUM-WEIGHT HITTING SET (MIN-WHS): Given a hypergraph
H = (V, C) and a nonnegative weight function c on vertices in V , find
a hitting set A ⊆ V of the minimum total weight.

Let V be the ground set, and define, for each A ⊆ V , E(A) to be the collection
of sets C ∈ C such that C ∩ A �= ∅, and let f(A) = |E(A)|. Then it is easy to see
that E(A ∪ B) = E(A) ∪ E(B) and E(A ∩ B) ⊆ E(A) ∩ E(B). Thus, we have

|E(A)| + |E(B)| = |E(A) ∪ E(B)| + |E(A) ∩ E(B)|

≥ |E(A ∪ B)| + |E(A ∩ B)|.

That is, function f is a submodular function. Furthermore, it is easy to check that
E(∅) = ∅, and if A ⊆ B, then E(A) ⊆ E(B). Thus, f is a normalized, monotone
increasing, submodular function.

Now, what is Ωf ? It is not hard to verify that A ∈ Ωf if and only if A is a hitting
set. Thus, the problem MIN-WHS is just the problem MIN-SMC with respect to
this submodular potential function f . �

The problem MIN-SMC has a natural greedy algorithm: In each iteration, we
add an element x to the solution set A to maximize the value Δxf(A), relative to
the cost c(x).

Algorithm 2.D (Greedy Algorithm for MIN-SMC)

Input: A finite set E, a submodular function f on 2E , and a function c : E → R
+.

(1) Set A ← ∅.

(2) While there exists an x ∈ E such that Δxf(A) > 0 do

select a vertex x that maximizes Δxf(A)/c(x);
A ← A ∪ {x}.

(3) Return AG ← A.
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The following theorem gives an estimation of the performance of this algorithm.
We write H(n) to denote the harmonic function H(n) =

∑
n

i=1 1/i. Note that
H(n) ≤ 1 + lnn (see Exercise 2.6).

Theorem 2.29 Let f be a normalized, monotone increasing, submodular function.
Then Algorithm 2.D produces an approximate solution within a factor of H(γ) from
the optimal solution to the input (E, f, c), where γ = maxx∈E f({x}).

Proof. Let A be the approximate solution obtained by Algorithm 2.D. Assume that
x1, x2, . . . , xk are the elements of A, in the order of their selection into the set.
Denote Ai = {x1, x2, . . . , xi}; in particular, A0 = ∅. Let A∗ be an optimal solution
to the same instance.

For any set B ⊆ E, we write c(B) to denote the total cost of B: c(B) =∑
x∈B

c(x). We are going to prove that

c(A) ≤ c(A∗) · H(γ)

by a weight-decomposition counting argument. That is, we decompose the total cost
c(A) of the approximate solution and distribute it to the elements of the optimal
solution A∗ through a weight function w(y) on y ∈ A∗. Then we calculate the
weight decomposition according to the optimal solution A∗ and show that each
element y ∈ A∗ can pick up at most weight c(y) · H(γ). It follows, therefore, that
c(A∗) is at least c(A)/H(γ).

In other words, we need to assign weight w(y) to each element y of A∗ so that it
satisfies the following properties:

(a) c(A) ≤
∑

y∈A
∗ w(y); and

(b) w(y) ≤ c(y) · H(γ).

Property (b) implies that
∑

y∈A
∗ w(y) ≤ c(A∗)H(γ). Thus, properties (a) and (b)

together establish the desired result.
First, to simplify the notation, we let ri = Δxi

f(Ai−1) and zy,i = Δyf(Ai−1).
Now, we define, for each y ∈ A∗,

w(y) =

k∑
i=1

(zy,i − zy,i+1)
c(xi)

ri

.

Before we prove properties (a) and (b), we observe that

k∑
i=1

(zy,i − zy,i+1) = zy,1 − zy,k+1 = Δyf(A0) − Δyf(Ak) = f({y}).

[In the above, Δyf(A0) = f({y}) because f is normalized, and Δyf(Ak) = 0
because Ak = A ∈ Ωf .] Therefore,
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Figure 2.6: The weight decomposition.

∑
y∈A

∗

k∑
i=1

(zy,i − zy,i+1) =
∑

y∈A
∗

f({y})

≥ f(A∗) = f(A) =

k∑
i=1

Δxi
f(Ai−1) =

k∑
i=1

ri,

since both A∗ and A are in Ωf . This relationship provides some intuition about how
the weight-decomposition function is defined: As illustrated in Figure 2.6, we divide
each element xi into ri parts, each of weight c(xi)/ri, so that the total weight of all
parts, over all xi ∈ A, is c(A). Then each y ∈ A∗ picks up zy,i − zy,i+1 parts from
the element xi. The total number of parts picked up by y, disregarding the different
weight, is f({y}). Our goal here is to distribute part of each xi ∈ A to some y ∈ A∗,
while each y ∈ A∗ does not take too much weight.

We now proceed to prove properties (a) and (b). For property (a), we can write
weight w(y) in the following form:

w(y) =

k∑
i=1

(zy,i − zy,i+1)
c(xi)

ri

=
c(x1)

r1
zy,1 +

k∑
i=2

(
c(xi)

ri

−
c(xi−1)

ri−1

)
zy,i.

[Note that zy,k+1 = Δyf(Ak) = 0.] In addition, c(A) can also be expressed in a
similar form:

c(A) =

k∑
i=1

ri

ri

c(xi) =

k∑
i=1

(
k∑

j=i

rj −
k∑

j=i+1

rj

)
c(xi)

ri

=
c(x1)

r1

k∑
j=1

rj +

k∑
i=2

(
c(xi)

ri

−
c(xi−1)

ri−1

) k∑
j=i

rj.
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Moreover, from the greedy strategy of Algorithm 2.D, we know that

r1

c(x1)
≥

r2

c(x2)
≥ · · · ≥

rk

c(xk)
;

or, equivalently,
c(xi)

ri

−
c(xi−1)

ri−1
≥ 0,

for all i = 1, . . . , k. Thus, to prove (a), it suffices to prove that for any i = 1,
2, . . . , k,

k∑
j=i

rj ≤
∑

y∈A
∗

zy,i.

This inequality holds since, by Lemmas 2.23 and 2.26,

k∑
j=i

rj =

k∑
j=i

Δxj
f(Aj−1) =

k∑
j=i

(f(Aj ) − f(Aj−1))

= f(A) − f(Ai−1) = f(A∗) − f(Ai−1)

= f(A∗ ∪ Ai−1) − f(Ai−1) = ΔA
∗f(Ai−1)

≤
∑

y∈A
∗

Δyf(Ai−1) =
∑

y∈A
∗

zy,i.

Next, we prove property (b). Let y be a fixed element in A∗. From the greedy
strategy of Algorithm 2.D, we know that if zy,i > 0, then

c(xi)

ri

≤
c(y)

zy,i

,

for all i = 1, 2, . . . , k. In addition, we know from Lemma 2.25 that zy,i ≥ zy,i+1.
Let 
 = max{i | 1 ≤ i ≤ k, zy,i > 0}. We have

w(y) =

�∑
i=1

(zy,i − zy,i+1)
c(xi)

ri

≤
�∑

i=1

(zy,i − zy,i+1)
c(y)

zy,i

= c(y)

�∑
i=1

zy,i − zy,i+1

zy,i

.

Note that for any integers p > q > 0, we have

p − q

p
=

p∑
j=q+1

1

p
≤

p∑
j=q+1

1

j
= H(p) − H(q).

So, we have



2.5 Applications 59

w(y) ≤ c(y)

�−1∑
i=1

(
H(zy,i) − H(zy,i+1)

)
+ c(y)H(zy,�) = c(y)H(zy,1).

Note that zy,1 = f({y}) ≤ γ for all y ∈ A∗. Therefore, we have proved property
(b) and, hence, the theorem. �

2.5 Applications

Now we present some applications of the greedy Algorithm 2.D.
First, from Example 2.27, we get the upper bound for the performance ratio of the

greedy algorithm for MIN-WSC immediately. More specifically, the submodular
potential function f for the problem MIN-WSC is defined to be f(A) = | ∪ A|.
Therefore, when applied to MIN-WSC, the greedy strategy for Algorithm 2.D is to
select, at each stage, the set C ∈ C with the highest value of

| ∪ (A ∪ {C})| − | ∪ A|

c(C)
,

where c(C) is the weight of set C , and add C to the solution collection A. Also,
the parameter γ in the performance ratio H(γ) of Theorem 2.29 is equal to the
maximum value of f({C}) = |C| over all C ∈ C. Therefore, we have the following
result:

Corollary 2.30 When it is applied to the problem MIN-WSC, Algorithm 2.D is
a polynomial-time H(m)-approximation, where m is the maximum cardinality of
subsets in the input collection C.

From Example 2.28, we know that the function f(A) = |E(A)| is monotone in-
creasing and submodular for the problem MIN-WHS. With respect to this potential
function f , Algorithm 2.D selects, at each stage, the element x ∈ S with the highest
value of

|E(A ∪ {x})| − |E(A)|

c(x)
,

and adds x to the solution set A. We note that in the setting of the problem MIN-
WHS, the parameter γ in the performance ratio H(γ) of Theorem 2.29 is just the
maximum degree over all vertices. So, we get the following result:

Corollary 2.31 When it is applied to the problem MIN-WHS, Algorithm 2.D is a
polynomial-time H(δ)-approximation, where δ is the maximum degree of a vertex
in the input hypergraph.

Note that if all edges in the input hypergraph H = (V, C) have exactly two
elements, then this subproblem of MIN-WHS is actually the weighted version of
the vertex cover problem MIN-VC (see Exercise 1.10).
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MINIMUM-WEIGHT VERTEX COVER (MIN-WVC): Given a graph
G = (V, E), with a nonnegative weight function c : V → R

+, find
a vertex cover of the minimum total weight.

We prove that the bound H(δ) of Corollary 2.31 is actually tight, even for the
nonweighted version of MIN-VC on bipartite graphs.

Theorem 2.32 For any n ≥ 1, there exists a bipartite graph G with degree at most
n and a minimum vertex cover of size n! such that Algorithm 2.D produces a vertex
cover of size H(n) · (n!) on graph G.

Proof. Let V1, V2,1, V2,2, . . . , V2,n be n+1 pairwisely disjoint sets of size |V1| = n!
and |V2,i| = n!/i, for each i = 1, 2, . . . , n. The bipartite graph G has the vertex sets
V1 and V2 =

⋃
n

i=1 V2,i. To define the edges in G, we perform the following process
for each 1 ≤ i ≤ n: We partition V1 into n!/i disjoint subsets, each of size i, and
build a one-to-one correspondence between these n!/i subsets and n!/i vertices in
V2,i. Then, for each subset A of V1, we connect every vertex in A to the vertex in
V2,i that corresponds to subset A.

Thus, in the bipartite graph G, each vertex in V1 has degree n and each vertex
in V2,i has degree i ≤ n. Clearly, V1 is a minimum hitting set, which has size n!.
However, the greedy Algorithm 2.D on graph G may produce V2 as the hitting set,
which has size

∑
n

i=1(n!)/i = H(n) · (n!). �

The above result indicates that Algorithm 2.D is not a good approximation
for the nonweighted MIN-VC, as MIN-VC actually has a polynomial-time 2-
approximation, and MIN-VC in bipartite graphs can be solved in polynomial time
(see Exercise 1.10). On the other hand, Algorithm 2.D is probably the best approx-
imation for the nonweighted hitting set problem, unless certain complexity hierar-
chies collapse (see Historical Notes).

Our next example is the problem of subset interconnection design. Recall that for
any graph G = (V, E) and any set S ⊆ V , G|S denotes the subgraph of G induced
by set S; i.e., G|S is the graph with vertex set S and edge set E|S = {{x, y} ∈ E |
x, y ∈ S}. For any subsets S1, S2, . . . , Sm of V , we say a subgraph H = (V, F ) of
G is a feasible graph for S1, S2, . . . , Sm if, for each i = 1, 2, . . . , m, the subgraph
H |Si

induced by Si is connected.

WEIGHTED SUBSET INTERCONNECTION DESIGN (WSID): Given a
complete graph G = (V, E) with a nonnegative edge weight function
c : E → R

+, and m vertex subsets S1, S2, . . . , Sm ⊆ V , find a feasible
subgraph H = (V, F ) for S1, S2, . . . , Sm, with the minimum total edge
weight.

Example 2.33 Let V = {v1, v2, . . . , v5}, and consider the five subsets S1 = {v1,
v2}, S2 = {v1, v2, v3}, S3 = {v3, v4, v5}, S4 = {v1, v2, v4}, and S5 = {v2,
v4, v5}. These subsets form a hypergraph on V , as shown in Figure 2.7, together
with a cost function c. Figure 2.8 shows two feasible graphs for these subsets. With
respect to the cost function c given in Figure 2.7, the graph in Figure 2.8(b) is a
minimum-cost feasible graph. �
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Figure 2.7: A hypergraph and its cost function.
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Figure 2.8: Feasible graphs for the input of Figure 2.7.

In the following, we define a submodular function r on subsets of the edge set E.
Consider the graph matroid of the induced subgraph G|Si

= (V, Ei) (see Example
2.9), where Ei = E|Si

. In this graph matroid, a set I ⊆ Ei is an independent subset
if (Si, I) is an acyclic subgraph of G|Si

. Let ri be the rank function of the graph
matroid of graph G|Si

(see Example 2.21(b)). That is, for any A ⊆ E, ri(A) = the
size of the largest edge set I ⊆ A ∩ Ei such that (Si, I) is an acyclic subgraph of
G|Si

. Equivalently,

ri(A) = |Si| − the number of connected compo-
nents of the graph (Si, A ∩ Ei).

By Example 2.21(b), ri is a submodular function.
Now, define r(A) =

∑
m

i=1 ri(A). Note that the sum of submodular functions is
submodular. Therefore, r is a submodular function. Furthermore, it is not hard to
check that r is monotone increasing and normalized.

For this submodular function r, the set Ωr is the collection of sets A ⊆ E such
that r(A ∪ {e}) = r(A) for all edges e in E. It is not hard to see that Ωr is just
the set of all feasible graphs. Thus, the problem WSID is actually the minimiza-
tion problem MIN-SMC with respect to the submodular potential function r. So,
Algorithm 2.D and Theorem 2.29 can be applied to it.

To be more precise, the greedy criterion of Algorithm 2.D for the problem WSID
is to select, at each stage, an edge {e} with the maximum ratio



62 Greedy Strategy

r(F ∪ {e}) − r(F )

c(e)

and add it to the solution edge set F . What is the value r(F ∪ {e}) − r(F )? It
is the number of indices i ∈ {1, 2, . . . , m} such that edge e connects two distinct
connected components of the graph G|F∩Si

.
Also, the parameter γ of Theorem 2.29 is equal to the maximum value of r({e}),

which is the maximum number of indices i ∈ {1, 2, . . . , m} such that Si contains
the two endpoints of e.

Corollary 2.34 When it is applied to the problem WSID, Algorithm 2.D is a
polynomial-time H(K)-approximation, where K is the maximum number of in-
duced subgraphs G|Si

that share a common edge.

It is known that for 0 < ρ < 1, the problem WSID has no polynomial-time
approximation within a factor of ρ lnn from the optimal solution unless every NP-
complete problem is solvable in deterministic time O(npolylogn)1 (this condition is
weaker than NP = P but is still considered not likely to be true).

For a connected graph G = (V, E), we say a subset C ⊆ V is a connected vertex
cover if C is a vertex cover for G and the induced subgraph G|C is connected.
Consider the following problem:

MINIMUM-WEIGHT CONNECTED VERTEX COVER (MIN-WCVC):
Given a connected graph G = (V, E) and a nonnegative vertex weight
function c : V → R

+, find a connected vertex cover with the minimum
total weight.

For a graph G = (V, E) and a subset C ⊆ V , let g(C) be the number of edges
in E that are not covered by C , and h(C) the number of connected components of
G|C . Define p(C) = |E| − g(C) − h(C). Clearly, p(∅) = |E| − g(∅) − h(∅) = 0.

We are going to prove that p is a monotone increasing, submodular function,
using a new characterization of submodular functions. In the following, we write
ΔxΔyf(A) to denote Δyf(A ∪ {x}) − Δyf(A). For the proofs of the following
two lemmas, see Exercise 2.14.

Lemma 2.35 Let f be a function on 2E . Then f is submodular if and only if for any
A ⊆ E and any two distinct elements x, y �∈ A,

ΔxΔyf(A) ≤ 0.

Lemma 2.36 Let f be a function on 2E . Then f is monotone increasing and sub-
modular if and only if for any A ⊆ E and x, y ∈ E,

ΔxΔyf(A) ≤ 0.

1The notation polylog n denotes the class of functions (logn)k , for all k ≥ 1.
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Now, we apply this characterization to show that p is a monotone increasing,
submodular function.

Lemma 2.37 p is monotone increasing and submodular.

Proof. Consider a vertex subset C and a vertex u �∈ C . Then Δup(C) = −Δug(C)−
Δuh(C). We observe that −Δug(C) is just the number of edges incident on u in
graph G that are not covered by C . It follows that −Δug(C) = |N(u) \ C|, where
N(u) is the set of vertices in G that are adjacent to u. Moreover, −Δuh(C) is
equal to the number of connected components in G|C that are adjacent to u minus
1. Therefore, we always have −Δug(C) ≥ 0 and −Δuh(C) ≥ −1.

By Lemma 2.36, it is sufficient to prove that for any vertex subset C and two
vertices u and v,

ΔvΔup(C) ≤ 0.

Note that if u ∈ C , then both Δup(C ∪ {v}) and Δup(C) are equal to 0, and hence
ΔvΔup(C) = 0. Also, if v ∈ C , then we have Δup(C ∪ {v}) = Δup(C), and
hence ΔvΔup(C) = 0. Thus, we may assume that neither u nor v belongs to C .

We consider three cases.
Case 1: u = v. Since Δup(C ∪ {v}) = 0, it suffices to show Δup(C) ≥ 0. If

C ∩ N(u) = ∅, then −Δug(C) = deg(u) and Δuh(C) = −1, which implies that
Δup(C) = deg(u) − 1 ≥ 0, because G is connected and so deg(u) is at least 1. If
C ∩ N(u) �= ∅, then u is adjacent to at least one connected component of G|C and
hence −Δuh(C) ≥ 0, which also implies that Δup(C) ≥ 0.

Case 2: u �= v and u is not adjacent to v. Then N(u) \ (C ∪ {v}) = N(u) \ C ,
and hence −Δug(C ∪ {v}) = −Δug(C). Consider an arbitrary connected com-
ponent of G|

C∪{v} that is adjacent to u. If it does not contain v, then it is also
a connected component of G|C adjacent to u. If it contains v, then it must con-
tain at least one connected component of G|C adjacent to u. Thus, the number of
connected components of G|

C∪{v} adjacent to u is no more than the number of con-
nected components of G|C adjacent to u; that is, −Δuh(C ∪{v}) ≤ −Δuh(C). So
Δup(C ∪ {v}) ≤ Δup(C).

Case 3: u �= v but u is adjacent to v. Then N(u)\(C ∪{v}) = (N(u)\C)\{v},
and hence −Δug(C ∪ {v}) = −Δug(C) − 1. Also, among all connected compo-
nents of G|

C∪{v} that are adjacent to u, exactly one contains v and all others are con-
nected components of G|C adjacent to u. Hence, −Δuh(C∪{v}) ≤ −Δuh(C)+1.
Therefore, Δup(C ∪ {v}) ≤ Δup(C). �

It can be verified that with respect to this submodular function p, the set Ωp is
exactly the collection of connected vertex covers of G.

Lemma 2.38 Let G = (V, E) be a connected graph with at least three vertices.
For any subset C ⊆ V , C is a connected vertex cover if and only if, for any vertex
x ∈ V , Δxp(C) = 0.

Proof. If C is a connected vertex cover, then it is clear that p(C) = |E| − g(C) −
h(C) = |E| − 0 − 1 = |E| − 1, reaching the maximum value of p.
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Conversely, suppose that for any vertex x ∈ V , Δxp(C) = 0. It is clear that
C �= ∅, for otherwise we can find a vertex x ∈ V of degree ≥ 2 and get Δxp(C) =
−Δxg(∅) − Δxh(∅) ≥ 2 − 1 = 1. Now, assume, for the sake of contradiction, that
C is not a connected vertex cover. Let B = {x ∈ V | x is adjacent to some v ∈ C},
and A = V \ (B ∪ C). Consider two cases.

Case 1: There exists an edge in E that is not covered by C . Then there must be
an edge e in E not covered by C such that one of its endpoints x is in B (otherwise,
A forms a nonempty connected component of G, contradicting the assumption that
G is connected). Now, we note that C ∪ {x} covers at least one extra edge e than
C , and so −g(C ∪ {x}) > −g(C). In addition, since x is in B and is adjacent to
at least one vertex in C , adding x to C does not increase the number of connected
components. Therefore, −h(C ∪ {x}) ≥ −h(C). Together, we get Δxp(C) > 0,
which is a contradiction.

Case 2: C covers every edge, but G|C is not connected. Since G is connected,
there must be a path in G connecting two connected components of G|C . Further-
more, such a shortest path must contain exactly two edges {u, x} and {x, v} with
u, v ∈ C and x ∈ B, for otherwise it would contain an edge whose two endpoints
are not in C . But then we have −h(C ∪ {x}) > −h(C) but −g(C ∪ {x}) =
−g(C) = 0, and hence Δxp(C) > 0, a contradiction again. �

Corollary 2.39 When it is applied to the problem MIN-WCVC on connected
graphs of at least three vertices, with respect to the potential function p, Algorithm
2.D is a polynomial-time H(δ − 1)-approximation, where δ is the maximum vertex
degree of the input graph G.

Proof. It follows from Theorem 2.29 and the facts that the maximum value of |E|−
g({x}) is equal to δ and that −h({x}) = −1 for all x ∈ V . �

The next example is a 0–1 integer programming problem.

GENERAL COVER (GC): Given nonnegative integers aij , bi, and cj ,
for i = 1, 2, . . . , m and j = 1, 2, . . . , n,

minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≥ bi, i = 1, 2, . . . , m,

xj ∈ {0, 1}, j = 1, 2, . . . , n.

We define a function f : 2{1,...,n} → N as follows: For any J ⊆ {1, . . . , n},

f(J) =

m∑
i=1

min

{
bi,
∑
�∈J

ai�

}
.

Let I(J) = {i |
∑

�∈J
ai� < bi}. Then it is clear that for any j, k ∈ {1, 2, . . . , n},
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Δjf(J) =
∑

i∈I(J)

min

{
aij , bi −

∑
�∈J

ai�

}
, and

Δjf(J ∪ {k}) =
∑

i∈I(J∪{k})

min

{
aij, bi −

∑
�∈J

ai� − aik

}
.

Moreover, it is not hard to verify that for any 1 ≤ k ≤ n, I(J ∪ {k}) ⊆ I(J). Thus,
Δjf(J ∪{k}) ≤ Δjf(J) for all sets J ⊆ {1, 2, . . . , n} and all j, k ∈ {1, 2, . . . , n}.
Thus, by Lemma 2.36, f is a monotone increasing, submodular function.

The collection Ωf consists of all sets J ⊆ {1, 2, . . . , n} with the maximum value
f(J) =

∑
n

i=1 bi. So, Algorithm 2.D and Theorem 2.29 are applicable to problem
GC. In particular, the greedy criterion of Algorithm 2.D adds, at each stage, the
index j with the maximum value of

1

cj

∑
i∈I(J)

min

{
aij, bi −

∑
�∈J

ai�

}

to the solution set J . Also, the parameter γ of the performance ratio H(γ) is no
more than the maximum value of

∑
m

i=1 aij , j = 1, 2 . . . , n.

Corollary 2.40 When it is applied to the problem GC, Algorithm 2.D produces an
H(γ)-approximation in polynomial time, where γ = max1≤j≤n

∑
m

i=1 aij .

Finally, we consider a problem about matroids. Recall that a base of a matroid
(E, I) is just a maximal independent set. Consider the following problem:

MINIMUM-COST BASE (MIN-CB):

Given a matroid (E, I) and a nonnegative function c : E → R
+,

minimize c(I)

subject to I ∈ B,

where B is the family of all bases of the matroid (E, I).

Recall the function rank on a matroid (E, I) defined in Example 2.21(b).
Then rank is a normalized, monotone increasing, submodular function, and it has
Ωrank = B. Therefore, MIN-CB is a special case of MIN-SMC with the poten-
tial function rank. Note that the corresponding parameter γ in Theorem 2.29 is
γ = maxx∈E rank({x}) = 1, and hence H(γ) = 1. In other words, the greedy
Algorithm 2.D for MIN-CB actually gives the optimal solutions.

Corollary 2.41 When it is applied to the problem MIN-CB, the greedy Algorithm
2.D produces a minimum solution in polynomial time.
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2.6 Nonsubmodular Potential Functions

When the associated potential function is not submodular, Theorem 2.29 for the
greedy algorithm no longer holds. In such circumstances, how do we analyze the
performance of the greedy algorithm? We study this problem in this section.

A dominating set of a graph G = (V, E) is a subset D ⊆ V such that every
vertex is either in D or adjacent to a vertex in D. A connected dominating set C is
a dominating set with an additional property that it induces a connected subgraph.
The following problem has many applications in wireless communication.

MINIMUM CONNECTED DOMINATING SET (MIN-CDS): Given a
connected graph G = (V, E), find a connected dominating set of G

with the minimum cardinality.

Consider a graph G and a subset C of vertices in G. Divide vertices in G into
three classes with respect to C , and assign different colors to them: Vertices that
belong to C are colored in black; vertices that are not in C but are adjacent to C are
colored in gray; and vertices that are neither in C nor adjacent to C are colored in
white.

Clearly, C is a connected dominating set if and only if there does not exist a white
vertex and the subgraph induced by black vertices is connected. This observation
suggests that we use the function g(C) = p(C) + h(C) as the potential function
in the greedy algorithm, where p(C) is the number of connected components of the
subgraph G|C induced by C , and h(C) is the number of white vertices. It is clear
that C is a connected dominating set if and only if g(C) = 1. However, the function
g is not really a good candidate for the potential function, because a set C may not
be a connected dominating set even if Δxg(C) = 0 for all vertices x. Figure 2.9
shows such an example, in which g(C) = p(C) + h(C) = 2 + 0 = 2 > 1, but
g(C ∪ {x}) = g(C) for all vertices x. This means that if we apply Algorithm 2.D
to MIN-CDS with this potential function g, its output is not necessarily a connected
dominating set.

In general, we observe that the graph shown in Figure 2.9 is a typical case result-
ing from Algorithm 2.D with respect to the potential function g.

Lemma 2.42 Let G = (V, E) be a connected graph, and C ⊆ V . If the subgraph
G|C induced by black vertices is not connected but Δxg(C) = 0 for all x ∈ V , then

Figure 2.9: Δxg(C) = 0 for all vertices x, but C is not a connected dominating
set.
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all black connected components of G|C can be connected together through chains
of gray vertices, with each chain having exactly two vertices.

Proof. We first note that if Δxg(C) = 0 for all x ∈ V , then G has no gray ver-
tex that is adjacent to two black components, since coloring such a gray vertex
in black would reduce the value of g(C). In addition, G also has no white verex,
for otherwise, by the connectivity of G, there must be a gray vertex adjacent to
some white vertex, and coloring this gray vertex in black would reduce the value
of g(C), too. Now, suppose, for the sake of contradiction, that some black com-
ponent cannot be connected to another black component through chains of two
adjacent gray vertices. Then, we can divide all black vertices into two parts such
that the distance between the two parts is more than 3. Consider a shortest path
π = (u, x1, x2, . . . , xk, v) between the two parts, with u and v belonging to the two
different parts and x1, x2, . . . , xk are gray vertices with k ≥ 3. Since x2 is gray, it
must be adjacent to a black vertex w. If w and u are in the same part, then the path
from w to v is a path between the two parts of black vertices shorter than π, which
is a contradiction. On the other hand, if w and v are in the same part, then the path
from u to w is a path between the two parts shorter than π, also a contradiction. So,
the lemma is proven. �

From this lemma, a simple idea of an approximation algorithm works as follows:
First, apply the greedy algorithm with the potential function g until Δxg(C) = 0
for all x ∈ V . Then, add extra vertices to connect components of G|C . A careful
analysis using the pigeonhole principle shows that this modified greedy algorithm
achieves the performance ratio H(δ)+3, where δ is the maximum degree of G (see
Section 6.2).

In the following, we take a different approach by choosing a different potential
function. Namely, we replace h(C) by q(C), the number of connected components
of the subgraph with vertex set V and edge set D(C), where D(C) is the set of all
edges incident on some vertices in C . Define f(C) = p(C) + q(C).

Lemma 2.43 Suppose G is a connected graph with at least three vertices. Then C

is a connected dominating set if and only if f(C ∪ {x}) = f(C) for every x ∈ V .

Proof. If C is a connected dominating set, then f(C) = 2, which reaches the mini-
mum value. Therefore, f(C ∪ {x}) = f(C) for every x ∈ V .

Conversely, suppose f(C ∪ {x}) = f(C) for every x ∈ V . First, C cannot be
the empty set. In fact, if C = ∅, then we can pick a vertex x of degree ≥ 2 and get
f(C ∪ {x}) ≤ |V | − 1 < |V | = f(C).

So, we may assume C �= ∅. Consider a connected component of the subgraph
induced by C . Let B denote its vertex set, which is a subset of C , and A be the set
of vertices in V − B that are adjacent to a vertex in B. We claim that V = B ∪ A

(and hence C = B is a connected dominating set for G).
To prove this claim, suppose, by way of contradiction, that V �= B ∪ A. Then,

since G is connected, there must be a vertex x not in B ∪ A that is adjacent to
a vertex y ∈ B ∪ A. Since all vertices adjacent to B are in A, we know that y

must be in A. Now, if x is white or gray, then we must have p(C ∪ {y}) ≤ p(C)
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Figure 2.10: A counterexample showing f not supmodular.

and q(C ∪ {y}) < q(C). If x is black, then we have p(C ∪ {y}) < p(C) and
q(C ∪ {y}) ≤ q(C). In either case, we get f(C ∪ {y}) < f(C), a contradiction to
our assumption. So, the claim, and hence the lemma, is proven. �

This lemma shows that the greedy Algorithm 2.D for MIN-CDS with respect to
the potential function f will produce a connected dominating set.

A function f : 2E → R is supmodular if −f is submodular. Clearly, all results
about monotone increasing, submodular functions can be converted into the results
about the corresponding monotone decreasing, supmodular functions. It is easy to
see that f is monotone decreasing. Therefore, if f is a supmodular function, then
we could directly employ Theorem 2.29 to get the performance ratio of the greedy
Algorithm 2.D with respect to f . Unfortunately, as shown in the counterexample of
Figure 2.10, f is not supmodular. More specifically, in this example, A ⊆ B but
Δxf(A) = −1 > −2 = Δxf(B), and so −f does not satisfy the condition of
Lemma 2.36 and is not submodular.

Actually, f is the sum of two functions p and q, where q is supmodular but p is
not.

Lemma 2.44 If A ⊆ B, then Δyq(A) ≤ Δyq(B).

Proof. Note that −Δyq(B) = the number of the connected components of the graph
(V, D(B)) that are adjacent to y but do not contain y. Since each connected com-
ponent of graph (V, D(B)) is constituted by one or more connected components of
graph (V, D(A)), the number of connected components of (V, D(B)) adjacent to y

is no more than the number of connected components of (V, D(A)) adjacent to y.
Thus, we get −Δyq(B) ≤ −Δyq(A). �

How do we analyze the performance of the greedy Algorithm 2.D with respect to
a nonsubmodular potential function? Let us look at the proof of Theorem 2.22 about
the greedy algorithm for MIN-SC again, and see where the submodularity property
of the potential function is used. It turns out that it was used only once, when we
proved the inequality

ΔCj
f(Ai) ≥ ΔCj

f(Ai ∪ Cj−1) (2.6)

to get (2.4). An important observation about this inequality is that the incremental
variables Cj, 1 ≤ j ≤ m, are sets of the optimal solution, arranged in an arbitrary
order. Therefore, although for nonsubmodular functions f this inequality may not
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hold for an arbitrary ordering of sets in the optimal solution, a carefully arranged
ordering on these sets might still satisfy, or almost satisfy, this inequality. In the
following, we will implement this idea for the problem MIN-CDS.

Let the vertices x1, . . . , xg be the elements of the solution found by Algorithm
2.D with respect to the potential function f , in the order of their selection into the so-
lution set. Denote Ci = {x1, x2, . . . , xi} and consider f(Ci). Initially, f(C0) = n,
where n is the number of vertices in G. Let C∗ be a minimum connected dominating
set for G. Assume that |C∗| = m.

Lemma 2.45 For i = 1, 2, . . . , g,

f(Ci) ≤ f(Ci−1) −
f(Ci−1) − 2

m
+ 1. (2.7)

Proof. First, consider the case of i ≥ 2. We note that

f(Ci) = f(Ci−1) + Δxi
f(Ci−1).

Since C∗ is a connected dominating set, we can always arrange the elements of
C∗ in an ordering y1, y2, . . . , ym such that y1 is adjacent to a vertex in Ci−1

and, for each j ≥ 2, yj is adjacent to a vertex in {y1, . . . , yj−1}. Denote C∗
j

=
{y1, y2, . . . , yj}. Then

ΔC
∗f(Ci−1) =

m∑
j=1

Δyj
f(Ci−1 ∪ C∗

j−1).

For each 1 ≤ j ≤ m, we note that yj can dominate at most one additional connected
component in the subgraph G|Ci−1∪C

∗

j−1
than in G|Ci−1

, which is the one that con-
tains C∗

j−1, since all vertices y1, . . . , yj−1 in C∗
j−1 are connected. Since −Δyp(C)

is equal to the number of connected components of G|C that are adjacent to y minus
1, it follows that

−Δyj
p(Ci−1 ∪ C∗

j−1) ≤ −Δyj
p(Ci−1) + 1.

Moreover, by Lemma 2.44,

−Δyj
q(Ci−1 ∪ C∗

j−1) ≤ −Δyj
q(Ci−1).

So we have
−Δyj

f(Ci−1 ∪ C∗
j−1) ≤ −Δyj

f(Ci−1) + 1.

[Note that this inequality is close to our desired inequality (2.6).] From this inequal-
ity, we get

f(Ci−1) − 2 = −ΔC
∗f(Ci−1)

=

m∑
j=1

(−Δyj
f(Ci−1 ∪ C∗

j−1)) ≤
m∑

j=1

(−Δyj
f(Ci−1) + 1).
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By the pigeonhole principle, there exists an element yj ∈ C∗ such that

−Δyj
f(Ci−1) + 1 ≥

f(Ci−1) − 2

m
.

By the greedy strategy of Algorithm 2.D,

−Δxi
f(Ci−1) ≥ −Δyj

f(Ci−1) ≥
f(Ci−1) − 2

m
− 1.

Or, equivalently,

f(Ci) ≤ f(Ci−1) −
f(Ci−1) − 2

m
+ 1.

For the case of i = 1, the proof is essentially identical, with the difference that
y1 could be an arbitrary vertex in C∗. �

Theorem 2.46 When it is applied to the problem MIN-CDS with respect to the
potential function −f , the greedy Algorithm 2.D is a polynomial-time (2 + ln δ)-
approximation, where δ is the maximum degree of the input graph.

Proof. If g ≤ 2m, then the proof is already done. So we assume that g > 2m.
Rewrite the inequality (2.7) as

f(Ci) − 2 ≤ (f(Ci−1) − 2)
(
1 −

1

m

)
+ 1.

Solving this recurrence relation, we have

f(Ci) − 2 ≤ (f(C0) − 2)
(
1 −

1

m

)
i

+

i−1∑
k=0

(
1 −

1

m

)
k

= (f(C0) − 2)
(
1 −

1

m

)
i

+ m
(
1 −
(
1 −

1

m

)
i
)

= (f(C0) − 2 − m)
(
1 −

1

m

)
i

+ m.

From the greedy strategy of Algorithm 2.D, we reduce the value f(Ci−1) in each
stage i ≤ g. Therefore, f(Ci) ≤ f(Ci−1) − 1. In addition, f(Cg) = 2. So we have
f(Cg−2m) ≥ 2m + 2. Set i = g − 2m, and observe that

2m ≤ f(Ci) − 2 ≤ (n − 2 − m)
(
1 −

1

m

)
i

+ m,

where n is the number of vertices in G. Since (1 − 1/m)i ≤ e−i/m, we obtain

i ≤ m · ln
n − 2 − m

m
.

Note that each vertex has at most δ neighbors and so can dominate at most δ + 1
vertices. Hence, n/m ≤ δ + 1. It follows that g = i + 2m ≤ m(2 + ln δ). �
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Now, let us consider another simple idea for designing greedy algorithms with
respect to a nonsubmodular potential function. In the greedy Algorithm 2.C for the
problem MIN-SC, we add, in each iteration, one subset C to the solution A. Sup-
pose we are allowed to add two or more subsets to A in each iteration. Does this
give us a better performance ratio? It is easy to see that the answer is no. In general,
does this idea work for the greedy Algorithm 2.D with respect to a submodular po-
tential function f? The answer is again no, since a submodular function satisfies the
property of Lemma 2.23. On the other hand, if the potential function f is not sub-
modular, then this idea may actually work. In the following, we show that the greedy
algorithm based on this idea actually gives a better performance ratio for MIN-CDS
than Algorithm 2.D. More precisely, the performance ratio of the following greedy
algorithm for MIN-CDS approaches 1 + ln δ, as k tends to ∞.

Algorithm 2.E (Greedy Algorithm for MIN-CDS)

Input: A connected graph G = (V, E) and an integer k ≥ 2.

(1) C ← ∅.

(2) While f(C) > 2 do

Select a set X ⊆ V of size |X| ≤ 2k − 1 that maximizes
−ΔXf(C)

|X|
;

Set C ← C ∪ X.

(3) Output Cg ← C .

To analyze greedy Algorithm 2.E, we note the following property of the potential
function −f .

Lemma 2.47 Let A, B, and X be three vertex subsets. If both G|B and G|X are
connected, then

−ΔXf(A ∪ B) + ΔXf(A) ≤ 1.

Proof. Since q is supmodular, we have ΔXq(A) ≤ ΔXq(A ∪ B).
For function p, we note that, since G|X is connected, −ΔXp(A) is equal to the

number of black components dominated by X in graph G|A minus 1. Since the
subgraph G|B is connected, the number of black components dominated by X in
G|A∪B is at most one more than the number of black components dominated by
X in G|A. Therefore, we have −ΔXp(A ∪ B) ≤ −ΔXp(A) + 1. It follows that
−ΔXf(A ∪ B) ≤ −ΔXf(A) + 1. �

Let C∗ be a minimum solution to MIN-CDS. We show two properties of C∗ in
the following two lemmas.

Lemma 2.48 For any integer k ≥ 2, C∗ can be decomposed into Y1, Y2, . . . , Yh,
for some h ≥ 1, such that

(a) C∗ = Y1 ∪ Y2 ∪ · · · ∪ Yh;

(b) For each 1 ≤ i ≤ h, both G|Y1∪Y2∪···∪Yi
and G|Yi

are connected;
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Figure 2.11: Case 2 in proof of Lemma 2.48.

(c) For each 1 ≤ i ≤ h, 1 ≤ |Yi| ≤ 2k − 1; and for all but one 1 ≤ i ≤ h,
k + 1 ≤ |Yh|; and

(d) |Y1| + |Y2| + · · · + |Yh| ≤ |C∗| + h − 1.

Proof. We can construct sets Y1, . . . , Yh recursively.
Let T be a subtree of G|C∗ that contains all vertices in C∗. Choose an arbitrary

vertex r ∈ C∗ as the root of T . For any vertex x ∈ C∗, let T (x) denote the subtree
of T rooted at x, and |T (x)| the number of vertices in T (x).

If |T | ≤ 2k − 1, then let Y1 = C∗ and the lemma holds with h = 1. If T

contains more than 2k − 1 vertices, then there must exist a vertex x ∈ C∗ such that
|T (x)| ≥ k + 1 and for every child y of x, |T (y)| ≤ k. Now, consider two cases.

Case 1. There is a child y of x such that |T (y)| = k. Let Y1 consist of all vertices
of T (y) together with x and delete all vertices of T (y) from T .

Case 2. For every child y of x, |T (y)| ≤ k−1. Suppose y1, . . . , yt are all children
of x (cf. Figure 2.11). There must exist an integer 1 ≤ j ≤ t − 1 such that

|T (y1)| + · · · + |T (yj)| ≤ k − 1

and
|T (y1)| + · · · + |T (yj)| + |T (yj+1)| ≥ k.

Since |T (yj+1)| ≤ k − 1, we have

|T (y1)| + · · ·+ |T (yj)| + |T (yj+1)| ≤ 2k − 2.

Let Y1 consist of all vertices in T (y1) ∪ · · · ∪ T (yj+1) together with x and delete
Y1 − {x} from T .

Repeating the above process on the remaining T , and rearranging the order of
the sets Y1, . . . , Yh, we will obtain a required decomposition. �

Lemma 2.49 Let δ be the maximum degree of G = (V, E). Then we have |V | ≤
(δ − 1)|C∗| + 2.
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Proof. We prove by induction on |C| that a subset C of V with connected G|C can
dominate at most (δ−1)|C|+2 vertices. For |C| = 1, it is trivially true. For |C| ≥ 2,
choose a vertex x ∈ C such that G|

C−{x} is still connected. Since x has at most δ

neighbors, and at least one of them is in C − {x}, we see that C dominates at most
δ − 1 more vertices than C − {x} does. By the induction hypothesis, C − {x} can
dominate at most (δ − 1)(|C| − 1) + 2 vertices. Therefore, C can dominate at most
(δ − 1)|C| + 2 vertices. �

Theorem 2.50 For any ε > 0, there exists a polynomial-time approximation with
performance ratio (1 + ε) ln(δ − 1) for MIN-CDS, where δ is the maximum degree
of the input graph.

Proof. Let G = (V, E) be a connected graph with the maximum degree δ. We can
find easily a minimum connected dominating set of G if δ ≤ 2: If δ = 1, then
G contains only one edge, and either vertex of the edge is a minimum connected
dominating set. If δ = 2, G is either a path or a cycle, and a minimum connected
dominating set of G can be obtained by deleting, respectively, either the two leaves
or any two adjacent vertices.

For graphs with δ ≥ 3, we consider Algorithm 2.E on G. Let X1, . . . , Xg be
the sets chosen by greedy Algorithm 2.E on graph G, in the order of their selection
into set C . Denote Ci = X1 ∪ · · · ∪ Xi, for 0 ≤ i ≤ g (in particular, Cg is the
output of Algorithm 2.E). Let C∗ be a minimum connected dominating set for G,
and m = |C∗|. Decompose C∗ into Y1, Y2, . . . , Yh, satisfying conditions given in
Lemma 2.48. Denote C∗

j
= Y1 ∪ · · · ∪ Yj , for 0 ≤ j ≤ h.

From Lemma 2.48, we know that G|Yj
and G|C∗

j
are connected for each 1 ≤ j ≤

h. Thus, we have, by Lemma 2.47,

−ΔYj
f(Ci ∪ C∗

j−1) ≤ −ΔYj
f(Ci) + 1,

for 0 ≤ i ≤ g and 1 ≤ j ≤ h. By the greedy rule of Algorithm 2.E, we get

−ΔXi+1
f(Ci)

|Xi+1|
≥

−ΔYj
f(Ci)

|Yj|
,

for 0 ≤ i ≤ g and 1 ≤ j ≤ h. Note that f(C∗) = 2 and, hence, for 0 ≤ i ≤ g − 1,

−ΔXi+1
f(Ci)

|Xi+1|
≥

−
∑

h

j=1 ΔYj
f(Ci)∑

h

j=1 |Yj|

≥
−(h − 1) −

∑
h

j=1 ΔYj
f(Ci ∪ C∗

j−1)∑
h

j=1 |Yj|

≥
−(h − 1) − (f(Ci ∪ C∗) − f(Ci))

m + h − 1

=
f(Ci) − (h + 1)

m + h − 1
.



74 Greedy Strategy

Denote ai = f(Ci) − (h + 1). Then the above inequality can be rewritten as

ai − ai+1

|Xi+1|
≥

ai

m + h − 1
, for 0 ≤ i ≤ g − 1.

That is, for each 0 ≤ i ≤ g − 1,

ai+1 ≤ ai

(
1 −

|Xi+1|

m + h − 1

)
≤ ai · exp

( −|Xi+1|

m + h − 1

)
≤ a0 · exp

(−(|Xi+1| + |Xi| + · · · + |X1|)

m + h − 1

)
.

(2.8)

Fix the index i, 0 ≤ i ≤ g − 1, such that

ai ≥ m > ai+1,

and let b = ai − m and b′ = m − ai+1. Write |Xi+1| = d + d′ such that

b

d
=

b′

d′
=

ai − ai+1

|Xi+1|
≥

ai

m + h − 1
.

(In case of b = 0, just let d′ = |Xi+1|.) We now divide the greedy solution |Cg| into
two parts, |X1| + · · · + |Xi| + d, and d′ + |Xi+2| + · · · + |Xg|, and bound them
separately.

For the first part, we note that

ai − m

d
=

b

d
≥

ai

m + h − 1
,

and so

m ≤ ai

(
1 −

d

m + h − 1

)
≤ ai · e−d/(m+h−1).

Combining this with (2.8), we get

m ≤ a0 · e−(d+|Xi|+···+|X1|)/(m+h−1).

Note that a0 = f(∅) − (h + 1) = |V | − (h + 1). Thus,

|X1| + · · · + |Xi| + d ≤ (m + h − 1) ln
|V | − (h + 1)

m
.

For the second part, we note that −ΔXj+1
f(Cj)/|Xj+1| ≥ 1 for all 0 ≤ j ≤ g−

1, since we can, by Lemma 2.43, always find a vertex v to make −Δ{v}f(Cj) ≥ 1.
That is,

|Xj+1| ≤ f(Cj) − f(Cj+1),

for 0 ≤ j ≤ g − 1. Thus,

d′ + |Xi+2| + · · · + |Xg | ≤ b′ + f(Ci+1) − f(Cg)

= m − ai+1 + f(Ci+1) − f(C∗) = m + h − 1.
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Together, we have

|X1| + · · · + |Xg | ≤ (m + h − 1)
(
1 + ln

|V | − (h + 1)

m

)
.

From conditions (c) and (d) of Lemma 2.48, we know that

(h − 1)(k + 1) + 1 ≤ |Y1| + |Y2| + · · · + |Yh| ≤ m + h − 1,

and hence
h − 1 ≤

m

k
.

Moreover, by Lemma 2.49, |V | ≤ (δ − 1)m + 2. Since h ≥ 1, we have

|V | − (h + 1)

m
≤ δ − 1.

Therefore,

|X1| + · · ·+ |Xg| ≤ m
(
1 +

1

k

)(
1 + ln(δ − 1)

)
.

Now, the theorem follows by choosing k such that 1/k < ε. �

Exercises

2.1 Let (E, I) be an independent system. Suppose that all maximal independent
subsets of E have cardinality k. Define

p = max
F⊆E

v(F )

u(F )
,

where u(F ) and v(F ) are the functions defined in (2.1). Let c : E → R
+ be a

nonnegative cost function on E. Also, let I∗ be a maximal independent subset of E

with the minimum cost, and IG an independent subset obtained by greedy Algorithm
2.A on the problem MAX-ISS. Prove that

c(I∗) ≤ c(IG) ≤
1

p
· c(I∗) +

p − 1

p
· k · M,

where M = maxe∈E c(e).

2.2 For a complete directed graph G = (V, E), let IG be the family of the edge
sets of all acyclic subgraphs of G. Show that for any integer k > 0, there exists a
complete directed graph G = (V, E) such that for the independent system (E, IG),

max
F⊆E

v(F )

u(F )
≥ k.
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2.3 Show that for every integer k ≥ 1, there exists an independent system (E, I)
that is an intersection of k matroids but not an intersection of less than k matroids,
such that

max
F⊆E

v(F )

u(F )
= k.

2.4 Prove that an independent system (E, I) is a matroid if and only if, for any
cost function c : E → N

+, the greedy Algorithm 2.D produces a minimum solution
for MIN-CB.

2.5 Prove that the distance function defined in the transformation from the prob-
lem SS to the problem TSP, as described at the end of Section 2.3, satisfies the
triangle inequality.

2.6 Prove that for every positive integer m,
∑

m

i=1 1/i ≤ 1 + lnm.

2.7 In terms of the notion of hypergraphs, the problem MIN-SC asks for a
minimum-size hyperedge set that is incident on each vertex of the input hypergraph.
A k-matching in a hypergraph H is a sub-hypergraph of degree at most k. Let mk

be the maximum number of edges in a k-matching. Prove that

(a) mk ≤ k · |C∗|, where C∗ is a minimum set cover of H , and

(b) |CG| ≤
∑

d

i=1 mi/(i(i+1))+md/d, where CG is the output of the greedy
Algorithm 2.C, and d is the maximum degree of H .

2.8 Use Exercise 2.7 to give another proof to Theorem 2.22.

2.9 Let G = (V, E) be a graph and c : E → 2N a color-set function (i.e., c(e) is
a color set for edge e). A color-covering of the graph G is a color set C ⊆ N such
that the set of edges e with c(e) ∩ C �= ∅ contains a spanning tree of G. Prove that
the following problem has a polynomial-time (1 + ln |V |)-approximation:

For a given graph G and a given color-set function c : E → 2N , find a
color-covering of the minimum cardinality.

2.10 Show that the following problem has a polynomial-time (2 + ln |V |)-
approximation:

Given a graph G = (V, E) and a color-set function c : E → 2N, find
the subset C ⊆ V of the minimum cardinality such that all colors of
the edges incident upon the vertices in C form a color-covering of G.

2.11 A function g : N → R
+ is a concave function if, for any m, r, n ∈ N, with

m < r < n, g(r) ≥ tg(m) + (1 − t)g(n), where t = (n − r)/(n − m). Let E be a
finite set, and let f be a real function defined on 2E such that f(A) = g(|A|) for all
A ⊆ E. Show that f is submodular if and only if g is concave.

2.12 Consider a graph G = (V, E). Let δ̄(X) for X ⊆ V denote the set of edges
between X and V − X. Show that |δ̄(X)| is a submodular function.
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2.13 Show that a function f on 2E is modular (both submodular and supmodu-
lar) if and only if f is linear.

2.14 Prove Lemmas 2.35 and 2.36.

2.15 Suppose f and c are two polymatroid functions on 2E , and f is an integer
function. Consider the problem MIN-SMC with a possibly nonlinear cost function
c; i.e., the problem of minimizing c(A) over {A ⊆ E | f(A) = f(E)}. Show
that the greedy Algorithm 2.D for MIN-SMC is a (ρ ·H(γ))-approximation, where
γ = max{f({x}) | x ∈ E} and ρ is the curvature of c, defined by

ρ = min

{∑
e∈S

c(e)

c(S)

∣∣∣∣ f(S) = f(E)

}
.

2.16 Consider a digraph G = (V, E). For X ⊆ V , let δ̄+(X) (δ̄−(X)) denote
the set of edges going out from (coming into, respectively) X. Show that |δ̄+(X)|
and |δ̄−(X)| are submodular functions.

2.17 Let r be a function mapping 2E to N. Show that the following statements
are equivalent:

(a) I = {I ⊆ E | r(I) = |I|} defines a matroid (E, I) and r is its rank
function.

(b) For all A, B ⊆ E, r satisfies the following conditions:

(i) r(A) ≤ |A|;

(ii) if A ⊆ B, then r(A) ≤ r(B); and

(iii) r is submodular.

2.18 Show that a polymatroid (E, r) is a matroid if and only if r({x}) = 1 for
every x ∈ E.

2.19 Suppose (E, r1), (E, r2), . . . , (E, rk) are matroids. Show that (E,
∑

k

i=1 ri)
is a polymatroid.

2.20 Let (E, I) be a matroid, and rank its rank function. Consider a collection
C of subsets of E. For A ⊆ C, define

f(A) = rank
(⋃

A∈A A
)
.

Show that (E, f) is a polymatroid.

2.21 Show that for any polymatroid (E , f), there exist a matroid (E, r) and a
one-to-one mapping φ : E → 2E such that

f(A) = r
(⋃

A∈φ(A) A
)
.
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2.22 For any polymatroid (E, f), define fd on 2E with

fd(S) =
∑
j∈S

f({j}) − f(E) − f(E − S).

Show that (E, fd) is still a polymatroid. [It is called the dual polymatroid of (E, f).]

2.23 For any polymatroid (E, f), let I = {A | f(A) = |A|, A ⊆ E}. Show that
(E, I) is an independent system.

2.24 Let (E, I) be an independent system. Define r(A) = max{|I| | I ∈ I ,
I ⊆ A}. Give an example of (E, I) for which r is not a polymatroid function.

2.25 Let (E, f) be a polymatroid and c a nonnegative cost function on E. Show
that the problem of computing min{c(A) | f(A) ≥ k, A ⊆ E} has a greedy
approximation with performance ratio H(min{k, γ}), where γ = maxx∈E f({x}).

2.26 Consider the application of Algorithm 2.D to MIN-CDS with the potential
function f(C) = p(C)+ q(C). Find a graph G on which the algorithm produces an
approximate solution of size g ≤ 2|C∗|.

2.27 Given a hypergraph H = (V, S) and a function f : S → N
+, find a

minimum vertex cover C such that for every hyperedge s ∈ S, |C ∩ s| ≥ f(s).
Prove that this problem has a polynomial-time (1 + lnd)-approximation, where d is
the maximum vertex degree in H .

2.28 Let f : 2E → R be a normalized submodular function. We associate a
weight wi ≥ 0 with each i ∈ E . Consider the following linear program:

maximize
∑
i∈E

wixi

subject to
∑
i∈A

xi ≤ f(A), A ⊆ E.

Show that this problem can be solved by the following greedy algorithm:

(1) Sort elements of E and rename them so that w1 ≥ w2 ≥ · · · ≥ wn.

(2) A0 ← ∅; for k ← 1 to n do Ak ← {1, 2, . . . , k}.

(3) For k ← 1 to n do xi ← f(Ai) − f(Ai−1).

2.29 Let E be a finite set and p : E → R
+ a positive function on E. For every

subset A of E, define

g(A) =

(∑
i∈A

p(i)

)2

+
∑
i∈A

p(i)2.

Show that g is a supmodular function.
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2.30 Show that the following greedy algorithm for the problem MIN-CDS has
performance ratio 2(1 + H(δ)), where δ is the maximum vertex degree:

Grow a tree T starting from a vertex of the maximum degree. At each
iteration, add one or two adjacent vertices to maximize the increase in
the number of dominated vertices.

2.31 In the proof of Lemma 2.45, a simple argument has been suggested as fol-
lows:

Since m = |C∗| vertices are able to reduce the total number of con-
nected components in the two subgraphs from f(Ci−1) to 2, there must
exist a vertex that is able to reduce at least �(f(Ci−1) − 2)/m� − 1
components (here, the term −1 comes from considering the increase
in the number of black components). Therefore, −Δxi

f(Ci−1) ≥
(f(Ci−1) − 2)/m − 1, and hence the lemma holds.

Find the error of this argument and explain why with a counterexample to the above
statement.

2.32 Give a counterexample to show that Lemma 2.47 does not hold if G|X is
not connected.

2.33 A dominating set A in a graph is said to be weakly connected if all edges
incident upon vertices in A induce a connected subgraph. Show that there exists a
greedy H(δ)-approximation for the problem of finding the minimum-size weakly
connected dominating set of a given graph, where δ is the maximum vertex degree
of the input graph.

2.34 Consider a hypergraph (V, E), where E is a collection of subsets of V . A
subcollection C of E is called a connected set cover if C is a set cover of V and
(V, C) is a connected sub-hypergraph. Show that the problem of finding a connected
set cover with the minimum cardinality has a greedy H(δ)-approximation, where δ

is the maximum vertex degree of the input hypergraph.

2.35 Consider a hypergraph (V, E), where E is a collection of subsets of V . A
subset A of V is called a dominating set, if every vertex is either in A or adjacent to
A. Furthermore, A is said to be connected if A induces a connected sub-hypergraph.
Design a greedy approximation for computing the minimum connected dominating
set in hypergraphs. Could you reach approximation ratio (1 − ε)(1 + ln δ) for any
ε > 0, where δ is the maximum vertex degree of the input hypergraph?

2.36 A set S of sensors is associated with a graph G = (S, E), and each sensor
s ∈ S can monitor a set Ts of targets. Let T be the collection of all targets; i.e.,
T =

⋃
s∈S

Ts. Consider the following problem:

CONNECTED TARGET COVERAGE (CTC): Given a sensor graph G =
(S, E) and, for each sensor s ∈ S, a target set Ts, find a minimum-
cardinality subset A of S such that A can monitor all targets in T and
such that A also induces a connected subgraph of G.
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Design a greedy approximation for CTC and analyze the performance ratio of your
algorithm.

Historical Notes

The analysis of the greedy algorithm for independent systems was first reported by
Jenkyns [1976] and Korte and Hausmann [1978]. Hausmann, Korte, and Jenkyns
[1980] further studied algorithms of this type. Submodular set functions play an im-
portant role in combinatorial optimization. Some of the results presented in Section
2.4 can be found in Wolsey [1982a].

Lund and Yannakakis [1994] proved that for any 0 < ρ < 1/4, there is no
polynomial-time approximation algorithm with performance ratio ρ lnn for MIN-
SC unless NP ⊆ DTIME(npoly log n). Feige [1998] improved this result by relaxing
ρ to 0 < ρ < 1. This means that it is unlikely for MIN-SC to have a constant-
bounded polynomial-time approximation. Johnson [1974] and Lovász [1975] in-
dependently discovered a polynomial-time greedy H(δ)-approximation for MIN-
SC. Chvátal [1979] extended the greedy approximation to the weighted case. The
greedy algorithm for MIN-SC can be analyzed in many ways. Slavik [1997] pre-
sented a tight one. The problem WSID was proposed by Du and Miller [1988].
Prisner [1992] presented a greedy approximation for it and claimed that it has per-
formance ratio 1 + lnK. Unfortunately, his proof contained an error. Du, Wu, and
Kelley [1998] fixed this error. They also showed, based on a reduction from the prob-
lem MIN-SC, a lower bound on the performance ratio for WSID. It is known that
the problem MIN-CDS is NP-hard [Garey and Johnson, 1978]. Guha and Khuller
[1998a] presented a greedy algorithm for it with performance ratio 3 + ln δ. Ruan
et al. [2003] gave a new one with performance 2 + ln δ. The (1 + ε)(1 + ln δ)-
approximation can be found in Du et al. [2008].
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