Chapter 2
Inverse Limits in a General Setting

Abstract In this chapter we investigate inverse limits in a very general set-
ting: over directed sets with factor spaces that are compact Hausdorff spaces
using upper semi-continuous closed set-valued bonding functions. Basic ex-
istence and connectedness theorems are proved and examples are provided
that illustrate limitations to the generality of the theorems. One section is
devoted to examples in the case where the factor spaces are all the interval
[0, 1]. Basic theorems on mappings of inverse limits are included as well. As
the chapter progresses additional hypotheses are added to the factor spaces
(up to compact metric) and the bonding functions (continuous single-valued
or unions of such). The chapter concludes with considerations of a few miscel-
laneous topics including dimension and a proof that a 2-cell is not an inverse
limit with a single upper semi-continuous function on [0, 1].

2.1 Introduction

Inverse limits are normally defined for a pair of sequences X1, Xo, X3, ...
and f1, fo, f3,... such that, for each i, X; is a topological space and f; is
a mapping (i.e., continuous function) from X;;; into X;. Such a pair of
sequences is often denoted {X;, f;} and is called an inverse limit sequence and
the mappings f; are called bonding maps and the spaces X; are referred to as
factor spaces. More generally an inverse limit system is defined to be a triple
that consists of a directed set D, a collection of topological spaces { X4 }aep,
and a collection of mappings {fap : Xg — Xo|a,0 € D and o < [}.
Often this triple is shortened to { X4, fo 3, D}. This more general form has
proved useful at times. See Howard Cook’s article [1] for a particularly nice
construction that employs this type of inverse limit system. Throughout, we
use the term inverse limit sequence when the underlying directed set is the
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76 2 Inverse Limits in a General Setting

set of positive integers and the term inverse limit system when the underlying
directed set may be a more general directed set.

Inverse limit systems in which the bonding functions are mappings have
been studied for quite some time, particularly those for which the underlying
directed set is the set of positive integers. Recently, inverse limit sequences in
which the bonding functions are upper semi-continuous set-valued functions
were introduced in [8] as inverse limits of closed subsets of [0,1] x [0, 1].
These were generalized in [7] to inverse limit sequences where the spaces
were compact Hausdorff spaces and the bonding functions were upper semi-
continuous set-valued functions. A natural next step is to examine inverse
limits in a setting that encompasses all of these scenarios. In Section 2.5
we prove the basic existence theorems in this very general setting over a
directed set where the factor spaces are compact Hausdorff spaces and the
bonding functions are upper semi-continuous. In Sections 2.6 and 2.9 we
address the connectedness of the inverse limit. In Section 2.7 we include
some examples that demonstrate some of the variety of spaces that result as
an inverse limit with upper semi-continuous bonding functions. In Section 2.8
we examine some basic theorems concerning mappings between inverse limits
of inverse limit systems. In Section 2.10 of this chapter we contrast a couple
of major differences between inverse limits of ordinary inverse limit sequences
and these more general inverse limit systems through examples showing that
certain basic theorems do not hold in this setting. Finally, in Section 2.11 we
include some theorems requiring metric factor spaces.

We recommend that the reader with little or no experience with inverse
limits first read Chapter 1 to get a better feel for inverse limits before reading
the present chapter.

2.2 Definitions and a basic theorem

A relation on a set D is a subset of D x D such that each member of D is
a first term of some pair in the relation. If < is a relation on a set D and
(x,y) is in < then we write x < y. A directed set is a pair (D, <) where < is
a relation on D such that (a) if @ € D then o < «; (b) if «, 5, and ~y are in
D and a < f and 8 < then a < 7; and (c¢) if a and 8 are in D then there
is a member v of D such that a < v and 8 < ~. If (D, <) is a directed set,
for short, we usually say simply that D is a directed set. If D is a directed
set and « and 3 are elements of D such that o =< [ we say that « precedes
in D. A directed set is called totally ordered provided if @ and § belong to D
then a < 8 or # < « and in the case where a < 3 and 3 < a we have a = f3.
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If Y is a topological space, then 2¥ denotes the collection of nonempty
closed subsets of Y whereas we denote by C(Y) the elements of 2¥ that are
connected. Let each of X and Y be a topological space and let f be a function
from X into 2Y. The function f : X — 2V is upper semi-continuous at the
point x € X if and only if for each open set V in Y containing f(x) there is an
open set U in X containing x such that if v is in U then f(u) C V; f is called
upper semi-continuous provided it is upper semi-continuous at each point of
X.MTACX, f(A) denotes {y € Y |y € f(x) for some x € A}. The graph of f
is denoted by G(f) and is the set of all points (z,y) € X x Y such that y is in
fl). Iff: X —2Y and g: Y — 2%, we denote by go f : X — 27 the closed
set-valued function given by (g o f)(x) = {z € Z| there is an element y €
Y such that y € f(z) and z € f(y)}. In the case where f is a singleton-
valued upper semi-continuous function, we do not distinguish between f and
the corresponding mapping associated with f. For example, if f : X — 2% is
given by f(z) = {«} for each x € X, we still refer to f as the identity on X.

Suppose D is a directed set and, for each o in D, X, is a topological
space. Suppose further, for each o and 8 in D with o < 3, fap : Xpg — Xo
is an upper semi-continuous function from Xg into 2Xe such that f,. is
the identity on X, and if « < 8 =< « then fo, = fap o fz. The triple
{Xa, fap, D} is called an inverse limit system. The spaces X, are called
factor spaces and the functions f, g are called bonding functions. The inverse
limit of the system {Xq, fo, D} is a subspace of IT = [],.p Xo with the
product topology. We denote elements of IT using boldface type. If x € IT,
xq denotes the a-coordinate of x (i.e., (a) = z,,). The points of the inverse
limit are the elements @ of IT such that if & < §in D then z, € fopg(z3).
We denote the inverse limit by liin{Xa, fap, D}. Consistent with our use of
boldface type to denote sequences of bonding maps in Chapter 1, we also use
boldface type to denote collections of bonding functions f, 3. Also consistent
with the notation in Chapter 1, if f is the collection of all of the functions
fap in an inverse limit system {X,, fo g, D} we normally denote the inverse
limit of this inverse limit system by lim f. If, for each a = 3 in D and each
point ¢t of Xg, fo p(t) is degenerate then this definition reduces to the usual
one for systems over directed sets. If, in addition, the directed set is the set
of positive integers, this definition reduces to the usual one for inverse limit
sequences.

The most commonly used directed set in inverse limits is the set of positive
integers. Often, in the case where D is the set of positive integers, instead
of specifying all of the bonding functions f;; in the system, only the terms
of a sequence of functions are specified. This was the practice we used in
Chapter 1 and is the way we present most of the examples in this chapter.
The commonly used convention for expanding a sequence f1, fo, f3,... of
functions into the functions of an inverse sequence is to define f;; to be the
composition f;o fiyi10---0fj_1 fori < j and tolet f;; be the identity for each
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i. In the case where the inverse limit system over the set of positive integers
is specified by a sequence of mappings f; : X;+1 — X, as mentioned in the
introduction to this chapter, we may denote the inverse limit sequence by
the pair, {X;, fi}, and its inverse limit by im{X;, f;}, or simply lim f. In the
specific instance where f : X — X is a function, X; = X and f; = f for each
positive integer i, we may denote the system by {X, f} and its inverse limit
by @1 f. Such systems determined by a single space and a single bonding
function are often called inverse limits with a single bonding function.

The reader who is only interested in the proofs of these theorems for inverse
sequences may assume throughout that D is the set of positive integers.
Moreover, for the basic results on inverse limit sequences using single-valued
continuous functions, the reader may also assume the bonding functions are
mappings.

If {X,|a € D} is a collection of topological spaces, we denote the pro-
jection of [] . Xa onto the factor space X, by pa (i.e., pa(®) = za). We
are usually more interested in the inverse limit space than the product space,
therefore we denote by m, the restriction of p, to the inverse limit space.
The projection p, is an open mapping on the product space, but 7, is not
normally open.

A useful feature of inverse limits lies in the interaction between the bonding
functions and the projection mappings. The proof of the following analogue
of Theorem 2 from Chapter 1 is an immediate consequence of the definitions
and is left to the reader.

Theorem 104 Suppose {Xa, fo g, D} is an inverse limit system and the
inverse limit, M, of the system is nonempty. If € € M and o <X (3,

To(T) € fop(ma(x)). If fop is a mapping, wo(x) = fopoma(x).

2.3 Graphs of upper semi-continuous functions

That there is a close connection between closed subsets of product spaces and
upper semi-continuous set-valued functions can be seen from the following
theorem.

Theorem 105 Suppose each of X and Y is a compact Hausdorff space and
M is a subset of X XY such that if x is in X then there is a point y in Y
such that (x,y) is in M. Then M is closed if and only if there is an upper
semi-continuous function f: X — 2Y such that M = G(f).
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Proof. We first show that if f : X — 2Y is an upper semi-continuous function
then G(f) is closed. Let p = (p1, p2) be a point of X x Y that is not in G(f).
Then, ps ¢ f(p1), so, because compact Hausdorff spaces are regular, there
are mutually exclusive open sets V and W in Y such that po € V and
f(p1) € W. Because f is upper semi-continuous, there is an open subset U
of X containing p; such that if ¢ € U then f(t) C W. Thus, U x V is an open
subset of X x Y containing p that misses G(f). It follows that G(f) is closed.

Assume that M is closed and, for each x in X, define f(x) to be {y €
Y |(z,y) € M}. Because M is closed, f(z) is closed for each = in X. To see
that f is upper semi-continuous, suppose z is in X and V is an open set
in Y containing f(x). If f is not upper semi-continuous at x, then for each
open set U containing x there exist points z of U and (z,y) of M such that
y is not in V. For each open set U containing x, denote by My the set of
all points (p, q) of M such that p is in U and ¢ is not in V. Observe that if
U and U’ are open sets containing x and U C U’ then My C My.. From
this it follows that the collection M of all the closed sets My has the finite
intersection property. X x Y is compact, thus there is a point (a,b) common
to all the sets in M. Each element of M is a subset of M, therefore (a,b)
belongs to M so b € f(a). Because x is the only point common to all the sets
U, a = x. Furthermore, b is not in V. This contradicts the fact that b belongs

to f(x). O

2.4 Consistent systems

In general, an inverse limit system with upper semi-continuous bonding func-
tions over a directed set may fail to produce a nonempty inverse limit even
if the factor spaces are compact. Consider the following example. In this ex-
ample and hereafter we denote the identity from X into X by Idx. If no
confusion should arise with respect to the domain, we may shorten this to
Id.

Example 106 Let D = {1,2,3,...} U {a,b} where, if i and j are positive
integers, then ¢ = j if and only if i < j, a 2 j if and only if j > 2, b =< j
if and only if 7 > 3,1 < b, and a < b (1 and a do not compare nor do 2
and b). Let X, = {0,1} for each o« € D. If 3 < i =< j, let f;; = Id. Let
fi2 = fa2 = fap = Id as well, and let f1p, = 1 — Id. Let fa3(t) = {0,1}
fort € {0,1} and fy3 = fo3. We expand this into a system by composition.
Then, lim f = 0.

Proof. Suppose x € lglf If 1 =0, then zo = 0 and x, = 1. Because x5 = 0,
zq = 0; but x, = 1 because x, = 1. This is a contradiction. Because x1 # 0,
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x1 = 1. Then, xo = 1 and xp = 0. But, x5 = 1 yields z, = 1 whereas z;, = 0
yields 2, = 0, again a contradiction. So, lim f = 0. 0

We call an inverse limit system { X4, fog, D} consistent provided for each
n € D and each t € X, there is a point « of IT such that x, =t and if o <
B =< nthen z4 € fos(zg). We now show that two important classes of inverse
limit systems are consistent: those in which all the bonding functions are
mappings and those for which the directed set is the set of positive integers.

Theorem 107 FEach inverse limit system { X, fa g, D} where each function
fap in the system is a mapping is consistent.

Proof. Suppose n € D and t € X,,. Let 2z be a point of II. For each 7 such
that v <, let 2, = f,,(t) and let 2, = z, otherwise. Suppose @ < 5 < 7.
Inasmuch as fo,(t) = fap(fsn(t)) we have o = fop(xg) and we see that
the system is consistent. O

Theorem 108 Each inverse limit system {X,, fij, D} where D is the set of
positive integers is consistent.

Proof. Suppose n is a positive integer and ¢ € X,,. Let z € IT. Let xj = 2,
if Kk > n. Let a, = t and x1 be a point belonging to fi,(t). Inductively,
suppose 1 < j < n is an integer such that x1,x9,...,2; have been chosen
so that x; € fin(t) for 1 < i < jand if | < m < j then z; € fim(zm).
Because fjn = fjj+10° fj+1n there exists an element x;,; of X;;, such that
Tj+1 € fj+1n(t) and T; € fjj+1(l’j+1). It follows that the system {X“f”}
is consistent. O

2.5 Compact inverse limits

In this section we assume that {Xq, fos, D} is a consistent inverse limit
system over a directed set D with upper semi-continuous bonding functions
and that X, is a compact Hausdorff space for each o« € D. Our goal in this
section is to prove that under these conditions the inverse limit is nonempty
and compact (Theorem 111).

In the absence of assumptions of some sort, the inverse limit may be empty
even if D is the set of positive integers, the factor spaces metric, and there is
only one bonding map. Consider the following example.
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Example 109 Let D be the set of positive integers and, for each i, X; =
(0,1), and f; = f where f : (0,1) — (0,1) is given by f(x) = x/2 for each
xz € (0,1). One can see that @f = 0 for if n is a positive integer no point
ofliﬂlf can have a point with first coordinate greater than 1/2"~1 because in
that case its nth coordinate would have to be greater than 1.

Recall that we use IT to denote [], . Xq. It is convenient to introduce
the following notation: if n is an element of D, G, denotes the set of all
points @ of IT such that if o and g are elements of D and o < 3 < 7 then
Za € fap(zs). The reader should note that this notation differs slightly from
the notation employed in Chapter 1 for D = N.

Theorem 110 Suppose {Xa, fag, D} is a consistent inverse limit system
such that X, is a compact Hausdorff space for each o in D. Then, for each
n e D, Gy, is a nonempty compact set.

Proof. The system is consistent, therefore G,, is nonempty for each € D.
Because IT is compact it suffices to show that G, is closed. Let = be a point
of IT that is not in G,. There exist a and 8 in D with a@ < # < 1 such that
Zq is not in fo g(zg). By Theorem 105, the graph of f, g is closed, so there
is an open set Ug x U, C Xg x X, such that (Us X Uy) N G(fop) = 0. Let
O = Up x Ua X ([, ep—{a,py X+)- Then O contains @ and if y € O then
Yo & fap(ys); that is, y ¢ G,,. So G, is closed and therefore compact. O

As an immediate consequence of Theorem 110 we have the result we sought
in the following theorem.

Theorem 111 Suppose {X,, fos, D} is a consistent inverse limit system
such that X is a compact Hausdorff space for each o in D. Then, K = lim I
is nonempty and compact.

Proof. The collection of all the sets G, for n € D is a collection of nonempty
compact sets in the compact Hausdorff space IT. Note that if & and 3 are in D
there is a member 7 of D such that a =< v and 3 = «. Because G, C G and
G, C Gg, it follows that the collection {G,, | n € D} has the finite intersection
property. From this we see that ﬂne p Gy is nonempty and compact. Clearly
K = ﬂn ep G- ad

If f: X — 2Y is a set-valued function and A is a subset of X, recall that
f(A) = {y € Y |there exists x € A such that y € f(x)}. If f: X — 2Y, we
call f surjective if f(X) =Y. This is consistent with the usual definition of
surjective for mappings. In the case where D is the set of positive integers
and there is a positive integer n such that, for each ¢ > n, f; is surjective then
for each positive integer 7 > n and for each point ¢ of X, there is a point
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x in the inverse limit with ¢ € m,(x). Thus, in the case where D is the set
of positive integers, one does not need Theorem 111 to see that the inverse
limit is nonempty. Indeed, we have the following theorem the proof of which
is left to the reader.

Theorem 112 Suppose X1, X2, X3,... is a sequence of compact Hausdorff
spaces and fi, : Xpy1 — 2%*% is an upper semi-continuous function for each
positive integer k. If there is a positive integer n such that fr is surjective for
each positive integer k > n, v and j are positive integers not less than n with
i < j, s is apoint of X;, andt € f; ;(s), then there is a point x of im f such
that x; =t and x; = s.

In the absence of compactness of the factor spaces or assumptions about
the directed set such as D = {1,2,3,...}, even with surjective bonding func-
tions, the inverse limit of a consistent system may be empty. An example
of an inverse limit system with surjective bonding maps that has an empty
inverse limit is given by Henkin in [3].

We conclude this section with a proof that the inverse limit of a consistent
inverse limit system on compact Hausdorff spaces is the inverse limit of an
inverse limit system with surjective bonding functions.

Theorem 113 Suppose {X,, fos, D} is a consistent inverse limit system
such that X, is a compact Hausdorff space for each « in D. Then, linf is
the inverse limit of an inverse limit system {Yu, ga g, D} where, for each o
D, Y, = ﬂajﬁ fap(Xg), and if a X B in D, gap = faplYp is surjective.

Proof. Choose av € D. Observe that if « < 8 =X v, then foy = fago f34
50 fa~y(X5) C fap(fa~(X,)) C fap(Xp). From this and the fact that D is
a directed set it follows that the collection C = {f, 3(Xg) | = S} has the
finite intersection property. Because C is a collection of nonempty compact
sets, Y, = ﬂa<ﬁ fap(Xp) is a nonempty compact set.

We now show that if @ < § then f,3(Ys) C Y,. Let = be an element of Y3
and suppose 7 is an element of D such that a < . There is an element 7 of D
such that 8 < nand v < 7. Because z € fz,(Xy), fap(x) C faps(fan(Xy)) =
fan(Xy) € fay(Xy). Thus, fap(z) C Ya.

Next we show that if o < § and y is in Y}, then there is an element x of Y3
such that y € fo(z). Suppose a < § and let y be an element of Y,,. If v is
an element of D such that 5 < v, because y belongs to fo~(X,) and fo~, =
fap o fa~, there is a point ¢ of X3 such that ¢ € fz,(X,) and y € fa5(1).
For each v € D such that 8 < v, let N, = {t € fz,(X,)|y € fap(t)} and let
M., = N,. We now show that if y; < 72 then IV,, € N,,. To see this note that
ift € N, then t € fg,(X,,) which follows from the fact that t € fz,(X,,)
and the definition of fz,, © fy, 4,. So the collection of compact sets M., has
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the finite intersection property. Thus, () 5=~ My is a nonempty subset of Xg.
Let = be in ﬂﬁfv M.,. To see that x is in Y3, let U be an open set containing
x and suppose 3 = 7. Because x is a point of M, = N, there is a point ¢ of
N, in U. Because t is in N, t € fz3~(X,). It follows that x € fz(X,). But,
fa~+(X,) is closed so x € fg,(X,). Because z € f3,(X,) for each v such
that 8 < v, € Y. Finally, y € fos(x) for suppose y ¢ fo5(x). There exist
mutually exclusive open sets O, and O containing y and fa g(z), respectively.
There is an open set U containing x such that if z € U then f,35(z) C O. If
v € D and 3 <+, U contains a point ¢ of N, so fa3(t) C O, a contradiction
to the fact that y € foa(t).

For o and 8 in D with a < 3, let go g = fap|Ys. It is clear that limg C
limf. If @ € lim f and o € D, 2o € fap(xg) for each B such that a < (.

Thus, z,, belongs to Y, for each a, and so « € liLng.

2.6 Connected inverse limits

We next turn our attention to conditions under which inverse limits are con-
nected. One might suspect that imposing a natural condition such as all of
the bonding functions have connected graphs would be sufficient to guarantee
that the inverse limit is connected. That this condition is not sufficient even
if D is the set of positive integers, each factor space is the interval [0, 1], and
the sequence of bonding functions is constant may be seen from the following
example. The reader will recall that Theorem 105 allows us to specify an
upper semi-continuous closed set-valued function by identifying its graph as
a closed subset of a product of two spaces that projects onto the first factor
space. In the examples of this chapter, I denotes the interval [0,1] and Q
denotes the Hilbert cube 1.

Example 114 (A function with a connected graph that yields an
inverse limit that is not connected) Let G(f) be the union of the four
straight line intervals, I x {0}, {1} x I, the interval from (0,0) to (1/4,1/4),
and the interval from (3/4,1/4) to (1,1) in I x I (see Figure 2.1). Then, G(f)
is connected but linf is not connected.

Proof. Let N be the set of all points p of K = lim f such that p; = p2 = 1/4
and ps = 3/4. Note that N is closed. Let  be a point of N. Let R =
Ry x Ry x Rz x Q be the region in Q where Ry = Ry = (1/8,3/8) and
Rs = (5/8,7/8), and note that R contains x. Assume that the point y is
in RN K. Then y; and yo are in (1/8,3/8). It follows that y» < 1/4. But
if yo < 1/4, inasmuch as y3 > 5/8 we have y3 = 1 and y is not in R. We
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conclude that y € N, so N and K — N are closed and mutually exclusive,
thus K is not connected. a

(1,1

(1/4,1/4)

(3/4,1/4)

(0,0) (1,0)

Fig. 2.1 The function from FExample 114

Another natural condition one could impose with the expectation of ob-
taining a connected inverse limit would be that the bonding functions have
connected values. However, even for inverse systems over directed sets in
which every factor space is the interval [0, 1] this may not be the case as may
be seen from the following example.

Example 115 Let D be the directed set given in Example 106; that is, D =
{1,2,3,...} U{a, b} where, if i and j are positive integers, then i < j if and
only if i < j,a =74 if and only if 7 > 2, b = j if and only if j > 3,1 =X b,
and a < b (1 and a do not compare nor do 2 and b). Let X, = [0,1] for
each o € D. Let foo = fi12 = fap = Id. Let f1p be the full tent map; that
s, f1p(t) = 2t for 0 < t < 1/2 and f1u(t) = 2 =2t for 1/2 < t < 1. Let
fas be given by fas(t) =[0,1] for each t € [0,1] and fo3 = fa3. Finally, let
fiix1 = Id fori > 3. The inverse limit of the consistent system {Xq, fo g, D}
is the union of two mutually exclusive arcs.
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Proof. We first note that if @ € lim f and 2, = p then z3 = p. Thus,
x, = p and, as a consequence, x, = p. It follows that f1,(p) = p. There are
two fixed points for fi, so if ¢ € @f, then 21 = 29 = 24 = 2, = 0 or
X1 = X3 = x4 = xp = 2/3. In either case, x3 may be any element of [0, 1],
but x; = z3 for all ¢ > 3. It may now be seen that the two arcs whose union
iSliﬂlf areAz{mG@ﬂa:l =x9 =2, =xp = 0,23 = t,x; = x3 for 1 >
3wheret € [0,1]} and B = {x € lim f |21 = 22 = 2, = 2 = 2/3,23 =
t,x; = x3 for ¢ > 3 where ¢ € [0,1]}. O

Recall our notation from Section 2.5 that if n € D then G, = {x €
IT| if = B < nthen x4 € fop(zp)}. By a Hausdorff continuum we mean
a compact connected subset of a Hausdorff space. This distinction allows us
to continue to use the term continuum to mean a compact connected subset
of a metric space. Our next theorem provides a sufficient condition that an
inverse limit system in which the factor spaces are compact Hausdorff spaces
produces a connected inverse limit.

Theorem 116 Suppose that {X., fo s, D} is a consistent inverse limit sys-
tem such that X, is a compact Hausdorff space for each o in D. If, for each
nin D, G, is connected, then linf 18 a Hausdorff continuum.

Proof. By Theorem 110, for each n € D, G,, is a nonempty compact set.
This theorem is thus an immediate consequence of the observation that the
collection {G, |n € D} of compact and connected subsets of the compact
Hausdorff space IT has the finite intersection property. a

We now turn to two important cases in which Theorem 116 applies. These
are the case where all the bonding functions in the system are mappings and
the case where the directed set is totally ordered.

2.6.1 Systems in which all of the bonding functions
are mappings

Theorem 117 Suppose that { X, fap, D} is an inverse limit system such
that X, is a Hausdorff continuum for each o € D and each fq 3 is a mapping.
Then lim f is a Hausdorff continuum.

Proof. Suppose n € D and let E = {n} U {y € D]y £ n}. Let ¢ :
[loce Xa — Gy be given by ¢(x) = y where y, = x4 for each a € E
and yo = fan(z,) otherwise. Suppose ® and z are in [[,cp Xo. If ¢ # 2
there is an element v € E such that z, # z,. Then, p(x) # ¢(2z), so ¢ is 1-1.
We now show that ¢ is surjective and continuous. If y € G, let  be the
member of [],.p Xo such that z, = yo for each a € E. Then, p(x) = y,
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so ¢ is surjective. Finally, ¢ is continuous because, for each a € D, m, o ¢
is continuous. From the compactness of IT it follows that ¢ is a surjective
homeomorphism, so G, is connected being homeomorphic to the connected
set [],cp Xa- The theorem now follows from Theorem 116. ad

2.6.2 Systems in which the directed set is totally
ordered

Next we consider systems in which the underlying directed set is totally
ordered although some of the theorems of this subsection do not depend on
this assumption.

Theorem 118 Suppose that each of X andY is a compact Hausdorff space,
X is connected, f is an upper semi-continuous function from X into 2¥ and,
for each x in X, f(x) is a Hausdorff continuum. Then G(f) is a Hausdorff
continuum.

Proof. Recall that G(f) = {(z,y) € X xY |y € f(x)}. Note that G(f) is
closed by Theorem 105. Assume that G(f) is not connected. There are then
two nonempty mutually exclusive closed sets H and K whose union is G(f).
If x is in X, then {2} x f(x) is a connected subset of G(f) and thus a subset
of one of H and K. Let H; be the set of all points 2 of X such that {z} x f(x)
lies in H and let K; be the points x of X such that {z} x f(x) lies in K.
Because H; and K7 are nonempty compact sets whose union is the connected
set X, they have a common point z. But this is impossible because {z} X f(z)
would then be a connected subset of both H and K. ad

If M is a subset of the product X x Y of compact Hausdorff spaces, then
the inverse of M is the subset of ¥ x X consisting of all points (y, z) such
that (x,y) is in M. We denote this inverse by M~ If f is an upper semi-
continuous function, by the inverse of f, denoted f~!, we mean the function
from f(X) CY into 2% such that if y € f(X), f~1(y) ={z € X |y € f(z)}.
One of the consequences of Theorem 105 is that if f : X — Y is an upper
semi-continuous function, then f=1: f(X) — 2% is upper semi-continuous.
We often use this observation in this section.

Lemma 119 Suppose X and Y are compact Hausdorff spaces, f: X — 2V
is an upper semi-continuous function, and M = G(f~1). Then, M~ = G(f).

Proof. Note that (z,y) € M~1 if and only if (y,z) € M = G(f~1) if and
only if x € f~1(y) if and only if y € f(x) if and only if (z,y) € G(f). O

Using Lemma 119, the following theorem is an immediate consequence of
Theorem 105.
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Theorem 120 If X and Y are compact Hausdorff spaces and f : X — 2V
is an upper semi-continuous function then f~' : f(X) — 2% is an upper
semi-continuous function.

Proof. Let M = G(f~!). By Lemma 119, M~ = G(f) which is closed by
Theorem 105. Inasmuch as M ! is closed, M is closed so f~! is upper semi-
continuous. a

Theorem 120 yields a corollary to Theorem 118 for certain upper semi-
continuous functions whose inverses are Hausdorff continuum-valued.

Theorem 121 Suppose that X and Y are compact Hausdorff spaces and
f X — 2Y is an upper semi-continuous function such that f(X) is con-
nected and f~': f(X) — 2% is Hausdorff continuum-valued. Then G(f) is
connected.

Proof. Let M = G(f~'). By Theorem 120, f~! is upper semi-continuous.
By hypothesis, f~! is Hausdorff continuum-valued, so by Theorem 118, M
is connected. Because M is connected, M ! is connected. By Lemma 119,

M~ = G(f), so G(f) is connected. O

For the next few theorems it is convenient to generalize the definition of
the graph G(f) of an upper semi-continuous function. Suppose { Xy, fo 3, D}
is an inverse limit system with upper semi-continuous bonding functions and
X, is a compact Hausdorff space for each « in D. Suppose {51, 52, ..., Bn}
with n > 2 is a finite subset of D. Let G(81, B2,...,0,) = {z € Xp, X
Xp, x -~ Xp, |xp, € fs,p,(xp,) whenever 3; < ;}. Note that if 51 < 3
then G(B31,52)"" is the graph of fg, g,. This slight twist in the notation is
convenient for our intended use of these sets in the proofs of theorems leading
to Theorem 125.

Theorem 122 Suppose {Xq, fag, D} is a consistent inverse limit system
such that, for each o € D, X, is a compact Hausdorff space, n > 2, and B =

{B1,B2,-..,0n} is a finite subset of D. Then G(01, B2, ..., ) is nonempty
and compact.

Proof. B is a finite subset of a directed set D, thus there is an element 7 of
D such that §; < n fori=1,2,3,...,n. The system is consistent, therefore
if t € X, there is an element @ of II such that z, =t andifa 2 3 < n
then zo € fag(zg). Then, (z5,,28,,...,23,) € G(B1,P2,...,0n) so this set
is nonempty.

Xg, x Xg, x -+ x Xg_ is compact, therefore it is sufficient to show that

G(b1,B2,...,0,) is closed. If (zg,,28,,.--,25,) ¢ G(B1,02,...,0n), there
exist integers ¢ and j such that 3; < §; and g, ¢ fg,,(7p,). Because the
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graph of fg, g, is closed, there are open sets Ug, and Ug, containing xg, and
xg,, respectively, such that Ug, x Ug, does not intersect the graph of fg, ;.
Then, O = O1 x Oz X -+ X Oy, where O; = Ug,, O; = Ug,, and Oy = Xg,
if ke {1,2,...,n} —{i,7}, is an open set containing (zg,,2ga,,...,%s,) and
no point of G(B1, B2, ..., Bn)- ad

Theorem 123 Suppose {Xq, fa g, D} is a consistent inverse limit system
such that, for each a € D, X, is a Hausdorff continuum. Further suppose
n > 2 and B = {f1,02,...,0n} is a finite subset of D such that 5; < [,
if and only if © < j and if B; X B; then fg,p, is Hausdorff continuum-
valued or fg, 5,(Xp;) is connected with fglﬁj s [, (Xp;) — 2% Hausdorff
continuum-valued. Then G(B1, B2, ..., 0n) is a Hausdorff continuum.

Proof. By Theorem 122, G(f1, B2, ..., Bn) is nonempty and compact so we
only need to show that G(81, B2, ..., B,) is connected. We proceed by induc-
tion on the number of elements in B. If there are only two elements of B, 31
and (B2 with 81 = B2, G(b1,52) = G(fgllﬁz). The graph of fg, g, is connected
if and only if the graph of its inverse is connected. So it follows that G(/51, 82)
is connected by Theorem 118 if fﬁj 152 is Hausdorff continuum-valued and by
Theorem 121 if f3, g, is Hausdorff continuum-valued. Suppose the conclusion
holds for any subset of D with n elements and let 31, 32,..., 0,41 be n 41
elements of D such that 8; < 3; if and only if ¢ < j. The proof reduces to
two cases.

Case (1): f3, g, is Hausdorff continuum-valued. By the inductive hypoth-

esis, G(B2,...,Bnt1) is connected. Suppose H and K are closed sets whose
union is G(/Bl, ey ﬂn+1) and let h : G([)’l, ey ﬂnJrl) — G([)’Q, ey ﬂnJrl)
be the mapping defined by h((xg,, ©g,, - .-, ¥g,.,))= (X8, ---» T3,.,). We
shall show that h(H U K) = G(f2, ..., Bnt1). Suppose (xg,,%8,,..-,23,,,)
is in G(B2, ..., Bny1) and let zg, be an element of fg, g,(zs,). If 2 <
it < n+1l, g € fﬁZﬁi(Iﬁi)7 SO Tp, € fﬁl ﬁ2(fﬁ2ﬁi('rﬁi)) = fﬁ1 ﬁi(zﬁi)'
Thus (23,,%8,,---,28,.,) € G(B1, P2, ..., Bny1) and h((2g,,...,23,,,)) =

(8y,...,23,,,). Because h(H) and h(K) are closed and h(H)Uh(K) is con-
nected, there is a point p belonging to h(H) and h(K). Then, C = {x €
G(Brs-- - Bnt1) | wp, € fprp(Ppa)s g, = pp, for 2 < i < n+ 1} is con-
nected because fg, g,(pg,) is connected. There exist elements ¢ of H and s
of K such that h(t) = h(s) = p. Because tg, € f3, 3,(ps,) and tg, = pg, for
2<k<n+1,tisin C. Similarly, s is in C. Because C is a connected subset
of HU K intersecting both H and K, there is a point common to H and K.
Consequently, H and K are not mutually separated.

Case (2): f3, 1ﬁ2 is Hausdorff continuum-valued. By the inductive hypoth-
esis G(B1, B3, ..., Bny1) is connected. Suppose H and K are closed sets
whose union is G(81, ..., Bn+1) and let h: G(B1, - .., But1) — G(B1, B3, .- -,
Bn+1) be the mapping defined by h((xg,,2s,,--., 3,.,)) = (T, Tas5 - - -,
rg,,, ). Because x5, € fg, ,(x3,) there is an element g, of X3, such that
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8, € f8,8.(xs,) and zg, € fg,p,(xs;). If 3 < i < n+ 1, because 3, €
fﬁBﬁi(Iﬁi)a we see that xg, € fﬁ2ﬁi(gjﬁi) 50 (Iﬁ1vx,@27-~-7xﬁn+1) € G(b,
B, .oy Buy1) and h((@g,, 28y, .- 28,.,)) = (8,285, ..., 23,,,). It follows
that h(HU K) = G(01, B3, - .., Bn+1). Thus, there is a point p belonging to
h(H) and h(K). Then, C = {z € G(f1, ..., Bn+1)|2p, € fﬁ_llﬁ2(p51)7$5i =
pg, for 1 <i < n+1,i# 2} is connected inasmuch as fﬁ_llﬁ2 (pg, ) is connected.
There exist elements ¢ of H and s of K such that h(t) = h(s) = p. Note that
t3, € fp.8.(t3,), 8013, € fgl152(pgl). Because tg, = pg, fork=1,3,...,n+1,
t is in C. Similarly, s is in C. Because C is a connected subset of H U K
intersecting both H and K, there is a point common to H and K. Conse-
quently, H and K are not mutually separated. a

Theorem 124 Suppose {X,, fos, D} is a consistent inverse limit system
such that, for each v € D, X, is a Hausdorff continuum and D is to-
tally ordered. If, for each o and 3 in D such that o = B3, fop is Hausdorff
continuum-valued or fo 3(Xg) is connected with f(;é : fap(Xpg) — 2% Haus-
dorff continuum-valued, then G, is a Hausdorff continuum for each n € D.

Proof. Suppose nn € D. If {B1,52,...,0n} is a finite subset of D, because
D is totally ordered, we may assume that 3; < §; if and only if ¢ < j. Let
G'(B1,B2,...,Bn) = {x € II |xp, € f5,p,(xp,) whenever i < j}. Let D' =
D —{01,B2,...,0n}. By Theorem 123, G(f1, ..., (3,) is connected. Therefore
G'(B1, .-, 0n), which is homeomorphic to G(81,...,0n) X [[yep Xo, is
connected. Let G = {G' (01, B2, ..., Bn) | {P1,-..,0n} is a finite subset of D
such that 3; < n for 1 < i < n} and note that G is a collection of Hausdorff
continua by Theorem 123. If G'(B1,...,0,) and G'(y1,...,vm) are in G,
then G'(¢1,...,C) € G'(B1, ..., 0n) N G (71, ,Ym) where {C1,...,(} =
{pB1,ldots, B3,)} U {71,...,¥m}. Consequently, G has the finite intersection
property, so the common part C of all the elements of G is a Hausdorff
continuum.

We now show that C' = G,,. If © € G, and G'(51, B2, ..., Bn) € G then
x e G (b, P2, ..., Bn) so G, CC.If ¢ & G, then there exist o and 3 in D
such that o < § < nand zo & fap(zg). Then, ¢ G(, B) so x ¢ C and we
have that C' C G,,. O

As a consequence of the preceding theorems, in the next theorem we have
the result we sought in this subsection.

Theorem 125 Suppose {X,, fo, D} is a consistent inverse limit system
such that, for each v € D, X, is a Hausdorff continuum and D is to-
tally ordered. If, for each o and B in D such that o = B, fap is Haus-
dorff continuum-valued or fo3(Xg) is connected with f(;é : fap(Xg) — 2%0
Hausdorff continuum-valued, then lim f is a Hausdorff continuum.

Proof. This is immediate from Theorems 124 and 116. a
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Because of its importance, we state the following special case of Theorem
125. Recall that inverse limit sequences are consistent (Theorem 108).

Theorem 126 Suppose {X;, f;} is an inverse limit sequence on Hausdorff
continua with upper semi-continuous bonding functions such that, if i is a
positive integer, then f; is Hausdorff continuum-valued or f;(X;y1) is con-
nected with ;' : f(Xit1) — 2541 Hausdorff continuum-valued. Then lim f
is a Hausdorff continuum.

If f: X — X is a mapping of a Hausdorff continuum into itself, then f(X)
is connected and f~! : f(X) — 2% is an upper semi-continuous function
whose inverse is continuum valued (in fact each value is degenerate). Thus,
we have the following corollary to Theorem 126.

Corollary 127 Suppose {X, f~1) is an inverse limit sequence where X is a

Hausdorff continuum and f is a mapping from X into X. Then lim f—1 is
4

a Hausdorff continuum homeomorphic to f(X).

That 1&1 f~1is a Hausdorff continuum follows directly from Theorems 121
and 126. Moreover, it is not difficult to show that lﬂl £~ 1 is homeomorphic
to the Hausdorff continuum f(X) because h : f(X) — liinf_l given by
h(z) = (z, f(z), f?(x),...) is a homeomorphism.

Theorem 125 gives a sufficient condition that inverse limits on Hausdorff
continua with upper semi-continuous bonding functions be Hausdorff con-
tinua. However, in general the bonding functions do not have to satisfy the
conditions of Theorem 125 in order to produce a connected inverse limit. For
instance, see Example 132. Theorem 156 of Section 2.9 provides a different
sufficient condition for an inverse limit with upper semi-continuous bonding
functions on [0, 1] to be connected. Deciding in general when an inverse limit
system with upper semi-continuous bonding functions produces a connected
inverse limit remains an interesting problem.

2.7 Examples in the special case that each factor space
is [0, 1]

In this section we assume that the directed set is the set of positive integers
and each factor space is [0, 1]. We give some examples of some upper semi-
continuous bonding functions that illustrate additional aspects of the nature
of inverse limits with upper semi-continuous bonding functions. Each example
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is produced by a constant sequence of bonding functions. In most of these
examples we specify the graph of the bonding function rather than a formula
for the function. We denote the Hilbert cube [0,1]*° by Q. A point p of a
Hausdorff continuum M is a separating point of M provided M — {p} is not
connected. Separating points are also called cut points. An arc is a continuum
with only two nonseparating points.

Our first example shows that inverse limits with upper semi-continuous
bonding functions can produce the Hilbert cube.

Example 128 (The Hilbert cube) Let f : [0,1] — 20U be given by
f(x) =[0,1] for each z in [0,1]; that is, G(f) = [0,1] x [0,1]. Then lim f s
the Hilbert cube.

In our next example the inverse limit is a closed set in the Hilbert cube Q
consisting of a convergent sequence of points.

Example 129 (A convergent sequence) Let G(f) be the union of the
point {(1,1)} and [0,1] x {0} (see Figure 2.2).

Proof. Let K = lim f. No point of K has a coordinate between 0 and 1
inasmuch as the range of f is {0,1}. If p is in K and p; = 1 then p;41 =1
whereas if p; = 0 then p;41 is 0 or 1. Thus, the points of K are (0,0,0,...)
and the set of all points pi1, p2, ps,... where, for each positive integer n,
mi(pn) is 1if i > n and 0 if i < n. O

A Cantor set can be the result of an inverse limit on [0, 1] with an upper
semi-continuous bonding function.

Example 130 (A Cantor set) Let G(f) be the union of [0,1] x {0} and
[0,1] x {1} (see Figure 2.3).

Proof. Note that if x is in lim f and i is a positive integer x; cannot be strictly
between 0 and 1. Moreover, if z; € {0,1} then z;41 € {0,1}. It follows that
@f is a Cantor set. a

Example 114 showed that the inverse limit may fail to be connected even
if the graph of the bonding function is connected. Theorem 125 provided a
sufficient condition that the inverse limit be a Hausdorff continuum and one of
its consequences is that the inverse limit in the next example is a continuum.
As we show in the remaining examples in this section, quite a variety of
continua can be obtained as an inverse limit with upper semi-continuous
bonding functions that generally do not satisfy the conditions from Theorem
125. The inverse limit in our next example is a fan (i.e., a continuum that
is the union of a collection of arcs such that the intersection of each two of
them is a point v, called the vertex, that is an endpoint of each of the arcs
in the collection).
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a,n

(0,0) 1,0
(1,0) ®

Fig. 2.2 The function from Example 129

Example 131 (A simple fan) Let G(f) be the union of the graph of the
identity function and the interval I x {0} (see Figures 2.4 and 2.5).

Proof. Inasmuch as f~! is continuum-valued, lim f is connected by Theorem
126. Let v = (0,0,0,...). Note that if p € lim f and for some positive integer
n, pp, > 0, then p; = p, for all j > n. For each positive integer n, let K, be
the set of all points p € 1&1 f such that p; =0 for j < n and p; = p, > 0 for
j > n. The closure of K, is an arc of length 1/2"~! having one endpoint v.
Moreover no two of these arcs intersect except at v and lﬂl f=UoKi. O

In the following example we see that a simple upper semi-continuous func-
tion can produce a Cantor fan. The reader will also note that the inverse limit
is a continuum even though the bonding function does not satisfy the hypoth-
esis of Theorem 125. Although here we show directly that the inverse limit
in this example is a continuum, this fact is also a consequence of Theorem
156 of Section 2.9.

Example 132 (The Cantor fan) Let G(f) be the union of the identity,
Id, and the map 1 — Id on [0, 1] (see Figures 2.6 and 2.7).
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0,1 .1

0,0) 1,0)

Fig. 2.3 The function from FExample 130

Proof. Let K =lim f. The vertex v of K is the point (1/2,1/2,1/2,...) and
the Cantor set C' at the base of the fan is im{{0, 1}, f|{0,1}}. If ¢ is a point
of C, the arc joining v and c is the inverse limit of the inverse sequence
{Ji,9:} where, for each i, J; is the interval joining ¢; and 1/2 and g; is a
homeomorphism that fixes 1/2 and whose graph is a subset of the graph of
f. (It could be of help for the reader to observe that the graph of f is the
union of four intervals having only the point (1/2,1/2) in common. For each
1, the graph of g; is one of these four intervals.) a

Next we consider three examples produced by similar upper semi-continuous
functions. Each graph consists of the union of the horizontal line I x {0} and
a vertical line. We produce the examples by choosing the vertical line that
intersects this horizontal line in three places: (1,0), (0,0), and (1/2,0). The
resulting inverse limits are, respectively, an arc (i.e., a continuum with only
two nonseparating points), infinite-dimensional, and an arc with a sequence
of stickers.

Example 133 (An arc) Let G(f) be the union of [0,1]x {0} and {1} x[0, 1]
(see Figure 2.8).

Proof. Let M = lim f. We show that if x € M —{(0,0,0,...),(1,1,1,...)}
then x is a separating point of M thus showing that M is an arc. If x €
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a,n

(0,0) (1,0)

Fig. 2.4 The function from FExample 131

Fig. 2.5 A depiction of the inverse limit from Ezample 131

M —{(0,0,0,...),(1,1,1,...)} then there is a positive integer k such that
xr # 0 but 1 =0 if kK > 1. There are two cases: z = 1 and =y < 1.

Suppose x, = 1. Then, k > 2soxi—1 =0.Let A= {y € M |yr—1 € (0,1]}
and B={y € M|y, €[0,1)}. Then A and B are open in M. If z € M —{x}
and z # 1 then z € B whereas if 2z = 1 then zx_1 # 0 so z € A. Thus,
M —{x}=AUB.If z € B, then z;; € [0,1) and z;_; = 0. Thus, z ¢ A so
AN B ={. Therefore, « is a separating point of M.
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(0,1) 1,1

(1/2,172)

(0,0) 1,0)

Fig. 2.6 The function from FExample 132

Fig. 2.7 A depiction of the inverse limit from Ezample 132

Suppose 23 < 1. Let A= {y € M|yx < zx} and B={y € M |y > x1}
and note that A and B are mutually exclusive open sets in M. If y € M and
yr = i, it follows that y = x so M — {x} = AU B and, again, we have that
x is a separating point of M.

In either case, we have shown M has only two nonseparating points so M
is an arc. 0
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1,1

(0,0) (1,0)

Fig. 2.8 The function from Example 133

Let f be the function from Example 133 and M = lim f. The following
is another way to look at M. Let Ay = {& € M|z = 1}. Note that if
x € Ay then xp = 1 for k > 2. For each positive integer ¢ > 1, let A; = {x €
@fﬁ:k =0 for k < iand x, = 1 for k > i}. Then, @f = A UAU
Az U---U{(0,0,0,...)}. To see that A is an arc observe that A, N A; = 0
if |i —j| > 1 and A; N A;11 = {P;} where the first ¢ coordinates of P; are 0
and all of the remaining coordinates are 1. This arc plays a crucial role later
in analyzing Examples 136 and 137.

Example 134 (An infinite-dimensional continuum) Let G(f) be the
union of [0,1] x {0} and {0} x [0, 1] (see Figure 2.9).

Let M = lim f. Observe that M contains [0,1] x {0} x [0,1] x {0} x
[0,1] x {0} x ... and this set is homeomorphic to the Hilbert cube, so M is
infinite-dimensional.

Example 135 (An arc with stickers) Let G(f) be the union of [0,1] x {0}
and {1/2} x [0,1] (see Figure 2.10).

Proof. Let M = lim f. For each positive integer n, let A, = {z € M|z, €
[0,1),2; = 1/2 for j > n and if n > 1 then x; = 0 for i < n}. Note that for
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©,1)

(0,0) (1,0)

Fig. 2.9 The function from Example 134

each positive integer i, A;4+1 N A; = {(0,0,...,0,1/2,1/2,1/2,...)} where
the last 0 occurs in the ith coordinate. Moreover, A; N A; = 0 if |i — j| > 1.
Finally, (0,0,0,...) is a limit point of A;UAsUA3U--- = M —{(0,0,0,...)}.
For a picture of M see Figure 2.11. ad

Example 136 (An arc with a fan and spines) Let G(f) be the union
of [0,1] x {0} and {1} x [0, 1] together with the portion of the identity above
[0,1/4] (see Figures 2.12 and 2.13).

Let Milinf Let A:AluAQUA;gUU{(O,O,O,)} where A1 =
{x € M|z = 1} and if 4 is an integer greater than one then A; = {x €
liLnf|xk:Ofork:<ianda:k =1 for k > i}. Then, A is an arc lying in M.
The arc A is the inverse limit in Example 133. Let By = {& € M |z; € [0,1/4]
for all j} and, for i > 1, let B; = {& € M |x; =0 for j <1, x; € [0,1/4] and
xj = for j > i}. Let B= B UByUB3U---U{(0,0,0,...)} and note that
B is a fan lying in M with vertex (0,0,0,...). Suppose each of ¢ and j is a
positive integer. Let C1; = {& € M |z, =1 for k > j+ 1 and =, € [0,1/4]
for 1<k <gj}and, fori>1let C;j={xzeM|zy=1fork>i+jx, =0
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(1/2,1)

(1/2,1/2)

(0,0) (12,0) (1,0)

Fig. 2.10 The function from Example 135

1L,12,172,...)

©,1,172,...)

0,0,1,172,...)

0,0,0,...)

0,0,172,...) 1/2,1/2,172,.. )
0,112,172, ...)

Fig. 2.11 A depiction of the inverse limit from Ezample 135
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(0,0)

(1/4, 1/4)

a,n

(1,0)

Fig. 2.12 The function from Example 136

Fig. 2.13 A depiction

of the inverse limit from Ezample 136

99



100 2 Inverse Limits in a General Setting

for k < ¢, and xy, € [0,1/4] for i < k < i+ j}. Note that if « is a point of
M not in AU B then x € C;; for some ¢ and j. Also, C11 C A;. Because
AU B is connected and C;; intersects A for each ¢ and j with j <4, M is
connected. In Figure 2.13, we depict M. In the picture, Py = (1,1,1,...) and,
if ¢ is a positive integer, P; = (0,...,0,1,1,1,...) has its first ¢ coordinates
0 followed by all 1s.

Example 137 (An arc plus a sequence of fans) Let G(f) be the union
of [0,1] x {0} and {1} x [0,1] together with the straight line interval from
(3/4,1/4) to (1,1) (see Figures 2.14 and 2.15).

Let M = lim f. Let A = A1 U 4> U A3 U ... U {(0,0,0,...)} where
Ay = {x € M|x2 = 1} and if ¢ is an integer greater than one then A; =
{z € lim flap = 0 for k < i and 2 = 1 for k¥ > i}. Then, A is an arc
lying in M. Let Dy = {& € M|z, € [0,1] and for each positive integer
k,ag+1 = (zp +2)/3} and, for ¢ > 1, let D; = {&x € M|z = 0 for k <
i,xi41 € [1/4,1], and 241 = (zx + 2)/3 for each k > i}. For each positive
integer j, let Ep; = {& € M|x1 € [1/4,1],2, = 1if k > j,and if 1 <
k < j then xxy1 = (xx + 2)/3}. If each of ¢ and j is a positive integer,
let B;j ={x € M|z =1for k > jyap =0 for k < ¢, z; € [1/4,1] and
if : <k < j then zp41 = (z + 2)/3}. For each nonnegative integer i let
F, = E;1 UE;5UFE;3U---UD,;. Note that each F; is a fan with vertex
P; where Py = (1,1,1,...) and, for ¢ > 0, P; is the point of M having kth
coordinate 0 for k£ < 7 and all remaining coordinates 1. Furthermore, if x € M
and ¢ A then x € F; for some ¢ > 0. It follows that M is a continuum. In
Figure 2.15 we depict the continuum M.

At this point we observe that the set-theoretic union of the graphs of
the functions from Examples 136 and 137 is the graph of the function from
Example 114. Although the inverse limit in Example 136 is a continuum and
the inverse limit in Example 137 is a continuum and the arc A lies in the
intersection of these two continua, the inverse limit of the union of the two
graphs is not connected. In Section 2.9 we study inverse limits of upper semi-
continuous functions that are graphs of unions of mappings. Among other
things we show for maps of intervals that if at least one of the mappings is
surjective then the inverse limit is connected.

A consequence of Theorem 166 of Section 2.10 is that if f is a mapping
from I into I, then lim f is homeomorphic to lim f2%. In the case where
an upper semi-continuous bonding function f is not a mapping, lim f and
lim f o f may not be homeomorphic. The following example shows this. In
this example we specify the function instead of the graph of the function.
This example is a minor modification of an example in [7].
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(0,0)

(3/4,1/4)

1,1

(1,0)

Fig. 2.14 The function from Example 137

Fig. 2.15 A depiction of the inverse limit from Example 137
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Example 138 (@f and @fo f are not necessarily homeomor-
phic) Let f:[0,1] — 2% be given by f(z) = {1/2,1 -2} for 0 <z < 1/2,
f(x) ={1/2} for 1/2 <a <1 and f(1) =[0,1/2] (see Figure 2.16).

Proof. Note that K = lim f contains a triod which is the union of the
three arcs described below. Let A; be the set of all points of K whose
first coordinate is in the half-open interval (1/2,1]. The closure of A; is
an arc from (1,0,1,0,...) to (1/2,1/2,1,0,1,0,...). Let Ay be the set of
all points of K whose first two coordinates are 1/2 and whose third coor-
dinate is in the half-open interval (1/2,1]. The closure of A5 is an arc from
(1/2,1/2,1/2,1/2,1,0,1,0,...) to (1/2,1/2,1,0,1,0,...). Finally let A3 be
the set of all points of K whose first coordinate is 1/2 and whose second
coordinate is in the half-open interval [0,1/2). The closure of Ag is an arc
from (1/2,0,1,0,1,0,...) to (1/2,1/2,1,0,1,0,...). The union of the closures
of Ay, Ay, and Aj is a simple triod contained in K.

0,1)

(0,1/2) (1/2,172) 1,172)

(1,0)

Fig. 2.16 The function from Example 138

On the other hand, f o f is the union of the three straight line intervals,
{0} x [0,1/2], I x {1/2}, and {1} x [1/2,1] (see Figure 2.17). H = lim f o f
is a continuum by Theorem 126. We show that H is an arc with endpoints
a = (0,0,0,...) and b = (1,1,1,...). Let p be a point of H different from
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a and b. There is an n such that p,, is neither 0 nor 1. If p,, # 1/2 then
H N7, (py) is degenerate and separates H into the two mutually separated
sets H N, ([0,pn)) and H N7, ((pn, 1]). If p,, = 1/2 and p,o1 € {0,1}
then H N 7, 1(p,) is degenerate and a separating point (i.e., cut point) of
H. Thus we may assume that p,; is neither 0 nor 1 and again conclude
that H N ﬂ',;_,’l_l(pn+1) is a separating point unless p,+1 = 1/2. Continuing
this process, the only point remaining to consider is the constant sequence
(1/2,1/2,1/2,...). But this point also is clearly a separating point of H. Thus
H is a continuum having at most two nonseparating points and is an arc. See

[4, Theorem 2-1, p. 49] and [4, Theorem 2-27, p. 54]. a
1
0,1/2) 1,1/2)
0,0)

Fig. 2.17 The graph of f? where f is the function from Example 138

The next example provides an upper semi-continuous function whose in-
verse limit is the union of a 2-cell and an arc with a single point in common.
With a sequence of upper semi-continuous functions it is possible to get a
2-cell as the inverse limit. One only needs to use the sequence fi, fa, fs,...
where G(f1) = [0,1] x [0,1] and G(f;) is the identity on [0,1] for ¢ > 1.
However, Van Nall has shown [10] that if f : [0,1] — 2[%1 is an upper semi-
continuous function then lim f is not a 2-cell (see Theorem 186 of Section
2.12).



104 2 Inverse Limits in a General Setting

Example 139 (A two-dimensional example) Let G(f) consist of the
union of the four straight line intervals, [0,1/2] x {0}, {1/2} x [0,1/2],
[1/2,1] x {1/2}, and {1} x [1/2,1] (see Figures 2.18 and 2.19).

Proof. Let K = liilf. Here K is the union of a 2-cell D and an arc A. To
identify D, let 7 and j be positive integers with j > 7 + 1 and let D; ; be the
2-cell, {p € K|p; € [0,1/2],]?]' e1/2,1],pr =01if k < i, pr, =1/21if i <
k < j,pr = 1if k > j}. In Figure 2.19 we provide a schematic picture to
assist the reader. In this picture we have labeled a few of the disks D, ;.
In the figure the disks D;; and D; ;1 share a common horizontal border
and the disks D; ; and D;y1; share a common vertical border as long as
i+ 1 < j—1. Let D be the closure of the union of all the disks D; ; where
i>1andj >+ 1.

Suppose k is a positive integer. Let a, = {p € K |pr € [1/2,1],pm =
1/2form < k,andp,, = lform > k} and B, = {p € K|pp €
[0,1/2], prm = 0 for m < k, and p,, = 1/2 for m > k}. The arc oy, forms the
right-hand vertical edge of the disk Dy_o j, for k = 3,4,5, ... in the figure and
the arc f lies directly below all of the disks Dy, jyn, for n =2,3,4,.... The
closure of #; U 32 U B3 U - -+ is an arc from (0,0,0,...) to (1/2,1/2,1/2,...)
forming the bottom edge of the disk D and the closure of ag U ay Uas U - - is
an arc from (1/2,1/2,1/2,...) to (1/2,1/2,1,1,...) forming the right-hand
edge of D.

Let A = a3 Uay. Then, A is an arc, D is a 2-cell, K = D U A, and
DNnA={(1/2,1/2,1,1,..)}. a

One can modify Example 139 to produce an inverse limit of dimension n
for any choice of n. For example, to produce an inverse limit of dimension 3
add a second stairstep between 1/4 and 1/2. That is, let M be the union of the
intervals [0,1/4] x {0}, {1/4} x[0,1/4], [1/4,1/2] x {1/4},{1/2} x [1/4,1/2],
[1/2,1] x {1/2}, and {1} x [1/2,1]. Additional stairsteps can be added to
produce higher-dimensional inverse limits.

2.8 Mapping theorems

The inverse limit of an inverse limit system {X,, fo 3, D} is a subset of the
product of the factor spaces, therefore a number of mapping theorems for
inverse limits derive from mapping theorems for product spaces. One funda-
mental mapping property of product spaces is that a function into a product
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(1,1

(1,172)
1/2,12)

(0,0) 1/2,0)

Fig. 2.18 The function from Example 139

is continuous if and only if the composition of the function with each of the
projection maps is continuous. A mapping f is called one-to-one (or reversible

or 1-1) provided if f(z) = f(y) then z = y.

Suppose D and E are sets and ¢ : E — D is a one-to-one function from
E into D. If {X,|a € D} and {Y3 |8 € E} are collections of sets and for
each § € E there is a function ys : X, () — Yp then the collection {ps |3 €
E} induces a function @ : [[,cp Xo — [[scp Yp defined by ms(®(x)) =
(o) () (i-e., m3(P(x)) = wp(rs(gy)) for each 3 in E.

Theorem 140 Suppose {Xa, fag, D} and {Ya,ga s, E} are inverse limit
systems with upper semi-continuous bonding functions and o : E — D is
a one-to-one function such that if « < 8 in E then o(a) <X o(B) in D. Sup-
pose further that for each a € E there is a function po @ Xy(a) — Ya such
that if o X B in E then vo © fo(a)o(3) = Jap © pp- Then, if © is in liinf,
®(x) is in limg.

Proof. Suppose x € lim f. If o and 8 are in £ and o < 3, then o(a) X o(B),
SO To(a) € fola)a(® (Ta@)) Thus, Yu(Ze(a)) € Yalfo(a)s@) (Ta(s))). Be-
cause To(®(x)) = ValTo)) and Qo © fo@)o@) = gap © Ps, We have
To(®()) € gaplps(Tois))). But, s(rs) = m(P(x)). It follows that
Ta(®(2)) € gap(ms(®(z))) and thus ®(x) € limg. O
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third second first
coord coord coord
in[0,1/2] in[0,1/2] in [0,1/2]

1Q,LL,...)
first coord in [1/2,1]
az,11,...)
second coord in [1/2,1]
0,1/2,1,...)
A2,172,1,...)
third coord in [1/2,1] D3

00,172,...)  ©J12,172,...)
A/2,172,1/2,1, . ..)

fourth coord in [1/2,1
ourth coord in [1/2,1] D2,4 ])1,4
0,0,0,172,...)
: D
fifth coord in [1/2,1] D;s D,s 15
L]
. L]
L]
L]
L]
. « o o 1/2,1/2,1/2,...)
0,1/2,1/2,. ..
0,0,172,...) OL2112,...)

0,0,0,...)

Fig. 2.19 A schematic representation of the inverse limit from Example 139

In the case where g is a mapping for each 3 in F, the function induced by

{¢p| B € E} is a mapping. This observation and Theorem 140 lead directly
to the following theorem.

Theorem 141 Suppose {Xo, fap, D} and {Y3,9a3, E} are inverse limit
systems with upper semi-continuous bonding functions such that lin [ is
nonempty and o : E — D is a one-to-one function such that if a <X (8 in
E then o(a) <X o(B) in D. Suppose further that for each § € E there is a
map pp : Xq(3) — Y such that if a X B in E then 9o 0 f4(a)o(8) = a5 Ps-
Then, ling is nonempty and ¢ = D| linf is a mapping oflinf into lﬂlg.

As in the previous theorem, in the following we denote | lim f by ¢. If D
is a directed set, a subset F of D is said to be cofinal in D provided if o« € D
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there is an element 3 of E such that o < 3. It is not difficult to show that if
E is cofinal in D then E is a directed set. If {X,, fo 3, D} is an inverse limit
system and FE is a cofinal subset of D, there is an associated inverse limit
system {Y3, g g, E} such that Yz = X3 for each § € E and gog = fop for
each o and 3 in F such that a < 3. We refer to this system over F as the
restriction of {Xa, fag, D} to E.

Theorem 142 Suppose D = {1,2,3,...} and {X,, fnm, D} is an inverse
limit system with upper semi-continuous bonding functions such that lin I
is nonempty, E is a cofinal subset of D, and {Yi, Gnm, E} is the restriction
of {Xn, fam,D} to E. For each m € E, let p,, denote the identity on X,,.
Then, the function ¢ induced by {p,, |m € E} is a mapping from lﬂl f onto
lim g.

Proof. By Theorem 141, ¢ : lﬂlf — limg is a mapping. Suppose y is in
limg. Let  be a point of linf chosen as follows. For m € FE let x,,, = ym,.
For n and m in E with n < m —1 and no element of E between them, choose
Tn+1 € fnt1m(@m) such that x, € fnt1(zn+1). (Such a choice is possible
because frnm = fun+t1 © fnt1m.) Next, choose ,12 € frni2m(Tm) such that
ZTnt1 € fnt1nt2(Zny2). Continuing, we may choose x; for each i, n < i < m,
so that z; € fir(xx) for i <k < mand z, € f,;(x;). This process determines
a point z of lim f such that p(z) = y. O

In the case where the bonding functions are mappings, we can draw the
stronger conclusion in Theorem 142 that the induced mapping is a homeo-
morphism even for directed sets D other than the set of positive integers.
(See Theorem 165 of Section 2.10.) One crucial difference between inverse
limits with upper semi-continuous bonding functions and those with (ordi-
nary) bonding maps is that the map induced by identities (i.e., each map in
the collection {¢g|B € E} is the identity) need not be a homeomorphism.
In Example 138 we saw that @1 f and @1 f o f may not be homeomor-
phic. Example 143 not only produces another example demonstrating this
phenomenon but also shows that the induced map need not be a homeomor-
phism when the bonding functions have values that are closed sets. In this
example, £ = {1,3,5,...} and ¢,, = Id for each n € E.

Example 143 (The Hurewicz continuum) Let G(f) be the union of the
four straight line intervals joining the points (0,1/2) to (1/2,1), (1/2,1) to
(1,1/2),(1,1/2) to (1/2,0), and (1/2,0) to (0,1/2). Then, for g= fof, lim f

and lim g are not homeomorphic (see Figure 2.20).

Proof. Note that the four arcs whose union is G(f) form a diamond in I
Label these arcs A; for i € {1,2,3,4} in a clockwise direction so that A; C
[0,1/2]  [1/2,1] and Ay C [0,1/2] x [0/1/2]. Let K = lim f. The set K

contains a simple closed curve that is the union of the four arcs B; for i €
{1,2, 3,4} determined as follows. If i = 2 or i = 4, B; is the set of all points



108 2 Inverse Limits in a General Setting

(1/2,1)

©,172)

(1/2,0)

Fig. 2.20 The function from Example 143

p € K such that for each n, (pnt1,pn) € A;. If i = 1 or 3, then B; is the set
of all points p € K such that, for each odd n, (pn+1,pn) € A; and, for each

even n, (pn+17pn) S Ai+2(7nod4)~

On the other hand, the graph of g = fo f is the union of two arcs, one from
(0,0) to (1,1) and the other from (0,1) to (1,0) and lim g is homeomorphic
to the cone over a Cantor set (see Example 132) so lim f and limg are
not homeomorphic. (See also Example 138 in Section 2.7 for another such
example.)

Finally, let D denote the set of positive integers, F the set of odd positive
integers, and ,, the identity on [0, 1] for each n € E. The surjective induced
map ¢ : 1&1 f— @ f2 from Theorem 142 cannot be a homeomorphism. O

Perhaps also of interest is the continuum K = 1&1 f. K contains two
mutually exclusive Cantor sets: Cy consisting of all points p of K such that
pn = 1/21if n is even and C} consisting of all points p of K such that p,, = 1/2
if n is odd. If a is a point of Cy and b is a point of (', then, for each n, there
is an integer i,, where 1 < 4, < 4 such that (an+1,a,) and (b,y1,b,) are
endpoints of the arc A, . It can be shown that the set of all points x of K
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such that (z,41,x,) is in A4; is an arc joining @ and b and K is the union
of all these arcs, no two of which have a point in common that is not an
endpoint. This is the example of a universal continuum given by Hurewicz in
[5]. In fact, Hurewicz showed that if C' is a (metric) continuum then there
exist a subcontinuum H of K and a monotone map of H onto C.

In the case where D = E, we are able to draw some stronger conclusions
regarding the nature of the induced map from Theorem 141.

Theorem 144 Suppose {Xo, fap, D} and {Ya,gag, D} are inverse limit
systems with upper semi-continuous bonding functions such that linf i
nonempty. Suppose further that for each o € D there is a one-to-one map-
Ping po @ Xo — Yo such that if o = B in D then o0 fo g = gagops. Then,
©=d| linf 18 a one-to-one mapping ofliilf into lim g.

Proof. By Theorem 141, ¢ is a mapping from hmf into hmg so we need
only show that ¢ is one-to-one. Suppose ¢(x ) = o(t). Then if « € D,
Ta(p(x)) = 7o (p(t)). From this we conclude that ¢, (24) = @ (ts) for each
«a € D. Each ¢, is 1-1, thus z, = t, for each o € D, consequently x =¢. 0O

Theorem 145 Suppose {Xo, fap, D} and {Ya,gag, D} are inverse limit
systems with upper semi-continuous bonding functions such that lin [ is
nonempty. Suppose further that, for each o € D, ¢, : Xo — Yo is a
one-to-one and surjective mapping such that if 5 is in D and o < 3 then
Yoo fap =Ggapops and p = <I>|l£1f Then, ¢ : linf — @g s one-to-one
and surjective.

Proof. By Theorem 141 with £/ = D and for each o € D, o(a) = o, lim g is
nonempty. By Theorem 144 ¢ is a 1-1 mapping of liinf into liilg, so that
we only have to check that ¢ is surjective. Let ¢ be the function from }iing
to lim f induced by {p 1| a € D} as given by Theorem 140. Suppose that y
is in lim g and let = ¥(y). Then x € lim f and p(x) = y because if a € D,

Wa(w) = Sooc(xoc) = (Pa((pgl(yoc))' a

Corollary 146 Suppose {Xa, fap, D} and {Yu,ga 3, D} are inverse limit
systems on compact Hausdorff spaces with upper semi-continuous bonding
functions. Suppose further that, for each o € D, v, : Xo — Yy is a home-
omorphism and if B is in D and o = B then ¢, © fop = gap © pp and
© =] linf Then, ¢ : linf — limg is a homeomorphism.

As an application of Corollary 146 we present the following example. We
begin with a lemma.

Lemma 147 Let g be the mapping from [0, 1] onto [0, 1] whose graph consists
of two straight line intervals, one from (0,0) to (1/2,1) and the other from
(1/2,1) to (1,1/2). Suppose f : [a,b] — [a,b] is a mapping of the interval
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[a,b] onto itself and ¢ is a point of the open interval (a,b) such that f(a) =
a, f(c) =b, f(b) = ¢, and h = flla,c] and k = f|[c,b] are homeomorphisms.
If ¢ is a homeomorphism of [0,1] onto [a,b] such that v(0) = a,¢(1/2) = c,
and (1) = b then there is a homeomorphism 1 : [0,1] — [a,b] such that
’(/}(O) :aﬂl}(l/z) = Cﬂ/’(l) =b, and fop =pog.

Proof. Let ¥(x) = h™'(p(g(2))) if 0 < = < 1/2 and ¢(z) = _1(90( (x))) if
1/2 <2 < 1. Because g(1/2) = 1,p(1) =1, and h=1(1) = k71(1) = 1/2, we
see that ¢ is a mapping. Suppose x and y are in [0, 1] and = # y. If one of =
and y is in [0, 1/2] and the other is in (1/2, 1], then by definition ¢ (x) # ¥(y).
If both are in [0, 1/2] or both are in (1/2, 1] then again ¢ (z) # 1 (y) inasmuch
as g(z) # g(y). Thus, v is one-to-one and therefore is a homeomorphism. O

Example 148 Suppose f : [a,b] — [a,b] is a mapping of the interval [a,b]
onto itself and c is a point of the open interval (a,b) such that f(a) = a, f(c) =
b, and f(b) = c and f|[a,c] is a homeomorphism as is f|[c,b]. Then, lim f is
homeomorphic to the closure of the graph of y = sin(1/z) on (0, 1].

Proof. Let g : [0,1] — [0, 1] be the map whose graph consists of two straight
line intervals, one from (0, 0) to (1/2, 1) and the other from (1/2,1) to (1,1/2).
In Chapter 1 we showed that hm g is homeomorphic to the closure of the
graph of y = sin(1/z) on (0, 1]. We now show that lim f and lim g are home-
omorphic.

Let 1 be the homeomorphism of [0, 1] onto [a,b] such that the graph of
¢ consists of two straight line intervals, one from (0,a) to (1/2,¢) and the
other from (1/2,¢) to (1,b). Inductively, suppose 1, p2, @3, .. ., @, have been
defined so that for 1 < i < n we have ;(0) = a,v;(1/2) = ¢, ¢;(1) = b, and,
ifi >1,p;-109 = fop;. By Lemma 147 there is a homeomorphism ¢, 1
such that ©,4+1(0) = a, ©n11(1/2) = ¢, on+1(1) = b, and p, 09 = f o Ypi1.
With the sequence ¢ thus defined it follows from Corollary 146 with D as
the set of positive integers that }gn f and @g are homeomorphic. a

Suppose X is a compact Hausdorff space. If f : X — 2X and ¢ : X —

are upper semi-continuous functions, f and g are topologically conjugate
provided there is a homeomorphism A such that h(X) = X and ho f = goh.
We conclude this section with a theorem that provides sufficient conditions
under which inverse limit sequences with topologically conjugate bonding
functions produce homeomorphic inverse limits.

2X

Theorem 149 Suppose D is the set of positive integers and X is a compact
Hausdorff space such that for each i in D, X; = X. If f : X — 2% and
g : X — 2% are topologically conjugate upper semi-continuous functions,
then linf is homeomorphic to liilg.
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Proof. X is a compact Hausdorff space and D is the set of positive integers,
thus Theorem 111 gives that 1&1 f and @g are not empty. There is a home-
omorphism h : X — X such that h(X) = X and ho f = go h. Let each map
w; = h and let ¢ : lglf — lim g be the mapping induced by o1, 2, ¢3, .. ..
By Theorem 145, ¢ is 1-1 and surjective. Because ¢ is a 1-1 mapping from a
compact space onto a Hausdorff space, ¢ is a homeomorphism. a

2.9 Upper semi-continuous functions that are unions of
functions

In this section we consider an interesting class of upper semi-continuous func-
tions, those whose graphs are unions of the graphs of (set-valued) functions.
We are primarily concerned with conditions that ensure that inverse limits
of inverse limit sequences with such functions as bonding functions are con-
nected. Of course, without some conditions on the functions, the inverse limit
may not be connected because the union of the mapping that is identically
0 on [0, 1] with the mapping that is identically 1 on [0, 1] yields a Cantor set
for its inverse limit; see Example 2.3. Although the subject of this section is
of interest in and of itself, some who are looking at applications of inverse
limits in economics have asked about the nature of inverse limits with upper
semi-continuous functions that are unions of mappings.

If f: X - 2Y and g : X — 2 are set-valued functions, we say that f
and g have a coincidence point provided there is a point z of X such that

f(x)ng(x) #0.

Lemma 150 Suppose X1, X5, X3,... is a sequence of compact Hausdorff
spaces and f; : X;11 — 2% is an upper semi-continuous function for each
positive integer i. If n is a positive integer, g : Xpi1 — 2% is an upper
semi-continuous function such that f, and g have a coincidence point, f; is
surjective for each i > n, and ¢ is a sequence of functions such that p; = f;
fori#mn and p, = g, then linf and lim @ have a point in common.

Proof. Inasmuch as f, and g have a coincidence point, there are points ¢ of
Xn+1 and z of X, such that z € f,,(t)Ng(t). Because f; is surjective for each
i > n, by Theorem 112 there is a point = of lim f such that z,11 =t and
zn, = 2. Because z € g(t), = is in lim ¢. O

Suppose X and Y are compact Hausdorff spaces and F is a collection of
set-valued functions from X into 2¥. A function f € F is said to be universal
with respect to F provided f has a coincidence point with each member of
F. Recall that C'(X) denotes the connected elements of 2.
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Theorem 151 If F is a collection of upper semi-continuous functions of a
continuum X into C(X) one of which is surjective and universal with respect
to F and f is a closed subset of X x X that is the set-theoretic union of the
graphs of the functions in the collection F, then f : X — 2% is an upper
semi-continuous function such that, if f; = f for each positive integer i, then
linf s a continuum.

Proof. f is a closed subset of X x X and each point of X is a first coordinate
of some point of f, therefore f is upper semi-continuous. Because @1 f is
compact, we only need to show that this inverse limit is connected. Suppose
f1 € F and f; is surjective and universal with respect to F. Choose a point
T € liLnfl and let y € linf There exists a sequence @1, @2, p3,... such
that ¢; € F and y; € ¢i(yi+1) for each positive integer i. Let Cy = lim f,
and, if n is an integer with n > 1, let C), be the inverse limit of the sequence
P1,92, s Yn—1, f1, f1, f1,--.. Foreach n, C), is a continuum by Theorem 126
and, by Lemma 150, C,, N Cpy1 # 0. Thus, U, C; is connected. Moreover,
for each m, because fi is surjective there is a point p™ of C),, such that
mi(p™) = y; for i < n. It follows that y € C and because « € C1, lim f is the
union of a collection of continua all containing . Thus lgl f is connected.
O

The set-theoretic union of a finite collection of mappings of [0,1] into
itself is a closed subset of [0, 1] x [0, 1], thus we have the following corollary
to Theorem 151. In Section 2.12 we show that the continuum that results in
Theorem 152 is one-dimensional (see Theorem 185).

Theorem 152 If F is a finite collection of mappings from [0,1] into itself
one of which is surjective, f is the set-theoretic union of the maps in F, and
fi = f for each positive integer i, then lﬂl f is a one-dimensional continuum.

Just after Example 137 we observed that the preceding theorem does not
hold if F is allowed to contain upper semi-continuous functions. In fact, as
we show in our next example, there is a two-element collection F consisting
of one upper semi-continuous function having a connected inverse limit and
one mapping that has a union with a nonconnected inverse limit.

Example 153 (An upper semi-continuous function and a map whose
union produces a nonconnected inverse limit) Let g1 be the function
from Ezample 136 and go be the piecewise linear mapping passing through
(0,1),(3/4,1/4),(7/8,1/2), and (1,0) and let F = {g1,g2}. If f = G(g1) U g2,
lim f is not connected (see Figure 2.21 for the graph of f).

By an argument virtually identical to that provided in Example 114 it may
be shown that if f is the upper semi-continuous function whose graph is the
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0,1) (L1)

(7/8,1/2)

(1/4,1/4)

(3/4,1/4)

(0,0) (1,0)

Fig. 2.21 The function from Example 153

set-theoretic union of the graphs of g; and go, then @1 f is not connected.
In fact {z € lim f |21 = 22 = 1/4, 3 = 3/4} is both open and closed in the
inverse limit. This inverse limit contains (I x {1} x {0})°°.

For the remainder of this section we consider unions of mappings. We are
interested in inverse limits with upper semi-continuous functions on [0, 1] that
are unions of finitely many mappings that are not necessarily surjective such
as the function in Example 143 (Figure 2.20). First we prove a lemma that
is of use in the proof of Theorem 155.

Lemma 154 If f : [0,1] — [0, 1] is a mapping from [0, 1] into itself such that
£2([0,1]) = £([0,1]), t € £([0,1]), and f; = f for each positive integer i, then
there is a point x € linf such that 1 =t.

Proof. Let t be a point of f([0,1]) and let z; = ¢. Because f(f([0,1])) =
£([0,1]) and ¢ € f([0,1]) there is a point x5 of f([0,1]) such that f(x2) = z1.
Similarly, because x5 is in f([0,1]) = £2(]0,1]), there is a point x3 € ([0, 1])
such that f(x3) = z2. Continuing in this manner we obtain a point = € lim f
such that 1 = ¢. O

Theorem 155 Suppose F is a finite collection of mappings from [0,1] into
itself that contains a mapping f1 with the following properties.
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1. f1(]0,1]) is nondegenerate
2. If g € F there is a point py € f1([0,1]) such that fi(py) = g(py)
3. If g € F then g(f1([0,1])) = g([0,1]).

If f is the set-theoretic union of all the elements of F and f; = f for each
positive integer i, then linf 18 a one-dimensional continuum.

Proof. Choose a point y in lim f. There exists a sequence 1, @2, @3, ... such
that ¢; is in F and ¢;(y;+1) = y; for each positive integer i. Let C7 be the
inverse limit of the sequence fi, f1, f1,... and if n is an integer greater than
one, let C), be the inverse limit of the sequence 1, 92,...,0n-1, f1, f1,---.
Using condition (2), it follows from Lemma 150 that C; and C;11 have a point
in common for each positive integer i. Thus, C; UC;UC3U- -+ is connected.
Using Lemma 154 with ¢ = y,, there is a point @ of lim f; such that z; = yn.
The point p, = (y1,92, .., Yn, T2, Ts3,...) belongs to C,, and the distance
from y to p, is less than 1/2". Thus, y belongs to C1(C; UCo UC3 U --+).
Each point of lim f belongs to a continuum lying in lim f that contains the
continuum @1 f1, therefore lin f is a continuum.

From condition (1) and Lemma 154 it follows that lim f; is nondegenerate.
Thus, the dimension of lim f is one by Theorem 185. ad

Theorem 156 If f : [0,1] — 2% is an upper semi-continuous function
that is the union of a finite collection F of mappings from [0,1] into itself
one of which is surjective and f; = f for each positive integer i, then linf
is a one-dimensional continuum that contains a copy of every inverse limit
limg where g; € F for each i.

Proof. Theorem 152 yields that @1 f is a continuum. It is easy to see that
liLn f contains a copy of every inverse limit lim g where g; € F for each 1.
That the dimension of the inverse limit is one follows from Theorem 185 from
the final section of this chapter. ad

Richard M. Schori [11] constructed a chainable continuum that contains
a copy of every chainable continuum. Although Schori’s result is stronger, we
still observe the following.

Corollary 157 There exists an upper semi-continuous function f such that
if fi = f for each positive integer i, then linf is a one-dimensional contin-
uum that contains a copy of every chainable continuum.

Proof. There exist two mappings ¢ : [0,1] — [0,1] and ¢ : [0,1] — [0,1]
such that if M is a chainable continuum then there exists a sequence k such
that k; € {¢, ¢} for each i and M is homeomorphic to limk, [2] or [12]. Let
f =p U and apply Theorem 156. ad
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2.10 Theorems for inverse limit systems with bonding
functions that are mappings

In this section we consider inverse limit systems in which the bonding func-
tions are mappings and contrast some of these results with the fact that
they fail for systems with upper semi-continuous bonding functions. Earlier
in this chapter we established the inverse limit is a nonempty compact Haus-
dorff space for any inverse limit system {X,, fo 3, D} where each X, is a
nonempty compact Hausdorff space and each f, is a mapping; see Theorems
107 and 111. Furthermore, in Theorem 117 we showed that the inverse limit
of a system with mappings is a Hausdorff continuum when each factor space
is a Hausdorff continuum.

2.10.1 A basis for the topology

One useful feature of inverse limits of systems of mappings lies in the fact
that a collection of open sets that looks as if it were only a subbasis for the
topology of the inverse limit is, in fact, a basis for the topology of the inverse
limit. We see this in our next theorem. In its proof we employ the convention
that the domain of 7, is the inverse limit space.

Theorem 158 Suppose {Xq, fo g, D} is an inverse limit system where each
fap is a mapping and M = lim f is nonempty. Then, B = {m;1(0) | a €
D and O is an open subset of X} is a basis for the topology for linf

Proof. Choose an element R of the usual basis for the topology of the product
space IT and let  be an element of RN M. Then R =[], Us where each
factor is open and U, = X, except for finitely many elements of D, say
Qa1,Qa,...,0,. There is a member a of D such that a; < « for 1 < i < n.
Because f,, o is a mapping for each i, there is an open subset O of X,
containing x,, such that f,, o(0) C U,, for 1 <i < n. Then, m,(O) contains
x and is a subset of RN M. It follows that B is a basis for the topology of
lim f. ad

2.10.2 Closed subsets

Suppose {Xa, fa g, D} is an inverse limit system and M = lim f is nonempty.
If H is a closed subset of M, we denote m,(H) by H,. For convenience, if
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f:X —2Y and A C X and no confusion should arise, we may denote f|A
by f.

Theorem 159 Suppose {Xq, fo g, D} is an inverse limit system such that
each fop is a mapping and M = lgnf is nonempty. Then, if H is a closed
subset of M, H is the inverse limit of the inverse limit system {Heu, ga 3, D}
where go g = fap | Hp.

Proof. Tt is immediate that H C @{Ha,ga@ D}. On the other hand, sup-
pose x € @{Ha,gag,D}. Then, z, € H, for each @ € D. Therefore, if
a € D and O, is an open subset of X, such that = € 7,1(0,), there is a
point p of H such that p, = x4. Thus, p € 7,(O04). Each basis element
containing x contains a point of H, therefore € H. Because H is closed,
T cH. a

Corollary 160 Suppose {Xa, fag, D} is an inverse limit system such that
each fop is a mapping and M = linf is nonempty. Then, if H is a closed
subset of M such that H, = X, for each o € D, we have H = M.

a,n

(0,0) (1,0)

Fig. 2.22 The function from Example 161
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2.10.3 Closed subsets of a system with upper
semi-continuous bonding functions

That each of Theorem 158, Theorem 159, and Corollary 160 fail to hold for
inverse limit sequences using upper semi-continuous bonding functions may
be seen from the following example. We specify the upper semi-continuous
bonding function by means of its graph.

Example 161 Let D be the set of positive integers and let G(f) be the subset
of [0,1] x [0, 1] containing the point (1,0) and the line joining (0,0) and (1,1)
(see Figure 2.22).

Proof. Let K = 11_ m f. Without proof, we note that K is the union of an arc
={(t,t,t,...)|t €[0,1]} and a sequence of points p1, p2,Pps,... not in A
converging to (0,0,0, .

4
0,0,...) where p; has its first ¢ coordinates 0 and all other
coordinates 1.

To see that Theorem 158 fails for K, one needs only to note that the point
(0,1,1,1,...) of K belongs to R = [0,1/4) x (3/4,1] x Q but R fails to
contain any set of the form 7; '(O) where O is open in [0, 1]. Indeed, if O is
an open subset of [0, 1], O contains a point ¢ of [0, 1] not in both [0,1/4) and
(3/4,1]. If 4 is a positive integer (¢,¢,¢,...) is a point of 7; *(O) that is not
in R.

Furthermore, H = {(¢,t,t,...) € M|t € [0,1]} is a closed proper subset
of K such that H; = [0, 1] for each positive integer ¢ so Theorem 159 and
Corollary 160 fail for f. a

2.10.4 Intersections of closed subsets of the inverse
limat

Another interesting property of inverse limit systems with mappings is found
in the following theorem. As before, if H is a closed subset of @1 f, we denote
o (H) by Hg.

Theorem 162 Suppose {X,, fa g, D} is an inverse limit system such that
each fop is a mapping, and H and K are closed subsets of linf Then,
HNK =lim{H, N K,, fap|(Hg N Kg),D}.

—

Proof. Because mo(HNK)C H,NK, foreachae D, HNK C @{Ha N
Ko, fap|(Hg N Kp), D}. On the other hand, if @ € im{H, N K, fag|(Hg N
Kp), D} then xq € HoNK, foreach a € D so @ € im{H,, fog|Hp, D} = H.
Similarly, m{Ha NKa, fap|(HsNKg),D} C K. ad
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aa,n

(1/4,5/8)

(3/4,3/8)

(0,0)

Fig. 2.23 The mapping from Example 163

In the previous theorem, 7, (H N K) is not necessarily equal to H, N K,
for any o € D even if D is the set of positive integers. An example of this
phenomenon follows.

Example 163 Let f : [0,1] — [0,1] be the piecewise linear map passing
through the points (0,0),(1/4,5/8),(3/4,3/8), and (1,1). Then, lim f is the
union of two arcs H = lim{[0,5/8], f|[0,5/8]} and K = lim{[3/8,1], f|[3/8,1]}.
Then, HNK = (1/2,1/2,1/2,...) but H;NK; = [7/16,9/16] for each positive
integer i (see Figure 2.23).

Proof. The maps f][0,5/8] and f|[3/8,1] are topologically conjugate, so H
and K are homeomorphic by Theorem 149. To see that H is an arc, we
employ Theorem 39 from Chapter 1 to observe that H is the closure of a
ray with remainder lim{[1/4,5/8], f[[1/4,5/8]}. The slope of f on [1/4,5/8]
is —1/2, thus (), f™([1/4,5/8]) = {1/2}. It follows from Theorem 113 that
the remainder is a single point. a
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2.10.5 The subsequence theorem

One of the fundamental tools in analyzing the nature of inverse limits of
inverse limit systems using mappings as bonding functions is the subsequence
theorem, Theorem 166. Unfortunately, this theorem does not hold for general
inverse limit systems with upper semi-continuous bonding functions under
study earlier in the present chapter (see Example 143). Here we state and
prove a general version of the subsequence theorem for inverse limit systems
in which the bonding functions are mappings.

Theorem 164 Suppose { X, fa g, D} is an inverse limit system over a di-
rected set D such that the inverse limit is nonempty, each fo 3 is a map-
ping, and E is a cofinal subset of D. If {Yp, fap, E} is the restriction of
{Xa, fap, E} to E, then there is a one-to-one mapping from linf ontolimg.

Proof. For each v in E, let ¢, denote the identity on X,. By Theorem 141
the function ¢ induced by {p, |« € E} is a mapping of lim f into limg.
Suppose y € limg and v € D. We now construct a point of lglf so that
p(x) =y. If v € E let 2, = y,. Suppose v is not in E. There exists an
element ¢ of E such that v < §. Let z, = f,s(ys). Every bonding function
is a mapping, thus the choice of =, is independent of the choice of § and it
is not difficult to check that @ is in lim f so ¢ is surjective. To see that ¢ is
1-1, suppose each of & and t is in lglf and p(z) = p(t). Let a be a member
of D. There is a member 3 of E such that o < 3. Because g € E, 25 = tg,
80 fap(x3) = fap(t). Thus, z, =t, for each a« € D, so z = t. O

Theorem 165 Suppose D is a directed set and X, is a compact Hausdorff
space for each o € D. Suppose further {Xa, fap, D} is an inverse limit sys-
tem where each fopg is a mapping, and E is a cofinal subset of D. Then
liLn{Xa,fag,D} and liin{Xa,fa/g,E} are homeomorphic.

Proof. The 1-1 mapping ¢ from Theorem 164 is a homeomorphism because
lIm{X,, fos, D} is compact and lim{X,, fo g, E} is Hausdorff. O
pra— pra—

Of course, if D is the set of positive integers, any increasing sequence
of positive integers ni,n2,ng,... is cofinal in D. This observation leads to
a restatement of Theorem 165. Although it is merely a restatement of the
previous theorem in the specific case that D is the set of positive integers, it is
of enough value to the theory of inverse limits to merit a separate statement.
We recall the following standard notation. If X is a sequence of spaces, f
is a sequence of mappings such that f; : X;11 — X, and i < j, then f;; :
X;— X;=fiofix10---0 fj_1 and f;; is the identity on X;.

Theorem 166 (The subsequence theorem) Suppose D is the set of pos-
itive integers and ni,n9, N3, ... 18 an increasing sequence of positive integers.
Suppose further that X is a sequence of compact Hausdorff spaces and f is
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a sequence of mappings such that f; : X;41 — X; for each i. Let g be the
sequence of maps such that g; = fn, for each i. Then, linf is homeo-
morphic to liilg.

MNi41

We end this subsection with an application of Theorem 166. We employ
the following terminology in the next theorem. If f : X — Y is a mapping,
we say that f factors through Z if there are maps g: X — Zand h:Z — Y
such that f =hog.

Theorem 167 Suppose {X;, fi} is an inverse limit sequence such that, for
each positive integer i, f; is a mapping and ny, Na, N3, ... IS an INCreasing
sequence of positive integers such that f, n,., factors through [0,1] for each
i. Then M = linf is homeomorphic to an inverse limit on [0, 1]; that is, M
is a chainable continuum.

Proof. By Theorem 166, M is homeomorphic to lim g where g; = fn, 5, for
each i. Because f,, n,., factors through [0, 1], there exist maps ; : [0,1] —
X, and ¢; © Xy, — [0,1] such that fp,n, ., = ¥ o ¢;. It follows from
Theorem 166 that M is homeomorphic to lim{Y;, h;} where Y¥; = Xniiny 2
and h; = 9i11y)2 if 7 is odd, and Y; = [0, 1ﬁnd hi = pis2 if i is even. One
final application of Theorem 166 yields that lim{Y;, h;} is homeomorphic to
lim k where k; = ¢; 0 ¢i41, a map from [0, 1] to [0, 1]. O

Of course, a more general theorem than the one stated here for [0, 1] holds,
but this theorem illustrates a way that the subsequence theorem can be used.

2.10.6 Other induced homeomorphisms

Other important consequences of Theorem 165 are found in the next two
theorems.

Theorem 168 (The shift homeomorphism) Suppose {X;, fi, D} is an
inverse limit sequence over the set of positive integers where, for each i, X;
is a compact Hausdorff space and f; is a mapping. Let E = D — {1}. Then,
h lin{X“f“D} - lln{X’mflaE} given by h(m) = (IQ,I37I47. . ) is a
homeomorphism.

The homeomorphism A from Theorem 168 is called the shift homeomor-
phism. In dynamics, one reason for interest in inverse limits is that by passing
to the inverse limit, one is able to replace a dynamical system consisting of
a topological space and a continuous function with a (possibly more compli-
cated) space (the inverse limit) and a homeomorphism (the shift). In the case
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where each factor space X is the same topological space X and each bonding
map f; is the same map f, the inverse of the shift homeomorphism is given
by h=Y(x) = (f(21), 21, 22,...). The map A~ is also called the shift homeo-
morphism by many authors (consequently, in each instance we have tried to
make it clear which of these “shifts” we are using as we did in Theorem 20
in Chapter 1). It is interesting to note that, in this case, h=! is induced by a
sequence of mappings that are not necessarily 1-1, p; = f for each i.

Our next theorem is another valuable tool in analyzing inverse limits with
a constant sequence of factor spaces and a constant sequence of bonding
maps, the so-called inverse limits with a single bonding map. In the case
where we have an inverse limit with a single bonding map, we denote the
inverse limit sequence by {X, f} and the inverse limit by lmf. Iff: X — X
is a mapping, f" : X — X denotes the n-fold composition of f with itself.

Theorem 169 Suppose X is a compact Hausdorff space and f: X — X 1is
a mapping. If n is a positive integer, linf is homeomorphic to lﬂlf”

Proof. Let n; =1 and ngq41 =ni +n for k=1,2,3,... and apply Theorem
166. a

2.10.7 Inverse limits as sequential limiting sets

Suppose M is a sequence of sets in a topological space. By the limiting set
(or lim sup) of the sequence is meant the set to which the point P belongs if
and only if it is true that if U is an open set containing P then U contains
a point of M; for infinitely many integers i. By the sequential limiting set of
the sequence is meant the set that is the limiting set of every subsequence of
M.

Theorem 170 Suppose D is the set of positive integers and {X;, fij, D} is
an inverse limit sequence where each X; is a compact Hausdorff space and
each map f;; is surjective. Let p be a point of IT = [],. o X; and, for each
positive integer n, let hy, : X, — IT be given by m;(hy(z)) = fin(x) ifi <n
and w;i(hn(x)) = p; if n < i. Let Y, = hy(X,,). Then, for each n, h, is a
homeomorphism and linf 1s the sequential limiting set of the sequence Y .

Proof. That each h, is a homeomorphism is an immediate consequence of
the fact that h,, is 1-1 and 7; o h,, is continuous for each 7. Let K = linf
and let = be a point of K. If Y,,,,Y5,, Ya,,... is a subsequence of Y and
O = [];50O; is a basic open set containing x, then, inasmuch as there is a
positive integer j such that O; = X; for ¢ > j, O contains a point of Y,,, for
each n; > j so z is in the limiting set of Y,,,, Yn,, Yn,, . ... On the other hand
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if  is in the limiting set of Y,,,, Yy,, Yn,, ... and O is a basic open set in the
product space containing x there is a positive integer n such that if 7 > n
then O; = X;. Because O contains a point y of Y,,, for some nj > n and
there is a point t of K such that ¢; = y; for i < ny, O contains a point of K.
Because K is closed, x is in K. a

2.10.8 Inverse limits as intersections of closed sets

We close Section 2.10 with a theorem relating inverse limits and intersections
of monotonic collections of closed sets.

Theorem 171 Suppose D is a directed set and {X, |« € D} is a collection
of topological spaces such that if « =< 3 in D then Xg is a subset of X,.
Furthermore, if a <X 8 in D, let fop be the identity on Xg. Then, (N cp Xa
is homeomorphic to lim f. Moreover, (,cp, Xo # 0 if and only if lim f # 0.

Proof. The point  of [],.p Xo is in hmf if and only if there is a point p
of N,ep Xa such that x, = p for each'a € D. Let h : lim f — ,ep Xa be
given by h(m) is the point p such that z, = p for each a € D. That b1 is
a homeomorphism follows from the observation that the composition of h~!
with each projection is the identity on (), p Xa. It is clear that (. p Xa # 0
if and only if lim f # 0. O

2.11 Some theorems for inverse limit systems with
metric factor spaces

In this section we present some theorems for inverse limits that require a
metric on the factor spaces. Every metric space has an equivalent metric
bounded by 1, thus we assume that all of our metric spaces have a metric
bounded by 1. If (X1, d1), (X2, d2), (X3,ds), ... is a sequence of metric spaces
each with a metric bounded by 1, then a metric for [],., X; is given by
d(z,y) = >, di(xs,y:)/2". This is the metric that we use for the inverse
limit.

Theorem 172 Suppose {Xo, fa g, D} is an inverse limit system such that
X4 is a compact metric space for each o € D and each bonding function is a
mapping. If D has a countable cofinal subset then linf 18 a metric space.
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Proof. Suppose E is a countable cofinal subset of D. By Theorem 165, @1 f
is homeomorphic to @{Xa, fa g, E}. The latter is a metric space because it
is a subset of the metric space ],z Xa- ad

For the remainder of this chapter we deal only with inverse limit sequences
in metric spaces.

Our next theorem, although easy to prove, is of fundamental importance to
inverse limits in continuum theory. By the diameter of a subset A of a metric
space with metric d we mean the least upper bound of {d(z,y)|z,y € A}.
We denote the diameter of A by diam A.

Theorem 173 Suppose {X;, f;} is an inverse limit sequence where, for each
i, X; is a compact metric space. If € > 0 there exist a positive integer n and
a positive number § such that if A is a subset of X, and diam A < ¢ then
diam 7, }(4) <e.

Proof. Let € > 0. There is a positive integer n such that > -, 277 < ¢/3. For
each ¢ < m, f;, is uniformly continuous so there is a positive number 6 < £/3
such that if p and ¢ are points of X,, and d,,(p, q) < 6 then d;(fin(p), fin(q)) <
€/3. Suppose A is a subset of X,, and the diameter of A is less than d. If «
and y are points of 7,1 (A) then d,,(z,,yn) < & so d(z,y) < 2¢/3. O

One consequence of Theorem 173 is the following theorem that generalizes
the theorem from the first chapter that inverse limits on [0, 1] are chainable.

Theorem 174 If My, Ms, Ms, ... is a sequence of chainable continua and
fi, f2, fs,... is a sequence of mappings such that f; : M; 11 — M;, then linf
is a chainable continuum.

If f: X — Y is a mapping of a metric space X onto a topological space
Y, then f is called an e-map provided diam f~'(y) < ¢ for each point y of
Y. We end this section with a theorem similar to Theorem 173. Its proof is
left to the reader.

Theorem 175 Suppose {X;, fi} is an inverse limit sequence where X; is a
compact metric space and f; is a mapping for each positive integer i. Then,
if € > 0, there is a positive integer n such that if i > n then m; is an e-map.

Mardesié¢ and Segal, [9, Theorem 1*, p. 148], have shown that a converse
of Theorem 175 holds in the case where the factor spaces are connected poly-
hedra (triangulable continua). We state this result without proof, instead
referring the reader to their paper. If IT is a class of polyhedra, a compact
metric space is said to be II-like provided for each € > 0 there exist a poly-
hedron P € IT and an e-mapping f : X — P from X onto P.
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Theorem 176 (Mardesié¢ and Segal) Let IT be a class of connected poly-
hedra. Then, the class of Il-like continua coincides with the class of inverse
limits of inverse sequences {P;, f;} where P; € II and f; is surjective for each
positive integer i.

2.12 Dimension

If G is a finite collection of sets and n is a positive integer, we say that the
order of G is n provided n is the largest of the integers ¢ such that there are
i+ 1 members of G with a common element. Recall that the mesh of a finite
collection G of sets is the largest of the diameters of the elements of G. If
G and H are collections of sets we say that H refines G provided for each
element h of H there is an element g of G such that h C g. If n is a positive
integer, the compact metric space X is said to have dimension not greater
than n, written dim(X) < n, provided, for each positive number ¢, there is a
finite collection of open sets covering X that has mesh less than € and order
not greater than n. We say the dimension of X is n, written dim(X) = n,
provided dim(X) < n and dim(X) £ n — 1. It is convenient to use this
definition of dimension (sometimes called covering dimension) in the study
of inverse limits. For compact metric spaces the property of having dimension
n (respectively, not greater than n) is equivalent to the usual definition of
having small inductive dimension n (respectively, not greater than n) [6,
Theorem V 8, p. 67]. In [6, Theorem V 1, p. 54] it is shown that if X is a
compact metric space with dim(X) < n and G is a finite collection of open
sets covering X then there is a finite collection H of open sets covering X
that refines G' having order not greater than n.

We begin our look at dimension in inverse limits by presenting a theorem
of Nall, Theorem 181, on the dimension of an inverse limit when the bonding
functions have zero-dimensional values. Suppose X1, X5, X3, ..., X, is a finite
collection of compact metric spaces and f1, fa, ..., fn_1 is a finite collection of
upper semi-continuous functions such that f; : X;11 — 2%i for 1 < i < n. Let
G, ={(z1,22,...,2,) € X1 X Xog X -+ x X}, |m; € fi(w;q1) for 1 <i < n}.

Our first lemma is a special case of Theorem 110. By using the directed set
D in that theorem to be the set of integers {1,2,...,n} we have the following.

Lemma 177 Suppose X1, X2, Xs,..., X, is a finite collection of compact
Hausdorff spaces and fi : X;p1 — 2% is an upper semi-continuous function
for 1 <i<mn. Then G, is compact.
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Suppose X1, Xo, X3,..., X, is a finite collection of compact metric spaces
and f1, fa,..., fn_1 is a finite collection of upper semi-continuous functions
such that fiZXi+1 — 2% for 1 <i<n. LetY =X xXox---xX,_1 and
define F, : X, — 2¥ by F, () = {(z1,22, ..., Zn_1) € G',_; |Tn_1 € fu(z)}.
In [10], Nall makes the following useful observation.

Theorem 178 Suppose X1, X2, X3,..., X, is a finite collection of compact
metric spaces and f; : Xip1 — 2% is an upper semi-continuous function for
1 <i < n. Then, F, is upper semi-continuous.

Proof. The graph of F,, is homeomorphic to G/, which is compact by Lemma
177. Theorem 105 yields that F;, is upper semi-continuous. a

Lemma 179 Suppose X1, X2, Xs,..., X, is a finite collection of compact
metric spaces and f; : Xip1 — 2% is an upper semi-continuous function for
1 <i<n. Ifzis a point of X,, such that dim(F,,(x)) > 0 then there exist
an integer j, 1 < j < n, and a point z of X;+1 such that dim(f;(z)) > 0.

Proof. dim(F,(x)) > 0, therefore it contains a nondegenerate continuum K
[6, Theorem D, p.22]. Some projection of K into one of the factor spaces X;
is nondegenerate. Let j be the largest integer i so that the projection of K
into X; is nondegenerate. If j = n — 1, let z = = and it follows that f;(z)
contains a nondegenerate continuum so dim(f;(z)) > 0. If j < n — 1 then the
projection of K into X1 is a single point z. It follows that dim(f;(z)) > 0.

O

If (X1,d1),(X2,d2),...,(Xn,d,) is a finite collection of compact metric
spaces, there are numerous metrics that are compatible with the product
topology on X1 x X5 x---x X,,. One that is particularly convenient is d(z, y) =

Sy dilxiy) /28

Lemma 180 Suppose X1, X2, Xs,..., X, is a finite collection of compact
metric spaces, f; : Xit1 — 2% s an upper semi-continuous function for
1 < i <mn, and m is a positive integer. If dim(X,,) < m and for each i,
1 <i < n and each point x of X;11 dim(f;(z)) = 0 then dim(G),) < m.

Proof. Suppose € > 0 and x is a point of X,. It follows from Lemma 179 that
dim(F,,(z)) = 0 so there exists a finite collection V, of mutually exclusive
open sets covering F,, (z) such that the mesh of V, is less than £/3. Because F,
is upper semi-continuous, there is an open set u, containing x of diameter less
than e such that F,(u;) C V™ (where V,™ denotes the union of all the sets
in V,). The collection of open sets U = {u, |z € X,,} covers the compact set
X, so there is a finite subcollection U’ of U that covers X,,. The dimension
of X,, is not greater than m so there is a finite collection W of open sets
covering X, such that the order of W is not greater than m and W refines
U'. The mesh of W is less than €/2. For each w € W choose a point z,, of
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X, in w such that w,,, Cu,, €U'. Because U’ CU, Fp(wy,) €V . Then,
{v x w|w € W and there is a point z € X,, such that w = w, and v € V,;}
is a collection of open sets covering G, of order not greater than m and mesh
less than e. Thus, dim(G?) < m. O

Theorem 181 (Nall) Suppose {X;, fi} is an inverse limit sequence with
upper semi-continuous bonding functions such that X; is a compact metric
space for each positive integer i and m is a positive integer. Suppose further
that dim(f;(z)) = 0 for each positive integer i and each point © of X;+1. If
there is an increasing sequence ni,Na,N3,... of positive integers such that
dim(X,,) <m fori=1,2,3,..., then dlm(linf) <m.

Proof. Recall that lim f = (., G, where G, = {x € [[;.Xi|z €
fi(xig1) for 1 < i < n}. Observe G,, = G;l X [[;5, Xi- Let € > 0. There
is a positive integer N such that Y .. 27" < &/2. Let 7 be an integer such
that n; > N. By Lemma 180 dim(G),,) < m. Let U be a collection of open
sets of order not greater than m and mesh less than £/2 that covers G, .
Then, {7~ (u)|u € U} is a collection of open sets of mesh less than ¢ and
order not greater than m that covers lim f. a

If each of X and Y is a compact metric space and f : X — 2V is a
function that is the union of finitely many mappings of X into Y, then f is
upper semi-continuous and dim(f(x)) = 0 for each z in X. As a consequence,
we have the following corollary to Theorem 181.

Corollary 182 Suppose n is a positive integer and {X;, fi} is an inverse
limit sequence in which each X; is a compact metric space and each f; is the
union of finitely many mappings. If for each j there is a positive integer i > j
such that dim(X;) < n then dim(lim f) <n.

Of course one consequence of Corollary 182 is that ordinary inverse limits
do not raise dimension. On the other hand, dimension may be lowered by the
ordinary inverse limit construction even if the bonding maps are surjective
as may be seen from the following example.

Example 183 Let ¢ denote the projection of the unit square C' = [0,1]x[0, 1]
onto the interval I = [0,1]. Let ¢ denote a map of I onto C. Let X; = C and
fi=vop foreachi. LetY; = I and g; = ¢ o9 for eachi. Let Z; = C' for odd
integers v and Z; = I for even integers i. Let k; = 1 for odd i and k; = ¢ for
even i. Using ny = 1,ny = 3,n3 = 5,... in the subsequence theorem we see
that linf 18 homeomorphic to llnk: Using n1 = 2,n0 =4,n3 = 6,... in the
subsequence theorem we see that link 18 homeomorphic to liing. Therefore,
lim f is homeomorphic to limg so dim (lim f) < 1 even though each factor
P < =

space is two-dimensional and each bonding map is surjective.



2.12 Dimension 127

By substituting an n-cell or the Hilbert cube for C' in Example 183, we see
that an inverse limit of n-dimensional or even infinite-dimensional continua
can have dimension one.

Actually, the dimension of lim f in Example 183 is one as shown by the
following theorem.

Theorem 184 Suppose {X;, fi} is an inverse limit sequence where X; is a
continuum of dimension one and f; is a surjective mapping for each i. Then,
dim (lim f) = 1.

Proof. Let M = lim f. Because dim(X;) = 1, X; is nondegenerate. Let p
and ¢ be two different points of X;. Each bonding map is surjective, thus
there are points & and y of M such that x1 = p and y; = q. Because M is a
nondegenerate continuum, dim (M) £ 0. By Theorem 181, dim (M) < 1, so
dim (M) = 1. O

In the case that the bonding functions are upper semi-continuous functions
each of which is the union of finitely many mappings, the dimension of the
inverse limit is not greater than one.

Theorem 185 If f; : I — 2! is an upper semi-continuous function that is
the union of finitely many mappings fi, fs, ..., f,zl of I =[0,1] into itself for
each i, then the dimension ofliilf s not greater than one. Moreover, if there
is a sequence g such that g; € {fi,fi,..., f];} for each positive integer i and
liLng 18 nondegenerate then the dimension ofliinf 8 one.

Proof. Inasmuch as f is the union of finitely many mappings, dim(f(¢)) =0
for each t € [0,1]. By Nall’s theorem (Theorem 181), the dimension of lim f
is not greater than one. If there is a sequence g such that g; € {f{,f3,...,f{ }
for each positive integer ¢ and @g is nondegenerate, then lﬂl f contains a
nondegenerate continuum so its dimension is one. a

We close with a proof that one cannot get a 2-cell as an inverse limit
with a single upper semi-continuous bonding function from [0, 1] into 2[*].
Recall that, unless otherwise noted, if f : [0,1] — 2[%! is an upper semi-
continuous function, we consider the domain of the projection m; to be the
inverse limit space, @1 f, whereas f denotes the shift map on lﬂl f given

by f(m) = (x2,23,24,...). In general, the shift map on an inverse limit with
upper semi-continuous bonding functions is not a homeomorphism. However,
when it is restricted to a compact set on which it is one-to-one, its restriction
is a homeomorphism. The following proof is based on work of Nall [10].

Theorem 186 (Nall) Suppose f : [0,1] — 2191 is an upper semi-continuous
function such that if y € |0,1] there exists a point x € [0,1] such thaty € f(z).
Then lim f is not a 2-cell.
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Proof. Suppose M = lim f is a 2-cell. If 0 <t < 1, then 7 H(t) separates M.
Because M is a 2-cell, w7 * (t) is not zero-dimensional [6, Corollary 2, p. 48], so
it contains a nondegenerate continuum H. There is a positive integer m > 2
such that 7, (H) is nondegenerate but m;(H) is a single point for 1 <i < m.
Suppose J is an interval such that 7, (H) = J and if 1 < i < m, let m;(H) =
{t;} where t; = t. Let K = {x € M|a; = t; for 1 <i < mand z,, € J}.
Note that H C K C 7y !(t).

By [6, Theorem IV 3, p. 44], 7 '(J) is 2-dimensional being a closed set
with interior lying in a 2-cell. Let z be a point of 77 *(J). Because z; € J
and J = m,,(H), there is a point w of H such that w,, = z;. Let y be
the point of [0,1]* such that y; = ¢; for 1 < i < m and Y4 = 2i41 for
i =20,1,2,.... Because w € H C M and z € M, it follows that y € K.
Moreover, f™~1(y) = z. Thus, z € f™ 1(K) and we have established that
771(J) € fm1(K). Note that f is 1-1 on K because 7 (K) is degenerate so
f is a homeomorphism on K. In fact, fﬁm*1 is a homeomorphism on K and
fm=1(K) contains a two-dimensional subset so K contains a two-dimensional
subset. But, K is a subset of 71 ! (t) so it follows that 7, *(¢) contains an open
set.

Thus, we have for each t in (0,1), 7y *(t) contains an open set. But, if
s #tand 0 < s,t < 1 then 77 *(s) and 77 *(t) have no point in common
so the 2-cell M contains uncountably many mutually exclusive open sets, a
contradiction. O

Nall actually proves more than we state in Theorem 186. He shows that a
continuum that is the union of a countable collection of n-cells and compact
n-dimensional manifolds is not homeomorphic to an inverse limit on [0, 1]
with a single upper semi-continuous bonding function. His proof is similar to
the one we present for Theorem 186.
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