Chapter 2
Graphics

Curiosity might ask how an image is built at all. In this chapter we consider three
different representations: a bitmap assigning colors to each pixel, a scalable model
requiring later calculations to render the image, and an even higher level specifica-
tion where the underlying details are completely hidden from view.

As an example of our first distinction, PPM stands for “portable pixel map” and
this format specifies literally hundreds of thousands of red-green-blue color values
in very large image files. SVG is “scalable vector graphics” where images contain
only a geometric description of lines and curves, thus reducing file size by delaying
the pixel-by-pixel rendering process. This approach has the advantage that enlarg-
ing a vector image is immune from any pixelation issues the corresponding bitmap
would face, but it also means the original image must be conceived in terms of
geometric objects which is not trivial for, say, a photograph.

Fig. 2.1: Example image files: gold, silver, and Olympus Mons, Mars, the largest
known volcano. Image courtesy of NASA from the Viking 1 mission, 22 June 1978.

Code Listing 2.1: A complete program, written in Python 2 with PIL.

#

from PIL import Image
img=Image.new (‘RGB’, (100,75), (212,175,55)) # gold
img.save (‘gold.png’) # formats: JPG, PPM/PGM, EPS
#

S. Torbert, Applied Computer Science, DOI 10.1007/978-1-4614-1888-7 2, 33
© Springer Science+Business Media, LLC 2012

34 2 Graphics

Table 2.1: A pixel map for a very small 5 x 5 image.

o 1] [2] [3] 4]

O o [o]o]e]e
[1]] e | @ | e | @ | @
2] | @ | @ | o | @
[B]| | @ | | | @
4] e | @ | e | o | e

2.1 Pixel Mapping

Table 2.1 shows a very small 5 x 5 image. If one byte is used to specify each color
value and there are 25 pixels, then we require only 75 bytes to store all RGB data
for this entire image. (Each dot stores red 0-255, green 0-255, blue 0-255 at the
pixel center.) PPM files also include a header listing such information as the width
and height of our image, but the header does not scale with image size in the same
manner that the amount of color data will.

Lab211: Circle ©

Figure 2.2 shows one quadrant of the unit circle within a unit square. Your assign-
ment is to produce such an image. Code Listing 2.2 specifies a side-length m which
in turn determines the total number of pixels n = m?. The variable count will be
used to count-up how many of these n pixels are also inside our unit circle.

In addition, Figure 2.3 shows pixelation when a smaller bitmap is enlarged, either
by direct calculation or with interpolation of the color values. Free tools are available
for this kind of image manipulation.

Code Listing 2.2: Initializing variables.

m=600
n=mxm

count=0

2.1 Pixel Mapping 35

Fig. 2.2: One quadrant of the unit circle within a unit square. Note y-coordinates are
often inverted in graphical systems, for either interactive windows or stored files.

Fig. 2.3: Pixelation when a smaller bitmap is enlarged. Left: direct calculation.
Right: linear interpolation of colors using the GNU Image Manipulation Program.

36 2 Graphics

Table 2.2: Image size, computed value of 7, and associated runtime.

size m computed 7 runtime, seconds
100 3.1428 0.05
1000 3.141676 1.32
10,000 |3.14159388 132.31

Table 2.3: Size (no image), computed value of 7, and associated runtime.

size m computed 7 runtime, seconds
100 3.1428 0.01

1000 3.141676 0.88
10,000 [3.14159388 88.53
1,000,000(3.141592655988 11.55*

The area of a circle is A = 72 and so for the unit circle, where r = 1, area is
A = 7. For only one quadrant area is A = /4. If the n pixels in our image represent
a unit square with area A = 1, the number of pixels inside the circle will relate to n
by a 7 : 4 ratio. Since we count these pixels in our code we may approximate 7w with
improving accuracy as n increases, shown in Tables 2.2 and 2.3 with runtimes for
an Intel® Core i7-940 chip.

Code Listing 2.3 converts from pixel coordinates to unit coordinates, and also
shows how the putpixel method is called on an image to set the RGB color
value of a single pixel. Of course the value of (x,y) rather than (xp,yp) determines
if a point is inside the unit circle or not.

Code Listing 2.3: Initializing variables.

#

X=(xp+0.5)/m # plus one-half --> pixel center!
#

img.putpixel ((xp,yp), (160,32,240)) # purple

#

* Estimated runtime for size m = 10° is over ten days. Our eleven second runtime is based on a
more efficient calculation suggested on the next page. A common story: the necessity of running a
large problem is what compels us to consider a more sophisticated technique in the first place.

2.1 Pixel Mapping 37

Fig. 2.4: Circle divide-and-conquer. Left: binary search, only the marked pixels are
checked and all other pixels are classified automatically. Right: quadtree, a similar
idea in 2-D where only the corners of each box are checked. In general our goal is to
localize calculations for larger sizes along the edge of the circle, where they matter.

12

binary search
quadtree -----

percentage

In-Out Checks,

500 1000 1500 2000 2500 3000 3500

Size of Image File, pixels per side

Fig. 2.5: Divide-and-conquer savings. For the previous size m = 10° result we might
alternatively process the 10° x 10° = 1 trillion pixels in parallel using over 75,000
computers to achieve the same runtime performance, thus we tend to prefer a better
algorithm to a bigger computer (or more computers) when possible.

38

2 Graphics

Fig. 2.6: Percolate pixelate. Top to bottom: p = 0.5, p =0.6, and p =0.7.

2.1 Pixel Mapping 39

Lab212: Percolate Pixelate

Consider an 80 x 60 image where each pixel is colored green with probability p and
purple with probability 1 — p. Algorithm 2.1.1 enlarges this image to 800 x 600 by
converting each pixel into a 10 x 10 block of 100 pixels. Figure 2.6 shows typical
results for p = 0.5, p = 0.6, and p = 0.7. Later in Chapter 5 we will ask:

For what probabilities will there be a green pathway connecting all four sides?

If each pixel has at most four neighbors (i.e., not counting diagonals) then it appears
the p = 0.5 image does not have a path while p = 0.7 clearly does. For p = 0.6 it is
not at all obvious what will happen in general.

This question is related to “percolation” or the flow of fluids (e.g., groundwater)
in porous material such as rock or a layer of sediment (or the flow of boiling water
through coffee grounds in a percolator). Percolation theory applies graph algorithms
and statistics to what was originally conceived as a physical science problem.

Also, in this context pixelation is actually helpful because it aids the human eye in
tracing pathways across the image. It would not be desirable to use a “better” image
with some form of interpolation, although eventually this will not matter once we
have coded an automatic tool to determine if such a pathway exists.

Algorithm 2.1.1 Enlarging a smaller bitmap image.

1: whiley=0— 59 do

2: whilex=0—79do

3 if random < p then

4 color = green

5: else

6 color = purple

7 end if

8 while i =0 — 9 do

9: ynew = 10y +i
10: while j =0 — 9 do
11: xnew = 10x+ j
12: pixel (xnew,ynew) = color
13: end while
14: end while

15: end while
16: end while

40 2 Graphics

v'!‘v Jv.m J!Yv -"!Y,.

Fig. 2.7: Sierpinski’s Gasket, formed by a Chaos Game.

Lab213: Sierpinski’s Gasket

Fix three points P, P>, and P;. As shown in Figure 2.7 these are P, = (0.5,0.1),
= (0.1,0.9), and P; = (0.9,0.9), if we map the image pixel coordinates to unit
square coordinates. Randomly initialize a fourth point P = (x,y), pick one of the
three fixed-points also at random, then move P halfway toward that point and draw
the corresponding pixel in your image. Now repeat: randomly pick one of the three
fixed-points, move P halfway from its current position, and draw the pixel.

Our result is a famous fractal called Sierpinski’s Gasket and this random drawing
process is known as a Chaos Game. Experiment with the total number of loops for
yourself but Figure 2.8 provides some guidance for a 300 x 300 image. Note how
we reach “carrying capacity” because there are only so many pixels to draw.

Alternative drawing techniques are suggested in Figure 2.9.

2.1 Pixel Mapping 41

Increasing the Amount of Work

10000
§ 7500 |

©

g

a

)]

—

Y 5000 |

-

[al)

—

©

in}

& 2500 |

0 | | | |

0 25000 50000 75000 100000
Total Number of Loops

Fig. 2.8: Diminishing marginal returns. Since there are only so many pixels to draw
eventually more-and-more looping introduces fewer-and-fewer new pixels.

Fig. 2.9: Pascal’s Triangle. Obviously we could generate a similar image geometri-
cally by starting with a whole triangle and recursively discarding the middle quarter.
Or, here we suggest a technique based on coloring the even-odd values in Pascal’s
much used triangle, albeit for a sample this small our image is quite pixelated.

42 2 Graphics

Lab214: Draw a Line

A line may be drawn from a point P, = (xj,y;) to another point P, = (x2,y2) by
looping from ¢ = 0.0 to # = 1.0 and drawing pixels corresponding to:

x=ux1+t-(x2—x1)
y=y1+t-(y2—y1)

Clearly when t = 0.0 we draw P;, when ¢t = 1.0 we draw P, and for 0.0 <t < 1.0
the pixels in-between are drawn. However, if we choose dt too large then we may
draw a “dotted” line and for df too small we waste time re-drawing the same pixels
over and over again.

As shown in Figure 2.10 your assignment is to draw 50 random lines where Py
is chosen inside a circle with radius r = 75 (all units are in pixels and the image
size is 250 x 250) and P> is outside that circle but inside another concentric circle
with » = 125. Note the lack of anti-aliasing here, as in Jack Bresenham’s famous
line drawing algorithm but later addressed by Xiaolin Wu.

Fig. 2.10: Random lines in concentric circles.

2.1 Pixel Mapping 43

Fig. 2.11: Chasing turtles draw the “envelope” of four spirals.

Lab215: Chasing Turtles

We might imagine the spirals shown in Figure 2.11 are the result of four bugs chas-
ing each other, or four dogs, or even penguins. But as the next problem will use
turtles we imagine them initialized at the corners of a box and looking only at their
nearest clockwise neighbors. Steps “simultaneously” move the turtles 10% of the
way toward these nearest neighbors while also drawing the lines of sight.

Code Listing 2.4: Color codes for tan and dark green.

#

img=Image.new (‘RGB’, (w,h), (210,180,140)) # tan
#

img.putpixel ((x,y), (0,100,0)) # dark green

#

44 2 Graphics

2.2 Scalable Format

Like an SVG file our turtle programs will specify how shapes should be drawn, and
both systems delay the actual pixel-by-pixel rendering process until either the vector
image is displayed or the turtle walks along its path (carrying a marker, of course).
Each format is a high-level represention of a drawing that may be scaled to an image
of any size. Similar techniques are used to render 3-D models from CAD files.

Lab221: Turtle Square

In Code Listing 2.5 a general drawl ine function is defined on Line 11, essential
turtle functions on Lines 25-45, and Line 46 onward is program specific. Output is
shown in Figure 2.12. Initialization of the turtle (Lines 54-56) is required for any
drawing. Your assignment is to replace the ellipses with working code.

Fig. 2.12: Turtle square, rendered in a variety of sizes, sequences, and directions.

O 0NN B W —

2.2 Scalable Format 45

Code Listing 2.5: An incomplete program is known as a “shell.”

i ddddd s dddddaaddsadddssdadissaddasdadddatadadddadadddaadadiaddddaddddddddddisd
#

Chapter 2: Graphics

Problem 2: Scalable Format

Lab 2.2.1: Turtle Square

#
HAHRHHAHARAAAHHHHHHHHH R R R R R BRBR AR AR AR AR A A A A A AR AR R R R R B R HH
from PIL import Image
from math import cos,sin,pi
[@idadadadaddddd i ddddddddgdgdddddddd
def drawline(x1l,yl,x2,y2):

#

t=0.0

while t<=1.0:

#

#

x=int (x+0.5) # round to the nearest pixel
y=int (y+0.5)

img.putpixel ((x,y), ...)

#

t+=0.001

#

#

def jump (xnew,ynew) :
global xt,yt
#
xt=xnew
yt=ynew

#

def move(r) :
global xt,yt

#
oldx,oldy=xt,yt
#
xt += rxcos(ht+pi/180.0)
yt += -rxsin(ht+pi/180.0) # inverted
#
drawline (oldx,oldy, xt,yt)
#
def turn(dh) :
global ht
#
ht+=dh # counterclockwise
#
def square(size):
#
#
#

HAHRHHHHHHA A A AR HHH AR R R R R R R R R BRBRBRBR AR AR A AR AR A AR A G AR AR BB R R RRRRAH
img=Image.new(‘'RGB’, (320,240), ...)

xt = 20.0 # x-position of turtle
vyt = 100.0 # y-position

ht = 0.0 # heading, in degrees
#

square (20.0)

#

end of file

#

HBHARHH R AR AR AR AR HR AR AR AR AR AR AR R R

46 2 Graphics

Fig. 2.13: Turtle poly, rendered for an increasing number of sides.

Lab222: Turtle Poly

Figure 2.13 shows polygons with n = 3,4,5,6 sides and side-length 40 pixels (top)
and n =7,8,9,10 of side-length 20 pixels (bottom). Code Listing 2.6 shows how
easy square is to write once the poly function is working.

Code Listing 2.6: A more general function.

#
def poly(size,n):
#

#

def square(size) :
#
poly(size, 4)

2.2 Scalable Format 47

Fig. 2.14: Spin poly, rendered for a variety of patterns.

Lab223: Spin Poly

Figure 2.14 shows polygons spinning in beautiful ways. The idea of turtles drawing
vector graphics is not new and versions for many different programming languages
might be used in a variety of contexts and education levels.

Our code uses “local” variables in drawline because values of ¢, x, and y are
unimportant once the function has finished executing. But we use “global” variables
in jump and turn because the values of xt, yt, and At are essential in tracking our
turtle as it moves across the image over time.

Function move uses each kind of “scope’” and note how Python treats arguments
like r, dh, and size as copies™ of the original. Local copies. By default an assign-
ment in a function will create a local variable as with # and x and y. When you see
the global command it is telling Python not do this, that the variable is not local,
as with a turtle’s data xt and yr and hz.

* Variables stored with a “pointer” and passed to a function may be altered but not by assignment.

48

A Function that Updates Global Variables

2 Graphics

#
def jump (xnew, ynew) :
global xt,yt

#
Xt=xnew
yt=ynew
#
#
#
xt= 20.0
yt=100.0
#
jump (0.0,0.0)
#
print xt,yt # output is 0.0 0.0
#

A Function that Creates Local Variables Instead

#
def jump (xnew,ynew) :
#
Xt=xnew
yt=ynew
#
#
#
xt= 20.0
vt=100.0
#
Jump (0.0,0.0)
#
print xt,yt # output is 20.0 100.0

#

2.2 Scalable Format 49
Lab224: Spin Spiral

Figure 2.15 shows polygons spinning while side-length also changes. In particular,
the circular spiral was inspired by an automated lawn mower project where the gap
width between layers had to match the specific width of the real-life lawn mower.
Can you draw this spiral with a purposeful gap width?

Turtle code may be organized into modules as Python does with its Tk library,
math module, the Python Imaging Library (PIL), and even a built-in turtle:

http://docs.python.org/library/turtle.html

A drawline function might be in a general-use module for graphics separate from
the turtle library. (In fact PythonWare® has ImageDraw in PIL.) Programs could ac-
cess these resources with the same kind of import statements we have been using
for “official” modules. We did not organize our programs this way only because the
code is small and, especially when beginning, ease-of-use is highly valued.

Fig. 2.15: Spin spiral, based on different polygons.

50 2 Graphics

Fig. 2.16: Random tree, we might also use random angles at each branching.

Lab225: Random Tree

Figure 2.16 shows most, but not all, of a tree. The tree was drawn by 800 turtles,
each beginning at the root and walking up the trunk, making 799 redundant lines
just to start. Then, at random, half of the turtles branched left and half right.

This random branching process continued for nine total steps with size decreas-
ing at each level. Some turtles walked the exact same total path as others, not con-
tributing anything new to the overall drawing. This redundancy is more probable at
all levels as time passes so we again have diminishing marginal returns, as shown
in Figure 2.17. Depending on how much the size changes the details of these plots
will vary but the overall characteristic remains the same.

Later in Chapter 5 we will see an alternative technique called recursion that can
be used to draw the entire tree precisely with a single (!) turtle. Other recursive
possibilities are shown in Figures 2.18 and 2.19.

2.2 Scalable Format 51

Increasing the Amount of Work
300

250 |

200 |r

150 |r

100

50

New Pixels Drawn by Current Walk

0 100 200 300 400 500 600 700 800
Random Walks

5000

4500

4000

3500

3000

2500

2000

1500

1000

500 f

Total Pixels Drawn by All Walks

0 | | | | | | |
0 100 200 300 400 500 600 700 800

Random Walks

Fig. 2.17: Diminishing marginal returns. Top: new pixels drawn by current walk.
Bottom: total pixels drawn by all walks, shown after each new walk.

2 Graphics

Fig. 2.18: Turtle recursion fractal gallery.

2.2 Scalable Format

Fig. 2.19: Turtle recursion fractal gallery, continued.

54 2 Graphics

11

Fig. 2.20: Click count, where your own program need not show the counts.

2.3 Building Software

We return to interactive graphics with a goal to build drawing programs for non-
commercial sketchwork. The final suggested version will include both tool and color
selectors and is a starting point for a full piece of software. The user experience is
foremost so we continually ask ourselves: “How would someone new to this react?”
Feature-creep must be carefully guarded against as clutter and incoherence do not
make a positive interface. Keep in mind what the application is supposed to be.

Writing “software” is not the same as writing “code” because code is written for
only yourself to run. Software has to keep working even after you leave the room so
we need to make assumptions about what a typical user would want, and also what
they can actually do. Comparing vector graphics to pixel-by-pixel data, software is a
representation at an even higher level where the user does not see any of the details.
In the same way, as a coder you are like the user when importing a library you did
not write, or a library that you wrote but just not recently.

NI e R e O N N

2.3 Building Software 55

Lab231: Click Count

Our first idea is to respond when the user clicks the mouse; every second click we
draw a line connecting the two previous click locations. The click count numbers
shown in Figure 2.20 have been added only to show how the lines were drawn and
they should not be present in your own version unless you really mean for them to
be a part of someone’s sketch.

Code Listing 2.7 is a shell where the event-object evnt knows the (x,y) location
of each mouse click. Note again how we must specify that count, x, and y are defined
at the global scope since function click contains an assignment statement for
each of these variables. In this manner their values will persist between successive
calls (i.e., between successive clicks). Line 30 assumes we want left-clicks rather
than right-clicks, thus Button-1 rather than Button-3.

Code Listing 2.7: A shell of a program.

HEHHHAHHHBHHHHHHHH AR B R B R R R R BB H R AR B R B R AR BB B HHH R BB HHHH R B HH AR B R R AR R R R R R R RS HHH
#
Chapter 2: Graphics
Problem 3: Building Software
Lab 2.3.1: Click Count
#
HERHHAHBHBHHHHHHHHH AR R H AR R BB AR AR BB AAR BB BHHH BB H A A AR BB A A AR R R AR BB H AR BB SH#H
from Tkinter import Tk, Canvas
f@dadadd g
#
w,h=400,300
#
count = ...
#
def click(evnt):
global count,x,y
#
count +=
#
if
x=evnt.x
y=evnt.y
else:
cnvs.create_line(x,y,evnt.x,evnt.y,fill="black’)
#
root=Tk ()
cnvs=Canvas (root,width=w, height=h,bg="#FFFFF0') # ivory
cnvs.pack ()
#
root.bind(‘'<Button-1>’,click)
root.mainloop ()
#
end of file
#
HEHHHHAHBHBHHHHHHHHHH BB HH R R BB R R AR R B R AR BB BHHH R BB HHH AR A A B R B R AR R R R

56 2 Graphics

Fig. 2.21: Polyline, right-click ends each chain, left-click starts the next one.

Lab232: Polyline

Figure 2.21 shows a “polyline” where a right-click ends each chain. Key events are
also shown in Code Listing 2.8 and function exit is from the sys module.

Code Listing 2.8: Mouse click events and quitting the program.

#
def click(evnt) :
#
def rightclick(evnt) :
#
def quit (evnt) :
exit (0)
#

root.bind('<Button-1>',click)
root.bind (‘'<Button-3>’,rightclick)
root.bind(‘'qg’,quit)

#

2.3 Building Software 57

Lab233: Pencil Draw

Of course when we draw a pencil sketch we do not press the paper only at the
endpoints of a line but at every single point. We can implement this feature using
drag events as shown in Code Listing 2.9 and Figure 2.22, a quick “review” session.

Fig. 2.22: A stroll down memory lane with highlights from our previous labs.

Code Listing 2.9: Mouse dragged event.

#
def click(evnt) :

#
def drag(evnt) :

#
root.bind (‘'<Button-1>’,click)
root.bind('<Bl-Motions>’,6 drag)
#

58 2 Graphics

i
]

I‘
L

Fig. 2.23: A lot of rectangles, each is drawn so you see it grow as you drag.

Lab234: Rectangles!

The idea is that as the mouse is dragged you can see the rectangle changing size,
updated dynamically. Each rectangle is fixed in place only as the button is released.

Code Listing 2.10: Rectangle commands.

#
tkid=cnvs.create rectangle(... ,fill=‘")
cnvs.coords (tkid, ...)
#

Code Listing 2.11: Mouse released event.
#

def release(evnt) :

#
root .bind ('<ButtonRelease-1>’,release)

#

2.3 Building Software 59

Fig. 2.24: Motion and more motion, toward a WYSIWYG system.

Motion and Double-Click

We might also like to see the growing line update as we move (not drag) in our
previous line and polyline programs, before a click sets the second or next endpoint.
The coords command works the same on lines as it does on rectangles, shown in
Figure 2.24 where a line is growing first from Point 5 to Point 6 and then, presum-
ably, a future Point 7. Code Listing 2.12 shows how to respond to mouse motion
events when no button is being pressed.

In addition, Code Listing 2.13 shows a double-click event we might use to con-
nect the last endpoint of a polyline back to the first endpoint. In this case we must
assume the location of our first click was remembered at the time it happened be-
cause it cannot be reconstructed later.

Code Listing 2.12: Mouse motion event.

#

def move (evnt) :

#
root .bind ('<Motion>’, move)

#

Code Listing 2.13: Double-click event.

#
def doubleclick (evnt) :

#
root.bind ('<Double-Button-1>’,doubleclick)
#

60 2 Graphics

Lab235: Graffiti Tool

Figure 2.25 shows all our previous drawing tools as options, plus a color selector,
and one last new feature: spray paint. (Disclaimer, vandalism is a crime.) This tool
presents a number of coding challenges most notably that the spray paint should still
work when the button is pressed even if the mouse is not moving, so drag events
alone are not sufficient.

One solution is to use animation where a click sets some Boolean variable true,
the subsequent release sets it false, and drag events update the (x,y) location. All the
while our tick function is drawing random 1 x 1 rectangles somehwere in a circle
centered at the current (x,y) and so long as the mouse button is still being pressed.
In this context random points clustered near the center of a circle actually match the
reality of a spray can.

The graffiti icon displayed among the tools will be different with each run of
the program unless we set an explicit random number seed. (In the same way exact
replication of simulation results may be obtained, an important requirement of any
experiment.) You might also consider including a fill-the-area tool, a cut-and-paste
option, and some facility for saving the current picture to an image file.

FARS RN

=

Fig. 2.25: Graffiti tool, one of many options our users enjoy.

2 Springer
http://www.springer.com/978-1-4614-1887-0

Applied Computer Science
Torbert, 5.

2012, ¥, 202 p., Hardcover
ISBEMN: 978-1-4614-1887-0

