
Chapter 2
Line Integrals

In studying the motion of a particle along an arc it is convenient to consider the arc
as the image of a vector-valued mapping γ : [a,b] → R

3 defined on an interval of
the real line and realize γ(t) as the position of the particle at time t. This viewpoint
is also convenient in analyzing the behavior of a vector field along an arc and is the
main motivation for the definitions that follow.
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2.1 Paths

Definition 2.1.1. A path is a continuous mapping � : [a,b]→R
n. We call �(a) the

initial point and �(b) the final point. The image of the path, �([a,b]), is called the
arc1 of � . If �([a,b])⊂ Ω , we say that � is a path in Ω .

Example 2.1.1. The line segment joining two points x,y ∈ R
n is the arc [x,y] :=

�([0,1]), where � : [0,1]→ R
n denotes the path

�(t) = x+ t(y− x) = ty+(1− t)x.

Example 2.1.2. Let � j : [0,2π ]→ R
2 be given by � j(t) := (cos( jt),sin( jt)). Then

for every j ∈ Z\ {0}, the arc � j([0,2π ]) is the unit circle x2 + y2 = 1 in R
2. As the

parameter t increases from 0 to 2π , the point � j(t) travels around the unit circle | j|
times (clockwise when j is negative and counterclockwise when j is positive).

We put

� ′(t) := lim
h→t h∈[a,b]

�(h)−�(t)
h− t

,

if the limit exists. We observe that if t ∈ (a,b), then � ′(t) exists if and only if � is a
differentiable mapping at the point t. In this case, � ′(t) is the n× 1 column matrix
of the differential at t, which is naturally viewed as a vector in R

n. In particular, we
may consider � ′ : [a,b]→ R

n, and where the appropriate limits exist, repeat to find
higher-order derivatives of � . This prompts the following definitions.

Definition 2.1.2. A path � : [a,b] → R
n is said to be a function of class Cq on

[a,b] if the qth derivative � (q)(t) exists for every t ∈ [a,b] and � (q) is continuous
on [a,b]. The mapping � is said to be a piecewise Cq function if there exists a
partition a = t1 < · · · < tk = b such that �|[ti,ti+1] is of class Cq on [ti, ti+1] for every
1 ≤ i ≤ k− 1.

Definition 2.1.3. A path � : [a,b]→ R
n is said to be smooth if � is a C1 function

and � ′(t) �= 0 for every t ∈ [a,b].

Unfortunately, the notation is not standard in the literature. We follow Cartan
[7, 3.1, p. 48] or Edwards [9, V.1. p. 287]. However Fleming [10, 6.2, pp. 247–
249] refers to curves as equivalence classes and a path is interpreted as a parametric
representation of a curve. Marsden–Tromba [14, 3.1, p. 190] uses the term trajectory
instead of path and imposes no continuity condition, while Do Carmo [5, 1-2.
parameterized curves, p. 2] defines parametric curves (with values in R

3) and uses
the expression regular curve instead of smooth path.

The next example, which is a reformulation of Edwards [9, V.1, example 1, p.
287], shows that a path of class C∞ can have corners. We first need a lemma.

1Also called the track or trace of � .
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Lemma 2.1.1. Let c be a real number. The function f : R→ R,

f (t) :=

⎧
⎪⎨
⎪⎩

c e−
1
t2 , t < 0,

0, t = 0,

e−
1
t2 , t > 0,

is of class C∞ on the real line.

Proof. We show that for each n ∈ N∪{0} there is a polynomial Pn such that

f (n)(t) :=

⎧⎪⎨
⎪⎩

c Pn(t)
t3n e−

1
t2 , t < 0,

0, t = 0,
Pn(t)
t3n e−

1
t2 , t > 0.

In fact, this is obvious for n = 0. To apply induction, we assume that the result
is true for n = k ∈ N∪{0}. To deduce that the result is also true for n = k+ 1, it is
enough to check that f (k+1)(0) = 0. We are going to use that ey2

diverges to infinity
faster than any polynomial in y as y tends to +∞. Indeed, if Pn(y) = anyn + · · ·+
a1y+ a0 with an �= 0, then

Pn(y)

ey2 =
Pn(y)

ey · 1

ey2−y
.

The function e−y2+y clearly converges to zero. On the other hand, by applying
L‘Hôpital’s rule n times, we obtain

lim
y→+∞

Pn(y)
ey = lim

y→+∞

n!an

ey = 0.

Now by taking y = 1
t when t > 0 or y =− 1

t if t < 0 we obtain that

f (k+1)(0) = lim
t→0

f (k)(t)− f (k)(0)
t

= lim
t→0

f (k)(t)
t

= 0.

�

Example 2.1.3. Let � : [−1,1]→R
2 be defined by

�(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(− e−
1
t2
+1
,e−

1
t2
+1)

, −1 ≤ t < 0,

(
0,0
)
, t = 0,

(
e−

1
t2
+1
,e−

1
t2
+1)

, 0 < t ≤ 1.
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It follows from the above lemma that � is a path of class C∞. However, � is not
smooth, since � ′(0) = (0,0). We note that �([−1,1])= {(x, |x|) : x∈ [−1,1]} has a
corner at the point (0,0). Several more examples can be found in Marsden–Tromba
[14, 3.2, p. 205].

Our next task is to define and, if possible, to evaluate the length of a path � :
[a,b] → R

n. The basic idea consists in approximating the path by means of line
segments whose endpoints are determined by a partition of the interval [a,b]. A path
with finite length is said to be rectifiable or of bounded variation. We will show
that every piecewise C1 path is rectifiable and will obtain a formula to evaluate its
length.

Definition 2.1.4. Let � : [a,b]→R
n be a path and let P := {a = t1 < · · ·< tk = b}

be a partition of [a,b]. The polygonal arc associated with P is the union of the line
segments [�(ti),�(ti+1)], 1 ≤ i ≤ k− 1. The length of this polygonal arc is

L(� ,P) :=
k−1

∑
i=1

||�(ti+1)−�(ti)||.

Lemma 2.1.2. Let � : [a,b]→ R
n be a path and let P := {a = t1 < · · · < tk = b}

be a partition of [a,b]. If Q is another partition of [a,b] and P ⊂ Q, then L(� ,P)≤
L(� ,Q).

Proof. We can assume without any loss of generality that Q is obtained from P by
adding a single point. Thus, we assume Q = P∪{s}, where t j < s < t j+1. Then

L(� ,Q) := ∑
i�= j

||�(ti+1)−�(ti)||+ ‖ �(s)−�(t j) ‖+ ‖ �(t j+1)−�(s) ‖ .

Since

||�(t j+1)−�(t j)|| ≤‖ �(s)−�(t j) ‖+ ‖ �(t j+1)−�(s) ‖,

the conclusion follows. �

Definition 2.1.5. A path � is said to be rectifiable or of bounded variation if

sup{L(� ,P) : P a partition of [a,b]}<+∞.

If � is rectifiable, we will refer to this supremum as the length of � , and we will
denote it by L(�).

Let � : [a,b]→ R
n be a path and a < c < b. Then � is rectifiable if and only if

� |[a,c] and � |[c,b] are. Moreover, in that case,

L(�) = L(� |[a,c])+L(� |[c,b]).
We leave the proof to the interested reader.
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Definition 2.1.6. The norm of a partition P := {a = t1 < · · ·< tk = b} is the length
of the largest subinterval defined by that partition, that is,

‖P‖= max{|ti+1 − ti| : i = 1, . . . ,k− 1}.

We are going to show that any path of class C1 is rectifiable, but before we do
so, we need to remind the reader of the topological concept of compactness and of
some properties enjoyed by compact sets.

Definition 2.1.7. A subset K of Rn is called compact if for each family F of open
subsets of Rn that cover K, in the sense that

K ⊂
⋃

G∈F

G,

there exists a finite subfamily G1, . . . ,Gm in F such that K ⊂ ∪m
j=1G j.

A subset M of Rn is called bounded if it is contained in an open ball centered at
the origin. If K is a compact set, then it is bounded. This is an easy exercise, but far
more can be said. The proof of the following characterizations of compact subsets
in R

n can be found in almost any book on calculus of several variables.

Theorem 2.1.1. Let K be a subset of Rn. The following conditions are equiva-
lent:

1. K is compact.
2. For each sequence (x j)

∞
j=1 ⊂ K there exists a subsequence (x jk )

∞
k=1 convergent

to a point x0 ∈ K.
3. (Heine–Borel–Lebesgue theorem) K is bounded and closed in R

n.

We also need the concept of uniform continuity.

Definition 2.1.8. Let M be a subset of R
n. A mapping f : M ⊂ R

n → R
m is

uniformly continuous on M if given ε > 0, there exists δ > 0 such that for every
x,y ∈ M with ‖x− y‖< δ , we have

‖f(x)− f(y)‖< ε.

Uniform continuity of course implies continuity, but is, in fact, a stronger
property. Nevertheless, both concepts coincide if the set M is a compact set, a result
that we state here without proof.

Theorem 2.1.2 (Heine–Cantor theorem). Every continuous mapping f : K ⊂
R

n → R
m on a compact set K is uniformly continuous on K.

We return to our study of paths.

Theorem 2.1.3. Let � : [a,b]→R
n be a path of class C1. Then � is rectifiable and

L(�) =
∫ b

a

∥∥� ′(t)
∥∥dt.
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Proof. We define F : [a,b]n →R by

F(s1, . . . ,sn) :=

√
n

∑
j=1

|� ′
j(s j)|2.

Then F(t, . . . , t) = ||� ′(t)||. Moreover, given a partition

P := {a = t1 < · · ·< tk = b},
we can apply the mean value theorem to deduce that for every 1 ≤ i ≤ k− 1 and
1 ≤ j ≤ n, there exists s ji ∈ [ti, ti+1] such that

L(� ,P) =
k−1

∑
i=1

‖�(ti+1)−�(ti)‖ =
k−1

∑
i=1

√
n

∑
j=1

(
� j(ti+1)−� j(ti)

)2

=
k−1

∑
i=1

F(s1i, . . . ,sni)(ti+1 − ti)

=
k−1

∑
i=1

∫ ti+1

ti
F(s1i, . . . ,sni)dt.

Since F is a continuous function on the compact set [a,b]n, it follows by the
Heine–Cantor theorem that F is in fact uniformly continuous on [a,b]n. That is, for
every ε > 0 there is a δ > 0 such that x,y ∈ [a,b]n and ‖x− y‖< δ imply

|F(x)−F(y)|< ε.

Let us now assume that the previous partition P satisfies ‖P‖< δ√
n . Then

||(t, . . . , t)− (s1i, . . . ,sni)||< δ ,

whenever t ∈ [ti, ti+1]. Hence
∣∣∣∣L(� ,P)−

∫ b

a
||� ′(t)||dt

∣∣∣∣ ≤
k−1

∑
i=1

∫ ti+1

ti
|F(s1i, . . . ,sni)−F(t, . . . , t)|dt

≤
k−1

∑
i=1

∫ ti+1

ti
ε dt = ε

k−1

∑
i=1

(ti+1 − ti) = ε(b− a).

To finish the proof, we fix a partition P0 with norm less than δ√
n . For an arbitrary

partition P of [a,b] we then have

L(� ,P)≤ L(� ,P∪P0)≤ ε(b− a)+
∫ b

a
||� ′(t)||dt,
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which shows that � is rectifiable and L(�) ≤ ε(b − a) +
∫ b

a ||� ′(t)||dt. On the
other hand,

L(�)≥ L(� ,P0)≥
∫ b

a
||� ′(t)||dt − ε(b− a).

Taking limits as ε tends to zero, we reach the desired conclusion. �
It is worth mentioning that many texts, for instance Do Carmo [5, 1-2, p. 6]

or Marsden–Tromba [14, 3.2, p. 201], define the length of a path of class C1 as
L(�) =

∫ b
a ‖� ′(t)‖ dt. While this point of view is very efficient, it can be puzzling

to the student as to why this should be the “correct” definition. In our opinion, the
polygonal arc approach to path length is far more intuitive, and as shown by the
theorem above, entirely consistent.

Corollary 2.1.1. Let � : [a,b]→ R
n be a piecewise C1 path. Then � is rectifiable

and L(�) =
∫ b

a

∥∥� ′(t)
∥∥dt.

Proof. Let {a= t1 < t2 < · · ·< tk = b} be a partition of [a,b] such that � j := �|[t j ,t j+1]

is of class C1 for every j = 1, . . . ,k− 1. By Theorem 2.1.3, every � j is a rectifiable
path on [t j, t j+1] and

L(� j) =

∫ t j+1

t j

∥∥� ′(t)
∥∥dt.

Consequently, � is also rectifiable and

L(�) =
k−1

∑
j=1

L(� j) =
k−1

∑
j=1

∫ t j+1

t j

‖ � ′(t) ‖ dt.

The function t �→ ‖� ′(t)‖ is well defined at each point of the interval [a,b] except
for a finite set. Moreover, its restriction to each interval [t j, t j+1] is continuous, and
hence Riemann integrable on [t j, t j+1] for every j = 1, . . . ,k − 1. It follows that
the function is Riemann integrable on [a,b]. We can therefore deduce, from the
properties of Riemann integrable functions, that

L(�) =
∫ b

a
‖ � ′(t) ‖ dt.

��
Let � : [0,1]→R

2 be given by �(0) :=(0,0) and�(t) :=(t, t cos π
t ) when 0< t ≤

1. We leave it to the reader to prove that � is a continuous path but is not rectifiable.
Although we focus attention on piecewise C1 paths throughout the text, we have

found it natural to deal with the more general class of rectifiable paths for our
treatment of path length. The generalization is also of benefit in the next section,
where we consider work done by a vector field.



2.2 Integration of Vector Fields 27

2.2 Integration of Vector Fields

The line integral was originally motivated by problems involving fluid motion and
electromagnetic or other force fields.2 Let us assume, for instance, that � : [a,b]→
R

3 is a smooth path contained in the open set U ⊂ R
3 and that there is present a

force field F : U →R
3. We want to evaluate the work done by the force on an object

moving along the arc �([a,b]) from �(a) to �(b). We will have to take into account
two basic principles:

1. The work depends only on the component of the force that is acting in the same
direction as that in which the object is moving (that is, the tangent direction to
the path at each point).

2. The work done by a constant field F0 to move the object through a line segment,
in the same direction as F0, is the product of ‖F0‖ and the length of that segment.

We recall that

T(t) :=
� ′(t)

‖� ′(t)‖
is a unit vector that is tangent to the path at �(t), and so the component of F that
acts in the tangent direction to the path at �(t j) is

〈
F(�(t j)),T(t j)

〉
.

If we consider a short interval [t j, t j+1], then the length of � |[t j ,t j+1]
is approxi-

mated by ∥∥� ′(t j)
∥∥ · (t j+1 − t j).

Hence, using the basic principles above on a very fine partition

P := {a = t1 < · · ·< tk = b}

of the interval, we see that a good approximation to the work done in moving the
particle along � is

k−1

∑
j=1

〈
F(�(t j)),�

′(t j)
〉 · (t j+1 − t j).

The following result tells us the limiting value of this quantity as we take finer
and finer partitions (Fig. 2.1).

2A force field is, mathematically speaking, the same thing as a vector field. The term is often used
when the field has a physical interpretation.
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g a

g b

F g tj

g ’ tj

Fig. 2.1 Vector field along
a path

Lemma 2.2.1. Let P := {a = t1 < t2 < · · · < tk = b} be a partition of the interval
[a,b]. For any continuous function f : [a,b]→R and for each selection u j ∈ [t j, t j+1]
we have

lim
‖P‖→0

k−1

∑
j=1

(t j+1 − t j) · f (u j) =
∫ b

a
f (t) dt.

Proof. By the Heine–Cantor theorem, f is uniformly continuous, which means that
for every ε > 0 one can find δ > 0 such that

| f (s)− f (t)| ≤ ε

whenever s, t ∈ [a,b] and |s− t| ≤ δ . Consider now a partition

P = {a = t1 < t2 < · · ·< tk = b}

with 0 <‖ P ‖< δ . Then

∣∣∣∣∣
k−1

∑
j=1

(t j+1 − t j) · f (u j)−
∫ b

a
f (t)

∣∣∣∣∣ =
∣∣∣∣∣
k−1

∑
j=1

∫ t j+1

t j

(
f (u j)− f (t)

)
dt

∣∣∣∣∣

≤
k−1

∑
j=1

∫ t j+1

t j

∣∣ f (u j)− f (t)
∣∣ dt

≤ ε
k−1

∑
j=1

(
t j+1 − t j

)
= ε(b− a).

Since ε is arbitrarily small, the result follows. ��
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Lemma 2.2.1 and its preceding discussion show that the work done by the force
field F on a particle as it moves along � is

∫ b

a

〈
F(�(t)),� ′(t)

〉
dt.

This type of integral, known as a line integral, appears often in the sequel, and so
we make a formal definition.

Definition 2.2.1. Let F : U ⊂ R
n → R

n be a continuous vector field and let � be a
piecewise C1 path in U. The line integral of F along � is given by

∫

�
F :=

∫ b

a

〈
F(�(t)),� ′(t)

〉
dt.
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2.3 Integration of Differential Forms

In order to facilitate later calculations, and also to provide a better framework for
dealing with the general Stokes’s theorem, it is convenient at this point to introduce
the notion of differential form. A key observation is that any vector v ∈ R

n defines
a linear R-valued mapping, that is, a linear form,

ϕv : Rn →R,

by

ϕv(h) := 〈v,h〉 .
Conversely, any linear form L on R

n coincides with ϕv for a unique vector v∈R
n.

Indeed, if L : Rn → R, the mapping

' : Rn → (Rn)∗, v �→ 'v,

maps the vector (L(e1), . . . ,L(en)) to the linear form L. Thus ' is a linear
isomorphism from the vectors in R

n to the linear forms on R
n.

We denote by dx j the linear form associated with the vector e j of the canonical
basis of Rn. That is,

dx j(h) =
〈
e j,h

〉
= h j.

It easily follows that if v = (v1, . . . ,vn), then ϕv is the linear form

n

∑
j=1

v j ·dx j.

After identifying vectors with linear forms, it is quite natural to identify a vector
field on a set U with a mapping that associates to each point of U a linear form.

Definition 2.3.1. Let U ⊂ R
n be an open set. A differential form of degree 1 on U ,

or simply a 1-form, is a mapping

! : U ⊂ R
n → L (Rn,R) = (Rn)∗.

Given a 1-form !, a vector x ∈ U , and an integer j ∈ {1, . . . ,n}, we will denote
the scalar !(x)(e j) ∈R by f j(x). Evidently, each f j is a function from U to R, and
by linearity of !(x) ∈ (Rn)∗, for any h = (h1, . . . ,hn) ∈ R

n we can write

!(x)(h) =
n

∑
j=1

!(x)(e j).h j =
n

∑
j=1

f j(x)h j =

(
n

∑
j=1

f j(x)dx j

)
(h).
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Hence !(x) = ∑n
j=1 f j(x)dx j for all x ∈U , which we will abbreviate to

!=
n

∑
j=1

f j ·dx j

and call f j the component functions of !.
The notion of differential form of degree 1 is, as we shall highlight below, a

generalization of the concept of differential of a function. It is a very powerful
algebraic tool for studying integration on curves or surfaces.

A 1-form ! is continuous or of class Cq if its component functions f j are
continuous or, respectively, of class Cq. From now on every differential form of
degree 1 is assumed to be continuous.

Observe that !(x) is the linear form associated with the vector

F(x) := ( f1(x), . . . , fn(x)),

where, as usual, the f j denote the component functions of !. Consequently, the
study of the 1-form! is essentially equivalent to the study of the vector field F, and
we may interpret differential forms of degree 1 and vector fields as two different
ways of visualizing the same mathematical object. Vector fields provide the most
appropriate point of view for formulating problems from physics or engineering,
but in order to solve these problems mathematically, it is often more convenient to
express them in terms of differential forms.

What we have just seen is another important example of changing the meaning,
or interpretation, of a mathematical concept by renaming it. We have moved from
the realm of linear algebra into that of differential geometry by viewing a linear
mapping, namely the projection h → h j, as a differential form, dx j.

Example 2.3.1. Let g : U ⊂ R
n → R be a function of class C1 on the open set U.

The differential of g at point x ∈U is the linear mapping dg(x) : Rn → R given by

(dg)(x)(h) =
n

∑
j=1

∂g
∂x j

(x)h j =
n

∑
j=1

∂g
∂x j

(x)dx j(h).

Hence

dg =
n

∑
j=1

∂g
∂x j

dx j.

Since each partial derivative ∂g
∂x j

is a continuous function, we conclude that the

mapping U →L (Rn,R), x → (dg)(x), is a (continuous) differential form of degree
1. We represent it by != dg (the differential of g).
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Definition 2.3.2. Let ! be a continuous 1-form on U and let � : [a,b] → U be a
piecewise C1 path. Then

∫

�
! :=

∫ b

a
!(�(t))

(
� ′(t)

)
dt.

We observe that the previous function is well defined and continuous except
on a finite set. Since it is bounded, it is integrable in the sense of Riemann and
Lebesgue. Moreover, expressing the 1-form ! in terms of its component functions,
!= ∑n

j=1 f jdx j, we have

∫

�
!=

∫ b

a

(
n

∑
j=1

f j(�(t))dx j(�
′(t))

)
dt =

∫ b

a

(
n

∑
j=1

f j(�(t))�
′
j(t)

)
dt

=

∫ b

a

〈
F(�(t)), � ′(t)

〉
dt,

where F := ( f1, . . . , fn) : U ⊂ R
n → R

n is the vector field associated with !. This
simple calculation highlights an important fact: when F is the vector field associated
with the differential form ! of degree 1, we have

∫

�
!=

∫

�
F.
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2.4 Parameter Changes

The line integral
∫
� F depends on the vector field F and also on the path � . In this

section, we plan to analyze what happens on replacing� by some other path with the
same trace. Further results in this direction will be obtained in the optional Sect. 2.7.

Definition 2.4.1. Let ˛ : [a,b]→ R
n and ˇ : [c,d]→ R

n be two paths. We say that
˛ and ˇ are equivalent, and write ˛ ∼ ˇ, if there is a mapping ϕ : [a,b] → [c,d],
of class C1, such that ϕ([a,b]) = [c,d], ϕ ′(t) > 0 for every t ∈ [a,b] and ˛= ˇ ◦ϕ
(Fig. 2.2).

By the mean value theorem, the conditions on ϕ in this definition ensure that
ϕ is strictly increasing, hence bijective, and that c = ϕ(a) and d = ϕ(b). It then
follows that ˛∼ ˇ implies ˇ ∼ ˛. Indeed, ˇ = ˛◦ϕ−1, and ϕ−1 has the necessary
properties for equivalence.

The next result is usually referred to as the chain rule or the composite function
theorem. Its proof can be found in any text on differential calculus of several
variables; for example [9, Theorem 3.1, p. 76] or [10, 4.4, p. 134].

Theorem 2.4.1. Let U and V be open subsets of Rn and R
m respectively. If the

mappings F : U −→ V and G : V −→ R
p are differentiable at a ∈ U and F(a) ∈V

respectively, then their composition H = G◦F is differentiable at a, and

dH(a) = dG(F(a))◦ dF(a),

or, in terms of their associated matrices,

H′(a) = G′(F(a))F′(a).

Furthermore, if F and G are of class Cq (1 ≤ q ≤ ∞) on their respective domains
of definition, then H is also Cq on U.

Observe that the chain rule hypothesis involves functions defined on open sets.
Nevertheless, when the first function is defined on a closed interval [a,b], a variant
of the result is also true.

a b

c d

Fig. 2.2 ˇ and ˇ ◦ϕ are
equivalent paths
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Corollary 2.4.1. Let V be an open subset of Rm, � : [a,b]−→V a path that has a
derivative at each point of [a,b], and suppose G : V −→R

m is differentiable at each
point of �([a,b]). Then G◦� : [a,b]−→ R

m has a derivative at each point of [a,b]
and

(G◦�)′(t) = G′(�(t)) ·� ′(t),

for every t ∈ [a,b]. Here, the derivatives at t = a and t = b are understood to be
derivatives from the right and from the left respectively. Furthermore, if � is Cq on
[a,b] and G is Cq on the open set V , then G◦� is also Cq on [a,b].

Proof. We write �(t) = (γ1(t), . . . ,γm(t)), where γ j : [a,b] −→ R has a derivative
on [a,b] for each j = 1, . . . ,n (or Cq on [a,b] respectively).

It is known that γ j can be extended to γ̃ j :R→R with a derivative at each point of
R (or Cq on R respectively). We take �̃ = (γ̃1, . . . , γ̃m) : R −→ R

m. Now we define
U = (�̃)−1(V ). Since �̃ is continuous on R, U is an open subset of R containing
[a,b]. Moreover, we have �̃ : U −→V and G : V −→R

m with �̃ and G differentiable
(respectively of class Cq) on their respective domains. Now the chain rule gives the
conclusion. �

The same argument clearly proves the following further variation of the chain
rule.

Corollary 2.4.2. Let α : [a,b] −→ R be differentiable at each point of [a,b] and
let ˇ : [c,d] −→ R

m be a path that has a derivative at each point of [c,d] with
α([a,b]) ⊂ [c,d]. Then ˇ ◦α : [a,b] −→ R

m has a derivative at each point of [a,b]
and

(ˇ ◦α)′(t) = ˇ′(α(t))α ′(t),

for every t ∈ [a,b]. Furthermore, if α is Cq on [a,b] and ˇ is Cq on [c,d], then ˇ ◦α
is also Cq on [a,b].

Proposition 2.4.1. If ˛ and ˇ are two equivalent paths and one of them, say ˇ, is
piecewise C1, then ˛ is piecewise C1 and L(˛) = L(ˇ).

Proof. Write ˛ = ˇ ◦ ϕ , where ϕ is as in Definition 2.4.1 and let Q =
{c = u1 < · · ·< uk = d} be a partition of [c,d] such that ˇ|[u j ,u j+1] is C1 on [u j,u j+1].

If we take t j := ϕ−1(u j), then P = {a = t1 < · · ·< tk = b} is a partition of [a,b].
Since ˛|[t j ,t j+1]

= (ˇ ◦ϕ)|[t j ,t j+1]
= (ˇ|[u j ,u j+1]

) ◦ϕ |[t j ,t j+1]
is the composition of

two C1 mappings (on closed intervals), it is itself C1 on [t j, t j+1], and thus ˛ is
piecewise C1. Now,

L(ˇ) =
∫ d=ϕ(b)

c=ϕ(a)
||ˇ′(u)||du =

k−1

∑
j=1

∫ u j+1

u j

||ˇ′(u)||du.

For each 1 ≤ j ≤ k− 1 we can apply the change of variable u = ϕ(t) to obtain
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∫ u j+1

u j

||ˇ′(u)||du =
∫ t j+1

t j

||ˇ′(ϕ(t))||ϕ ′(t)dt

=

∫ t j+1

t j

||ˇ′(ϕ(t))ϕ ′(t)||dt =
∫ t j+1

t j

||(ˇ ◦ϕ)′(t)||dt

=

∫ t j+1

t j

||˛′(t)||dt.

Summing for all values of 1 ≤ j ≤ k− 1, we conclude that

L(ˇ) =
∫ b

a
||˛′(t)||dt = L(˛).

�

Proposition 2.4.2. Let ! be a continuous 1-form on U, and let ˛ and ˇ be two
piecewise C1 paths in U with ˛∼ ˇ. Then

∫

˛
!=

∫

ˇ
!.

Proof. Let us first assume that ˛ and ˇ are paths of class C1. Then, employing the
same notation as the previous proof, we have

∫

ˇ
! =

∫ ϕ(b)

ϕ(a)
!(ˇ(u))

(
ˇ′(u)

)
du

=
∫ b

a
!(ˇ(ϕ(t)))

(
ˇ′(ϕ(t))

)
ϕ ′(t)dt

=

∫ b

a
!(ˇ(ϕ(t)))

(
(ˇ ◦ϕ)′(t)

)
dt

=

∫ b

a
!(˛(t))(˛′(t))dt =

∫

˛
!.

Again we are using the chain rule theorem for extensions of ˇ and ϕ to the whole
real line. In the general case, we consider a partition

P := {a = t1 < t2 < · · ·< tk = b}

of the interval [a,b] for which ˇ is of class C1 on each subinterval [u j,u j+1] =
[ϕ(t j),ϕ(t j+1)]. Then ˛= ˇ ◦ϕ is also of class C1 on each subinterval [t j, t j+1]. We
therefore have from above that

∫

ˇ j

!=

∫

˛ j

!,
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Fig. 2.3 � and −� are
opposite paths

where ˇ j = ˇ|[u j ,u j+1] and ˛ j = ˛|[t j ,t j+1]. Summing this identity for all values of j
from 1 to k− 1, we get

∫

ˇ
!=

∫

˛
!.

�
Notice that in the above proof neither ϕ ′(t j) nor (ˇ◦ϕ)′(t j) is necessarily defined

for j = 1, . . . ,k− 1.

Definition 2.4.2. Let � : [a,b] → R
n be a piecewise C1 path. The opposite path

(Fig. 2.3) is defined by (−�) : [−b,−a]→R
n, (−�)(t) := �(−t) .

The opposite path −� moves along �([a,b]) in the opposite direction to that
given by the path � . The initial point of −� is the final point of � and vice versa.
The reader will note the difference between (−�)(t) and −(�(t)).

Definition 2.4.3. Let ˛ : [a,b]→R
n and ˇ : [c,d]→ R

n be two piecewise C1 paths
such that ˛(b) = ˇ(c). By a union of the paths ˛ and ˇ, denoted by ˛∪ˇ, we mean
any piecewise C1 path � : [e, f ]→ R

n with the property that for some e < r < f ,

�|[e,r] ∼ ˛ and �|[r, f ] ∼ ˇ.

It is obvious that3 the trace of ˛∪ˇ is ˛([a,b])∪ˇ([c,d]) and ˛∪ˇ consists of
tracing over ˛ first and then over ˇ. Such a union of paths always exists, a concrete
example being given by � : [0,1]→R

n, where

�(t) =

⎧
⎨
⎩
˛
(
2t(b− a)+ a

)
, 0 ≤ t ≤ 1

2 ,

ˇ
(
(2t − 1)(d− c)+ c

)
, 1

2 ≤ t ≤ 1.

Proposition 2.4.3. Let ! be a continuous 1-form on an open subset U of Rn and
let ˛,ˇ,� be three piecewise C1 paths in U with the final point of ˛ coinciding with
the initial point of ˇ. Then

(1)
∫

−�
!=−

∫

�
!,

(2)
∫

˛∪ˇ
!=

∫

˛
!+

∫

ˇ
!.

3The right-hand side here is a normal set union. Note that unlike set union, path union is not a
symmetric operation.
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Proof. Since (−γ)′(t) =−γ ′(−t), the substitution u =−t gives

∫

−�
! =

∫ −a

−b
!(�(−t))

(−� ′(−t)
)

dt

=
∫ b

a
−!(�(u))(� ′(u)

)
du =−

∫

�
!.

Also

∫

˛∪ˇ
! =

∫ r

e
!(�(t))

(
�′(t)

)
dt +

∫ f

r
!(�(t))

(
�′(t)

)
dt

=

∫

�|[e,r]
!+

∫

�|[r, f ]
!=

∫

˛
!+

∫

ˇ
!.

�
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2.5 Conservative Fields: Exact Differential Forms

We begin this section with an example of a vector field for which the line integral
over two different paths from (0,0) to (1,1) is the same.

Example 2.5.1. Let F : R2 → R
2 be the vector field defined by F(x,y) = (x,y) and

let us consider the paths (Fig. 2.4)

�1 : [0,1]→ R
2 and �2 : [0,1]→R

2

defined by �1(t) = (t, t) and �2(t) = (t, t2). Then

∫

�1

F =

∫ 1

0
〈(t, t),(1,1)〉 dt =

∫ 1

0
(t + t) dt = 1.

Also ∫

�2

F =

∫ 1

0

〈
(t, t2),(1,2t)

〉
dt =

∫ 1

0
(t + 2t3) dt = 1.

The fact that the two line integrals here take the same value is not surprising if one
remembers that a line integral represents the work done by a force field in moving
a particle along a path, while it is well known from physics that under the action
of a gravitational field,4 the work done to move an object between two different
points depends only on the difference of the potential energies at these points, and
is therefore independent of the path taken (see Example 2.5.4). Our next example, a
vector field for which the line integral over two different paths from (0,0) to (1,1)
is different, shows that this behavior is not universal.

1

2

Fig. 2.4 The paths of
Example 2.5.1

4Although the vector field in our example is not the gravitational field of Example 1.2.2, it is similar
enough, in a sense yet to be defined, that the physical argument remains valid.
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Example 2.5.2. Let �1 and �2 be the paths given in Example 2.5.1 but let us
consider instead the vector field

F(x,y) =
(
− y+

3
8
,x− 1

2

)
.

Then
∫

�1

F =
∫ 1

0

〈(
− t +

3
8
, t − 1

2

)
,(1,1)

〉
dt =

∫ 1

0
−1

8
dt =−1

8
,

while
∫

�2

F =

∫ 1

0

〈(
− t2 +

3
8
, t − 1

2

)
,(1,2t)

〉
dt =

∫ 1

0

(
t2 − t +

3
8

)
dt =

1
3
− 1

8
.

Definition 2.5.1. Let F = ( f1, . . . , fn) be a vector field on an open subset U of Rn

with associated 1-form!= f1 ·dx1 + · · ·+ fn ·dxn. If there is a function of class C1,
f : U ⊂ R

n → R, such that ∇ f = F (or equivalently, d f = !) on U , then the vector
field F is said to be conservative and the 1-form ! is said to be exact. The scalar
function f is called a potential of the conservative vector field F.

Conservative fields have a similar behavior to that of Example 2.5.1 in that their
line integrals are independent of path. This is an immediate consequence of the
following result, which is a generalization of the fundamental theorem of calculus.

Theorem 2.5.1. Let g : U ⊂ R
n → R be a function of class C1 on an open set U

and � : [a,b]→U a piecewise C1 path. Then
∫

�
5g =

∫

�
dg = g(�(b))− g(�(a)).

Proof. Since dg is the 1-form associated to the vector field 5g, the first equation
follows from our observation immediately preceding Sect. 2.4. For the second
equation, we take the usual expansion of the 1-form dg,

dg =
n

∑
j=1

∂g
∂x j

·dx j

and apply the chain rule,

n

∑
j=1

∂g
∂x j

(�(t))� ′
j(t) = (g ◦�)′(t),

which is valid for all but a finite set of t in [a,b], to obtain

∫

�
dg =

∫ b

a

(
n

∑
j=1

∂g
∂x j

(�(t))� ′
j(t)

)
dt =

∫ b

a
(g ◦�)′(t)dt.
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Let P := {a = t1 < · · · < tk = b} be a partition such that � |[ti,ti+1]
is of class C1

for every 1 ≤ i ≤ k− 1. The fundamental theorem of calculus gives

∫

�
dg =

k−1

∑
i=1

∫ ti+1

ti
(g ◦�)′(t)dt

=
k−1

∑
i=1

(
(g ◦�)(ti+1)− (g ◦�)(ti)

)

= g(�(b))− g(�(a)).

�
For our next result we recall the concepts of connected set and path-connected

set.

Definition 2.5.2. Let C be a subset of Rn.

1. C is said to be connected if there do not exist two open sets V and W in R
n such

that

a. C ⊂V ∪W ;
b. C∩V �=∅ and C∩W �=∅;
c. C∩V ∩W =∅.

In other words, a set C is connected if and only if with the topology induced on
C by R

n, the only subsets of C that are both open and closed are C itself and the
empty set ∅.

2. C is said to be path connected if given x,y ∈C, there exists a path ˛ : [a,b]→C
such that ˛(a) = x and ˛(b) = y. If the connecting path can be chosen to be
polygonal, then the set is called polygonally connected.

The continuous image of a connected set is connected, from which it follows that
every path-connected set is connected. For an open subset of Rn, the converse also
holds, and the two concepts coincide. This result can be found, for example, in [1,
Theorem 4.43].

Theorem 2.5.2. Let U be a connected open subset of Rn. Then U is polygonally
connected.

Theorem 2.5.3. Let F : U ⊂ R
n → R

n be a continuous vector field on an open set
U. The following conditions are equivalent:

(1) F is a conservative vector field.
(2) If � : [a,b]→U ⊂R

n is a piecewise C1 path that is closed (�(a) = �(b)), then

∫

�
F = 0.
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x0

x

Fig. 2.5 A polygonal path in
U from x0 to x

(3) If �1 and �2 are two piecewise C1 paths with the same initial and final
points, then ∫

�1

F =
∫

�1

F.

Proof. (1)⇒ (2). By hypothesis, there is a C1 function f on U ,

f : U ⊂ R
n → R,

with 5 f = F. Let � : [a,b]→U ⊂R
n be a closed piecewise C1 path. According to

Theorem 2.5.1, ∫

�
F = f (�(b))− f (�(a)) = 0.

(2) ⇒ (3). If �1 and �2 have the same initial point and also the same final point,
then

� := �1 ∪ (−�2)

is a closed piecewise C1 path in U. Consequently,

∫

�1

F−
∫

�2

F =

∫

�
F = 0.

(3)⇒ (1). Let us first assume that U is an open and connected set in R
n. Then U

is also path connected and polygonally connected. We fix a point x0 ∈U and define
the potential function f : U ⊂ R

n → R as follows (Fig. 2.5): For every x ∈ U let �x

be any polygonal path in U from x0 to x and let

f (x) :=
∫

�x

F.
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The hypothesis of (3) implies that f (x) does not depend on the particular polygonal
path �x chosen, and thus the definition is unambiguous. To prove the result, we
will show that f is a function of class C1 whose gradient coincides with the vector
field F.

Given x ∈U , we can find δ > 0 such that the open ball B(x,δ ) centered at x and
with radius δ is contained in U . Observe that for every 1 ≤ j ≤ n and 0 < |t| < δ ,
if �x is a polygonal path in U from point x0 to point x, then �x ∪ [x,x+ te j] is a
polygonal path in U from x0 to x+ te j. Hence

f (x+ te j)− f (x) =
∫

�x∪[x,x+te j ]
F−

∫

�x

F =

∫

[x,x+te j ]
F.

Let us assume for simplicity that t > 0 and parameterize the line segment by
�(s) = x+ se j, 0 ≤ s ≤ t. We also write F in terms of component functions, F =
( f1, . . . , fn). Then for each 1 ≤ j ≤ n,

f (x+ te j)− f (x) =
∫ t

0

〈
F(x+ se j),e j

〉
ds =

∫ t

0
f j(x+ se j) ds.

It follows that
∣∣∣∣

f (x+ te j)− f (x)
t

− f j(x)

∣∣∣∣=
∣∣∣∣
1
t

∫ t

0
( f j(x+ se j)− f j(x)) ds

∣∣∣∣

≤ 1
t

∫ t

0
| f j(x+ se j)− f j(x)|ds

≤ max
0≤s≤t

| f j(x+ se j)− f j(x)|.

Since each f j is a continuous function, the above expression tends to zero as t
tends to zero. As a consequence,

∂ f
∂x j

(x) = f j(x).

In particular, f is a function of class C1 and 5 f = F on U . In the general case
in which U is not connected, the above argument can be applied to each connected
component of U in order to construct a suitable potential function (see, for instance,
Burkill [4, p. 60]). �

Definition 2.5.3. An open set U ⊂R
n is said to be starlike with respect to the point

a ∈U if the segment [a,x] is contained in U for every x ∈U.

We recall that the triangle with vertices a, x, and y is the set

{αa+β x+ γy : 0 ≤ α,β ,γ and α +β + γ = 1}.

By its boundary we understand the closed polygonal arc [a,x]∪ [x,y]∪ [y,a].
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a

x y

z

u

Fig. 2.6 Triangle of Lemma
2.5.1

Lemma 2.5.1. Let U be starlike with respect to the point a ∈U. If y ∈ B(x,R)⊂U,
then the triangle (Fig. 2.6) with vertex {a,x,y} is contained in U.

Proof. Let z = αa+ β x+ γy be given, where α,β ,γ ≥ 0 and α + β + γ = 1. If
α = 1, then z = a ∈U . In other case, we put

u =
β

1−α
x+

γ
1−α

y.

Since
β

1−α
+

γ
1−α

= 1,

we obtain that u∈ [x,y]⊂B(x,R)⊂U. Finally, from z=αa+(1−α)u we conclude
that

z ∈ [a,u]⊂U.

�

Theorem 2.5.4. If the open set U is starlike with respect to the point a ∈ U, then
the conditions of Theorem 2.5.3 are equivalent to the following:

(4) If � is the boundary of a triangle contained in U, then
∫

�
!= 0.

Proof. Since condition (2) clearly implies (4), it is enough to prove that (4)
implies (1). We do this by arguing that the function f defined by

f (x) :=
∫

[a,x]
F



2.5 Conservative Fields: Exact Differential Forms 47

is, in fact, a potential for the vector field F. For every x ∈U we choose Rx > 0 with
B(x,Rx)⊂U . According to the previous lemma, for each 1 ≤ j ≤ n and for all t ∈R

with |t| < Rx, the triangle with vertices a, x, and x+ te j is contained in U. Hence,
we deduce from condition (4) that

f (x+ te j)− f (x) =
∫

[a,x+te j ]
F−

∫

[a,x]
F =

∫

[x,x+te j ]
F.

The argument now proceeds as in the proof of (3)⇒ (1) in Theorem 2.5.3. �
Of course, Theorem 2.5.3 can also be interpreted as a characterization of those

differential forms of degree 1 that are exact.

Example 2.5.3. Let

!=− y
x2 + y2 ·dx+

x
x2 + y2 ·dy,

which is a continuous 1-form in U := R
2 \ {(0,0)}. Then ! is not exact, since

� : [0,2π ]→R
2, �(t) := (cos(t),sin(t)),

defines a closed path contained in U for which
∫

�
!= 2π �= 0.

However, if we consider V := R
2 \ {(0,y) : y ∈ R} and g : V → (− π

2 ,
π
2 )

defined by

g(x,y) := arctan
y
x
,

then != dg on V .

Thus, the fact that a vector field is conservative depends not only on the
expression of the field but also on the region U we are dealing with. That is, a vector
field admitting a potential function on a given open set may not be conservative on
some larger set.

Example 2.5.4. The gravitational field is conservative.
Let us consider a particle of mass M located at the origin. The force of attraction

exerted on a particle of unit mass located at point (x,y,z) ∈ R
3 \ {(0,0,0)} is

F(x,y,z) =− GM

(x2 + y2 + z2)
3
2

(x,y,z),

where G is the gravitational constant. Since the magnitude of the force is the same
at all points equidistant from the origin, it seems reasonable to expect that this is
also true for the potential function.
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Consequently, we look for a function of r =
√

x2 + y2 + z2 whose derivative is
−GM

r2 . An example of such a function is GM
r , and it is easy to check that

f (x,y,z) :=
GM√

x2 + y2 + z2

satisfies 5 f = F. That is, f is a potential function for the gravitational field.

One should remark that what is called the gravitational potential in physics is
the function V := − f . Hence, the work done by the field to move a particle from
point A to point B is independent of the trajectory of the particle, and its value is the
difference of potentials V (A)−V(B).

We now obtain a necessary condition for a vector field to be conservative.

Theorem 2.5.5. Let F : U ⊂ R
n →R

n be a conservative vector field of class C1 on
an open set U and write F := ( f1, f2, . . . , fn). Then

∂ f j

∂xk
(x) =

∂ fk

∂x j
(x)

for every j,k ∈ {1, . . . ,n} and every x ∈U.

Proof. By hypothesis, there is a function g : U ⊂ R
n → R such that 5g = F.

Therefore f j =
∂g
∂x j

, and we can write

∂ f j

∂xk
(x) =

∂ 2g
∂xk ∂x j

(x)

and similarly
∂ fk

∂x j
(x) =

∂ 2g
∂x j ∂xk

(x)

for all x ∈U. Since F is a function of class C1 on U , it follows that g is of class C2,
and Schwarz’s theorem concerning the symmetry of second-order partial derivatives
gives our result. �

In particular, if F = (P,Q) is a conservative vector field on U ⊂ R
2 of class C1,

then for every (x,y) ∈U ,
∂Q
∂x

(x,y) =
∂P
∂y

(x,y).

It also follows from Definition 1.2.11 and Theorem 2.5.5 that every conservative
vector field F = ( f1, f2, f3) on the open set U ⊂ R

3 of class C1 satisfies

Curl F(x,y,z) =
(

∂ f3
∂y − ∂ f2

∂ z ,
∂ f1
∂ z − ∂ f3

∂x ,
∂ f2
∂x − ∂ f1

∂y

)

= 0

for all (x,y,z) ∈U.
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In Example 2.5.3 we proved that the vector field

F = (P,Q) : U ⊂ R
2 → R

2

defined on U = R
2 \ {(0,0)} by

P(x,y) =− y
x2 + y2 , Q(x,y) =

x
x2 + y2

is not conservative. However,

∂Q
∂x

(x,y) =
∂P
∂y

(x,y) =
y2 − x2

(x2 + y2)2 .

Thus, the condition in Theorem 2.5.5 is not sufficient, in general, for a vector
field to be conservative. However, if we impose certain geometric conditions on the
domain U , then the condition of Theorem 2.5.5 is sufficient, as the next theorem
shows. Before stating the result, we need to recall the following fact about the
derivative of an integral (also called a parametric derivative).

Proposition 2.5.1. Suppose f : [a,b]× [c,d]→ R is a function of class C1 and g :
[a,b]→R is defined by

g(x) =
∫ d

c
f (x, t)dt.

Then g is of class C1 on [a,b] and

g′(x) =
∫ d

c

∂ f
∂x

(x, t)dt

for all x ∈ [a,b].

The proof of this statement follows the proof of (3) ⇒ (1) in Theorem 2.5.3,
but the interested reader can find stronger results concerning the derivative of an
integral, for example in [15, Theorem 9.42, p. 236].

Theorem 2.5.6 (Poincaré’s lemma). Let F : U ⊂ R
n → R

n be a vector field of
class C1, F := ( f1, f2, . . . , fn), on an open set U that is starlike with respect to the
point a. If

∂ f j

∂xk
(x) =

∂ fk

∂x j
(x)

for every choice of the indices 1 ≤ j,k ≤ n and for all x ∈U, then F is conservative.

Proof. We define g : U ⊂ R
n → R by

g(x) :=
∫ 1

0

n

∑
j=1

f j(a+ t(x− a)) · (x j − a j) dt.

It follows that g is a function of class C1 on U and that
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∂g
∂xk

(x) = ∑
j �=k

(x j − a j) ·
∫ 1

0

∂ f j

∂xk
(a+ t(x− a))t dt

+

∫ 1

0

{
∂ fk

∂xk
(a+ t(x− a))t(xk − ak)+ fk(a+ t(x− a))

}
dt

=

∫ 1

0

[
n

∑
j=1

(x j − a j)
∂ fk

∂x j
(a+ t(x− a))t + fk(a+ t(x− a))

]
dt

=

∫ 1

0

d
dt

( fk(a+ t(x− a))t) dt = fk(x),

for every x ∈ U. This proves that 5g = F and F is a conservative vector
field on U. �

Corollary 2.5.1. Let F : U ⊂ R
3 → R

3 be a vector field of class C1 on an open
starlike set U. Then F is conservative on U if and only if Curl F = 0.
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2.6 Green’s Theorem

This section constitutes a first approach to studying the result discovered in 1828
by George Green. This result is now known as Green’s theorem and can be viewed
as a generalization of the fundamental theorem of calculus. It states that the value
of a double integral over the region bounded by a path is determined by the value of
a line integral over that path. We will encounter Green’s theorem again in Chap. 9,
where it will appear as a particular case of the general Stokes’s theorem. The results
of Chap. 9 will allow us to apply Green’s theorem to more general regions than those
considered in this section, where we restrict attention to regions of type I (vertically
simple) and type II (horizontally simple) (see Marsden–Tromba [14, 8.1, p. 494]).

For each ε > 0 let us consider the paths

�
j

ε :

[
− ε

2
,

ε
2

]
−→R

2

defined by

�1
ε (t) :=

(
t,−ε

2

)
, �2

ε (t) :=

(
ε
2
, t

)
, �3

ε (t) :=

(
t,

ε
2

)
, �4

ε (t) :=

(
− ε

2
, t

)
.

Then

�ε = �
1
ε ∪�2

ε ∪ (−�3
ε )∪ (−�4

ε )

represents the boundary of a square oriented counterclockwise (Fig. 2.7).
With this notation we have the following.

2
,0

2
,0

0,
2

0,
2

4

3

2

1

Fig. 2.7 The paths � j
ε
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Proposition 2.6.1. Let F : U ⊂ R
2 → R

2 be a vector field of class C1 on the open
set U with components F = (P,Q). Then for every (x0,y0) ∈U we have

lim
ε→0

1
ε2

∫

(x0,y0)+�ε
F =

(
∂Q
∂x

− ∂P
∂y

)
(x0,y0).

Proof. The line integral
∫

(x0,y0)+�ε
F can be written as the difference between

∫ ε
2

− ε
2

(
Q

(
x0 +

ε
2
,y0 + t

)
−Q

(
x0 − ε

2
,y0 + t

))
dt

and
∫ ε

2

− ε
2

(
P

(
x0 + t,y0 +

ε
2

)
−P

(
x0 + t,y0 − ε

2

))
dt.

For every t ∈ (− ε
2 ,

ε
2 ), we apply the mean value theorem to the functions Q(·,y0+

t) and P(x0 + t, ·) to obtain points xε , yε (which depend on ε and also on t) such that
|x0 − xε |< ε

2 , |y0 − yε |< ε
2 , and

1
ε2

∫

(x0,y0)+�ε
F =

1
ε

∫ ε
2

− ε
2

(
∂Q
∂x

(xε ,y0 + t)− ∂P
∂y

(x0 + t,yε)

)
dt.

Since ∂Q
∂x is continuous at (x0,y0), for every r > 0 there exist δ > 0 such that

(x,y) ∈U and
∣∣∣∣
∂Q
∂x

(x,y)− ∂Q
∂x

(x0,y0)

∣∣∣∣≤ r,

whenever |x− x0|< δ and |y− y0| < δ . Then for each 0 < ε < δ and t ∈ (− ε
2 ,

ε
2 ),

we obtain ∣∣∣∣
∂Q
∂x

(xε ,y0 + t)− ∂Q
∂x

(x0,y0)

∣∣∣∣≤ r.

Now we can write

∣∣∣∣
1
ε

∫ ε
2

− ε
2

∂Q
∂x

(xε ,y0 + t) dt − ∂Q
∂x

(x0,y0)

∣∣∣∣

=

∣∣∣∣
1
ε

∫ ε
2

− ε
2

(
∂Q
∂x

(xε ,y0 + t)− ∂Q
∂x

(x0,y0)

)
dt

∣∣∣∣≤
1
ε

∫ ε
2

− ε
2

r dt = r.
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We have used here the fact that

∣∣∣∣
∫ b

a
f (t) dt

∣∣∣∣≤
∫ b

a
| f (t)| dt. This proves that

lim
ε→0

1
ε

∫ ε
2

− ε
2

∂Q
∂x

(xε ,y0 + t) dt =
∂Q
∂x

(x0,y0).

A similar argument gives

lim
ε→0

1
ε

∫ ε
2

− ε
2

∂P
∂y

(x0 + t,yε) dt =
∂P
∂y

(x0,y0),

from which the conclusion follows. �

In some texts, the line integral
∫

˛
F is called the circulation of the vector field F

along the path ˛, and the limit

lim
ε→0

1
ε2

∫

(x0,y0)+�ε
F

is called the rate of circulation of the vector field F at the point (x0,y0). We refer to
the comments after Corollary 9.4.1 for the physical interpretation of this expression.

If f (x,y) denotes the density (mass per unit area) of a planar object U , then one
can evaluate its total mass as

∫∫

U
f (x,y) d(x,y).

By analogy, it seems reasonable to expect that the circulation of the vector field
F along a path bounding a region U can be obtained as a double integral over U of
the rate of circulation, that is, of the function

∂Q
∂x

− ∂P
∂y

.

Green’s theorem shows that this intuition is correct in some cases.
Up to this point, we have dealt with the integral only of continuous functions

on an interval [a,b], and so we have required only the elementary properties of
the Riemann integral. Henceforth, however, we will need tools from the theory
of integration in several variables. In that setting, one has to choose between two
possibilities: the Riemann integral and the Lebesgue integral. The Riemann integral
on an n-rectangle in R

n, and its extension to bounded subsets with Jordan content,
usually called Jordan measurable sets, is by far the more intuitive. On the other
hand, the Lebesgue integral on R

n, or specifically, on a measurable subset of Rn,
is the more powerful theory, even if less intuitive. We have decided to use the
Lebesgue integral. Why? A key point is that any open or any closed subset of Rn
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is Lebesgue measurable but, in general, not Jordan measurable. Moreover, every
continuous function on a compact set is Lebesgue integrable, and two of the most
important theorems of integral calculus, namely Fubini’s theorem and the change
of variable theorem, hold in far more generality for the Lebesgue than for Riemann
integral.

Notwithstanding the differences between the two theories of integration, and
our preference for the theory of Lebesgue, the reader should be aware that for our
purposes, and with enough hard toil, it is possible to show that most of the situations
we encounter in the text actually fit into the framework of the Riemann integral and
Jordan content, and so the reader may continue to think and visualize in terms of the
Riemann integral. But we are not going to bridge that gap explicitly here. A book in
which both theories appear and can be compared is that of Apostol [1].

Definition 2.6.1. (i) A set R = Π n
j=1I j is called an n-rectangle in R

n if each I j

is a bounded interval in R, i.e., if there exist a j ≤ b j real numbers such that
(a j,b j)⊆ I j ⊆ [a j,b j] for every j = 1, . . . ,n. In that case, the Lebesgue measure
of R is defined to be

m(R) = Π n
j=1(b j − a j).

(ii) A subset N of Rn is called a null set if given ε > 0, there exists a sequence of
n-rectangles (Rk)

∞
k=1 such that N ⊂ ∪∞

k=1Rk and

∞

∑
k=1

m(Rk)< ε.

(iii) A property P(x), where x ∈ R
n, is said to be true almost everywhere if there

exists a null set N ⊂R
n such that the property P(x) holds for every x ∈R

n \N.
(iv) Given a subset K of Rn, the characteristic function of K, denoted by χK , is

defined by

χK(x) =
{

1 if x ∈ K,

0 if x �∈ K.

(v) A function ϕ : Rn → R is called a step function if ϕ is a linear combination of
characteristic functions of n-rectangles, i.e., if

ϕ =
m

∑
k=1

c jχR j ,

where c j ∈ R and R j is an n-rectangle.
(vi) A subset M ⊂R

n is said to be measurable if there exists a sequence (ϕh)
∞
h=1 of

step functions and a null subset N of Rn such that the sequence of real numbers
(ϕh(x)) converges to χM(x) for every x ∈ R

n \N, i.e., if the sequence (ϕh)
∞
h=1

converges pointwise almost everywhere to χM .
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It can be proved that for every ε > 0, a null set can be covered by a sequence
(Rk) of n-cubes, that is, n-rectangles with all sides of equal length, such that
∑∞

k=1 m(Rk)< ε .
The family M of Lebesgue measurable sets in R

n is going to be very important
throughout, but we need only the following very basic facts about that family:

1. Every open subset and every closed subset of Rn is measurable.
2. If M is a measurable set, then R

n \M is also measurable.
3. If (Mk)

∞
k=1 is a (countable) family of measurable sets, then ∩∞

k=1Mk and ∪∞
k=1Mk

are measurable sets too.
4. Every null set is Lebesgue measurable.

We will need to use Fubini’s theorem, and so we state it. We follow the notation
of Stromberg [18, Theorem 6.121, p. 352] and refer to that book for the definition
of the Lebesgue integral in R

n. The space of Lebesgue integrable functions on R
n is

denoted by L(Rn). If A is a measurable subset of Rn, we will say that the function
f : A → R is Lebesgue integrable on A if extended as 0 outside A and denoting that
extension by f χA, then the function f χA is Lebesgue integrable on R

n. In that case,
by definition, ∫

A
f :=

∫

A
f (x)dx :=

∫

Rn
f χA(x)dx.

If A = [a,b], we keep the classical notation and write
∫
[a,b] f (x)dx =

∫ b
a f (x)dx.

In the case that f has two or three variables, we will write

∫∫

A
f (x,y) d(x,y) or

∫∫∫

A
f (x,y,z) d(x,y,z).

We prefer to write d(x,y) instead of dxdy to avoid confusion with the exterior
product dx∧dy (see Chap. 6).

Theorem 2.6.1 (Fubini’s theorem). Let f ∈ L(Rn+p). Then

(i) fx(y) = f (x,y) belongs to L(Rp) almost everywhere in R
n.

(ii) fy(x) = f (x,y) belongs to L(Rn) almost everywhere in R
p.

(iii) F(x) :=
∫
Rp fx(y)dy is defined (that is, the integral exists) almost everywhere

in R
n and is Lebesgue integrable in R

n. Also G(y) :=
∫
Rn fy(x)dx is defined

almost everywhere in R
p, and moreover, G belongs to L(Rp).

(iv)

∫

Rn

(∫
Rp

f (x,y)dy
)

dx =

∫

Rn+p
f (x,y)d(x,y) =

∫

Rp

(∫
Rn

f (x,y)dx
)

dy.

A variant of Fubini’s theorem particularly useful to us is the following. Let A ⊂
[a,b]× [c,d] be a measurable set and f : A → R a Lebesgue integrable function on
A. For x ∈ [a,b], let Ax = {y ∈ R : (x,y) ∈ A}. Then

∫∫

A
f (x,y)d(x,y) =

∫ b

a

(∫
Ax

f (x,y)dy
)

dx.
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Fig. 2.8 A compact set with
positively oriented boundary

The following concept will be discussed more precisely in Sect. 8.5.

Definition 2.6.2. Let K ⊂ R
2 be a compact set whose boundary ∂K is equal to

�([a,b]), where � : [a,b] → R
2 is a closed piecewise C1 path. We say that � is

positively oriented if γ traverses ∂K once in such a way that the region K always
lies to the left (Fig. 2.8). To be rigorous one must to assume that the compact set k
satisfies condition (8.10), see for instance Cartan [7, 4.4.1]

Theorem 2.6.2 (Green’s theorem). Let K ⊂ R
2 be a compact set with positively

oriented boundary parameterized by γ (as in Definition 2.6.2). Let ! = Pdx+Qdy
be a 1-form of class C1 on an open set U ⊂ R

2 such that K ⊂U. Then

∫

�
Pdx+Qdy=

∫∫

K

(
∂Q
∂x

− ∂P
∂y

)
d(x,y).

Using the notation of vector fields, this can be written as

∫

�
(P,Q) =

∫∫

K

(
∂Q
∂x

− ∂P
∂y

)
d(x,y).

The reader may feel ill at ease with Definition 2.6.2 and Theorem 2.6.2. This
is to be expected and welcomed. We have encountered for the first time a certain
dichotomy that is often overlooked or brushed aside, but which we must specifically
address in this book. Definition 2.6.2 and Theorem 2.6.2 have both an intuitive and a
mathematically rigorous formulation, and these are not easily reconciled. If we look
at Green’s theorem from an intuitive point of view (typically, this is the case within
the context of vector calculus), then there is generally no real difficulty. For example,
if we want to apply it to situations arising in physical problems, then it is obvious
what is meant by left and right, and we do not expect any trouble in deciding whether
a region K lies to our left. However, from a purely mathematical point of view
(i.e., within the context of vector analysis), the interpretation of “left” and “right”
is not clear at all, and will demand from us much effort in developing adequate
machinery to deal with the concept. Later, in Chaps. 5 and 9, we will present a
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3

4

1

2

x

f2(x)

f1(x)

Fig. 2.9 A region of type I
and its positively oriented
boundary

rigorous definition of orientation and a general version of Green’s theorem. For now,
we content ourselves with working toward a proof of the theorem in some particular
regions K for which the orientation can be very easily defined, and for which that
definition of orientation coincides with our physical intuition.

Definition 2.6.3. A compact set K ⊂ R
2 is said to be a region of type I (Fig. 2.9) if

it can be described as

K = {(x,y) ∈ R
2 : a ≤ x ≤ b , f1(x)≤ y ≤ f2(x)},

where f1, f2 : [a,b]→ R are piecewise C1 functions, f1 ≤ f2.

The positively oriented boundary of K is the path union

� = �1 ∪�2 ∪ (−�3)∪ (−�4),

where

�1 : [a,b]→R
2 , �1(t) := (t, f1(t));

�2 : [ f1(b), f2(b)]→R
2 , �2(t) := (b, t);

�3 : [a,b]→R
2 , �3(t) := (t, f2(t));

�4 : [ f1(a), f2(a)]→R
2 , �4(t) := (a, t).

Lemma 2.6.1. Let K be a compact set that is a region of type I and let P
be a continuous function on K admitting continuous partial derivative ∂P

∂y on a
neighborhood of K. Then

∫

�
Pdx =−

∫∫

K

∂P
∂y

d(x,y).
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y

g1( y) g2( y)

4

1

2

3

Fig. 2.10 A region of type II
and its positively oriented
boundary

Proof. Since � ′
2(t) = �

′
4(t) = (0,1),� ′

1(t) = (1, f ′1(t)), and � ′
3(t) = (1, f ′2(t)) for

all t, we have

∫

�
Pdx =

∫

�1

Pdx−
∫

�3

Pdx =
∫ b

a
P(t, f1(t))dt −

∫ b

a
P(t, f2(t))dt.

On the other hand, every continuous function on a compact set K is integrable, and
according to Fubini’s theorem,

∫∫

K

∂P
∂y

d(x,y) =
∫ b

a

(∫ f2(x)

f1(x)

∂P
∂y

(x,y)dy

)
dx =

∫ b

a
(P(x, f2(x))−P(x, f1(x)))dx.

Comparing these two equations, we have
∫

�
Pdx =−

∫∫

K

∂P
∂y

d(x,y).

�

Definition 2.6.4. The compact set K is said to be a region of type II (Fig. 2.10) if it
can be analytically described as

K = {(x,y) : c ≤ y ≤ d;g1(y)≤ x ≤ g2(y)},
where g1,g2 : [c,d]→R are piecewise C1 functions, g1 ≤ g2.

The positively oriented boundary of K is the path union

� = (−�1)∪�2 ∪�3 ∪ (−�4),

where

�1 : [c,d]→R
2 , �1(t) := (g1(t), t);
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�2 : [g1(c),g2(c)]→ R
2 , �2(t) := (t,c);

�3 : [c,d]→R
2 , �3(t) := (g2(t), t);

�4 : [g1(d),g2(d)]→R
2 , �4(t) := (t,d).

We have the following analogue of Lemma 2.6.1.

Lemma 2.6.2. Let K be a compact set that is a region of type II and let Q

be a continuous function on K admitting continuous partial derivative
∂Q
∂x

on a

neighborhood of K. Then

∫

�
Qdy =

∫∫

K

∂Q
∂x

d(x,y).

Theorem 2.6.3. Let K be a region of type I or a region of type II and let ! =
Pdx+Qdy be a 1-form of class C1 on some open rectangle containing K. Then

∫

�
Pdx+Qdy=

∫∫

K

(
∂Q
∂x

− ∂P
∂y

)
d(x,y).

Proof. We choose a, b, c, and d such that K is contained in the rectangle R= [a,b]×
[c,d] and we assume that the 1-form ! is defined and is of class C1 on the open
rectangle T containing R. We will present the proof in the case that K is a region of
type I. In the case that K is a region of type II, a similar argument does the job.

We have already proved that
∫

�
Pdx =−

∫∫

K

∂P
∂y

d(x,y),

and so we need only to obtain
∫

�
Qdy =

∫∫

K

∂Q
∂x

d(x,y).

Notice that we cannot apply the previous lemma, since K is not necessarily a
region of type II. We proceed as follows.

For (x,y) ∈ T, we define V (x,y) :=
∫ y

c Q(x, t)dt. The resultant function V has the
property that

dV(x,y) = F(x,y) dx+Q(x,y) dy,

where

F(x,y) =
∫ y

c

∂Q
∂x

(x, t)dt.
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The expression for F is obtained after applying Proposition 2.5.1 (see also,
Apostol [1, Theorem 10.39]). Since by Theorem 2.5.1,

∫

�
dV = 0,

we have ∫

�
Q(x,y) dy =−

∫

�
F(x,y) dx.

Moreover, K is a region of type I, and on a neighborhood of K,

∂F
∂y

(x,y) =
∂Q
∂x

(x,y),

because for each fixed x the function y �→ F(x,y) is a primitive of y �→ ∂Q
∂x (x,y).

An application of Lemma 2.6.1 to F(x,y) dx gives

−
∫

�
F(x,y) dx =

∫∫

K

∂F
∂y

d(x,y).

Finally,
∫

�
Q(x,y) dy =

∫∫

K

∂Q
∂x

(x,y) d(x,y)

and ∫

�
!=

∫∫

K

(
∂Q
∂x

− ∂P
∂y

)
d(x,y).

�

Definition 2.6.5. A compact set K is said to be a simple region if K is a region of
type I and also a region of type II.

The hypothesis for Green’s theorem on simple regions can be relaxed somewhat,
since it is enough that the 1-form be defined on a neighborhood of K. Before
providing the proof, let us establish a notational convention that is valid by the
following fact (see Proposition 2.7.2). Suppose K is a simple region and �1 : [a,b]→
R

2, �2 : [c,d]→R
2 are two simple, closed, and piecewise smooth paths with

�1([a,b]) = �2([c,d]) = ∂K

and such that �1 and �2 induce the same orientation on the boundary ∂K. Then
according to Proposition 2.7.2,
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∫

�1

!=

∫

�2

!.

Consequently, it makes sense to write

∫

∂K
!

if we interpret the integration as being done along any simple, (Definition 2.7.1)
closed, and piecewise C1 path that gives a parameterization of ∂K such that the
region K always lies to the left.

Theorem 2.6.4. Let K ⊂R
2 be a simple region and let != Pdx+Qdy be a 1-form

of class C1 on an open neighborhood of K. Then

∫

∂K
!=

∫∫

K

(
∂Q
∂x

− ∂P
∂y

)
d(x,y).

Proof. Since K is a region of type I, we have
∫

∂K
Pdx =−

∫∫

K

∂P
∂y

d(x,y),

and since it is also a region of type II, we obtain
∫

∂K
Qdy =

∫∫

K

∂Q
∂x

d(x,y).

It is enough to sum these two identities. �
Green’s Formula5 allows us to give a direct proof of the sufficiency condition for

a vector field to be conservative (Theorem 2.5.6) on an open and starlike set in the
plane.

Theorem 2.6.5 (Poincaré’s lemma). Let F = (P,Q) be a vector field of class C1

on the open and starlike set U ∈ R
2 and suppose that

∂Q
∂x

(x,y) =
∂P
∂y

(x,y)

for every (x,y) ∈U. Then F is conservative.

Proof. Let ! = Pdx + Qdy be the 1-form associated with the vector field F. It is
enough to prove that

5Green’s theorem is essentially a number of different results, which hold in various domains with
different hypotheses, that establish a common integral identity. We shall refer to that integral
identity as Green’s formula.
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∫

�
!= 0

whenever � is the boundary of some triangle K contained in U. Since K is a simple
region, it follows from Green’s theorem that

∫

�
!=

∫∫

K

(
∂Q
∂x

− ∂P
∂y

)
d(x,y) = 0.

�
A general version of Poincaré’s lemma on R

n will be obtained in Chap. 6
(see Sect. 6.6) after we have completed our study of differential forms.
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2.7 Appendix: Comments on Parameterization

If we ask a student to evaluate the integral of a vector field along the unit circle
oriented counterclockwise, and we don’t specify a parameterization of the circle,
the student will probably use the “natural” parameterization � : [0,2π ]→ R

2 given
by �(t) =

(
cos(t), sin(t)

)
. However, this is not the only parameterization available,

and it is quite natural to ask how this freedom in the choice of parameterization
might affect the solution to the problem posed. That is, suppose that we have another
path ˛ whose trajectory is also the unit circle and with the property that we move
along the circle counterclockwise, but without any other obvious relation to the
original path � . Can we be sure that

∫

˛
F =

∫

�
F ?

In this section, given from the point of view of vector analysis, we give a rigorous
answer to this question (Proposition 2.7.2), thereby showing why so much freedom
is typically allowed in parameterizing a curve.

Lemma 2.7.1. Let ' : [c,d]→R
n and � : [a,b]→R

n be two injective paths of class
C1 such that

�([a,b])⊂ '([c,d]).
Let us assume that there is 1 ≤ k ≤ n with ϕ ′

k(s) �= 0 for all s ∈ [c,d]. Then

'−1 ◦� : [a,b]→ [c,d]

is a function of class C1.

Proof. Since ' is C1, the intermediate value theorem implies that ϕ ′
k(s) > 0 for all

s ∈ [c,d] or ϕ ′
k(s)< 0 for all s ∈ [c,d]. Without loss of generality we will assume the

former. Since ϕk can be extended to a function of class C1 on the whole real line and
ϕ ′

k(s)> 0 for all s ∈ [c,d], we have that ϕk is a strictly increasing bijection between
[c,d] and [e, f ] := ϕk([c,d]) and also that its inverse h := ϕ−1

k is a function of class
C1 on [e, f ]. Hence ' is bijective onto its image. Let

πk : Rn →R

denote the projection onto the kth coordinate. From the fact that the mapping ϕk ◦
'−1 associates to each point in the range of ' its kth coordinate and �([a,b]) ⊂
'([c,d]) we can deduce ϕk ◦'−1 ◦� = πk ◦� . That is,

'−1 ◦� = h ◦πk ◦� .

Now the conclusion follows by the chain rule. �
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Proposition 2.7.1. Let ' : [c,d]→ R
n and � : [a,b]→ R

n be two injective smooth
paths. If �([a,b]) = '([c,d]) and both paths define the same “orientation” (that is,
'(s) = �(t) implies that '′(s) is a positive multiple of � ′(t)), then ' and � are
equivalent paths.

Proof. The mapping ' : [c,d] → '
(
[c,d]

)
is a homeomorphism because it is a

continuous bijection between two compact sets. Hence, the mapping

θ := '−1 ◦� : [a,b]→ [c,d]

is a continuous bijection and ' ◦ θ = � . We have to prove that θ is a mapping of
class C1 and θ ′(t)> 0 for all t ∈ [a,b]. To do this, we fix t0 ∈ (a,b) and we observe
that '′(θ (t0)) �= 0. Since '′ ◦θ is a continuous function, we deduce that there exist
1 ≤ k ≤ n and a < α < t0 < β < b such that

ϕ ′
k(θ (t)) �= 0

for every t ∈ [α,β ]. We define

[ξ ,η ] := θ
(
[α,β ]

)
.

Then the restriction of � to [α,β ] has the same trajectory as the restriction of '
to [ξ ,η ]. According to the previous lemma,

θ : [α,β ]→ [ξ ,η ]

is a function of class C1. Consequently,

� ′(t) = '′(θ (t)) ·θ ′(t)

for every t ∈ [α,β ]. Since, by hypothesis, � ′(t) is a positive multiple of '′(θ (t)),
we deduce that θ ′(t) > 0 for every t ∈ [α,β ]. In particular, θ is of class C1 on a
neighborhood of t0 and θ ′(t0)> 0.

In the case t0 = a we find a < β < b such that

ϕ ′
k(θ (t)) �= 0

for all t ∈ [a,β ]. We now proceed as before but with α = a in order to finally deduce
that θ is of class C1 on [a,β ] and θ ′ > 0 at every point of [a,β ]. A similar argument
covers the case t0 = b. �

Definition 2.7.1. A closed path ' : [c,d]→R
n is said to be simple if ' is piecewise

C1 and '|[c,d) is injective.



2.7 Appendix: Comments on Parameterization 65

Lemma 2.7.2. Let ' : [c,d]→ R
n be a simple path. Then

' : (c,d)→ '
(
(c,d)

)

is a homeomorphism.

Proof. Let {tn} be a sequence in (c,d) such that

lim
n→∞

'(tn) = '(t0)

for some t0 ∈ (c,d). In order to conclude that {tn} converges to t0, it is enough to
prove that each convergent subsequence of {tn} is convergent to t0. Let us assume
that {nl} is an increasing sequence of natural numbers and that

lim
l→∞

tnl = ξ .

Since ξ ∈ [c,d] and ' is continuous, we obtain

'(ξ ) = lim
l→∞

'(tnl ) = '(t0).

From the injectivity of '|[c,d) and '|(c,d] we deduce ξ = t0. Consequently, {tn}
converges to t0 and

'−1 : '
(
(c,d)

)→ (c,d)

is continuous. �
In saying that a path � : [a,b]→ R

n is piecewise smooth, we mean that there is a
partition

{a = t0 < t1 < · · ·< tl = b},
such that there exists � ′(t) �= 0 for every t �= t j and � admits nonzero one-sided
derivatives at each point t j.

Let us now assume that � : [a,b]→ R
n and ' : [c,d]→ R

n are two simple paths,
which are piecewise smooth and satisfy �([a,b]) = '([c,d]). We say that the two
paths induce the same orientation if whenever �(t) = '(s) for t and s such that �
is differentiable at t and ' is differentiable at s, then � ′(t) is a positive multiple of
'′(s).

Proposition 2.7.2. Let � : [a,b]→R
n and ' : [c,d]→R

n two simple paths that are
piecewise smooth and satisfy �([a,b]) ='([c,d])⊂U, where U ⊂R

n is open. If the
two paths induce the same orientation, then for every differential form ! of degree
1 and class C1 on U, we have ∫

�
!=

∫

'
!.
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Proof. Let us first assume that � and ' are two piecewise smooth paths with the
same initial point (and also the same final point, since they are closed paths). We
introduce partitions of the intervals [a,b] and [c,d] as follows. In the optimal case
that � and' are smooth on their respective domains, we consider arbitrary partitions
{a = a0 < a1 < a2 = b} and {c = c0 < c1 < c2 = d} with the property that �(a1) =
'(c1). In the general case that either ' or � is not smooth, let Q be a nonempty
finite set containing all the points of the form �(t), where t ∈ (a,b) is such that �
is not differentiable at t, and also all the points of the form '(s), where s ∈ (c,d)
for which ' is not differentiable at s. Then Q consists of m− 1 elements for some
m ≥ 2. We can find partitions

{a = a0 < a1 < · · ·< am = b}, {c = c0 < c1 < · · ·< cm = d}

of the intervals [a,b] and [c,d] with the property that

�
({a1, . . . ,am−1}

)
= '

({c1, . . . ,cm−1}
)
= Q.

Observe that our partitions have at least three points and that

� |[a j−1,a j ]
and '|[c j−1,c j ]

are injective and smooth paths. We now put

I j := (a j−1,a j), and hence I j = [a j−1,a j].

By Lemma 2.7.2, �(I j) is an open and connected set in �
(
(a,b)

)
= '

(
(c,d)

)
,

and hence, after applying again Lemma 2.7.2,

Jj := '−1(�(I j)
)

is an open (and proper) subinterval of (c,d). It is obvious that �(I j) = '(Jj).
Moreover, �(I j) = '(Jj). In fact, if t = limn→∞ tn for tn ∈ I j, then

�(t) = lim
n→∞

'(sn)

for some sequence {sn} in Jj. If {snk} is a subsequence convergent to s ∈ Jj, then
�(t) = '(s) ∈ '(Jj). This proves that �(I j) ⊂ '(Jj). A similar argument gives the
reverse inclusion. Since

�|Ij
and '|Jj

are smooth and injective, we can apply Proposition 2.7.1 to conclude that these are
equivalent paths. The sets {J1,J2, . . . ,Jm−1} are mutually disjoint (or have at most
one point in common) and form a covering of [c,d], so we can finally conclude that
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∫

�
!=

m

∑
j=1

∫

�|I j

! =
m

∑
j=1

∫

'|J j

!

=

∫

'
!.

We now analyze the case that ϕ and γ do not have the same initial (and final)
point, that is, '(c) �= �(a). We take a < t0 < b such that �(t0) = '(c) and we define

� := �|[t0,b]∪�|[a,t0],

which is a simple and piecewise smooth closed path. Moreover, the trace of λ
coincides with

�([a,b]) = '([c,d]),

� and ' have the same initial (and final) point, and the two paths � and ' induce
the same orientation. Hence ∫

�
!=

∫

'
!.

Finally, we obtain
∫

�
! =

∫

�|[t0,b]
!+

∫

�|[a,t0]
!

=
∫

�
!,

and the proposition is proved. �

Remark 2.7.1. Physically, one might wish to consider two particles moving along
the same closed trajectory with the same direction of movement but whose initial
(and hence final) points differ. In this case, the two paths � and ' are not equivalent.
In fact, it follows from Definition 2.4.1 that two equivalent paths have the same
initial (and final) point. For example, the paths γ : [0,2π ]→ R

2, γ(t) = (cost,sin t),
and ϕ : [π ,3π ]→ R

2, ϕ(s) = (coss,sin s), are not equivalent. Another example of
two inequivalent paths that satisfy the hypothesis of Proposition 2.7.2 are γ and
β : [π ,3π ]→ R

2, β (s) = (cos(s+ π
2 ),sin(s+ π

2 )).
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2.8 Exercises

Exercise 2.8.1. Evaluate the length of the path

� :

[
0,

π
2

]
→R

2, �(t) = (et cos(t),et sin(t)).

Exercise 2.8.2. Obtain a parameterization, counterclockwise, of the ellipse

(
x
a

)2

+

(
y
b

)2

= 1 (a,b > 0).

Exercise 2.8.3. Integrate the vector field

F(x,y) = (y2,−2xy)

along the triangle with vertices (0,0), (1,0), (0,1), oriented counterclockwise.

Exercise 2.8.4. (1) Find a path � whose trajectory is the intersection of the
cylinder x2 + y2 = 1 with the plane x + y + z = 1 and with the additional
properties that the initial (and final) point is (0,−1,2) and the projection onto
the xy-plane is oriented counterclockwise.

(2) Evaluate
∫

�
xy dx + yz dy − x dz.

Exercise 2.8.5. Let � be a simple path whose trajectory is the intersection of the
coordinate planes with the portion of the unit sphere in the first octant, oriented
according to the sequence

(1,0,0), (0,1,0), (0,0,1), (1,0,0).

Evaluate ∫

�
z dx+ x dy+ y dz.

Exercise 2.8.6. Find a path whose trajectory is the intersection of the upper
hemisphere of the sphere with radius 2a,

x2 + y2 + z2 = 4a2,

with the cylinder

x2 +(y− a)2 = a2.
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Exercise 2.8.7. Determine whether the vector field

F : R2 → R
2, F(x,y) =

(
x3y, x

)
,

is conservative.

Exercise 2.8.8. Find a potential for the vector field

F : R2 →R
2, F(x,y) =

(
2xy, x2 − y2) .

Exercise 2.8.9. For the vector field

F : R3 → R
3, F(x,y,z) =

(
2xy, x2 + z2, 2zy

)
,

(1) show that 5×F = 0;
(2) find a potential for F.

Exercise 2.8.10. (1) Show that the vector field

F(x,y) =
(
ex(sin(x+ y)+ cos(x+ y))+ 1 , ex cos(x+ y)

)

is conservative on R
2 and find a potential.

(2) Evaluate the line integral ∫

�
F,

where

� : [0,π ]→R
2 ; �(t) =

(
sin(πesin(t)),cos5(t)

)
.

Exercise 2.8.11. Evaluate
∫

�
x dx+ y dy+ z dz,

where �(t) =
(
cos4(t),sin2(t)+ cos3(t), t

)
, 0 ≤ t ≤ π .

Exercise 2.8.12. For the vector field

F = ( f1, f2) : R2 \ {(0,0)}→R
2

defined by

f1(x,y) =
−y

x2 + y2 , f2(x,y) =
x

x2 + y2 ,
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(1) Show that
∂ f2

∂x
(x,y) =

∂ f1

∂y
(x,y)

for all (x,y) ∈R
2 \ {(0,0)}.

(2) Let � be the unit circle oriented counterclockwise. Show that
∫

�
F = 2π .

Is this fact a contradiction to Poincaré’s lemma?
(3) Argue whether this statement is true: for every closed and piecewise C1 path

˛ : [a,b]→ R
2 \ {(0,0)} such that α1(t)≥ 0 for all t ∈ [a,b],

∫

˛
F = 0.

(4) Evaluate
∫
� F, where

�(t) =
(
cos(t), sin7(t)

)
, −π

2
≤ t ≤ π

2
.

Exercise 2.8.13. Let �(t) = (cos(t), sin(t)) be given and let us consider the paths

˛ := �|[−π ,π ] and ˇ := �|[0,2π ].

(1) Are ˛ and ˇ equivalent paths?
(2) Justify why ∫

˛
F =

∫

ˇ
F

for any continuous vector field F : U ⊂ R
2 →R

2 defined on the unit circle.

Exercise 2.8.14. Let � be the path whose trajectory is the union of the graph of
y = x3 from (0,0) to (1,1) and the segment from (1,1) to (0,0). Using Green’s
theorem, evaluate ∫

�
(x2 + y2) dx+(2xy+ x2) dy.

Exercise 2.8.15. Use Green’s theorem to evaluate the line integral

∫

�
(x2 + 3x2y2) dx+(2x3y+ x2) dy,

where � is the boundary of the region lying between the graphs of y = 0 and y =
4− x2, oriented counterclockwise.
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Exercise 2.8.16. Let K be a region of type I or type II and let � be a path whose
trajectory is the boundary of K oriented counterclockwise. Then

area (K) =

∫

�

1
2
(−y dx+ x dy) =

∫

�
−y dx =

∫

�
x dy.

Exercise 2.8.17. Evaluate the area bounded by the cycloid � : [0,2π ]→ R
2,

�(t) = (at − asin(t),a− acos(t))

(a > 0) and the x-axis.

Exercise 2.8.18. Evaluate the area bounded by the two coordinate axes and the path

� :

[
0,

π
2

]
→ R

2, �(t) = (sin4(t),cos4(t)).

Exercise 2.8.19. Evaluate the area limited by the circles

C1 :=
{
(x,y) ∈ R

2 : x2 + y2 = a2}

and

C2 :=
{
(x,y) ∈ R

2 : x2 + y2 = 2ax
}
(a > 0).



Chapter 3
Regular k-Surfaces

Roughly speaking, a regular surface in R
3 is a two-dimensional set of points, in the

sense that it can be locally described by two parameters (the local coordinates) and
with the property that it is smooth enough (that is, there are no vertices, edges, or
self-intersections) to guarantee the existence of a tangent plane to the surface at each
point.
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