
Chapter 2
Signals and Systems

It is a fact that signals and systems in feedback control are in continuous time and
multivariable in nature. This is a contrast to data communications where the signals
and systems are discrete time with single transmitter/receiver. But the wide use of
digital computers in control systems and the emergence of wireless internet have
diminished such differences between feedback control and data communications.
Both are now in discrete time and both are MIMO systems. More importantly, they
tend to use increasingly the same mathematical descriptions in modeling and share
more and more mathematical tools in design. This text is aimed to provide the design
theory and computational algorithms for MIMO dynamical systems in which either
optimal disturbance rejection or optimal data detection is the main objective. This
chapter introduces the background material for signals and systems.

Mathematical models are indispensable in design of both communication and
control systems. To accommodate to data communications, signals are assumed to
be discrete time and complex-valued. For MIMO systems, signals of interest are
those having more than one component, each of which is random. Such signals are
sequences of random vectors, assumed to be WSS, and have bounded power spectral
densities (PSDs). Linear time-invariant (LTI) systems are capable of altering signals
through modifying their PSDs in a transparent way. Commonly used dynamical
models will be described and analyzed. LTV systems are also covered, albeit at a
less degree. Although signals include noises in a larger sense, noise models will be
discussed separately in this chapter, together with the bit error rate (BER) analysis
in data communications.

2.1 Signals and Spectral Densities

For simplicity, the discrete-time variable t is measured in units of the sampling
interval, and is thus integer-valued. That is, if s(t) is a discrete-time signal obtained
through sampling of the continuous-time signal sc(·), then s(t) = sc(tTs) for
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32 2 Signals and Systems

t = 0,±1,±2, . . ., with Ts the sampling period. In other words, a discrete-time signal
can be viewed as a complex sequence {s(t)} indexed by integer-valued time t.

2.1.1 Scalar Signals

Suppose that {s(t)} is deterministic and has finite energy. Then

Es :=
∞

∑
t=−∞

|s(t)|2 < ∞, (2.1)

where Es is the energy of {s(t)}. In this case, there exists DTFT for {s(t)}, defined as

S
(
e jω) :=

∞

∑
t=−∞

s(t)e− jωt , j =
√−1. (2.2)

The corresponding inverse DTFT of S
(
e jω) is given by

s(t) :=
1

2π

∫ π

−π
S
(
e jω)e jωt dω . (2.3)

The angular frequency ω = ωcTs is normalized and measured in radians per
sampling period where ωc is the physical frequency variable measured in radians
per second. Occasionally, f = ω/(2π) will be used, which has unit Hertz (Hz). If
(2.1) holds, then by the well-known Parseval’s theorem,

Es =
∞

∑
t=−∞

|s(t)|2 = 1
2π

∫ π

−π

∣
∣S(e jω)

∣
∣2 dω . (2.4)

It follows that Φs(ω) =
∣∣S(e jω)

∣∣2 represents the energy distribution of the sequence
over frequency and is thus termed energy spectral density (ESD).

The ESD can be obtained through a different path. Define

γs(k) =
∞

∑
t=−∞

s(t)s̄(t − k), k = 0,±1,±2, . . . . (2.5)

The sequence {γ(k)} resembles autocovariance sequence for random signals. For
any energy-bounded signals {x(t)} and {y(t)}, there holds

∣∣
∣
∣
∣

∞

∑
t=−∞

x(t)ȳ(t)

∣∣
∣
∣
∣
≤√ExEy, (2.6)
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which is the well-known Schwarz inequality. See Problem 2.2 in Exercises.
Substituting x(t) = s(t) and y(t) = s(t − k) into (2.6) yields

Es = γs(0)≥ γs(k) for k =±1,±2, . . . , (2.7)

by noting Ex = Ey = Es. Applying DTFT to {γs(k)} yields

∞

∑
k=−∞

γs(k)e− jωk =
∞

∑
k=−∞

∞

∑
t=−∞

[
s(t)e− jωt]

[
s̄(t − k)e jω(t−k)

]

= S
(
e jω)S

(
e jω)∗ =

∣
∣S(e jω)

∣
∣2 = Φs(ω)

with ∗ for conjugate transpose. Hence, the ESD is the DTFT of the sequence {γs(k)}.
In engineering practice, signals are often described by their probabilistic state-

ments and are thus random sequences. Such a signal sequence consists of an
ensemble of possible realizations, each of which has some associated probability
to occur. However, even if the signal is taken to be deterministic, which is one
realization from the whole ensemble, it may not have finite energy over the infinite
time horizon. In particular, signals in data communications do not possess DTFTs
in general. On the other hand, a random signal usually has a finite average power
and thus admits PSD.

Denote E{·} as the expectation operator which averages over the ensemble of
realizations. The discrete-time signal {s(t)} is assumed to be a complex sequence
of random variables, or random process with zero mean:

E{s(t)}= 0, t = 0,±1,±2, . . . . (2.8)

If, in addition, its ACS is given by

rs(k) := E{s(t)s̄(t − k)}, t = 0,±1,±2, . . . , (2.9)

which is independent of t, then {s(t)} is called WSS. It is easy to see that rs(k) =
r̄s(−k) and is left as an exercise to show that

rs(0)≥ |rs(k)| for k =±1,±2, . . . . (2.10)

The PSD is defined as DTFT of ACS:

Ψs(ω) :=
∞

∑
k=−∞

rs(k)e− jkω . (2.11)

The inverse DTFT recovers {rs(k)} from the given Ψs(ω) via

rs(k) =
1

2π

∫ π

−π
Ψs(ω)e jωk dω . (2.12)
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The averaged power of {s(t)} is thus

Ps := E
{|s(t)|2}= rs(0) =

1
2π

∫ π

−π
Ψs(ω) dω , (2.13)

which is also called mean-squared value of s(t).

Example 2.1. Let ω0 be real. Consider random signal

s(t) = Acos(ω0t +Θ), 0 < ω0 < 2π , (2.14)

where A and Θ are often employed to carry information bits in data communications.
This example examines the case when A and Θ are real random variables, indepen-
dent to each other, and uniformly distributed over [0, 1] and [0, 2π), respectively.
The ensemble is a set of sinusoids with random amplitude and phase angle. Simple
calculation shows

E{s(t)} = E{Acos(ω0t +Θ)}
= E{Acos(ω0t)cos(Θ)−Asin(ω0t)sin(Θ)}
= cos(ω0t)E{A}E{cos(Θ)}− sin(ω0t)E{A}E{sin(Θ)} = 0,

by independence, and E{cos(Θ)}= E{sin(Θ)} = 0. In addition,

E{s(t)s̄(t − k)} = E
{

A2 cos(ω0t +Θ)cos(ω0(t − k)+Θ)
}

=
1
2

E
{

A2}E{cos(ω0k)+ cos(2ω0t −ω0k+ 2Θ)}

=
1
2

E
{

A2}cos(ω0k) = rs(k).

It follows that {s(t)} is WSS. By the hypothesis on A, E
{

A2
}
= 1/3. Thus,

Ψs(ω) =
1
6

∞

∑
k=−∞

cos(ω0k)e− jωk =
1

12
[δD(ω +ω0)+ δD(ω −ω0)]

with δD(·), the Dirac delta function, satisfying

(i) δD(x) = 0 for x �= 0, (ii)
∫ ∞

∞
δD(x) dx = 1. (2.15)

The above indicates that there are two spectrum lines at ±ω0, respectively. The
analytical expression of rs(k) is useful in computing PSD of {s(t)}.

In practice, there is a difficulty in evaluating the PSD as defined in (2.11).
Infinitely, many terms need be computed for ACS, which is not feasible. An
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approximate PSD is employed, consisting of finitely many signal samples:

Ψ (n)
s (ω) = E

⎧
⎨

⎩
1
n

∣
∣∣
∣
∣

n−1

∑
t=0

s(t)e− jωt

∣
∣∣
∣
∣

2
⎫
⎬

⎭
. (2.16)

A natural question is whether or not Ψ (n)
s (ω) converges to Ψs(ω) as n → ∞. By

straightforward calculation,

Ψ (n)
s (ω) =

1
n

n−1

∑
t=0

n−1

∑
τ=0

E{s(t)s̄(τ)}e− jω(t−τ)

=
n

∑
k=−n

(
1− |k|

n

)
rs(k)e− jkω .

Since multiplication in time domain is the same as convolution in frequency-
domain, the above yields

Ψ (n)
s (ω) =

1
2π

∫ π

−π
Fn(θ )Ψs(ω −θ ) dθ , (2.17)

where Fn(ω) is the nth order Fejér’s kernel given by

Fn(ω) :=
n

∑
k=−n

(
1− |k|

n

)
e− jkω =

1
n

(
sin n

2 ω
sin 1

2 ω

)2

. (2.18)

Verification of the Fejér’s kernel is left as an exercise (Problem 2.5). Before
investigating the convergence issue for the approximate PSD in (2.17), it is
illuminating to learn the useful properties of the Fejér’s kernel.

Lemma 2.1. Let Fn(ω) be defined as in (2.18). Then

(i) Fn(ω)≥ 0 ∀ω ∈ [0, 2π ];

(ii)
1

2π

∫ 2π

0
Fn(ω) dω = 1 for every n > 0;

(iii) For any closed interval I in (0, 2π), lim
n→∞

sup
ω∈I

|Fn(ω)|= 0.

The proof of this lemma is again left as an exercise (Problem 2.5). The next
theorem is the main result of this section.

Theorem 2.2. Suppose that the random signal {s(t)} has a finite averaged power.
Then it admits the PSD as defined in (2.11). Let Ψs(ω) be continuous over [0, 2π)
and Ψs(0) =Ψs(2π). Define Ψ (n)

s (ω) as in (2.17). Then
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lim
n→∞

Ψ (n)
s (ω) = lim

n→∞
E

⎧
⎨

⎩
1
n

∣
∣∣
∣
∣

n−1

∑
t=0

s(t)e− jωt

∣
∣∣
∣
∣

2
⎫
⎬

⎭
=Ψs(ω)

for all ω ∈ [0, 2π ]. In other words, Ψ (n)
s (ω) converges uniformly to Ψ(ω).

Proof. By the expression of Φ(n)
s (ω) in (2.17) and (ii) of Lemma 2.1,

Ψ (n)
s (ω)−Ψs(ω) =

1
2π

∫ π

−π
[Ψs(ω −θ )−Ψs(ω)]Fn(θ ) dθ .

SinceΨs(ω) is a continuous function of ω , there exists an M > 0 such that |Ψs(ω)| ≤
M for all ω ∈ [−π , π ]. Take δ > 0 and write

Ψ (n)
s (ω)−Ψs(ω) =

1
2π

∫ δ

−δ
[Ψs(ω −θ )−Ψs(ω)]Fn(θ ) dθ

+
1

2π

∫

δ≤|θ |≤π
[Ψs(ω −θ )−Ψs(ω)]Fn(θ ) dθ .

It follows from Lemma 2.1 that
∣
∣
∣Ψ (n)

s (ω)−Ψs(ω)
∣
∣
∣≤ sup

|θ |≤δ
|Ψs(ω −θ )−Ψs(ω)|+ 2M sup

δ≤|θ |≤π
Fn(θ ). (2.19)

According to property (3) of Lemma 2.1, and by the continuity of Ψs(ω), there
exists an N > 0 such that for all n ≥ N and ω ∈ [0, 2π ],

∣
∣∣Ψ (n)

s (ω)−Ψs(ω)
∣
∣∣≤ ε

for any given ε > 0. Therefore, Ψ (n)
s (ω) converges uniformly to Ψs(ω). 
�

There is no loss of generality in using only the causal part of the signal for

approximate PSD Ψ (n)
s (ω) due to the WSS assumption for the random signal {s(t)}.

In fact, (2.17) is also useful in the case when the PDF of s(t) is unknown, in which
case the PSD is often estimated using time averages instead of the ensemble average,
by assuming ergodic process for {s(t)}. Since the measured signal data are always
finitely many, they can be assumed to begin at time t = 0.

Theorem 2.2 reveals an important property of the PSD:

Ψs(ω)≥ 0 ∀ω . (2.20)

That is, PSDs are positive real functions of frequency, even thoughΨs(ω) =Ψs(−ω)
may not hold in the case of complex signals. If the random signals are real, then there
holds Ψs(ω) =Ψs(−ω)≥ 0 for all ω .
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2.1.2 Vector Signals

For MIMO communication channels, the data signals are vector-valued, denoted by
boldfaced letters, at each sampling time t. Consider the vector signal {s(t)} with
size p > 1. If {s(t)} is deterministic, then it is assumed that the energy of the vector
signal is bounded. That is,

Es :=
∞

∑
t=−∞

‖s(t)‖2 < ∞, (2.21)

where ‖s(t)‖=√s(t)∗s(t) is the Euclidean norm of s(t). In this case, the DTFT of
{s(t)} exists and has the same expression as (2.2):

S
(
e jω) :=

∞

∑
t=−∞

s(t)e− jωt . (2.22)

Define the p× p matrices

Γs(k) =
∞

∑
t=−∞

s(t)s(t − k)∗, k = 0,±1,±2, . . . . (2.23)

Although each term in the summation has rank one, Γs(k) may have a rank greater
than one and even be nonsingular. Moreover, {Γs(k)} is a bounded matrix sequence.
There holds

Es = Tr{Γs(0)} ≥ |Tr{Γs(k)}| for k =±1,±2, . . . . (2.24)

Similar to the scalar case, the ESD can be defined as the DTFT of {Γs(k)}:

Φs(ω) =
∞

∑
k=−∞

Γs(k)e− jωk = S
(
e jω)S

(
e jω)∗ . (2.25)

The above can be obtained with a similar derivation as in the scalar case. It is
interesting to observe that Φs(ω) always has rank one for all ω , even though Γs(k)
may have a rank greater than one for each k. Consequently,

Tr{Φs(ω)} = Tr
{

S
(
e jω)S(e jω)∗

}
= S
(
e jω)∗ S

(
e jω)=

∥
∥S(e jω )

∥
∥2

,

by properties of the trace. Parseval’s theorem is extended to

Es =
∞

∑
t=−∞

‖s(t)‖2 =
1

2π

∫ π

−π

∥
∥S(e jω )

∥
∥2

dω . (2.26)
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For the case of random vector signals, it is assumed that {s(t)} is WSS with mean
E{s(t)}= 0p for all t. Then its ACS is given by

Rs(k) := E{s(t)s(t − k)∗} , k = 0,±1,±2, . . . , (2.27)

which is independent of t and has size p× p. Similar to the deterministic case, Rs(k)
can be nonsingular. It can be shown that (Problem 2.7 in Exercises)

(i) Rs(k)
∗ = Rs(−k), (ii) Tr{Rs(0)} ≥ |Tr{Rs(k)}|. (2.28)

Assume that Rs(0) exists and is bounded. Then the PSD of {s(t)} can be easily
extended from (2.11) via the DTFT of ACS:

Ψs(ω) :=
∞

∑
k=−∞

Rs(k)e− jkω . (2.29)

Different from the ESD in the deterministic case, the PSD Ψs(ω) is nonsingular
generically. The inverse DTFT recovers {Rs(k)} via

Rs(k) =
1

2π

∫ π

−π
Ψs(ω)e jωk dω . (2.30)

The averaged power of {s(t)} is generalized as follows:

Ps := E{s(t)∗s(t)} = Tr{Rs(0)}= Tr

{
1

2π

∫ π

−π
Ψs(ω) dω

}
. (2.31)

Example 2.3. Consider random vector signal

s(t) = Ax(t), x(t) =
[

cos(ω0t +Θ)

sin(ω0t +Θ)

]
, (2.32)

where A and Θ are real independent random variables uniformly distributed over
[0, 1] and [0, 2π), respectively, as in Example 2.1. It is easy to show that E{s(t)}= 0
and

E{x(t)x(t − k)∗}= 1
2

[
cos(ω0k) −sin(ω0k)
sin(ω0k) cos(ω0k)

]
=: Rx(k).

See Problem 2.6 in Exercises. Thus, by independence and E
{

A2
}
= 1/3,

E{s(t)s(t − k)∗}= E
{

A2}E{x(t)x(t − k)∗}= 1
6

[
cos(ω0k) −sin(ω0k)
sin(ω0k) cos(ω0k)

]
.

It follows that {s(t)} is WSS with Rs(k) = E{s(t)s(t − k)∗} as above, which is
nonsingular for all k. Direct calculation yields
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Φs(ω) =
1
6

∞

∑
k=−∞

[
cos(ω0k) −sin(ω0k)
sin(ω0k) cos(ω0k)

]
e− jωk

=
1

12

(
δD(ω +ω0)

[
1 − j
j 1

]
+ δD(ω −ω0)

[
1 j

− j 1

])
.

Thus, each element of the PSD matrix Ψs(ω) contains two spectrum lines at
±ω0, respectively, as in the scalar case. The power of the signal is given by
Ps = Tr{Rs(0)}= 1/3.

Approximate PSD can be employed if there are only finitely many terms of ACS
available. The following

Ψ (n)
s (ω) = E

{
1
n

(
n−1

∑
t=0

s(t)e− jωt

)(
n−1

∑
τ=0

s(τ)e− jωτ

)∗}

(2.33)

is generalized from (2.16). Straightforward calculation gives

Ψ (n)
s (ω) =

1
n

n−1

∑
t=0

n−1

∑
τ=0

E{s(t)s(τ)∗}e− jω(t−τ)

=
n

∑
k=−n

(
1− |k|

n

)
Rs(k)e− jkω

=
1

2π

∫ π

−π
Fn(θ )Ψs(ω −θ ) dθ ,

where Fn(·) is the nth order Fejér’s kernel as defined in (2.18). Because Fejér’s
kernel is a scalar function, the matrix-valued ACS and PSD do not pose any
difficulty in extending Theorem 2.2 to the following.

Theorem 2.4. Suppose that the random vector signal {s(t)} has a finite averaged
power. Then it admits the PSD as defined in (2.29). Let Ψs(ω) be continuous over

[0, 2π) and Ψs(0) =Ψs(2π). Define Ψ (n)
s (ω) as in (2.33). Then

lim
n→∞

Ψ (n)
s (ω) =Ψs(ω) ∀ ω ∈ [0, 2π ].

Example 2.5. As an application example, consider estimation of the PSD based on
a given set of N data samples {s(t)}N−1

t=0 in the absence of the statistical information

of the underlying signal. To employ Ψ (n)
s (ω) in (2.33) as an approximation, it is

assumed that N = nm with n and m integers. The data set is partitioned into m
disjoint subsets {si(t)}n−1

t=0 , where i = 0,1, . . . ,m− 1. A simple partition is

si(t) = s(in+ t), 0 ≤ i ≤ m− 1, 0 ≤ t ≤ n− 1.
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Let Wn = e− j2π/n. For i = 0,1, . . . ,m− 1, compute

Si(k) =
1√
n

n−1

∑
t=0

si(t)W
tk
n , k = 0,1, . . . ,n− 1, (2.34)

which is a modified discrete Fourier transform (DFT). That is, it computes n
frequency response samples uniformly distributed over [0, 2π ] for {si(t)}n−1

t=0
modified by a factor of 1√

n . The FFT (fast Fourier transform) algorithm can be used
to implement the computation in (2.34). Now the ensemble average in (2.33) at
ω = ωk =

2kπ
n is replaced by the time average as follows:

Ψ (n) (ωk)≈ 1
m

m−1

∑
i=0

Si(k)Si(k)
∗, k = 0,1, . . . ,n− 1. (2.35)

If {s(t)} is an ergodic process, the right-hand side converges to Ψ (n) (ωk) as m→ ∞,
which in turn converges to the true PSD Ψ(ω) uniformly as n → ∞. Theorem 2.4 is
the basis for such a spectral estimation technique.

2.2 Linear Systems

Systems can be viewed as operators which map input signals to output signals
according to some mathematical mechanisms. A linear system is a linear map
whose output is a linear function of the input. This text focuses on LTI systems
that provide transparent relations between spectral densities of the input signals and
output signals. In fact, LTI systems shape the spectral densities of the input signals
through a simple multiplicative operation capable of producing entirely different
spectral densities at the output. LTV systems will also be studied in this section,
albeit at a less degree.

2.2.1 Transfer Functions and Matrices

An LTI scalar system can be represented by its transfer function which is the Z
transform of its impulse response, as illustrated below (see Fig. 2.1).

Fig. 2.1 An LTI system represented by its transfer function
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That is, if u(t) = δ (t), which is the Kroneker delta function, then y(t) = h(t) for
t = 0,±1,±2, . . ., with {h(t)} the impulse response. The transfer function of the
system is given by

H(z) :=
∞

∑
t=−∞

h(t)z−t , z ∈ C. (2.36)

For any input {u(t)}, the output of the system is the convolution of the impulse
response with the input:

y(t) = h(t)� u(t) :=
∞

∑
k=−∞

h(t − k)u(k). (2.37)

The system is said to be causal, if h(t) = 0 for t < 0, and strictly causal, if h(t) = 0
for t ≤ 0. Physical systems are causal in general, and often strictly causal. The
following defines the notion of stability.

Definition 2.1. A system is said to be stable, if for every bounded input {u(t)}
(i.e., |u(t)| ≤ Mu < ∞ for all t, and some Mu > 0), the corresponding output {y(t)}
is bounded (i.e., |y(t)| ≤ My < ∞ for all t, and some My > 0).

The above stability is also termed BIBO (bounded-input/bounded-output) stabil-
ity. The next result provides the stability criterion.

Theorem 2.6. An LTI system with transfer function as in (2.36) is stable, if and
only if

∞

∑
t=−∞

|h(t)|< ∞. (2.38)

Proof. For any bounded input {u(t)} satisfying |u(t)| ≤ Mu < ∞ for all t, and some
Mu > 0, the output satisfies

|y(t)|=
∣
∣
∣
∣
∣

∞

∑
k=−∞

h(t − k)u(k)

∣
∣
∣
∣
∣
≤
(

∞

∑
k=−∞

|h(k)|
)

Mu =: My < ∞

for t = 0,±1,±2, . . .. Hence, (2.38) implies stability of the given LTI system.
Conversely for the stable LTI system in (2.36), consider input {u(t)} given by

u(k) =

{
h̄(t0 − k)/|h(t0 − k)|, h(t0 − k) �= 0,

0, h(t0 − k) = 0,

with t0 an integer. Then |u(t)| ≤ 1 for all t and

y(t0) =
∞

∑
k=−∞

h(t0 − k)u(k) =
∞

∑
k=−∞

|h(t0 − k)|=
∞

∑
t=−∞

|h(t)|< ∞

by the stability assumption. Thus, stability implies (2.38). 
�
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Notice that if the LTI system is both stable and causal, then

H(z) =
∞

∑
t=0

h(t)z−t (2.39)

is analytic at z∈ C such that |z|> 1 and continuous on the unit circle. In other words,
the region of convergence (ROC) is |z| ≥ 1. In the interest of this text, only a subset
of causal and stable LTI systems will be studied. This is the set of causal and stable
LTI systems that admit rational transfer functions, or have finitely many poles and
zeros. The causality of such a system is equivalent to the properness of its transfer
function. Moreover, there exists a positive number r < 1 such that its ROC is |z|> r.
That is, it is also analytic on the unit circle. Various system models will be presented
in the next subsection.

For MIMO LTI systems, both input and output are vector signals. Capital letters,
for example, {H(t)}, are used to denote impulse responses. The Z transform of
the impulse response {H(t)} is a transfer function matrix, or simply called transfer
matrix, denoted by boldfaced capital letter and defined by

H(z) :=
∞

∑
t=−∞

H(t)z−t . (2.40)

If the input signal {u(t)} has dimension m and the output signal {y(t)} has
dimension p, then H(z) has size p×m for each z ∈ C. The input and the output
are again governed by the convolution relation:

y(t) = H(t)�u(t) :=
∞

∑
k=−∞

H(t − k)u(k). (2.41)

A vector signal {s(t)} is said to be bounded, if ‖s(t)‖ ≤ Ms for all t and some
bounded Ms > 0. The stability notion in Definition 2.1 can be easily generalized to
MIMO systems.

Definition 2.2. A MIMO system is said to be stable, if for every bounded input
{u(t)}, the corresponding output {y(t)} is bounded.

Note that for vector equation w = Av with A a fixed matrix, ‖w‖ is a function of
v. Recall that ‖ · ‖ is the Euclidean norm. There holds

sup
‖v‖=1

‖w‖= sup
‖v‖=1

‖Av‖= σ(A) (2.42)

with σ(·) the maximum singular value (refer to Appendix A). The next result is
extended from Theorem 2.6 by noting the equality (2.42) and by the fact that there
exists v0 with ‖v0‖= 1 such that ‖Av0‖= σ(A).
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Theorem 2.7. The LTI system with transfer matrix as in (2.40) is stable, if and
only if

∞

∑
t=−∞

σ (H(t))< ∞. (2.43)

The proof is left as an exercise (Problem 2.20). For deterministic input signals,
output signals are deterministic as well. The convolution in time domain is translated
into multiplication in Z -domain or frequency domain:

Y(z) = H(z)U(z), Y
(
e jω)= H

(
e jω)U

(
e jω) . (2.44)

Let Φu(ω) = U
(
e jω)U

(
e jω)∗ be the ESD of the input. Then

Φy(ω) = Y
(
e jω)Y

(
e jω)∗ = H

(
e jω)Φu(ω)H

(
e jω)∗ (2.45)

is the ESD of the output. As such, the frequency response of the system shapes the
ESD of the input. It is appropriate to define the energy norm:

‖s‖E :=
√

Es =

√
∞

∑
t=−∞

‖s(t)‖2. (2.46)

In light of (2.44), the energy norm of the output is given by

‖y‖E =

√

Tr

{
1

2π

∫ π

−π
H(e jω)Φu(ω)H(e jω)∗ dω

}
. (2.47)

Generically, ‖y‖E �= ‖u‖E , if H(z) �= I. Thus, the energy norm serves as an indicator
on the frequency-shaping effect of the system frequency response.

For random signals, their DTFT may not exist and thus (2.44) may not hold, if the
input is a random signal. Suppose that the input {u(t)} is a WSS random process
with zero means and {Ru(k)} as the ACS. Then {y(t)} is a random process with
zero mean due to E{u(t)}= 0 for all t and

E{y(t)}=
∞

∑
k=−∞

H(t − k)E{u(k)}= 0 ∀ t.

In fact, the output is also a WSS random process. Specifically,

E{y(t)y(t − k)∗} =
∞

∑
α=−∞

∞

∑
β=−∞

H(t −α)E{u(α)u(β )∗}H(t − k−β )∗

=
∞

∑
α=−∞

∞

∑
β=−∞

H(t −α)Ru(α −β )H(t − k−β )∗.



44 2 Signals and Systems

With variable substitution γ = α −β , the above results in

E{y(t)y(t − k)∗} =
∞

∑
β=−∞

∞

∑
γ=−∞

H(t −β − γ)Ru(γ)H(t −β − k)∗

=
∞

∑
β=−∞

R̃y(t −β )H(t −β − k)∗

=
∞

∑
τ=−∞

R̃y(τ)H(τ − k)∗ = Ry(k),

which is independent of time t, where R̃y(τ) = H(τ)�Ru(τ) with τ = t −β . Hence,
it is concluded that the output of an LTI system is a WSS random process, provided
that the input is. Let Ψu(ω) be the PSD associated with input. Applying DTFT to
the ACS of {y(t)} shows that the PSD of the output is given by (Problem 2.9 in
Exercises)

Ψy(ω) = H
(
e jω)Ψu(ω)H

(
e jω)∗ . (2.48)

The resemblance of (2.48) to (2.45) is obvious, implying that LTI systems are
capable of shaping the PSD of the input signal through multiplicative operations.
The frequency response of the underlying system determines how much frequency
shaping the system can exert to the input PSD. A useful measure is the power norm:

‖s‖P =
√

Ps =
√

E{‖s(t)‖2}=
√

Tr{Rs(0)}. (2.49)

Thus, the power norm of the output is

‖y‖P =

√

Tr

{
1

2π

∫ π

−π
H(e jω)Ψu(e jω)H(e jω)∗ dω

}
, (2.50)

which indicates the shaping effect of the system frequency response to the input
PSD. More investigation will be carried out in later sections. If the input is white
noise with zero mean and identity covariance, i.e., Φu(e jω )≡ I, then (2.49) provides
one way to compute the system norm defined by

‖H‖2 :=

√

Tr

{
1

2π

∫ π

−π
H(e jω)H(e jω)∗ dω

}
=

√√
√
√Tr

{
∞

∑
t=−∞

H(t)H(t)∗
}

(2.51)

in light of the Parseval’s theorem. Such a system norm is sometime called Frobenius
norm of the system. A more general system norm is

‖H‖p :=

[
1

2π

∫ π

−π

(√
Tr{H(e jω)H(e jω)∗}

)p

dω
]1/p

for 1 ≤ p < ∞, which reduces to ‖H‖2 for p = 2.
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Example 2.8. Consider the scalar system with transfer function

H(z) = K
(
1− 2cos(ωh)z

−1 + z−2)= K
(
z− e jωh

)(
z− e− jωh

)
,

where K is a real constant gain. Simple calculations show that

∣
∣H(e jω)

∣
∣= 2|K|

√∣
∣
∣∣sin

(
ω +ωh

2

)
sin

(
ω −ωh

2

)∣∣
∣∣

and ‖H‖2 = 2|K|√1+ cos2(ωh)/2. If the input to the system is u(t) = s(t) with s(t)
as given in Example 2.1, then the input PSD is

Ψu(ω) =
1
12

[δD(ω +ω0)+ δD(ω −ω0)] .

In the scalar case, (2.48) reduces to Ψy(ω) =
∣
∣H
(
e jω)∣∣2Ψu(ω), and thus,

Ψy(ω) =
K2

3

∣
∣∣
∣sin

(
ω +ωh

2

)
sin

(
ω −ωh

2

)∣∣∣
∣ [δD(ω +ω0)+ δD(ω −ω0)]

=
K2

3

∣
∣
∣
∣sin

(
ω0 +ωh

2

)
sin

(
ω0 −ωh

2

)∣∣
∣
∣ [δD(ω +ω0)+ δD(ω −ω0)]

is the output PSD. It follows that the amplitude of the two spectrum lines of the
input PSD is shaped by the frequency response H

(
e jω) at frequency ω0. Indeed, if

ωh = ±ω0, then Ψy(ω)≡ 0 and there are no spectrum lines for the output PSD. On
the other hand, if ωh �= ±ω0, the maximum amplitude of the two spectrum lines at
the output is given by (with either ωh = 0, or ωh = π)

K2

3
max
{

cos2(ω0/2), sin2(ω0/2)
}≥ K2

6
,

which can be large if the gain K is large.

2.2.2 System Models

The systems under consideration are causal and stable LTI systems, which have
finitely many poles. Such systems form a dense set in the class of all causal
and stable systems having continuous frequency responses. In other words, any
causal and stable LTI system which admits continuous frequency response can
be approximated arbitrarily well by a causal and stable LTI system which has
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finitely many poles, provided that the number of poles is adequately large in light of
Weierstrass Theorem from calculus. Such systems are also called finite-dimensional
due to their finitely many poles and, more importantly, that they can be implemented
or realized with finitely many arithmetic and delay operations. This subsection
will provide a brief review of commonly used mathematical models for finite-
dimensional LTI systems.

FIR or MA Models

For MIMO systems with m input and p output, the FIR model, also called transversal
filter, refers to the transfer matrices of the form

H(z) =
�

∑
k=0

H(k)z−k, (2.52)

where H(k) is a matrix of size p×m and is the impulse response at time t = k. In
obtaining the impulse response of the system, the m impulse inputs need be applied
one by one. The corresponding m output signals of size p can then be packed
together column-wise to form {H(t)}�t=0. Since the impulse response dies out in
finitely many samples, it acquires the name FIR (finite impulse response).

Consider the system with FIR model in (2.52). Let {u(t)} and {y(t)} be the
associated input and output signals, respectively. Then

y(t) =
�

∑
k=0

H(k)u(t − k) =
t

∑
k=t−�

H(t − k)u(k). (2.53)

That is, the output is the (weighted) moving average (MA) of the input. Hence,
the input/output description in (2.53) for the FIR model is also called the MA
model. FIR or MA models are the simplest, yet extremely important, for wireless
communication systems. The wireless channels are characterized by multipath, of
which gains of each path can be regarded as the impulse responses of the channels
and are often complex valued.

IIR or ARMA Models

The IIR model for SISO systems has the fractional form

H(z) =
N(z)
M(z)

=
ν0 +ν1z−1 + · · ·+νnν z−nν

1− μ1z−1 −·· ·− μnμ z−nμ
, (2.54)

where μk �= 0 for at least one integer k > 0 and M(z) �= 0 for all z outside and on the
unit circle. It follows that the system is stable and has a causal and infinite impulse
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response (IIR). Let {u(t)} and {y(t)} be the associated input and output signals,
respectively. Then

y(t) =
nμ

∑
k=1

μky(t − k)+
nν

∑
k=0

νku(t − k). (2.55)

That is, the output y(t) consists of two parts: the autoregressive (AR) part in the first
summation and the MA part in the second summation. If νk = 0 for k = 1,2, . . . ,nν ,
then the ARMA model reduces to the AR model, in which case the system admits
an all-pole model. Hence, the ARMA model includes the AR model as a special
case. In light of (2.55), the computational complexity in computing the output y(t)
is dependent on the degrees of the numerator and denominator polynomials in the
ARMA model (2.54). There is an incentive to minimize nν and nμ , which can be
carried out through cancelation of the common factors or common roots of M(z)
and N(z). If M(z) and N(z) do not share common roots, then {M(z),N(z)} is called
relative coprime or simply coprime. In this case, the roots of N(z) are called zeros,
the roots of M(z) are called poles, and n = max{nν ,nμ} is called the degree of the
system.

For MIMO systems with m input and p output, the transfer matrices for the IIR
model can be extended to the left fractional form

H(z) = M(z)−1N(z) =

(

M0 −
nμ

∑
k=1

Mkz−k

)−1( nν

∑
k=0

Nkz−k

)

, (2.56)

where Mk is a p× p matrix and Nk is a p×m matrix for each integer k. Again,
Mk �= 0p×p for at least one integer k > 0, assuming M0 is nonsingular. If M0 is an
identity, then the following describes the MIMO ARMA model:

y(t) =
nμ

∑
k=1

Mky(t − k)+
nν

∑
k=0

Nku(t − k), (2.57)

where {u(t)} and {y(t)} are the input and output signals, respectively. For MIMO
systems, there exists right fractional form

H(z) = Ñ(z)M̃(z)−1 =

(
ñν

∑
k=0

Ñkz−k

)(

M̃0 −
ñμ

∑
k=1

M̃kz−k

)−1

, (2.58)

which can be entirely different from the one in (2.56).
Several notions need be introduced for MIMO systems. For the left fraction in

(2.56), {M(z),N(z)} is called left coprime, if

rank
{[

M(z) N(z)
]}

= p ∀ z ∈ C. (2.59)
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For the right fraction in (2.58),
{

Ñ(z),M̃(z)
}

is called right coprime, if

rank

{[
M̃(z)
Ñ(z)

]}
= m ∀ z ∈ C. (2.60)

In practice, it is unnecessary to test the rank conditions in (2.59) and (2.60) at all
z ∈ C. For the left fraction, one needs test (2.59) only at those z which are roots of
det(M(z)) = 0, and in the case of the right fraction, one needs test (2.60) only at
those z which are roots of det

(
M̃(z)
)
= 0.

Suppose that {M(z),N(z)} and
{

Ñ(z),M̃(z)
}

are left and right coprimes,
respectively. A complex number p0 is called pole of H(z), if:

lim
z→p0

rank{M(z)} < p ⇐⇒ lim
z→p0

rank
{

M̃(z)
}
< m. (2.61)

That is, some elements of H(z) become unbounded as z → p0. A complex number
z0 is called zero of H(z), if with ρ = min{p,m},

lim
z→z0

rank{N(z)}< ρ ⇐⇒ lim
z→z0

rank
{

Ñ(z)
}
< ρ . (2.62)

That is, rank{H(z)}< ρ = min{p,m} as z → z0. The system is stable, if H(z) has
all its poles strictly inside the unit circle. The system is called minimum phase, if
H(z) has no zeros outside the unit circle, and called strict minimum phase, if H(z)
has no zeros on and outside the unit circle.

Example 2.9. For systems with single input (m = 1), their right coprime fractions
can be easily obtained, which amounts to computing the greatest common divisor
(GCD). Specifically, consider the case of p = 2 with

H(z) = Ñ(z)M̃(z)−1 =

[
a1 + b1z−1 + c1z−2

a2 + b2z−1 + c2z−2

]
(
1−αz−1 −β z−2)−1

=

[
a1
(
1− s1,1z−1

)(
1− s1,2z−1

)

a2
(
1− s2,1z−1

)(
1− s2,2z−1

)
]
[(

1− p1z−1)(1− p2z−1)]−1
.

The system has a zero at zo, if and only if zo �= p1, zo �= p2, and zo = s1,i = s2,k for
some i and k. The right coprimeness condition in (2.60) is equivalent to whether or
not the two numerator and one denominator polynomials have common roots. Thus,{

Ñ(z),M̃(z)
}

is not right coprime, if and only if

H(z) =

[
a1
(
1− s1z−1

)

a2
(
1− s2z−1

)
] (

1− sz−1
)

(1− sz−1) (1− pz−1)

=

[
a1
(
1− s1z−1

)

a2
(
1− s2z−1

)
]

1
1− pz−1 ,
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u(t−1)
u(t−2)

u(t−3)

ν0
ν1

ν2

ν3
u(t) y(t)

z−1 z−1 z−1

Fig. 2.2 Block diagram for
FIR models of degree n = 3

for some s. If
(
1− sz−1

)
is the GCD, then the last expression of the above equation

provides a right coprime fraction, which has a zero if and only if s1 = s2. This
procedure can be easily generalized to other single input systems. As a result,
the procedure for obtaining the right coprime fractions for single-input systems is
quite similar to that for SISO systems, which can be extended to compute the left
coprime fractions for single output (p = 1) systems.

It is possible for H(z) to have common poles and zeros while its fractions are
coprime. Generically, it is difficult to obtain coprime fractions for MIMO systems,
and coprime fractions are not possible, if M0 = Ip and M̃0 = Im are required.
Consequently, it is considerably more difficult to minimize the computational
complexity associated with the right-hand side of (2.57) than the case of SISO
systems. For this and other reasons, state-space models are more preferred for
MIMO systems to be discussed next.

State-Space Models

State-space models describe dynamic systems with state variables. Let FIR models
of degree 3 be realized as in the following block diagram.

Then the input/output relation in Fig. 2.2 satisfies (2.55) for n = nν = 3 and
μk = 0 ∀ k ≥ 1. A common practice in the state-space description is to take the
output of each delay device as the state variable. Thus, for the SISO MA model, one
may define n = nν state variables {xk(t)}n

k=1 via

x(t) =

⎡

⎢
⎢⎢
⎣

x1(t)
x2(t)

...
xn(t)

⎤

⎥
⎥⎥
⎦
=

⎡

⎢
⎢⎢
⎣

u(t − 1)
u(t − 2)

...
u(t − n)

⎤

⎥
⎥⎥
⎦

=⇒ x(t + 1) =

⎡

⎢
⎢⎢
⎣

u(t)
x1(t)

...
xn−1(t)

⎤

⎥
⎥⎥
⎦
. (2.63)

Let d = ν0. Then the state-space equations

x(t + 1) = Ax(t)+bu(t), y(t) = cx(t)+ du(t) (2.64)

hold, where (A,b,c,d) is called a realization of the system, given by

A =

[
0∗n−1 0
In−1 0n−1

]
, b =

[
1

0n−1

]
, c =

[
ν1 · · · νn

]
, (2.65)
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in light of (2.63). The vector space spanned by state vectors x(t) at different time t
is called state space and is determined by the pair (A,b).

For the IIR model or ARMA model, it is assumed that

H(z) = d+
ν̃1z−1 + ν̃2z−2 + · · ·+ ν̃nz−n

1− μ1z−1 −·· ·− μnz−n , (2.66)

where n = max{nν ,nμ}. The conversion from (2.54) to (2.66) is always possible
by zero-padding either the AR coefficients or MA coefficients. In this case, H(z)
admits a realization (A,b,c,d) with

A =

[
vn−1 μn

In−1 0n−1

]
, b =

[
1

0n−1

]
, c =

[
ν̃1 · · · ν̃n

]
, (2.67)

where vn−1 =
[

μ1 · · · μn−1
]
. The above is termed canonical controller form or

simply controller form. To verify that (A,b,c,d) is indeed a realization for H(z) in
(2.66), denote {xk(t)} as the corresponding state variables. Then for 1 ≤ k < n,

xk+1(t + 1) = xk(t) =⇒ xk(t) = x1(t − k+ 1).

Hence, for d = 0, the expressions in (2.67) and (2.64) yield

x1(t + 1) =
n

∑
k=1

μkxk(t)+ u(t) =
n

∑
k=1

μkx1(t − k+ 1)+ u(t),

y(t) =
n

∑
k=1

ν̃kxk(t) =
n

∑
k=1

ν̃kx1(t − k+ 1).

Applying Z transform to the above with zero initial conditions yields

X1(z) =
z−1U(z)

1− μ1z−1 −·· ·− μnz−n ,

Y (z) =
(
ν̃1 + ν̃2z−1 + · · ·+ ν̃nz−n+1)X1(z),

which verifies that the transfer function from u(t) to y(t) is indeed H(z).
For MIMO FIR systems, a simple realization (A,B,C,D) is given by

A =

[
0m×(n−m) 0m×m

I(n−m)m 0(n−m)×m

]

, B =

[
Im

0(n−m)×m

]
,

C =
[

H1 H2 · · · H�

]
, D = H0, n = m�,

(2.68)

which is generalized from (2.65) and termed block controller form. Extension of
the above realization to include the IIR MIMO system in (2.56) is left as an exercise
(Problem 2.23). Its state-space system is described by

x(t + 1) = Ax(t)+Bu(t), y(t) =Cx(t)+Du(t), (2.69)
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where A,B,C and D have appropriate dimensions. Applying Z transform to (2.69)
with zero initial condition x(0) = 0n yields the transfer matrix

H(z) = D+C (zIn −A)−1 B. (2.70)

Its impulse response {H(t)} is given by

H(0) = D, H(t) =CAt−1B, t ≥ 1. (2.71)

State-space realizations are not unique. For the state-space equation (2.69), let
the linear transform be xT (t) = T x(t) with T square and nonsingular. Then x(t) =
T−1xT (t), which upon substituted into (2.69), yields

xT (t + 1) = TAT−1xT (t)+TBu(t), y(t) =CT−1xT (t)+Du(t). (2.72)

Hence, a different realization
(
TAT−1,T B,CT−1,D

)
is obtained for the same

system. The transform in (2.72) is called similarity transform. Since T is an arbitrary
nonsingular matrix, a system can have infinitely many different realizations. More-
over, realizations with different state dimensions may exist. Minimal realizations
are preferred due to the obvious reason of complexity. The dimension of the state
vector x(t) is called order of the state-space system. If the order n is minimum
among all possible realizations for the same system, then (A,B,C,D) is called a
minimal realization.

Let p0 be a pole of H(z). Then it is an eigenvalue of A. The converse may not be
true in general unless the realization is minimal. Let z0 be a zero of H(z). Then

rank

{[
A− z0 In B

C D

]}
< n+min{p,m}. (2.73)

Again, the converse holds for only minimal realizations in general. The state-space
system (2.69) is said to be internally stable, if all eigenvalues of A are strictly inside
the unit circle. A formal definition for stability will be delayed to the next chapter.
It is worth pointing out that the stability notion for state-space systems is stronger
than the stability notion for ARMA models or transfer functions and matrices. The
two coincide with each other when the state-space system has a minimal realization.

Example 2.10. The following transfer function

H(z) =
−3z−1 + 6z−2

1− 2z−1 =
−3z+ 6
z2 − 2z

(2.74)

admits a realization (A,b,c,d) with

A =

[
2 0
1 0

]
, b =

[
1
0

]
, c =

[−3 6
]
, d = 0.
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The state-space system is unstable as A has two eigenvalues with one at 2 and the
other at 0. In absence of the input, the recursive computation yields

x(t + 1) =

[
x1(t + 1)
x2(t + 1)

]
= Ax(t) =

[
2
1

]
x1(t) =

[
2t+1

2t

]
x1(0)

with x1(0) the first component of x(0). Hence, if x1(0) �= 0, each element of x(t)
diverges as t → ∞. On the other hand,

y(t) = cx(t) =
[−3 6

]
x(t) =−3× 2t + 6× 2t−1 = 0.

So the unstable mode 2t does not show up at the output. Alternatively, H(z) in (2.74)
admits a different realization with

A =

[
2 1
0 0

]
, b =

[−3
6

]
, c =

[
1 0
]
, d = 0.

Again, A has eigenvalues at 2 and 0. Moreover, x1(t) = 2tx1(0)− 3u(t) and y(t) =
x1(t) based on the recursive state-space equation. In this case, the unstable mode 2t

does show up at the output, but cannot be removed from both x1(t) and x2(t), i.e.,
stabilized by any bounded control input {u(t)}.

It is important to note H(z) =−3z−1 after canceling the common factor (z− 2).
Thus, the system is BIBO stable. The unstable eigenvalue at 2 is not a pole of
H(z). In fact, a minimal realization of H(z) is (A,b,c,d) = (0,1,−3,0), which
is stable, coinciding with the stability of H(z). This example illustrates a serious
issue in realizations: It is possible for a system to be internally unstable while being
externally or BIBO stable. Such realizations are harmful in the sense that unstable
modes of the state-space system are either not detectable via the measured output or
not stabilizable via the control input, which will be investigated thoroughly in the
next chapter.

To summarize, the LTI models can be basically classified into two categories.
The first one includes FIR or MA and IIR or ARMA models, which emphasizes
input/output descriptions for dynamic systems. Its advantages lie in the simplicity
and clear notions of poles, zeros, and stability. Such models are well studied for
SISO systems. However, the coprime fractions for MIMO systems such as ARMA
or IIR models are not easy to obtain, especially if M0 = Ip or M̃0 = Im is required.
The second category is the state-space models, which provide internal descriptions
for dynamic systems in terms of state vectors. The dynamic behavior of the system is
completely specified by the state variables and the input. Although more parameters
are used, minimal realizations are always possible. Thus, poles, zeros, and stability
can be characterized as well. More importantly, state-space models reveal internal
structural information of the underlying systems and introduce new concepts and
results for system design, which are especially suitable to MIMO systems. Hence,
this text will focus on state-space models.



2.2 Linear Systems 53

0
2 5410

1

2

3

k

t
h(t;k)

3

Fig. 2.3 Impulse response for SISO LTV systems

2.2.3 Time-Varying Systems

A LTV system can be viewed as a family of LTI systems parameterized by the
time index t. As such, its impulse response is denoted by {h(t;k)}. Basically,
{h(t0;k)} is an impulse response of the system at time t0 with the impulse input
applied at k = 0. An illustrative plot is shown in Fig. 2.3. At each integer-valued
time t, h(t;k) is shown horizontally from left to right. For MIMO systems, impulse
responses are denoted by {H(t;k)}. Let {u(t)} and {y(t)} be the input and output,
respectively. Then

y(t) = H(t;k)�u(t) =
∞

∑
k=−∞

H(t;t − k)u(k) =
∞

∑
k=−∞

H(t,k)u(k). (2.75)

In the control literature, H(t,k) = H(t;t − k) is the standard notation. If the impulse
responses are all the same at different time index t, then (2.75) becomes the same as
in (2.41) for LTI systems (see Fig. 2.3).

For LTV systems, transfer functions or transfer matrices do not exist. As a conse-
quence, notions of poles and zeros are lost, and frequency-domain analysis is inap-
plicable, which are negative. On the positive side, the BIBO stability condition can
be derived in a similar way to that for LTI systems, as shown in the following result.

Theorem 2.11. The LTV system with impulse response {H(t;k)} is BIBO stable, if
and only if

∞

∑
k=−∞

σ(H(t;k))< ∞, ∀ t. (2.76)

Basically, the stability condition in Theorem 2.11 treats the LTV impulse
response as a “frozen time” LTI system indexed by time t. Thus, its proof is
similar to that for LTI systems and is left as an exercise (Problem 2.26). While the
stability condition for LTV systems is simple and resembles that for LTI systems,
difficulties exist to apply it in practice due to the lack of analytic form of {H(t;k)}
and verification of (2.76) for each t. It needs to be pointed out that for causal LTV
systems, H(t;k) = 0 for k < 0, which is assumed in the rest of this subsection.
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As shown earlier, outputs of LTI systems are WSS processes, provided that the
inputs are also. However, this statement does not hold for LTV systems, even though
E{u(t)} = 0 for all time t implies E{y(t)} = 0 for all t, in light of (2.75). Indeed,
for white noise input with the identity covariance, the power of the output is time
dependent and given by

Py(t) = Tr

(

E

{
t

∑
k=−∞

t

∑
i=−∞

H(t;t − k)u(k)u(i)∗H(t; t − i)∗
})

= Tr

{
t

∑
k=−∞

H(t;t − k)H(t;t − k)∗
}

= Tr

{
∞

∑
k=0

H(t;k)H(t;k)∗
}

. (2.77)

Basically, Py(t) quantifies the energy of the impulse response at time t. The above
suggests that the system norm in (2.51) for LTI systems be generalized to LTV
systems as

‖Ht‖2 =

√√
√
√Tr

{
∞

∑
k=0

H(t;k)H(t;k)∗
}

(2.78)

which is time dependent.
Even though LTV systems are considerably more difficult to analyze, MA,

ARMA, and state-space models are still effective for the class of systems empha-
sized in this text. Specifically, the ARMA model in (2.57) for MIMO systems can
be adapted to

y(t) =−
nμ

∑
k=1

Mk(t)y(t − k)+
nν

∑
k=0

Nk(t)u(t − k), (2.79)

where the AR and MA coefficient matrices are function of time t. If Mk(t) = 0 for
1 ≤ k ≤ nμ and all time t, then the above is collapsed to the MA model

y(t) =
nν

∑
k=0

Nk(t)u(t − k)

and {Nk(t)} can be viewed as an impulse response of the LTV system at time t. That
is, {H(t,k) = Nk(t)} is parameterized by time index t. It is noted that MA models,
time varying or not, are always stable.

For state-space descriptions, state-space models are adapted to

x(t + 1) = Atx(t)+Btu(t), y(t) =Ctx(t)+Dtu(t), (2.80)

where (At ,Bt ,Ct ,Dt) can be viewed as a realization for the underlying MIMO sys-
tem at time t. For LTV MA models, a realization with time-invariant A can be used.
But for general LTV systems, a time-varying At needs to be assumed. Similarity
transform can also be applied to obtain a new realization

(
TAtT−1,T Bt ,CtT−1,Dt

)
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for the same system, where T is square and nonsingular. If a time-varying nonsin-
gular matrix Tt is used as transform, then similarity

(
Tt+1AtT

−1
t ,Tt+1Bt ,CtT

−1
t ,Dt

)

is a new realization.
Different from LTI systems, a clear relation is lacking between the impulse

response {H(t;k)} and the realization (At ,Bt ,Ct ,Dt). Hence, “frozen time” analysis
as in Theorem 2.11 cannot be used to study stability for LTV state-space systems. In
fact, the stability notion for LTI state-space models is generalized to the following.

Definition 2.3. The state-space system (2.80) is said to be exponentially stable, if
there exist some α and β with α > 0 and 0 < β < 1 such that

ρ (At+NAt+N−1 · · ·At+1At)≤ αβ N

for all time t and N > 0, where ρ(·) denotes the spectral radius.

In general, stability for each At , i.e., ρ(At)< 1 for each t, does not ensure stability
of the state-space system (refer to Problem 2.27 in Exercises). It is worth to pointing
out that if the state-space system is exponentially stable, then the state response to
zero input with initial condition x(t0) �= 0n is given by

x(T ) =
(
At0+T−1At0+T−2 · · ·At0+1At0

)
x(t0)→ 0n

for any x(t0) �= 0n, as T → ∞. It is noted that in the case At = A for all t, exponential
stability reduces to the known condition that all eigenvalues of A are strictly inside
the unit circle.

2.3 Noise Processes and BER Analysis

One of the impediments to data detection is the contamination of random noises
at the receiver site. In most situations, observation noises can be assumed to
be additive, white, and Gaussian noise (AWGN). Consider the signal model as
illustrated below (see Fig. 2.4).

Let {v(t)} be AWGN. Then for each time index t, v(t) is a Gaussian random
vector, i.e., v(t) is normal distributed. It is assumed that E[v(t)] = 0 for all t. The
white assumption implies that the autocovariance matrix is given by

Fig. 2.4 Observed signal
with contaminated noise
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fR(r)
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Fig. 2.5 PDF for received
signal

E{v(t)v(t − k)∗}= Rv(t)δ (k) =
{

Rv(t), if k = 0,
0, if k �= 0.

(2.81)

If Rv(t) ≡ Rv is a constant nonnegative matrix, then the AWGN {v(t)} is WSS.
Otherwise, the AWGN is nonstationary.

For the simple case of scalar signals and noises, s(t) = ±√
Eb and v(t) is a

Gaussian random variable with zero mean and variance σ2
v . That is, s(t) carries only

one bit of information which is either +1 or −1, and Eb is the bit energy of s(t).
The data detection problem aims to detect the sign of s(t) based on the observed
signal r(t) at each time index t. Clearly, r(t) is also a Gaussian random variable and
has PDF

fR(r) =
1√

2πσv
exp

{
− (r− s)2

2σ2
v

}
,

where the time index t is skipped due to the stationarity of s(t) and v(t). The figure
below shows the PDFs of the received signal r(t) for both s(t) =

√
Eb and s(t) =

−√
Eb. Note that there is a symmetry about r(t) = 0 (see Fig. 2.5).

For the case of equal probable s(t), i.e., s(t) takes equal number of positive and
negative values, a moment of reflection indicates that the optimal detection rule is

s̆(t) =

{
+1, if r(t)> 0,
−1, if r(t)< 0.

(2.82)

Indeed, by symmetry, the probability of the BER is given by

εb =

∫ ∞

0

1√
2πσv

exp

{
− (r+

√
Eb)

2

2σ2
v

}
dr

=
∫ ∞
√

Eb/σ 2
v

1√
2π

exp

{
− r2

2

}
dr =: Q

(√
Eb/σ2

v

)
(2.83)

that is the minimum. The quantity Eb/σ2
v is called signal-to-noise ratio (SNR). It is

important to observe that the BER performance is determined solely by the SNR.
Large SNR implies small BER and vice versa. If s(t) is taken to be random, then Eb

needs be replaced by bit power Pb = E{|s(t)|2}.
The case when s(t) carries more than one bit information is not pursued in this

text due to two reasons. First, any data can be represented by binary codes. There is
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no loss of generality in investigating the case of binary data. Second, generalization
from binary data to the case of multiple bits does not involve new concepts and
knowledge for data detection. Focusing on the binary case will help illuminate the
basic issues and the essential difficulties and understand the approaches to optimal
data detection.

For vector signals of size m, the noise v(t) is again assumed to be AWGN with
mean zero and covariance Σv. Suppose that Σv is nonsingular. Then the observed
signal r(t) admits Gaussian distribution with PDF

fR(r) =
1

√
(2π)m det(Σv)

exp

{
−1

2
(r− s)∗Σ−1

v (r− s)
}
. (2.84)

Let si(t) and ri(t) be the ith component of s(t) and r(t), respectively. For the equal
probable case, the detection rule (2.82) can be adapted to

s̆i(t) =

{
+1, if ri(t)> 0,
−1, if ri(t)< 0,

1 ≤ i ≤ m. (2.85)

Unfortunately, the above detection rule is not optimal anymore. The reason lies
in the correlation of the noise components. For instance, the detected symbol,
if correct, may help to detect other symbols. This problem will be studied in

Chap. 7. Assume temporarily that Σv is diagonal. With Ps(i) = E
{
|si(t)|2

}
and

σ2
v (i) = E

{
|vi(t)|2

}
(the ith diagonal element of Σv), the corresponding BER is

given by

εb(i) = Q
(
Ps(i)/σ2

v (i)
)
, i = 1,2, . . . ,m, (2.86)

under the detection rule (2.85) where Q(·)-function is defined as in (2.83). The
average BER for detection of s(t) can be calculated according to

εb =
1
m

m

∑
i=1

Q
(
Ps(i)/σ2

v (i)
)
. (2.87)

Gauss noise is a legitimate assumption in data communications, but the white
assumption may not be, due to frequency-selective fading and the presence of the
receiver. A common hypothesis is that the noise v(t), if colored, is generated by an
LTI filter driven by a Gaussian white noise process w(t) of zero mean and identity
covariance. That is, the PSD of v(t) is given by

Ψv(ω) = G(e jω)Ψw(ω)G(e jω )∗, Ψw(ω)≡ I,

where G(z) can be assumed to be stable and minimum phase without loss of
generality. It should be clear that the transmitted signal at the receiver site is also
distorted, giving rise to the following signal model for data detection in Fig. 2.6.
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Fig. 2.6 Baseband signal
model for data detection

This signal model is quite general in which b(t) is the original binary data
signal at the transmitter, and w(t) is the AWGN with zero vector mean and identity
covariance. The transfer matrices T(z) and G(z) are both causal, stable, and rational.
Assume that b(t) and s(t) have the same size m > 1. Then

r(t) = b(t)+ [T (t)− δ (t)Im]�b(t)+G(t)�w(t), (2.88)

where {T (t)} and {G(t)} are impulse responses of T(z) and G(z), respectively.
Even though v(t) = G(t) �w(t) can be treated as Gaussian distributed, the second
term on the right-hand side of (2.88) does not have a normal distribution, in general.

Denote D(t) = T (t)−δ (t)Im and d(t) =D(t)�b(t). Let Di,�(t) denote the (i, �)th
element of D(t) and di(t) the ith element of d(t). Then

di(t) =
t

∑
k=−∞

m

∑
�=1

Di,�(k)b�(t − k), 1 ≤ i ≤ m, (2.89)

where b�(t) is the �th element of b(t), assumed to be equal probable and independent
with respect to both � and t. As such, one may conjecture that {di(t)} is Gaussian
distributed for each i by the central limit theorem. Unfortunately, it is not. The main
reason is stability and rationality of T(z), two good properties as entailed for data
communications, which imply the existence of M > 0 such that |di(t)| ≤ M < ∞ for
all i and t by the boundedness of the input b(t). It follows that the support of PDF
for di(t) in (2.89) is finite precluding it from having normal distribution.

Although {d(t)} does not have a Gaussian distribution, it is close to being normal
distributed, provided that impulse response {D(t)} or equivalently {T (t)} does not
die out too quickly. Otherwise, m, the size of the data vector, needs to be adequately
large. The next example illustrates this fact.

Example 2.12. Let Z be a random variable generated via

Z =
n−1

∑
k=0

ρkYk, ρ = 0.8, n = 50,

where {Yk} is an i.i.d. sequence with an equal probability of 0.5 at ±1. Clearly,
Z has a zero mean and a variance

E
{
|Z|2
}
=

n−1

∑
k=0

ρ2kE
{
|Yk|2
}
=

n−1

∑
k=0

ρ2k ≤ 1
1−ρ2 =

1
0.36

.
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Fig. 2.7 Approximate PDF compared with normal distribution

One million samples of Z are obtained with Matlab, which produce an approximate
PDF in Fig. 2.7, plotted with “o,” based on the periodogram method. It can be
observed that the curve is close to the Gaussian PDF with zero mean and variance

1
0.36 , plotted in solid line.

The aforementioned discussions are summarized next.

Proposition 2.1. Suppose that G(z) and T(z) as in Fig. 2.6 are causal, stable, and
rational. Let {w(t)} be AWGN of mean zero and covariance identity and {b(t)} be
equal probable and independent. Denote D(z) = T(z)− Im and Σb = E{b(t)b(t)∗}.
If the impulse response of D(z) does not die out too quickly or the size of the data
vector is adequately large, then the observed signal r(t) in Fig. 2.6 consists of two
parts: the transmitted data signal b(t) and a fictitious additive noise {n(t)} which
has an approximate normal distribution with mean vector zero and covariance

Σn =
1

2π

∫ π

−π

[
G
(
e jω)G

(
e jω)∗+D

(
e jω)ΣbD

(
e jω)∗

]
dω . (2.90)

In light of (2.88), the fictitious additive noise is given by

n(t) = D(t)�b(t)+G(t)�w(t)

with D(t) = T (t)− δ (t)Im. Its covariance matrix Σn can be computed according
to (2.90) by the fact that {b(t)} and {w(t)} are independent of each other. Even
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though {n(t)} is approximately Gaussian with zero vector mean, the detection rule
in (2.85) cannot be used for data detection with ŝi(t) replaced by b̂i(t). There are two
reasons. The first one is the poor SNR in terms of the new noise n(t), considering
that D(z) = T(z)− I has large power norm in absence of equalization or precoding.
The second one is the nonwhite nature for {n(t)} and its dependence on b(t) in
general. But if the SNR is high and the PSD is near flat for the new noise n(t), then
the detection rule in (2.85) is approximately optimal. In this case, {n(t)} is close
to being normal distributed, the formulas in (2.86) and (2.87) can be employed
to estimate approximate BER values with Ps(i) replaced by Pb(i) and σv(i) by
σn(i), which are the ith diagonal elements of Σb and Σn, respectively. It is worth
pointing out that, if T(z) and G(z) in Fig. 2.6 are replaced by time-varying systems
with impulse responses {T (t,k)} and {G(t,k)}, respectively, then the covariance in
(2.90) is time dependent and given by:

Σn(t) =
∞

∑
k=0

[G(t;k)G(t;k)∗+D(t;k)ΣbD(t;k)∗] (2.91)

with D(t,k) = T (t,k)− δ (k)Im in light of (2.77).
BER is the most important performance indicator for data detection, but it can

be difficult to minimize in design of optimal receivers. It can also be difficult to
compute, if the detection error does not have normal distribution. As shown earlier,
the BER is hinged to the error variance, if the signal power is kept constant. For this
reason, a closely related performance indicator, root-mean-squared error (RMSE),
is often employed for data detection, which does not require the knowledge of
distribution of the noise, provided that the PDF of the noise is symmetric about
the origin. For the case in Proposition 2.1, the RMSE is simply εp =

√
Tr{Σn}, i.e.,

εp =

√

Tr

{
1

2π

∫ π

−π

[
G(e jω)G(e jω)∗+D(e jω )ΣbD(e jω)∗

]
dω
}
. (2.92)

A receiver design algorithm that achieves the minimum RMSE is called minimum
mean-squared-error (MMSE) algorithm. Although the RMSE performance is dif-
ferent from the BER performance, they are closely related. In the case of Gaussian
processes, they are equivalent to each other in the sense that the detection rule
remains the same. Data detection is often carried out after equalization or precoding
which will be studied in Chap. 7.

Notes and References

Many books provide excellent coverage of signals and systems in the case of
discrete-time. A sample of such textbooks are [7, 8, 69, 90, 100]. The BER analysis
is based on textbooks for digital communications such as [92, 116].
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Exercises

2.1. Prove (2.4) by assuming that {s(t)} is deterministic and has finite energy.

2.2. Prove the Schwarz inequality (2.6).

2.3. Compute ESD for the discrete-time signal

s(t) = e−α |t| cos(ω0t +π/2), α > 0, ω0 �= 0.

Compute energy of {s(t)} in both time domain and frequency domain.

2.4. Let {rs(k)} be ACS of {s(t)} as defined in (2.9). Show that for each integer k,
|rs(k)| ≤ rs(0).

2.5. Verify the expression of the nth order Fejér’s kernel in (2.18) and prove
Lemma 2.1. (Hint: Note that for deterministic {s(t)},

Ψ (n)(ω) =
1
n

∣
∣∣
∣
∣

n−1

∑
t=0

s(t)e− jωt

∣
∣∣
∣
∣

2

which is the same as Fn(ω) for s(t)≡ 1).

2.6. Suppose that Θ is a uniformly distributed random variable over [0, 2π ]. Show
that

(a) E
{

cos2(Θ)
}
= E
{

sin2(Θ)
}
= 1

2 ,
(b) E{cos(Θ)}= E{sin(Θ)}= E{cos(Θ)sin(Θ)}= 0, and
(c) for x(t) =

[
cos(ω0t +Θ) sin(ω0t +Θ)

]′
,

Rx(k) = E{x(t)x(t − k)∗}= 1
2

[
cos(ω0k) −sin(ω0k)
sin(ω0k) cos(ω0k)

]
.

2.7. Let {Rs(k)} be ACS of the WSS vector process {s(t)} as defined in (2.27).
Show that for each integer k,

(i) Rs(k)
∗ = Rs(−k), (ii) Tr{Rs(0)} ≥ |Tr{Rs(k)}|.

(Hint: Note that Tr{Rs(0)}=E{s(t)∗s(t)}=E{s(t−k)∗s(t−k)}, and |Tr{Rs(k)}|=
|E{s(t − k)∗s(t)}|= |E{s(t)∗s(t − k)}|, as well as

E

{[
s(t)∗

s(t − k)∗

][
s(t) s(t − k)

]}≥ 0

for each integer k).
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2.8. For Example 2.3, set ω0 = 0.25π . Use Simulink to generate a set of N = 214

data samples for {s(t)} in (2.32):

1. Follow the estimation scheme outlined in Example 2.5 with n = 28 and m = 26

to estimate the PSD with comparison to the true PSD.
2. Consider the use of ω0 = 0.25π +π/n with different values of (n,m), but with

N = nm = 214 and the same data samples set. Compare the estimation results
with that in (i).

The quantity π/n is called resolution in spectrum estimation which is the possible
maximum error for the location of the spectrum lines.

2.9. Consider the system in Fig. 2.1. Let

ryu(k) = E{y(t)u(t − k)∗}

be the cross covariance sequence and Ψyu(ω) be the DTFT of {ryu(k)}. Let Ψu(ω)
and Ψy(ω) be the DTFT of ACS {ru(k)} and {ry(k)}, respectively. Show that

Ψyu(ω) = H
(
e jω)Ψu(ω), Ψy(ω) =Ψyu(ω)H

(
e jω)∗ .

Generalize the above to MIMO systems.

2.10. Let {y(t)}n−1
t=0 and {u(t)}n−1

t=0 be input and output measurement data. Approx-
imate ryu(k) as in the previous problem by

r̂yu(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
n

n−1

∑
t=k

y(t)u(t − k)∗, k ≥ 0,

1
n

n+k−1

∑
t=0

y(t)u(t − k)∗, k ≤ 0.

Show that the DTFT of {r̂yu(k)} is given by

Ψ̂yu(ω) =
1
n

(
n−1

∑
t=0

y(t)e− jtω

)(
n−1

∑
k=0

u(k)e− jkω

)∗
.

2.11. For the system in Fig. 2.1, propose an algorithm to estimate the system fre-
quency response

∣
∣H(e jω)

∣
∣ and ∠H(e jω). (Hint: Use the results in Problems 2.8, 2.9,

and 2.10).

2.12. For the block diagram in Fig. 2.8, the block with L is an interpolator or upper
sampler where L > 1 is an integer. The output of the interpolator is governed by

s(t) =

{
u(k), if t = Lk,

0, if t �= Lk.
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Fig. 2.8 Interpolator
followed by filter

Fig. 2.9 Filtering followed
by modulation

Show that (i) the system in Fig. 2.8 is linear but not time invariant, and (ii) Ψs(ω) =

Ψu(Lω) and Ψy f (ω) =
∣
∣F(e jω)

∣
∣2Ψu(Lω) where Ψ (·) is PSD.

2.13. Compute impulse responses for BIBO stable systems which admit the
following transfer functions:

H1(z) =
2.5

z2 + 1.5z− 1
, H2(z) =

z+ 1
z2 + 3.5z− 2

.

2.14. Let H(z) be a causal transfer function matrix of size p × p. Let D(z) =
diag
(
z−d1 ,z−d2 , . . . ,z−dp

)
with di ≥ 0 integers. Show that H̃(z) = D(z)−1H(z)D(z)

may not be causal.

2.15. Consider the two systems in Figs. 2.8 and 2.9. Suppose that the impulse
responses of F(z) and H(z) are { f (t)}n

t=0 and {h(t)}n
t=0, respectively, where n > 1,

and (� > 0 is any integer)

f (t) = h(t)cos

(
2π�t

L

)
. (2.93)

(i) Show that for L > 1, the two system block diagrams are equivalent, or y f (t) =
yh(t) for all time t. That is, filtering followed by cosine modulation has the same
effect as filtering with cosine-modulated impulse response.

(ii) Show that, if we remove the interpolator, the two signal block diagrams are not
equivalent or y f (t) �= yh(t) for at least some time t.

2.16. Consider again the systems in Figs. 2.8 and 2.9 where the impulse responses
of H(z) and F(z) are {h(t)}n

t=0 and { f (t)}n
t=0, respectively, satisfying (2.93) and

∣
∣H
(
e jω)∣∣≈

{
1, |ω | ≤ π/5,
0, elsewhere.

For L = 5, �= 1, and the input PSD

Ψu(ω) = |ω | for |ω | ≤ π ,

give rough sketches for the output PSDs for {y f (t)} and {yh(t)}.
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2.17. Suppose that H(z) in (2.39) is stable. Show that (i) it is analytic outside the
unit circle, and (ii) H(z) is continuous on the unit circle, i.e., H(e jω) is a continuous
function of ω . (Hint: A transfer function H(z) is analytic at z = z0, if it admits the
(continuous) derivative at z = z0).

2.18. Suppose that H(z) and G(z) are BIBO stable with impulse response {H(t)}
and {G(t)}, respectively. Show that

1
2π

∫ π

−π
H
(
e jω)G

(
e jω)∗ dω =

∞

∑
t=−∞

H(t)G(t)∗

and conclude (i) the Parseval’s relation (2.51), and (ii) if H(z) is causal and G(z) is
anticausal, then there holds the orthogonality relation

1
2π

∫ π

−π
H
(
e jω)G

(
e jω)∗ dω = 0.

2.19. Suppose that H(z) is BIBO stable. Show that H(z) = HA(z) +HC(z) with
HA(z) anticausal, HC(z) causal, and

‖H‖2
2 = ‖HA‖2

2 + ‖HC‖2
2.

2.20. Prove Theorem 2.7.

2.21. (i) If there exists a square polynomial matrix R(z) such that

M(z) = R(z)Mc(z), N(z) = R(z)Nc(z),

where det(R(z)) = 0 for some z∈C, show that {M(z),N(z)} is not left coprime.
If R(z) is the GCD, show that {Mc(z),Nc(z)} is left coprime.

(ii) If there exists a square polynomial matrix R̃(z) such that

M̃(z) = M̃c(z)R̃(z), Ñ(z) = Ñc(z)R̃(z),

where det(R̃(z)) = 0 for some z ∈ C, show that {Ñ(z),M̃(z)} is not right
coprime. If R̃(z) is the GCD, show that {Ñc(z),M̃c(z)} is right coprime.

2.22. Find the relation between the two IIR models in (2.54) and (2.66), and draw a
similar block diagram to the one in Fig. 2.2 for the state-space realization in (2.67)
with n = 3.

2.23. Extend the realization in (2.68) (canonical controller form) to cover the
MIMO IIR model (2.58) by assuming that M̃0 = Im, Ñ0 = 0, and �= max

{
ñν , ñμ

}
.
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2.24. Consider a 2× 2 MIMO IIR model

H(z) =
z−1

3+ 2.5z−1+ 0.5z−2

[
3(z−1 + 2) 6(1+ 0.5z−1)

3z−1 3(1+ 0.5z−1)

]
.

(i) Find an ARMA description in the form of (2.57) and the corresponding IIR in
the form of left fraction.

(ii) Show that a right fraction is given by

H(z) =

[
z−2 + 2z−1 2z−1

z−2 z−1

][
1+ 2.5

3 z−1 + 1
6 z−2 0

0 1+ 1
3 z−1

]−1

which is coprime.
(iii) Compute poles and zeros of H(z).
(iv) Show that with

A =

⎡

⎣
− 2.5

3 − 1
6 0

1 0 0
0 0 − 1

3

⎤

⎦ , B =

⎡

⎣
1 0
0 0
0 1

⎤

⎦ , C =

[
2 1 2
1 0 1

]
,

and D = 02×2, (A,B,C,D) is a minimal realization.

2.25. (i) Find a right coprime fraction for

H1(z) =

[
1− z−2

1− 3z−1+ 2z−2

]
2

1− 1.8z−1+ 0.8z−2 .

(ii) Find a left coprime fraction for

H2(z) =
2

1+ 0.4z−1− 0.6z−2

[
2+ 3z−1+ z−2 1− z−2

]
.

(iii) Find minimal realizations for H1(z) and H2(z). (Hint: Use canonical controller
form.)

2.26. (i) For an LTV system with impulse response {h(t;τ)}, show that it is BIBO
stable, if and only if

∞

∑
τ=−∞

|h(t;τ)|< ∞ ∀ t.

(ii) Prove the similar result in (2.76) for MIMO systems.
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2.27. Let |a|> 1 and |b|< 1. Consider state-space model

x(t + 1) = Atx(t), At =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
0 a

ba−1 0

]
, if t is even,

[
0 ba−1

a 0

]
, if t is odd.

(a) Compute eigenvalues of At and verify that ρ(At)< 1 ∀ t. (b) Show that

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
(b/a)2k 0

0 a2k

]
x(0), if t = 2k,

[
0 a2k+1

(b/a)2k+1 0

]
x(0), if t = 2k+ 1.

That is, ‖x(t)‖→ ∞ as t → ∞, if the second element of x(0) is nonzero.

2.28. Consider the signal model as in Fig. 2.4, where the noise is AWGN with
zero mean and variance σ2

v . Suppose that the binary data source {s(t)} is not equal
probable and has probability distribution

PS[s(t) = +1] = p > 0, PS[s(t) =−1] = 1− p > 0,

and thus, E{|s(t)|2}= 1. Modify the detection rule in (2.85) as

ŝ(t) =

{
+1, if r(t)> ρ ,
−1, if r(t)< ρ ,

with ρ a threshold. Then the BER is a function of ρ . Show that

ρ = ρopt =
σ2

v

2
loge

(
1− p

p

)

minimizes the BER. It is noted that for equal probable case, ρopt = 0 which coincides
with the detection rule (2.85). (Hint: Show that

εb = (1− p)PR|S[r(t)> ρ |s(t) =−1]+ pPR|S[r(t)< ρ |s(t) = +1]

is a function of ρ . Find its expression and then compute its minimum).
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