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Over the last fifty years a considerable amount of research effort has been fo-
cused on deterministic scheduling. The number and variety of models considered
is astounding. During this time a notation has evolved that succinctly captures
the structure of many (but for sure not all) deterministic models that have been
considered in the literature.

The first section in this chapter presents an adapted version of this notation.
The second section contains a number of examples and describes some of the
shortcomings of the framework and notation. The third section describes sev-
eral classes of schedules. A class of schedules is typically characterized by the
freedom the scheduler has in the decision-making process. The last section dis-
cusses the complexity of the scheduling problems introduced in the first section.
This last section can be used, together with Appendixes D and E, to classify
scheduling problems according to their complexity.

2.1 Framework and Notation

In all the scheduling problems considered the number of jobs and the number
of machines are assumed to be finite. The number of jobs is denoted by n and
the number of machines by m. Usually, the subscript j refers to a job while the
subscript ¢ refers to a machine. If a job requires a number of processing steps
or operations, then the pair (7, ) refers to the processing step or operation of
job j on machine i. The following pieces of data are associated with job j.
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Processing time (p;;) The p;; represents the processing time of job j on
machine ¢. The subscript 7 is omitted if the processing time of job j does not
depend on the machine or if job j is only to be processed on one given machine.

Release date (r;) The release date r; of job j may also be referred to as
the ready date. It is the time the job arrives at the system, i.e., the earliest time
at which job j can start its processing.

Due date (d;) The due date d; of job j represents the committed shipping or
completion date (i.e., the date the job is promised to the customer). Completion
of a job after its due date is allowed, but then a penalty is incurred. When a
due date must be met it is referred to as a deadline and denoted by ch.

Weight (w;) The weight w; of job j is basically a priority factor, denoting
the importance of job j relative to the other jobs in the system. For example,
this weight may represent the actual cost of keeping the job in the system. This
cost could be a holding or inventory cost; it also could represent the amount of
value already added to the job.

A scheduling problem is described by a triplet « | 8 | 7. The « field describes
the machine environment and contains just one entry. The g field provides
details of processing characteristics and constraints and may contain no entry
at all, a single entry, or multiple entries. The  field describes the objective to
be minimized and often contains a single entry.

The possible machine environments specified in the « field are:

Single machine (1) The case of a single machine is the simplest of all pos-
sible machine environments and is a special case of all other more complicated
machine environments.

Identical machines in parallel (Pm) There are m identical machines in
parallel. Job j requires a single operation and may be processed on any one of
the m machines or on any one that belongs to a given subset. If job j cannot
be processed on just any machine, but only on any one belonging to a specific
subset M}, then the entry M; appears in the 3 field.

Machines in parallel with different speeds (Qm) There are m machines
in parallel with different speeds. The speed of machine i is denoted by v;. The
time p;; that job j spends on machine 7 is equal to p; /v; (assuming job j receives
all its processing from machine ). This environment is referred to as uniform
machines. If all machines have the same speed, i.e., v; = 1 for all ¢ and p;; = p;,
then the environment is identical to the previous one.

Unrelated machines in parallel (Rm) This environment is a further
generalization of the previous one. There are m different machines in parallel.
Machine 7 can process job j at speed v;;. The time p;; that job j spends on
machine ¢ is equal to p;/v;; (again assuming job j receives all its processing
from machine 7). If the speeds of the machines are independent of the jobs, i.e.,
v; = v; for all ¢ and j, then the environment is identical to the previous one.
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Flow shop (F'm) There are m machines in series. Each job has to be
processed on each one of the m machines. All jobs have to follow the same
route, i.e., they have to be processed first on machine 1, then on machine 2,
and so on. After completion on one machine a job joins the queue at the next
machine. Usually, all queues are assumed to operate under the First In First
Out (FIFO) discipline, that is, a job cannot ”pass” another while waiting in
a queue. If the FIFO discipline is in effect the flow shop is referred to as a
permutation flow shop and the 8 field includes the entry prmu.

Flexible flow shop (F'Fc) A flexible flow shop is a generalization of the flow
shop and the parallel machine environments. Instead of m machines in series
there are c stages in series with at each stage a number of identical machines in
parallel. Each job has to be processed first at stage 1, then at stage 2, and so on.
A stage functions as a bank of parallel machines; at each stage job j requires
processing on only one machine and any machine can do. The queues between
the various stages may or may not operate according to the First Come First
Served (FCFS) discipline. (Flexible flow shops have in the literature at times
also been referred to as hybrid flow shops and as multi-processor flow shops.)

Job shop (Jm) In a job shop with m machines each job has its own
predetermined route to follow. A distinction is made between job shops in which
each job visits each machine at most once and job shops in which a job may
visit each machine more than once. In the latter case the §-field contains the
entry rcrc for recirculation.

Flexible job shop (F'Jc¢) A flexible job shop is a generalization of the job
shop and the parallel machine environments. Instead of m machines in series
there are ¢ work centers with at each work center a number of identical machines
in parallel. Each job has its own route to follow through the shop; job j requires
processing at each work center on only one machine and any machine can do.
If a job on its route through the shop may visit a work center more than once,
then the §-field contains the entry rerc for recirculation.

Open shop (Om) There are m machines. Each job has to be processed
again on each one of the m machines. However, some of these processing times
may be zero. There are no restrictions with regard to the routing of each job
through the machine environment. The scheduler is allowed to determine a
route for each job and different jobs may have different routes.

The processing restrictions and constraints specified in the § field may in-
clude multiple entries. Possible entries in the (§ field are:

Release dates (r;) If this symbol appears in the 3 field, then job j cannot
start its processing before its release date r;. If r; does not appear in the g
field, the processing of job j may start at any time. In contrast to release dates,
due dates are not specified in this field. The type of objective function gives
sufficient indication whether or not there are due dates.
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Preemptions (prmp) Preemptions imply that it is not necessary to keep a
job on a machine, once started, until its completion. The scheduler is allowed
to interrupt the processing of a job (preempt) at any point in time and put a
different job on the machine instead. The amount of processing a preempted job
already has received is not lost. When a preempted job is afterwards put back on
the machine (or on another machine in the case of parallel machines), it only
needs the machine for its remaining processing time. When preemptions are
allowed prmp is included in the § field; when prmp is not included, preemptions
are not allowed.

Precedence constraints (prec) Precedence constraints may appear in a
single machine or in a parallel machine environment, requiring that one or
more jobs may have to be completed before another job is allowed to start its
processing. There are several special forms of precedence constraints: if each
job has at most one predecessor and at most one successor, the constraints are
referred to as chains. If each job has at most one successor, the constraints are
referred to as an intree. If each job has at most one predecessor the constraints
are referred to as an outtree. If no prec appears in the 3 field, the jobs are not
subject to precedence constraints.

Sequence dependent setup times (s;;) The sj; represents the sequence
dependent setup time that is incurred between the processing of jobs j and k;
sor denotes the setup time for job k if job k is first in the sequence and s;o the
clean-up time after job j if job j is last in the sequence (of course, so; and sjo
may be zero). If the setup time between jobs j and k& depends on the machine,
then the subscript ¢ is included, i.e., si,. If no s;, appears in the f field, all
setup times are assumed to be 0 or sequence independent, in which case they
are simply included in the processing times.

Job families (fmls) The n jobs belong in this case to F different job families.
Jobs from the same family may have different processing times, but they can
be processed on a machine one after another without requiring any setup in
between. However, if the machine switches over from one family to another, say
from family g to family h, then a setup is required. If this setup time depends
on both families g and h and is sequence dependent, then it is denoted by sgp,.
If this setup time depends only on the family about to start, i.e., family h,
then it is denoted by sj. If it does not depend on either family, it is denoted
by s.

Batch processing (batch(b)) A machine may be able to process a number of
jobs, say b, simultaneously; that is, it can process a batch of up to b jobs at the
same time. The processing times of the jobs in a batch may not be all the same
and the entire batch is finished only when the last job of the batch has been
completed, implying that the completion time of the entire batch is determined
by the job with the longest processing time. If b = 1, then the problem reduces to
a conventional scheduling environment. Another special case that is of interest
is b = o0, i.e., there is no limit on the number of jobs the machine can handle
at any time.
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Breakdowns (brkdwn) Machine breakdowns imply that a machine may not
be continuously available. The periods that a machine is not available are, in
this part of the book, assumed to be fixed (e.g., due to shifts or scheduled main-
tenance). If there are a number of identical machines in parallel, the number of
machines available at any point in time is a function of time, i.e., m(t). Machine
breakdowns are at times also referred to as machine availability constraints.

Machine eligibility restrictions (A/;) The M; symbol may appear in the
B field when the machine environment is m machines in parallel (Pm). When
the M; is present, not all m machines are capable of processing job j. Set M;
denotes the set of machines that can process job j. If the 3 field does not contain
M;, job j may be processed on any one of the m machines.

Permutation (prmu) A constraint that may appear in the flow shop envi-
ronment is that the queues in front of each machine operate according to the
First In First Out (FIFO) discipline. This implies that the order (or permuta-
tion) in which the jobs go through the first machine is maintained throughout
the system.

Blocking (block) Blocking is a phenomenon that may occur in flow shops.
If a flow shop has a limited buffer in between two successive machines, then it
may happen that when the buffer is full the upstream machine is not allowed to
release a completed job. Blocking implies that the completed job has to remain
on the upstream machine preventing (i.e., blocking) that machine from working
on the next job. The most common occurrence of blocking that is considered in
this book is the case with zero buffers in between any two successive machines.
In this case a job that has completed its processing on a given machine cannot
leave the machine if the preceding job has not yet completed its processing on
the next machine; thus, the blocked job also prevents (or blocks) the next job
from starting its processing on the given machine. In the models with blocking
that are considered in subsequent chapters the assumption is made that the
machines operate according to FIFQ. That is, block implies prmu.

No-wait (nwt) The no-wait requirement is another phenomenon that may
occur in flow shops. Jobs are not allowed to wait between two successive ma-
chines. This implies that the starting time of a job at the first machine has to
be delayed to ensure that the job can go through the flow shop without having
to wait for any machine. An example of such an operation is a steel rolling mill
in which a slab of steel is not allowed to wait as it would cool off during a wait.
It is clear that under no-wait the machines also operate according to the FIFO
discipline.

Recirculation (rcre) Recirculation may occur in a job shop or flexible job
shop when a job may visit a machine or work center more than once.

Any other entry that may appear in the S field is self explanatory. For exam-
ple, p; = p implies that all processing times are equal and d; = d implies that
all due dates are equal. As stated before, due dates, in contrast to release dates,
are usually not explicitly specified in this field; the type of objective function
gives sufficient indication whether or not the jobs have due dates.
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Fig. 2.1 Due date related penalty functions

The objective to be minimized is always a function of the completion times
of the jobs, which, of course, depend on the schedule. The completion time of
the operation of job j on machine i is denoted by Cj;. The time job j exits the
system (that is, its completion time on the last machine on which it requires
processing) is denoted by C;. The objective may also be a function of the due
dates. The lateness of job j is defined as

L; =Cj —dj,

which is positive when job j is completed late and negative when it is completed
early. The tardiness of job j is defined as

T; = max(C; — d;,0) = max(L;,0).

The difference between the tardiness and the lateness lies in the fact that the
tardiness never is negative. The unit penalty of job j is defined as

1if Cj > dj
7] 0 otherwise

The lateness, the tardiness and the unit penalty are the three basic due date
related penalty functions considered in this book. The shape of these functions
are depicted in Figure 2.1.

Examples of possible objective functions to be minimized are:

Makespan (Cpax) The makespan, defined as max(Ch, ..., C), is equivalent
to the completion time of the last job to leave the system. A minimum makespan
usually implies a good utilization of the machine(s).
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Maximum Lateness (Lyx) The maximum lateness, Lmax, is defined as
max(L1,...,Ly). It measures the worst violation of the due dates.

Total weighted completion time () w;C;) The sum of the weighted
completion times of the n jobs gives an indication of the total holding or in-
ventory costs incurred by the schedule. The sum of the completion times is in
the literature often referred to as the flow time. The total weighted completion
time is then referred to as the weighted flow time.

Discounted total weighted completion time (> w;(1 —e~"¢)) This is
a more general cost function than the previous one, where costs are discounted
at a rate of r, 0 < r < 1, per unit time. That is, if job j is not completed
by time ¢ an additional cost w;re~"'dt is incurred over the period [t,¢ + dt]. If
job j is completed at time t the total cost incurred over the period [0,t] is
w;j(1 — e~ ). The value of r is usually close to 0, say 0.1 or 10 %.

Total weighted tardiness () w;T};) This is also a more general cost func-
tion than the total weighted completion time.

Weighted number of tardy jobs (3 w;U;) The weighted number of tardy
jobs is not only a measure of academic interest, it is often an objective in practice
as it is a measure that can be recorded very easily.

All the objective functions above are so-called regular performance mea-
sures. A regular performance measure is a function that is nondecreasing in
Ci,...,Cy. Recently researchers have begun to study objective functions that
are not regular. For example, when job j has a due date d;, it may be subject
to an earliness penalty, where the earliness of job j is defined as

Ej = max(dj — Cj, O)

This earliness penalty is nonincreasing in C;. An objective such as the total
earliness plus the total tardiness, i.e.,

n n
> Ei+> 15
j=1 j=1

is therefore not regular. A more general objective that is not regular is the total
weighted earliness plus the total weighted tardiness, i.e.,

n n
’ "
E ’LUjEj + E w; Tj.
j=1 j=1

The weight associated with the earliness of job j w;) may be different from
1

(
the weight associated with the tardiness of job j (wf).
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2.2 Examples

The following examples illustrate the notation:

Example 2.2.1 (A Flexible Flow Shop)

FFc|rj| ) w;T; denotes a flexible flow shop. The jobs have release dates
and due dates and the objective is the minimization of the total weighted tar-
diness. Example 1.1.1 in Section 1.1 (the paper bag factory) can be modeled
as such. Actually, the problem described in Section 1.1 has some additional
characteristics including sequence dependent setup times at each of the three
stages. In addition, the processing time of job j on machine i has a special
structure: it depends on the number of bags and on the speed of the ma-
chine. I

Example 2.2.2 (A Flexible Job Shop)

FJc|rj,sijk,rere | Y w;T; refers to a flexible job shop with ¢ work centers.
The jobs have different release dates and are subject to sequence dependent
setup times that are machine dependent. There is recirculation, so a job may
visit a work center more than once. The objective is to minimize the total
weighted tardiness. It is clear that this problem is a more general problem
than the one described in the previous example. Example 1.1.2 in Section
1.1 (the semiconductor manufacturing facility) can be modeled as such. ||

Example 2.2.3 (A Parallel Machine Environment)

Pm | rj,M; | > w;T; denotes a system with m machines in parallel. Job j
arrives at release date r; and has to leave by the due date d;. Job j may be
processed only on one of the machines belonging to the subset M;. If job j
is not completed in time a penalty w;T} is incurred. This model can be used
for the gate assignment problem described in Example 1.1.3. I

Example 2.2.4 (A Single Machine Environment)

1| rj,prmp | > w;C; denotes a single machine system with job j entering
the system at its release date r;. Preemptions are allowed. The objective to
be minimized is the sum of the weighted completion times. This model can
be used to study the deterministic counterpart of the problem described in
Example 1.1.4. I

Example 2.2.5 (Sequence Dependent Setup Times)

1 | sjx | Cmax denotes a single machine system with n jobs subject to
sequence dependent setup times, where the objective is to minimize the
makespan. It is well-known that this problem is equivalent to the so-called
Travelling Salesman Problem (TSP), where a salesman has to tour n cities
in such a way that the total distance traveled is minimized (see Appendix D
for a formal definition of the TSP). I
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Example 2.2.6 (A Project)

Poo | prec | Cpax denotes a scheduling problem with n jobs subject to
precedence constraints and an unlimited number of machines (or resources)
in parallel. The total time of the entire project has to be minimized. This type
of problem is very common in project planning in the construction industry
and has lead to techniques such as the Critical Path Method (CPM) and the
Project Fvaluation and Review Technique (PERT). I

Example 2.2.7 (A Flow Shop)

Fm | pi; = p; | > w,;C; denotes a proportionate flow shop environment with
m machines in series; the processing times of job j on all m machines are
identical and equal to p; (hence the term proportionate). The objective is to
find the order in which the n jobs go through the system so that the sum of
the weighted completion times is minimized. I

Example 2.2.8 (A Job Shop)

Jm || Ciax denotes a job shop problem with m machines. There is no re-
circulation, so a job visits each machine at most once. The objective is to
minimize the makespan. This problem is considered a classic in the schedul-
ing literature and has received an enormous amount of attention. I

Of course, there are many scheduling models that are not captured by this
framework. One can define, for example, a more general flexible job shop in
which each work center consists of a number of unrelated machines in parallel.
When a job on its route through the system arrives at a bank of unrelated
machines, it may be processed on any one of the machines, but its processing
time now depends on the machine on which it is processed.

One can also define a model that is a mixture of a job shop and an open shop.
The routes of some jobs are fixed, while the routes of other jobs are (partially)
open.

The framework described in Section 2.1 has been designed primarily for mod-
els with a single objective. Most research in the past has concentrated on models
with a single objective. Recently, researchers have begun studying models with
multiple objectives as well.

Various other scheduling features, that are not mentioned here, have been
studied and analyzed in the literature. Such features include periodic or cyclic
scheduling, personnel scheduling, and resource constrained scheduling.

2.3 Classes of Schedules

In scheduling terminology a distinction is often made between a sequence, a
schedule and a scheduling policy. A sequence usually corresponds to a permu-
tation of the n jobs or the order in which jobs are to be processed on a given
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machine. A schedule usually refers to an allocation of jobs within a more com-
plicated setting of machines, allowing possibly for preemptions of jobs by other
jobs that are released at later points in time. The concept of a scheduling policy
is often used in stochastic settings: a policy prescribes an appropriate action
for any one of the states the system may be in. In deterministic models usually
only sequences or schedules are of importance.

Assumptions have to be made with regard to what the scheduler may and
may not do when he generates a schedule. For example, it may be the case that
a schedule may not have any unforced idleness on any machine. This class of
schedules can be defined as follows.

Definition 2.3.1 (Non-Delay Schedule). A feasible schedule is called
non-delay if no machine is kept idle while an operation is waiting for processing.

Requiring a schedule to be non-delay is equivalent to prohibiting unforced
idleness. For many models, including those that allow preemptions and have
regular objective functions, there are optimal schedules that are non-delay. For
many models considered in this part of the book the goal is to find an opti-
mal schedule that is non-delay. However, there are models where it may be
advantageous to have periods of unforced idleness.

A smaller class of schedules, within the class of all non-delay schedules, is the
class of nonpreemptive non-delay schedules. Nonpreemptive non-delay schedules
may lead to some interesting and unexpected anomalies.

Example 2.3.2 (A Scheduling Anomaly)

Consider an instance of P2 | prec | Cpax with 10 jobs and the following
processing times.

jobs 1 2345678910
p;i 87723228815

The jobs are subject to the precedence constraints depicted in Figure 2.2.
The makespan of the non-delay schedule depicted in Figure 2.3.a is 31 and
the schedule is clearly optimal.

One would expect that, if each one of the ten processing times is reduced
by one time unit, the makespan would be less than 31. However, requiring
the schedule to be non-delay results in the schedule depicted in Figure 2.3.b
with a makespan of 32.

Suppose that an additional machine is made available and that there are
now three machines instead of two. One would again expect the makespan
with the original set of processing times to be less than 31. Again, the non-
delay requirement has an unexpected effect: the makespan is now 36. I
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Fig. 2.2 Precedence constraints graph for Example 2.3.2.
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Machine 1

Machine 2 | 2 | 1

Machine 3

\ \ \ \ \
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Fig. 2.4 An active schedule that is not nondelay.

Some heuristic procedures and algorithms for job shops are based on the
construction of nonpreemptive schedules with certain special properties. Two
classes of nonpreemptive schedules are of importance for certain algorithmic
procedures for job shops.

Definition 2.3.3 (Active Schedule). A feasible nonpreemptive schedule
is called active if it is not possible to construct another schedule, through changes
in the order of processing on the machines, with at least one operation finishing
earlier and no operation finishing later.

In other words, a schedule is active if no operation can be put into an empty
hole earlier in the schedule while preserving feasibility. A nonpreemptive non-
delay schedule has to be active but the reverse is not necessarily true. The
following example describes a schedule that is active but not non-delay.

Example 2.3.4 (An Active Schedule)

Consider a job shop with three machines and two jobs. Job 1 needs one time
unit on machine 1 and 3 time units on machine 2. Job 2 needs 2 time units
on machine 3 and 3 time units on machine 2. Both jobs have to be processed
last on machine 2. Consider the schedule which processes job 2 on machine 2
before job 1 (see Figure 2.4). It is clear that this schedule is active; reversing
the sequence of the two jobs on machine 2 postpones the processing of job 2.
However, the schedule is not non-delay. Machine 2 remains idle till time 2,
while there is already a job available for processing at time 1. I

It can be shown that, when the objective v is regular, there exists for Jm || v
an optimal schedule that is active.
An even larger class of nonpreemptive schedules can be defined as follows.

Definition 2.3.5 (Semi-Active Schedule). A feasible nonpreemptive
schedule is called semi-active if no operation can be completed earlier without
changing the order of processing on any one of the machines.

It is clear that an active schedule has to be semi-active. However, the reverse
is not necessarily true.
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Fig. 2.5 A semi-active schedule that is not active.
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Fig. 2.6 Venn diagram of classes of nonpreemptive schedules for job
shops

Example 2.3.6 (A Semi-Active Schedule)

Consider again a job shop with three machines and two jobs. The routing of
the two jobs is the same as in the previous example. The processing times of
job 1 on machines 1 and 2 are both equal to 1. The processing times of job 2
on machines 2 and 3 are both equal to 2. Consider the schedule under which
job 2 is processed on machine 2 before job 1 (see Figure 2.5). This implies
that job 2 starts its processing on machine 2 at time 2 and job 1 starts its
processing on machine 2 at time 4. This schedule is semi-active. However, it
is not active, as job 1 can be processed on machine 2 without delaying the
processing of job 2 on machine 2.

An example of a schedule that is not even semi-active can be constructed
easily. Postpone the start of the processing of job 1 on machine 2 for one time
unit, i.e., machine 2 is kept idle for one unit of time between the processing
of jobs 2 and 1. Clearly, this schedule is not even semi-active. I

Figure 2.6 shows a Venn diagram of the three classes of nonpreemptive sched-
ules: the nonpreemptive non-delay schedules, the active schedules, and the semi-
active schedules.
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2.4 Complexity Hierarchy

Often, an algorithm for one scheduling problem can be applied to another
scheduling problem as well. For example, 1 || > C; is a special case of
1 || Y w;C; and a procedure for 1 || > w;C; can, of course, also be used
for 1 || >°Cj;. In complexity terminology it is then said that 1 || } C; reduces
to 1 || > w;C;. This is usually denoted by

LI[22C o 1| Y w;Cj.

Based on this concept a chain of reductions can be established. For example,
LI[X2C o 1| X w;Cy o< Pm|| 3 w;Cy o< Qm | prec| 3 w;C.
Of course, there are also many problems that are not comparable with one

another. For example, Pm || >~ w;Tj is not comparable to Jm || Crmax.

A considerable effort has been made to establish a problem hierarchy de-
scribing the relationships between the hundreds of scheduling problems. In the
comparisons between the complexities of the different scheduling problems it
is of interest to know how a change in a single element in the classification of
a problem affects its complexity. In Figure 2.7 a number of graphs are exhib-
ited that help determine the complexity hierarchy of deterministic scheduling
problems. Most of the hierarchy depicted in these graphs is relatively straight-
forward. However, two of the relationships may need some explaining, namely

al|B| Lmax a‘B|ZUj

and

04|6‘Lmax o8 a|B|ZT]
It can, indeed, be shown that a procedure for o | 8 | > U; and a procedure for
a| B> T, can be applied to @ | 8 | Limax with only minor modifications (see
Exercise 2.23).

A significant amount of research in deterministic scheduling has been de-
voted to finding efficient, so-called polynomial time, algorithms for scheduling
problems. However, many scheduling problems do not have a polynomial time
algorithm; these problems are the so-called NP-hard problems. Verifying that
a problem is NP-hard requires a formal mathematical proof (see Appendix D).

Research in the past has focused in particular on the borderline between
polynomial time solvable problems and NP-hard problems. For example, in the
string of problems described above, 1 || > w;C; can be solved in polynomial
time, whereas Pm || Y w;C; is NP-hard, which implies that Qm | prec |
> w;C; is also NP-hard. The following examples illustrate the borderlines be-
tween easy and hard problems within given sets of problems.

Example 2.4.1 (A Complexity Hierarchy)
Consider the problems

(i) 11 Cmax,
(i) P2 || Crax,
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Fig. 2.7 Complexity hierarchies of deterministic scheduling problems:
(a) Machine environments (b) Processing restrictions and constraints

(c) Objective functions

(it)) 2 || Cona,
(iv) Jm || Crnax,
(v) FFc || Cuax-

The complexity hierarchy is depicted in Figure 2.8.

Example 2.4.2 (A Complexity Hierarchy)
Consider the problems
(i) 1] Linax,
(i) 1| prmp | Lmax,
(iii) 1|7 | Lmax,

27



28 2 Deterministic Models: Preliminaries

FFC | I Cm'rlX jm | I Cm'rlX
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Fig. 2.8 Complexity hierarchy of problems in Example 2.4.1
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Pm”Lmax 1|rj|Lmax // 1|rj,prmp|Lmax

-

-

Hard __-- 1”Lmax 1|Prmp|Lmax

Easy
Fig. 2.9 Complexity hierarchy of problems in Example 2.4.2

(IV) 1 | Tj7p7”mp | Lmax>
(v) P || Lonas.

The complexity hierarchy is depicted in Figure 2.9. I

Exercises (Computational)

2.1. Consider the instance of 1 || > w;C; with the following processing times
and weights.

jobs 1 2 3 4
w; 611 95
p; 3 574

(a) Find the optimal sequence and compute the value of the objective.
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(b) Give an argument for positioning jobs with larger weight more towards
the beginning of the sequence and jobs with smaller weight more towards
the end of the sequence.

(¢) Give an argument for positioning jobs with smaller processing time
more towards the beginning of the sequence and jobs with larger processing
time more towards the end of the sequence.

(d) Determine which one of the following two generic rules is the most
suitable for the problem:

(i) sequence the jobs in decreasing order of w; — pj;

(ii) sequence the jobs in decreasing order of w;/p,.

2.2. Consider the instance of 1 || Lyax with the following processing times and
due dates.

jobs 1 2 3 4

p, 54 3 6
d; 35 11 12

(a) Find the optimal sequence and compute the value of the objective.

(b) Give an argument for positioning jobs with earlier due dates more to-
wards the beginning of the sequence and jobs with later due dates more
towards the end of the sequence.

(¢c) Give an argument for positioning jobs with smaller processing time
more towards the beginning of the sequence and jobs with larger processing
time more towards the end of the sequence.

(d) Determine which one of the following four rules is the most suitable
generic rule for the problem:
(i) sequence the jobs in increasing order of d; + p;;
(ii) sequence the jobs in increasing order of d;p;;
(iii) sequence the jobs in increasing order of dj;
(iv) sequence the jobs in increasing order of p;.

2.3. Consider the instance of 1 || > U; with the following processing times and
due dates.

jobs 1 2 3 4

p;, 76 4 8
dj 8911 14

(a) Find all optimal sequences and compute the value of the objective.
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(b) Formulate a generic rule based on the due dates and processing times
that yields an optimal sequence for any instance.

2.4. Consider the instance of 1 || Y~ T with the following processing times and
due dates.

jobs 1 2 3 4

p; 76 8 4
d; 8910 14

(a) Find all optimal sequences.

(b) Formulate a generic rule that is a function of the due dates and pro-
cessing times that yields an optimal sequence for any instance.

2.5. Find the optimal sequence for P5 || Cpax with the following 11 jobs.

jobs 1234567891011
p;i 998877665 5 5

2.6. Counsider the instance of F'2 | prmu | Cpax with the following processing
times.

jobs 1 2 3 4

P1j 86 4 12
D2j 4910 6

Find all optimal sequences and determine the makespan under an optimal se-
quence.

2.7. Consider the instance of F2 | block | Crax with the same jobs and the
same processing times as in Exercise 2.6. There is no (zero) buffer between the
two machines. Find all optimal sequences and compute the makespan under an
optimal sequence.

2.8. Consider the instance of F'2 | nwt | Cppax with the same jobs and the same
processing times as in Exercise 2.6. Find all optimal sequences and compute the
makespan under an optimal sequence.

2.9. Consider the instance of O2 || Cpax with 4 jobs. The processing times of
the four jobs on the two machines are again as in Exercise 2.6. Find all optimal
schedules and compute the makespan under an optimal schedule.



Exercises 31

2.10. Consider the instance of J2 || Ciax with 4 jobs. The processing times
of the four jobs on the two machines are again as in Exercise 2.6. Jobs 1 and
2 have to be processed first on machine 1 and then on machine 2, while jobs 3
and 4 have to be processed first on machine 2 and then on machine 1. Find all
optimal schedules and determine the makespan under an optimal schedule.

Exercises (Theory)

2.11. Explain why « |p; =1,7; | v is easier than o | prmp,r; | v when all
processing times, release dates and due dates are integer.

2.12. Consider 1 | sjz = ar +b; | Cmax. That is, job j has two parameters
associated with it, namely a; and b;. If job j is followed by job k, there is a
setup time sj, = aj + b; required before the start of job k’s processing. The
setup time of the first job in the sequence, sgx is a, while the “clean-up” time
at the completion of the last job in the sequence, s;o, is b;. Show that this
problem is equivalent to 1 || Cinax and that the makespan therefore does not
depend on the sequence. Find an expression for the makespan.

2.13. Show that 1 | sjx | Cmax is equivalent to the following Travelling
Salesman Problem: A travelling salesman starts out from city 0, visits cities
1,2,...,n and returns to city 0, while minimizing the total distance travelled.
The distance from city 0 to city k is sog; the distance from city j to city k is
s and the distance from city j to city 0 is s;g.

2.14. Show that 1 | brkdwn,prmp | > w;C; reduces to 1 | rj,prmp |
> w;C.

2.15. Show that 1 | p; = 1 | > w;T;j and 1 | pj = 1 | Limax are equivalent
to the assignment problem (see Appendix A for a definition of the assignment
problem).

2.16. Show that Pm | p; =1 | Y w;T; and Pm | pj = 1 | Lax are equiv-
alent to the transportation problem (see Appendix A for a definition of the
transportation problem).

2.17. Cousider P || Cinax. Show that for any non-delay schedule the following
inequalities hold:

ijgc

max S 2 X max (pla"'apna
m

ZP;’)
)
2.18. Show how Pm | M; |~ reducesto Rm/]|~.

2.19. Show that F'2 | block | Cax is equivalent to F2 | nwt | Chyax and show
that both problems are special cases of 1 | ;i | Cmax and therefore special cases
of the Travelling Salesman Problem.
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2.20. Consider an instance of Om | 8 | v and an instance of F'm | 8| . The
two instances have the same number of machines, the same number of jobs, and
the jobs have the same processing times on the m machines. The two instances
are completely identical with the exception that one instance is an open shop
and the other instance a flow shop. Show that the value of the objective under
the optimal sequence in the flow shop is at least as large as the value of the
objective under the optimal sequence in the open shop.

2.21. Counsider O2 || Cypax. Show that

n n
Cmax > max (ZpljaZp%')-
j=1 j=1

Find an instance of this problem where the optimal makespan is strictly larger
than the RHS.

2.22. Describe the complexity relationships between the problems

(1) 1] > w;Cy,

(ii) 1]d; = d| Y w;Ty,
(il) 1] p; = 1| X w;Tj,
(iv) 1] > w;Ty,

(v) Pm|pj =1|> w;Tj,
(vi) Pm || Y- w;T;.

2.23. Show that & | 8 | Liax reduces to a | 8| Y. T; as wellas to a | B | D Uj.
(Hint: Note that if the minimum Ly, is zero, the optimal solution with regard
to > U; and > Tj is zero as well. It suffices to show that a polynomial time
procedure for o | 5| >~ U; can be adapted easily for application to & | 8 | Lmax-
This can be done through a parametric analysis on the d;, i.e., solve o | 8 | Y U;
with due dates d; + z and vary z.)

Comments and References

One of the first classification schemes for scheduling problems appeared in Con-
way, Maxwell and Miller (1967). Lawler, Lenstra and Rinnooy Kan (1982), in
their survey paper, modified and refined this scheme extensively. Herrmann,
Lee and Snowdon (1993) made another round of extensions. The framework
presented here is another variation of the Lawler, Lenstra and Rinnooy Kan
(1982) notation, with a slightly different emphasis.

For a survey of scheduling problems subject to availability constraints
(brkduwn), see Lee (2004) For surveys on scheduling problems with non-regular
objective functions, see Raghavachari (1988) and Baker and Scudder (1990).
For a survey of scheduling problems with job families and scheduling problems
with batch processing, see Potts and Kovalyov (2000).
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The definitions of non-delay, active, and semi-active schedules have been
around for a long time; see, for example, Giffler and Thompson (1960) and
French (1982) for a comprehensive overview of classes of schedules. Exam-
ple 2.3.2, which illustrates some of the anomalies of non-delay schedules, is
due to Graham (1966).

The complexity hierarchy of scheduling problems is motivated primarily by
the work of Rinnooy Kan (1976), Lenstra (1977), Lageweg, Lawler, Lenstra
and Rinnooy Kan (1981, 1982) and Lawler, Lenstra, Rinnooy Kan and Shmoys
(1993). For more on reducibility in scheduling, see Timkovsky (2004).
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