Chapter 2
Genetics of Colon Cancer Susceptibility

Graham Casey

Abstract Colorectal cancer (CRC) exhibits a strong familial risk with first-degree
relatives of cases having a two to three times greater risk of developing CRC than
the general population. An estimated 35% of CRC cases are due to genetic factors.
Highly penetrant predisposing genes have been identified for several inherited CRC
syndromes (e.g., FAP, Lynch syndrome, and juvenile polyposis) through genetic
linkage studies. However, despite these considerable successes, mutations in these
rare syndromes explain less than 6% of CRCs and only a small fraction of familial
risk. While two recently described syndromes, MUTYH-associated polyposis, with
its pattern of recessive inheritance, and familial CRC type X, account for additional
genetic burden, they still account for only a small fraction of CRC risk. In the last
few years, considerable effort has been directed toward the identification of com-
mon, low-penetrance mutations through the promising approach of genome-wide
association studies (GWAS). With respect to CRC, 15 novel disease loci have been
identified through GWAS including several genes involved in the TGFf signaling
pathway. The familial and population risks explained by these loci remain small, but
it is expected that additional novel susceptibility markers will be identified as larger
ongoing and pooled GWAS are completed. While the role of the majority of suscep-
tibility genes identified through linkage studies and GWAS in energy balance
remains unclear, a pattern is emerging of a possible link given that several TGFj3-
related genes have been implicated in energy balance including susceptibility genes
identified through linkage analyses or GWAS.
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1 Familial Adenomatous Polyposis

Familial adenomatous polyposis (FAP) is an autosomal, dominantly inherited
condition with the defining clinical feature of the development of hundreds to thou-
sands of adenomatous polyps throughout the colon in childhood and adolescence
[1, 2]. FAP exhibits nearly 100% penetrance [3] with equal gender distribution [4]
and accounts for nearly 1% of all colorectal cancers (CRCs) [5]. FAP has a variable
degree of clinical expression [6], including attenuated (10-100 polyps), sparse
(100-500 polyps), and profuse (>2,000 polyps) forms. Attenuated FAP (AFAP) [7]
shows a delayed onset of CRC, occurring on average 12 years later than classic/
profuse FAP [8, 9].

Patients with FAP can develop a variety of extracolonic tumors including upper
gastrointestinal tract malignancies and cancers of the thyroid, pancreas, biliary tree,
brain, and hepatoblastomas [8]. A diagnosis of FAP that also includes medulloblas-
toma is termed Turcot’s syndrome [10], and the association of polyposis with osteo-
mas and desmoid tumors has been referred to as Gardner’s syndrome. FAP patients
can also develop a variety of extracolonic manifestations, including duodenal and
fundic gland polyps or retinal epithelium abnormalities as seen in congenital hyper-
trophy of retinal pigment epithelium (CHRPE) [11]. Many of these extracolonic
manifestations correlate with APC-specific mutations (see later in this section).

The gene responsible for FAP, the Adenomatous Polyposis Coli (APC) gene on
chromosome 521, was cloned in 1991 following linkage analysis in families with
FAP [12-15]. APC is a large gene that encodes a protein of 2,843 amino acids [16].
It functions as a tumor suppressor and has been implicated in a number of cell pro-
cesses [16—18], but the best-characterized role for APC is as part of a scaffolding
protein complex that negatively regulates Wingless/WNT signaling [16, 19, 20]. This
pathway has been reviewed extensively elsewhere [17, 18] and is summarized here
only briefly. APC and the transcription coregulator 3-catenin play central roles in the
WNT signaling pathway. In normal cells, in the absence of WNT signaling, APC,
along with Axin, glycogen synthase kinase 3 B (GSK3 f) and casein kinase, recruit
[-catenin into a destruction complex where it is phosphorylated by GSK3 3, leading
to B-catenin degradation by the ubiquitin-mediated proteosome pathway. This cel-
lular process leads to the maintenance of low levels of free cytosolic B-catenin in the
cytoplasm. When the WNT signaling pathway is activated the APC/Axin/GSK3p3
complex disassociates, allowing stabilization of cytosolic -catenin. Accumulated
[B-catenin associates with T-cell factor (TCF) and lymphoid-enhancer factor (LEF)
and the resulting complex enters the nucleus and activates transcription. Once it
enters the nucleus the B-catenin/TCF/LEF proteins provide a potent transcriptional
complex leading to transactivation of a number of critical genes including MYC and
cyclin DI [18, 21, 22]. Loss of control of this pathway through mutation and inactiva-
tion of APC leads to aberrant accumulation of -catenin, and transcriptional activation
of B-catenin/TCF/LEF complexes resulting in aberrant activation of target genes [16].

APC also participates in a number of other cellular processes related to cytoskeletal
organization, in particular microtubule stability [22]. The genetic evidence of the
importance of deregulation of the B-catenin signaling pathway in CRC strongly
implicates a central role for the WNT/APC/B-catenin pathway in CRC development.
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More than 800 different disease-causing APC germ-line mutations have been
reported in FAP [23]. The majority of mutations occur between codons 1250 and
1464 in the 5' region of exon 15, a region known as the mutation cluster region
(MCR) [23]. Mutations at codons 1061 and 1309 (“hot spots”) account for approxi-
mately 11 and 17%, respectively, of all germ-line APC mutations [23]. The majority
of the remaining mutations occur between codons 200 and 1600 with only a few
mutations falling outside this region [16]. The majority of mutations are frameshift
or nonsense mutations that lead to an inactive truncated protein product [16, 24].
Approximately 10-30% APC mutations are de novo [25]. A common missense
mutation (I1307K) in APC has also been reported in the Ashkenazi Jewish popula-
tion [26]. While this missense mutation does not appear to have any effect on APC
function, carriers do have an increased risk of CRC but not polyposis or any other
extra colonic manifestations of FAP [26].

As discussed earlier, there is marked variability in the clinical phenotype of FAP,
with severity of disease often correlating with location of the APC mutation [27].
For example, mutations in codon 1250 to codon 1464 and particularly codon 1309
mutations correlate with profuse polyposis where symptoms usually occur 10 years
earlier than milder forms [28-34]. Mutations at the extreme 5’ and 3’ ends of the
APC gene are generally associated with AFAP where patients develop fewer than
100 colon polyps and cancer onset is delayed [6, 35-39].

The appearance of extracolonic manifestations also correlates with the location
of APC mutation. For example, mutations between codons 1310 and 2011 are asso-
ciated with the appearance of desmoid tumors [28], with the highest severity occurring
between codons 1444/5 and 1580/1 [29, 40-42]. Mutations between codons 140
and 1309 are often associated with the occurrence of papillary thyroid cancer [43],
whereas CHRPE is often associated with mutations in codons 457-1444 [12, 44].
Gardner’s syndrome involving severe desmoids, osteomas, epidermoid cysts, and
upper gastrointestinal polyps is generally associated with APC mutations in codons
1403 and 1578 [44, 45]. While no consistent genotype correlation has been found
for duodenal adenomas, FAP patients with APC mutations in codons 976—1067
have been reported to have a three- to fourfold increased risk [28].

Mouse models support a critical role for APC in the development of intestinal
neoplasia. Although mice homozygous for inactivated Apc are embryonic lethal,
mice heterozygous for Apc (the Multiple intestinal neoplasia or Min mouse) invari-
ably develop multiple intestinal tumors [46]. While there are some differences in the
tissue specificity and morphogenesis between Min mice and FAP, Min mice have
proven an important model for intestinal tumorigenesis.

2 Hereditary Nonpolyposis Colon Cancer/Lynch Syndrome

Hereditary nonpolyposis colorectal cancer (HNPCC) (more commonly referred to
as Lynch syndrome) is a clinically heterogeneous disease that has historically been
diagnosed based on family history criteria (Amsterdam and Bethesda criteria) that
are not very accurate [47—49]. Lynch syndrome is characterized by a high incidence
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of CRC and endometrial cancer in families. The lifetime risk for colon cancer in
Lynch syndrome subjects is approximately 50-60% [50]. There is increased inci-
dence of extracolonic cancers in both males and females including those of the
small bowel, stomach, pancreas, ovary, renal pelvis, ureter, bladder, brain, appen-
dix, liver, bile duct, gall bladder, and skin [49, 51, 52]. Colon cancers arising in
Lynch syndrome families have a propensity toward left sidedness with two-thirds
arising in the proximal colon [51-53]. These tumors show a variety of common
histologic features including tumor-infiltrating lymphocytes, mucinous or signet
ring differentiation, and a medullary growth pattern [48, 49, 53, 54].

Like FAP, Lynch syndrome is an autosomal, dominantly inherited condition.
However, Lynch syndrome is more challenging to diagnose than FAP because the
clinical phenotype is far more varied and more genes are involved. The majority of
Lynch syndrome cases are accounted for by mutations in one of four genes (MSH2,
MLH]I1, MSH6, or PMS?2) involved in DNA mismatch repair (MMR). Of those cases
with defective MMR, approximately 80-90% have germ line mutations in one of
these genes. The majority of cases are due to mutations in MSH2 and MLH] that
play central and critical roles in DNA MMR [55], with MSH2 forming a heterodi-
mer with MSH6 (and to a lesser extent MSH3), and MLH1 with PMS2.

In newly replicated DNA, mismatches such as G>T [56] are recognized by
MSH2-hMSH6 heterodimers (MutS alpha in yeast), whereas insertion—deletion
loops are recognized primarily by MSH2-MSHG6 heterodimers, but can also be
mediated by the less abundant MSH2-MSH3 (MutS beta) heterodimeric protein
complex that appears to function as a backup in the absence of MSH6. Loss of
MSH2 therefore leads to the accumulation of aberrant length repeat sequences such
as (A)n or (CA)n and high levels of Microsatellite Instability (MSI). Once the
MSH2-MSHS6 heterodimer recognizes DNA mismatches, this complex undergoes
an ATP-dependent conformational change converting it to a sliding DNA clamp
capable of moving away from the repair site [57, 58]. This is followed by the recruit-
ment to the complex of MLH1-PMS2 heterodimers (MutL-alpha) [59]. This is then
followed by exonuclease degradation of a few hundred bases of the newly synthe-
sized mutant DNA strand followed by resynthesis of the complementary strand by
DNA polymerase. As mutations in MSH2, MLHI, MSH6, and PMS2 do not appear to
account for all MMR deficient cases it is possible that other MMR genes have yet to
be identified [59]. A detailed description of the role of these proteins in DNA MMR
and their specific roles in Lynch syndrome can be found in several reviews [60, 61].

Defective MMR repair was recognized as the underlying genetic basis for Lynch
syndrome following the observation by three independent groups that MSI was a
hallmark feature of tumors arising in Lynch syndrome family members [62—65]. MSI,
also referred to as a replication error (RER) or “mutator” tumor phenotype [62, 63,
65], occurs as a result of failure to repair of errors in copying during DNA replica-
tion. Thousands of microsatellite short tandem repeat DNA sequences (mono-, di-,
tri-, or tetranucleotides) exist throughout the human genome, and errors can occur
during DNA replication when copying these sequences. Typically such misalign-
ment errors would be repaired by the DNA MMR system. However, in cells with
defective MMR repair, these errors are not repaired effectively, and tumor DNAs of
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Lynch syndrome family members reveal a “stuttering” (loss or gain of one or more
repeats) pattern of microsatellite markers when compared with DNA from normal
cells from the same subject. Once it was recognized that the MSI phenotype was
similar to the mutational spectrum seen in yeast caused by deletion or mutation of
MMR genes, the MSH2 and MLHI genes that account for the majority of Lynch
syndrome cases were identified within a year [56, 66].

Germ-line mutations in MLHI and MSH?2 account for the majority of mutations
found in families with Lynch syndrome with a smaller minority attributable to muta-
tions in MSH6 and PMS2. Germ line testing remains a challenge as mutations can
occur throughout any of these relatively large genes and are not localized to any
mutation hot spots as in the APC gene. MSH?2 consists of 935 amino acids over 16
exons, MLH] consists of 756 amino acids over 19 exons, MSH6 consists of 1,360
amino acids over 10 exons, and PMS2 consists of 862 amino acids over 15 exons.
A wide range of types of mutations has been reported in these genes including mis-
sense, nonsense and splice site mutations. In addition, a number of large genomic
deletions or rearrangements involving several exons have also been reported
[67-73]. Testing for PMS2 germ-line mutations is not straightforward as there are
several highly homologous PMS2 pseudogenes, the majority of which have homol-
ogy with at least some of the ten exons at the 3’ end of the gene [74-77]. A compre-
hensive listing of MMR gene mutations can be found on the Mismatch Repair Genes
Variant Database [78] and the MMR Gene Unclassified Variants database (http://
www.mmrmissense.net/), which focuses more on functional assays and other types
of data to support the interpretation of the unclassified variants in MMR genes.

Nearly 90% of Lynch syndrome colon tumors exhibit high levels of MSI [62, 65,
79], and there exists a strong correlation between MSI and loss of staining of MMR
proteins using immunohistochemistry (IHC). As a result, IHC of the four MMR
proteins along with an assessment of family history has been recommended as a
starting point for diagnosing Lynch syndrome [79, 80]. However, it should be noted
that the sensitivity of IHC staining is not as high as MSI analysis as not all MMR
mutations lead to a loss of protein expression [81-83].

While defects in MMR are seen in nearly 15% of CRCs, tumors with MMR
germ-line mutations account for less than 5% of all cases. This is because MMR
defects are also seen in a subset of “sporadic” CRCs through somatic hypermethyla-
tion and inactivation of MLHI1 [84]. “Sporadic” MSI-H tumors share many of the
characteristics of those arising in MMR mutation carriers, including a tendency toward
a proximal location in the colon and a mucinous phenotype, but they usually occur
later in life. Although these cancers generally arise in the absence of a positive family
history, a vertical transmission in some families has been reported [85-87].

There is some evidence that MLH I and MSH?2 mutation families exhibit different
clinical expression. Several studies have been published, with overall findings of
greater CRC risk, earlier CRC onset, and fewer extracolonic tumors in MLH I muta-
tion carriers compared with MSH2 mutation carriers [50, 88-95]. Clinically, identi-
fication of an MMR gene defect, whether occurring within the context of Lynch
syndrome or sporadically, is important as it affects response to some chemothera-
peutic agents and ultimately prognosis [96-99].
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3 MUTYH-Associated Polyposis

Recent studies have identified germ-line mutations in the mutY homologue MUTYH
(also called MYH) with a recessive mode of inheritance associated with high risk of
multiple adenomatous polyps (10-1,000) and CRC in up to 50% of APC-negative
polyposis cases [100-102]. MUTYH mutations account for nearly 1% of all CRC cases
[103]. The majority of cases are associated with a relatively small number of common
variants (around 0.2% population frequency in Caucasians) [104—106]. Biallelic carri-
ers develop multiple polyps by 45-55 years, although this may be an overestimate as
large population-based studies have not yet been conducted [103, 105, 107].

The MUTYH gene was implicated in CRC risk following the observation in
tumors of APC mutation-negative multiple polyposis families that the APC gene
harbored an excess of somatic G:T transversions [100]. Such mutations are hall-
marks of oxidative DNA damage. This led Al-Tassan and coworkers to investigate
a possible role for a constitutional defect in base excision repair (BER) and the
subsequent identification of two germ-line variants (Y 179C and G396D) in MUTYH
that segregated with disease in family members [100]. The majority of MUTYH
carriers are accounted for by these two common missense mutations (44 and 24%,
respectively) with a number of additional rare MUTYH missense mutations includ-
ing some truncating mutations accounting for a small fraction [101-106, 108—112].
The Y179C MUTYH variant correlates with a more severe phenotype than G396D,
manifesting at an earlier age of onset of polyposis and a greater risk of developing
CRC than the Y179C allele [104]. Some studies have suggested that monoallelic
MUTYH mutations may be associated with an increased risk of CRC, but this
remains controversial [102, 104-106, 111, 113-116].

MUTYH is involved in BER of DNA damage caused by reactive oxygen species
(ROS) produced through cellular metabolism or exposure to ionizing radiation.
Among the lesions caused by oxidative DNA damage is 8-oxoguanine (8-0x0G).
8-0x0G is stable and highly mutagenic product prone to post-DNA replication mis-
pairing. MUTYH is a DNA glycosylase involved in the identification and removal of
mismatched adenines incorporated opposite 8-0xoG during replication. Failure to cor-
rect 8-0x0G:A mispairing leads to characteristic G:C to T:A transversions in the next
cycle of DNA replication [117, 118]. Two other enzymes, MTH1 and OGGl, also
play critical roles in BER [119, 120], but to date no mutations in these genes have been
linked convincingly to increased risk of either colorectal polyposis or CRC [121].

There are few discriminatory features to MUTYH-related CRC. While CRC can
occur throughout the colon in MUTYH carriers [104, 105], there is an excess of proximal
cancers [101-103, 109, 122]. There are no characteristic histopathology or clinicopatho-
logic features [103—105, 123], and tumors are microsatellite stable [104, 105, 109, 124].
Gastroduodenal polyposis has been observed in nearly 20% of MUTYH biallelic carriers
[125-127], but this is likely to be an overestimate as these studies were conducted in
highly selected polyposis registry families. MUTYH variants have been implicated in a
number of cancers including lung, breast, gastric, and endometrial cancers. However,
there remains no definitive evidence for an elevated risk of such cancers.
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4 Familial Colorectal Cancer Type X

Over the last few years, there has been growing recognition that many families that
fulfill HNPCC Amsterdam 1 criteria do not harbor an inherited MMR mutation
[93, 128]. Growing evidence suggests that this may reflect a separate syndrome.

In a large study using the resources of the Colon Cancer Family Registry [129],
Lindor et al. compared 90 Amsterdam I families with MMR-deficient tumors with
71 Amsterdam I families with MMR-proficient tumors and showed that families
with MMR-deficient tumors had a statistically significantly elevated risk of develop-
ing colorectal, endometrial, gastric, small intestine, and kidney cancers as expected
for Lynch syndrome. In contrast, while there was a twofold increased risk of CRC
in the families with MMR-proficient tumors, there was no increased risk of any
other cancer site [130]. The average age at diagnosis of CRC was also later (61 years)
in families with normal MMR compared to families with MMR deficiency (49 years).
Based on these data, the authors concluded the normal MMR families that met
Amsterdam I should not be considered Lynch syndrome families and coined the
name “familial colorectal cancer type X’ (FCCTX) [130].

A number of studies have now been published that support these findings and
strongly imply that FCCTX should be regarded as a distinct syndrome(s) rather than
a missed diagnosis of Lynch syndrome [131-133]. In support of this, FCCTX cases
are more likely to be diagnosed at a later age than Lynch syndrome cases despite
having a similar incidence of adenomas, are less likely to develop multiple primary
tumors, and tumors are less likely to have Lynch syndrome characteristics such as a
propensity toward right-sidedness, or a mucinous or tumor-infiltrating lymphocyte
pathology [113, 134-136]. While the molecular phenotype of FCCTX tumors
appears to differ from that of Lynch syndrome tumors, the phenotype does not
appear to be distinct from that of sporadic CRC [137, 138].

FCCTX is likely to be a heterogenous group including families with a chance
aggregation of CRC, families with an undiagnosed syndrome such as MUTYH-
associated polyposis [113] or MSI-variable families [139], and families with an as
yet to undiscovered syndrome.

5 Hamartomatous Polyposis and Other Rare Syndromes

Several familial syndromes have been described that are characterized by multiple
hamartomatous polyps in the intestinal tract including Cowden disease, Peutz—Jeghers
syndrome, and juvenile polyposis syndrome. Hamartoma refers to an excessive focal
overgrowth and distorted architecture of cells and tissues native to the organ in which
it occurs. These rare syndromes are all inherited in an autosomal dominant fashion,
and specific genetic mutations have been identified. A more extensive review of these
syndromes has recently been published [140].

Cowden disease is an autosomal dominant disease characterized by intestinal
hamartomas, facial trichilemmomas, oral papillomas, goiter, and esophageal glycogenic
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acanthosis [141-143] with an estimated incidence of 1 in 200,000. Breast and
thyroid cancer risk is also pronounced in Cowden disease, with CRC developing in
up to 10% of patients. Cowden disease and several related syndromes such as
Bannayan—Ruvalcaba—Riley syndrome, proteus syndrome, and proteus-like syn-
drome are all associated with germ-line mutations in the PTEN (phosphatase and
tensin homolog deleted on chromosome 10) gene. Clinical features include benign
and malignant neoplasms of the thyroid, breast, uterus, and skin as well as hamar-
tomatous intestinal polyps [144].

PTEN modulates G1 cell cycle progression through negatively regulating the
survival signal mediated by the phosphatidylinositol 3-kinase (PI3K)/AKT pathway
[145]. Inactivation of PTEN though mutation or deletion leads to the activation of
AKT [146], increased cell proliferation and reduced apoptosis. Germ-line mutations
in PTEN have been identified in approximately 80% of subjects diagnosed with
Cowden syndrome. PTEN promoter mutations may account for at least another 10%
of Cowden cases [147], and the remaining cases may arise from as yet undiscovered
mutations in PTEN [148]. There appears to be a different pattern of mutation in
Bannayan—Ruvalcaba—Riley syndrome cases. PTEN germ-line mutations account
for 50-60% of patients, and large genomic deletions or rearrangements of exons of
PTEN have been reported in Bannayan—Ruvalcaba—Riley syndrome patients but not
Cowden syndrome patients. In addition, PTEN promoter mutations are uncommon
in Bannayan—Ruvalcaba—Riley syndrome patients [143, 147, 149].

Peutz—Jeghers syndrome is a rare (approximately 1 in 200,000) autosomal domi-
nant disorder characterized by the presence of pigmentation of the lips, buccal
mucosa, hands, and feet; hamartomatous polyps throughout the gastrointestinal tract;
and increased risk for gastrointestinal, breast, ovarian, and testicular cancers [150,
151] The cumulative risk is around 30% for CRC and 50% for breast cancer [6].

Nearly half of Peutz—Jeghers cases are due to germ-line mutations in STK/11/
LKBI [152, 153]. STK11/LKBI1 is a serine—threonine kinase that phosphorylates
and activates AMP-activated protein kinase an essential positive regulator the
mTOR pathway that is also implicated in the PTEN hamartomatous syndrome
[146]. Genotype—phenotype correlation suggests that patients with Peutz—Jeghers,
who have a truncation mutation in STK/I/LKBI, have a significantly earlier age of
onset than those who have a missense mutation or when no mutation is detected in
STK11/LKBI [154]. There are some families with Peutz—Jeghers syndrome that did
not show linkage to the STK/I/LKBI chromosomal region suggesting genetic het-
erogeneity of this disease [155, 156].

Juvenile polyposis syndrome is a rare (1 in 100,000 births) autosomal dominant
condition. It is characterized by juvenile polyps, which are distinctive hamartomas
that have a smooth surface and are covered by normal colonic epithelium [157].
The polyps may affect not only the colon and rectum but also the proximal gastro-
intestinal tract. The clinical diagnosis consists of the following criteria: more than
five juvenile polyps of the colorectum, or multiple juvenile polyps throughout the
gastrointestinal tract, or any number of juvenile polyps and a family history of juve-
nile polyps [158]. The lifetime risk approaches 60% and patients are also at risk of
developing cancers of the stomach and small intestine [159]. Germ-line mutations
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in the TGFp signaling genes SMAD4/MADH4 and BMPRIA account for around
20% of juvenile polyposis cases each [160-164]. More recently, mutations have
been identified in a third gene, ENG, but the frequency remains unknown [165, 166].
Clinically, patients with an SMAD4/MADH4 mutation are more likely to develop
large gastric polyps than those with a BMPRI1A mutation and these patients usually
have a family history of upper gastrointestinal polyposis [36, 167].

Hereditary mixed polyposis syndrome (HMPS) is characterized by colonic
polyps of mixed hyperplastic, adenomatous, and occasional juvenile types that
eventually lead to the development of CRC [168]. The syndrome is similar to FAP
in that it is an autosomal dominantly inherited condition. However, unlike the exces-
sive number of adenomas seen in FAP, the polyps in HMPS are fewer in number, of
mixed histology, and appear to be confined to the large bowel. Using a linkage
approach, the BMPRIA gene was identified and an 11-bp deletion in the BMPRIA
gene found in one family [168]. BMPRIA mutations were later confirmed in other
families [169, 170].

Germ-line mutations in BMPRIA have been previously associated with a subset
of juvenile polyposis syndrome patients [36, 161, 162]. However, the phenotypic
features of the two families in this study differ from JPS. Just as germ-line muta-
tions in APC can cause diverse phenotypic manifestations including those of Turcot
and Gardner syndromes, it is perhaps not surprising that mutations in BMPRIA
could be responsible for two different syndromes.

6 Genome-Wide Association Studies
and Low-Penetrance Mutations

Over the last 5 years, genome-wide association studies (GWAS) have provided a
powerful new approach for identifying susceptibility loci. Rather than focusing on
the highly penetrant rare mutations described above, GWAS focus on the identifica-
tion of common, low-penetrance mutations. As with linkage studies, GWAS represents
an agnostic survey of the genome, but unlike linkage analyses that use a relatively
small number of markers to screen cancer-dense families, GWAS employs SNP
arrays containing hundreds of thousands of SNPs to screen relatively large popula-
tions. GWAS have only become possible in recent years due to major technological
advances in the development of genotyping platforms that allow cost-effective high
throughput genotyping of large sample sets. This approach has begun to reveal
novel findings that are improving our understanding of the contribution of common
alleles to risk of many complex genetic disorders including CRC.

GWAS have met with unprecedented success for a range of complex diseases [171].
As of the second quarter of 2011, there have been 1449 published genome-wide associa-
tions (at p<5x 107®) for 237 traits [172] and this number is expected to increase substan-
tially over the next few years. With respect to CRC, as of January 2011, 15 novel disease
loci have been identified in European populations [173-180]. Table 2.1 summarizes the
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published findings from these studies, and without exception the risks conferred have
been low with odds ratios between 1.1 and 1.3 [173-180]. To date these studies have
been limited to individuals of European ancestry.

So what candidate genes have been identified through CRC GWAS? Of the 15
SNPs identified to date, 6 map to regions that include TGFp signaling pathway
genes, a pathway that previously has been implicated in CRC. These include SMAD7
[174, 179], GREM1 [176], RHPN2, the bone morphogenetic protein genes BMP2
and BMP4 [179], and most recently LAMAS that is required for the production of
noggin, a secreted BMP antagonist [180]. TGFJ proteins play critical roles in pro-
liferation, differentiation, cell migration, adhesion, and extracellular matrix (ECM)
production [182, 183], and also energy balance (see below), and several lines of
evidence support a key role for the TGFp pathway in CRC susceptibility. For exam-
ple rare, high-penetrance variants in other TGFf-related genes (SMAD4 and the
BMP receptor BMPRIA/ALK3) have been reported for juvenile polyposis [36, 161,
162] and for HMPS [169, 170]. In addition, somatic mutations of SMAD4 and the
TGFp receptor TGFBR?2 have been identified in CRC tumors. The cancer initiation
properties of TGFf seem to be distinct from those of progression, as activation of
the TGFp signaling pathway leads to enhanced tumor growth and increased meta-
static potential [184].

In addition to TGFp signaling candidates, there are intriguing findings for some
of the other CRC loci identified through GWAS. For example, 8q24 is a gene desert
region that has been identified as a risk locus for several different cancers including
CRC [173, 175, 185-188]. While no known genes map to this region, the MYC
oncogene maps within 300-400 kb of several independently associated SNPs.
Replication, sequencing, and fine-mapping studies of this locus have identified
16983267 as the most promising variant for functional assessment in CRC and
other cancers [189]. This SNP lies in a sequence that is highly conserved across
vertebrates and is predicted to have regulatory function [189]. Its relative proximity
to MYC makes it plausible that it may disrupt a putative enhancer. However, while
MYC is often amplified in CRC, this variant has not been found to correlate with
MYC expression in CRC tumors or lymphoblastoid cell lines [190], although tissue-
specific long-range chromatin loops between putative enhancer elements in this
region and MYC have been shown [191]. Many of the other associated loci (e.g.,
9p24, 10p14, 11923.1, 18923, and 20p12.3) also lie in intergenic or gene desert
regions with no known biological relevance.

It is important to note that any candidate genes identified through GWAS, includ-
ing those belonging to the TGFp signaling pathway, have not yet been confirmed as
causal, and there is growing emphasis on dissecting the functional consequences of
GWAS findings [192]. One of the challenges for GWAS is that they rarely identify
the causal variant or gene, as the SNPs that are included on commercial SNP arrays
are chosen to capture regions of linkage disequilibrium (LD) identified through the
HapMap project [193] rather than for any functional or putative functional role.
As a result, the nearest gene mapping adjacent to an associated SNP may not be
the causal gene. Considerable work is needed before functionality can be
assigned to any susceptibility SNPs. This is not a trivial task as most effect sizes
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are relatively small and the functional effect of any causal SNP is likely to be subtle.
In addition, the majority of disease-associated SNPs identified through GWAS map to
intergenic regions or gene “deserts” such as the 8q24 region [194] described above,
suggesting that they affect regulatory elements such as enhancers, posing even
greater challenges. Undoubtedly, a large amount of work will be needed to clarify
the biological implications of these associations.

Only limited data are available with regards to the epidemiological characteristics
of GWAS associations. Rs3802842 at 11g23 and rs4939827 (SMAD7) have been
reported to be more strongly associated with rectal cancer than colon cancer [178].
No differences in risk have been reported by tumor molecular subtypes for the pub-
lished variants, with the exception of rs4444235 (BMP4) for which the association
was found to be significantly stronger for MMR proficient than deficient tumors
[179]. Low-penetrance susceptibility alleles may function as modifier genes contrib-
uting to the severity of CRC in high-risk subjects. In two large studies of Lynch
syndrome, two GWAS hits (rs16892766 on 8q23.3 and rs3802842 on 11g23.1) were
significantly associated with an increased CRC risk in these patients [195, 196].

The familial and population risks explained by CRC GWAS loci remain small
accounting for less than 10% of overall inherited risk and less than 1% of familial
risk [179], and as a result they are not yet useful for risk prediction. However, it is
expected that risk prediction will improve as additional susceptibility alleles are
identified once ongoing, larger and pooled GWAS analyses as well as studies in
other ethnic populations are completed [173—180]. In terms of risk, studies suggest
that around 100 SNPs would be required to achieve 80% accuracy of prediction of
CRC genetic risk [181], accounting for ~17% of the phenotypic variance providing
useful predictive value. This does not take into account the contribution of rare or
private variants and their effect on risk are unknown. It will take several years to
more fully comprehend the impact of rare variants on CRC risk as these types of
studies can only be accomplished through next generation sequencing GWAS that
are just being contemplated.

It is clear that CRC etiology has a very strong environmental component
[197, 198] and there are several ongoing studies examining the relationship between
lifestyle risk factors for CRC and interactions with the risk alleles identified through
GWAS (gene x environment interactions). Pooling of GWAS data through collab-
orative efforts should improve power to detect both genexenvironment and
gene x gene interactions [199].

7 CRC Susceptibility Genes and Energy Balance

As discussed above, while promising progress has been made in identifying CRC
susceptibility genes through linkage analyses and GWAS, the susceptibility alleles
identified to date still only account for a small fraction of CRC risk. Despite this, a
growing understanding of the genetic etiology of CRC is beginning to emerge as
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a significant number of susceptibility genes or candidate susceptibility genes belong
to the TGFB/BMP superfamily, including SMAD4, BMPRIA/ALK3, SMAD?,
GREM1, RHPN2, BMP2, BMP4, and LAMAS. The TGF[ family of proteins is a
well-known key regulator of many biological processes, and several lines of evi-
dence implicate TGF1 signaling in energy balance. A review of the role of TGF[3
in regulating adiposity and energy expenditure was recently published [200].

TGFp is a negative regulator of adipogenesis, promoting preadipocyte prolifera-
tion while simultaneously inhibiting differentiation [201], a process augmented by
SMAD7 (and SMADG), a negative regulator of TGFp signaling. TGF3 may also
influence adipogenesis indirectly through upregulation of WNT signaling, a cascade
that also inhibits adipocyte differentiation [202]. That APC mutations lead to the
activation of WNT signaling may also implicate APC in energy balance. TGF(1
expression also correlates with body mass index and visceral fat obesity, which along
with insulin resistance, plays a central role in metabolic syndrome [203-207], and
elevated serum TGFp1 levels are associated with incident type 2 diabetes [208].
These findings are supported by observations in genetically engineered mice [209].

Several lines of evidence also support a role for BMPs in adipogenesis [210].
BMPs appear to play dual roles in this process. The candidate CRC susceptibility
gene BMP4 is best recognized for its role in the earliest stages of white adipocyte
differentiation [211, 212]. BMP4 promotes the formation of white adipocytes in a
dose-dependent manner in mouse embryonic stem cells [211, 213] a finding supported
by mouse studies [214]. Several lines of evidence suggest that BMP4 is an impor-
tant risk factor for metabolic syndrome [215, 216]. BMP4 was associated with
increased adiposity [217], recognized as being essential for energy balance [218],
and white fat differentiation [212, 214, 219]. Serum BMP4 levels also correlated
with body mass index, waist circumference, waist-to-hip ratio, triglycerides, HDL
cholesterol, and fasting plasma insulin [216]. BMP4 mRNA expression has also
been shown to correlate with obesity in ob/ob transgenic mice [219].

The CRC candidate susceptibility gene BMP2 has also been implicated in adipo-
genesis both as a pro- and anti-adipogenic protein. BMP2 has been shown to
promote osteoblast differentiation while suppressing adipocyte development [220].
In contrast, BMP2 can also stimulate adipocyte differentiation [221-223].

The cellular response to BMP2 and BMP4 is mediated by ligand binding to cell
surface receptors including BMPRIA [224, 225], a gene that has been implicated in
both HMPS and JPS patients. BMPR1A has been shown to be involved in adipocyte
differentiation in vitro [105]. BMPRIA has been strongly implicated in obesity,
where BMPRIA mRNA expression was elevated in patients with obesity, type 2
diabetes, and components of metabolic syndrome including body mass index, body
mass, and waist-to-hip ratio [216]. Furthermore, BMPRIA mRNA levels were
elevated in adipose tissues of obese and overweight adults and three SNP variants in
the BMPRIA gene were associated with increased body mass index [225].

A pattern is, therefore, emerging of a possible link between some CRC suscepti-
bility genes and energy balance that warrants further investigation. Based on growing
evidence of a link between TGFf-related genes, CRC susceptibility and the
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development of features of metabolic syndrome, modulation of TGFf signaling
may represent a valuable therapeutic approach in at-risk individuals.
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