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Cell Mapping Techniques for Tuning

Dynamical Systems

Ángela Castillo and Pedro J. Zufiria

Abstract In this chapter, to be dedicated in the 90th birthday of Professor C. S. Hsu,

several computational schemes are presented for the optimal tuning of the global

behavior of nonlinear dynamical systems. Specifically, the maximization of the size

of domains of attraction associated with invariants in parametrized dynamical

systems is addressed. Cell Mapping (CM) techniques are used to estimate the size

of the domains for different parameter values, and such size function is then

maximized via several optimization methods. First, a genetic algorithm is tested

whose performance shows to be good for determining global maxima at the expense

of high computational cost. Secondly, an iterative scheme based on a Stochastic

Approximation procedure (the Kiefer–Wolfowitz algorithm) is evaluated showing

acceptable performance at low cost. Finally, several schemes combining neural

network based estimations and model-based optimization procedures are addressed

with promising results. The performance of the methods is illustrated with some

applications including the well-known van der Pol equation with standard parame-

trization, and the tuning of a controller for saturated systems.

2.1 Introduction

Dynamical systems with tunable parameters are very common in many branches of

science and engineering. For instance, dynamic and control systems (Brockett and

Li 2003; Hu et al. 2002, 2005; Lewis 1987), robotic architectures (Arkin 1998; Fu

et al. 1987), and learning schemes (Mitchell 1997; Moore and Naidu 1983) are

processes whose behavior depends on the actual value of some characterizing

parameters. In other words, the properties of dynamical systems are parameter
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dependent. The number equilibria and their stability in parametrized dynamical

systems are widely studied in the framework of bifurcation theory (Seydel 1988).
The study and design of nonlinear dynamical systems based on global properties

(such as the size of attraction domains) cannot be easily addressed by standard

procedures. The study of attraction domains associated with asymptotically stable

system invariants is fundamental for global analysis. Some approaches for comput-

ing such domains of attraction can be seen in Flashner and Guttalu (1988), Guttalu

and Flashner (1988) and Xu et al. (1985). The tuning of these domains has great

applicability in the design of controllers (Hu et al. 2002), neural network models

(Cohen 1992), and the improvement of convergence in learning schemes (Moore

and Naidu 1983).

In this chapter, several computational schemes are considered for maximizing

the size of domains of attraction in certain parametrized dynamical systems. Cell

mapping (CM) techniques (Hsu 1987) are employed to estimate the size of those

regions, as presented in Castillo and Zufiria (2000, 2002, 2011). A genetic algo-

rithm, a Kiefer–Wolfowitz stochastic approximation procedure and several neural

network-based schemes are proposed as optimization methods for determining the

optimal parameter values.

Cell mapping-based schemes have also been employed for the design and

evaluation of optimal controllers (Hsu 1985; Hu et al. 1994a,b; Papa

et al. 1997; Martı́nez-Marı́n and Zufiria 1999; Zufiria and Martı́nez-Marı́n 2003),

but only in cases where the cost functional can be approximated and optimized via

local procedures. In this chapter, a cell mapping-based global performance optimal

control is presented.

The rest of this chapter is organized as follows. The following section presents

the problem statement as well as the proposed procedure to address the problem.

Section 2.3 details some modifications performed on the cell mapping technique for

delineating and measuring the domains of attraction. The computational schemes

for finding optimal parameter values are detailed in Sect. 2.4. Simulation examples

are presented in Sect. 2.5. Concluding remarks appear in Sect. 2.6.

2.2 Problem Statement and Proposed Approach

We consider a family of dynamical systems defined by

_x ¼ Fðx; aÞ; x 2 Rn; a 2 I ; (2.1)

where I is a compact subset ofℝp. In addition,we consider a global performance index

J(a) ∈ ℝ, which naturally will also depend on the system parameter vector a ∈ I .
A parameter value �a ∈ I is to be found such that the performance index is

maximized:

Jð�aÞ ¼ maxfJðaÞ; a 2 Ig: (2.2)
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It is well known that the existence of �a is guaranteed, for instance, whenever J(a)
is a continuous function on the compact set I . Also, if J(a) is bounded (without

necessarily being continuous) in I , then the supremum sup{J(a), a ∈ I} exists.

Note that, although this supremummay not be reached for any value of a, numerical

optimization schemes may provide values of a such that J(a) is close enough to the

supremum. In the rest of the paper, without loss of generality, we will talk about

finding the maximum of J.
The performance index J may be difficult to compute since it is supposed to

gather global features. Hence, the use of numerical approximations becomes rele-

vant. First, one has to approximate (estimate) J(a) for any given value of a. Second,
J must be optimized, meaning that the maximum (or supremum) of {J(a), a ∈ I}
must be determined, using such approximated (estimated) values, without the

availability of any explicit algebraic expression for J. This condition is very restric-
tive and will determine the optimization algorithms that can be employed.

In this chapter, several algorithms are proposed which implement these two

steps as follows:

• J(a) is estimated making use of a cell mapping technique:

JðaÞ � JCMðaÞ; a 2 I : (2.3)

This approximation is characterized in the following section.

• An approximation of max{JCM(a), a ∈ I} is computed using optimization

methods which are appropriate for dealing with the mentioned restriction

(non-availability of an algebraic expression). Precisely, Genetic Algorithms, a

Kiefer–Wolfowitz scheme, and some Neural Network-based techniques have

been employed.

2.2.1 Size of Domain of Attraction

The size of a domain of attraction is considered as the performance index J to be

maximized. Let us consider that 8a ∈ I , system (2.1) has an attractor at the

equilibrium point x∗, meaning that x∗ will have an associated attraction domain

D(x∗, a) which will depend on the parameter value a.
From a practical point of view, a working region H is defined, usually being an

n-dimensional rectangle H ¼ ½a1; b1� � ½a2; b2� � . . .� ½an; bn�ð Þ which contains

x∗ . Hence, the portion of the domain of attraction included in such region DH ¼
Dðx�; aÞ \ H is to be considered. (Note that if D(x∗, a) � H then

DHðx�; aÞ ¼ Dðx�; aÞÞ.
A value �a ∈ I of the parameter is to be found such that volðDHðx�; �aÞÞ ¼

maxfvolðDHðx�; aÞÞ; a 2 Ig. In this expression, vol(�) is the mathematical function

which defines the volume of a region, so that the performance index can be defined as

JðaÞ ¼ volðDHðx�; aÞÞ; a 2 I : (2.4)
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As mentioned above, the existence of �a in the compact set I is guaranteed if J(a) is
a continuous function.

The definition of JðaÞ ¼ volðDHðx�; aÞÞ ¼ lðDHðx�; aÞÞ is based on measure

theoretic concepts. Precisely, since D(x∗, a) is an open set and provided H is

compact, then DHðx�; aÞ is Lebesgue measurable. Nevertheless, we cannot guaran-

tee J(a) to be a continuous function, even if F ∈ C1(ℝn �I ). Fortunately, since H
is bounded, sup{J(a), a ∈ I} does exist.

The procedure proposed for the maximization of this specific performance index

J can be summarized as follows:

(a) First, the volume of DHðx�; aÞ is estimated. This estimation can be performed

using the cell mapping technique (CM) (Hsu 1987), a computational method for

the global analysis of nonlinear dynamical systems. The use of CM requires the

selection of a rectangle in the state space region under consideration. This

rectangle does eventually define our working regionH. Hence, the global analysis

will be restricted to such region. This rectangle is divided into cells, its comple-

mentary set being called sink cell. Based on that division of the state space, CM

can be applied to determine equilibria, limit cycles, and periodic solutions located

within the prescribed rectangle. Furthermore, if some attractor is found, CM

provides an approximation to its attraction domain in the rectangle (it will be

denoted DCM(x∗, a)), through the so-called cellular attraction domain.
Once CM has been applied, the computation of the volume of a cellular

domain is not difficult because it consists of cells, and cell dimensions are

known values. When referred to the problem considered here, CM can be

applied onH, and if x∗ is located, the volume of its associated cellular domain

will be considered as an estimation of the volume of DHðx�; aÞ.
Hence, the function to be maximized is the unknown

JðaÞ ¼ volðDHðx�; aÞÞ; (2.5)

and the function actually being optimized is its estimation

JCMðaÞ ¼ volðDCMðx�; aÞÞ; (2.6)

which has no explicit algebraic expression.

(b) An optimization method to maximize JCM is required. For that purpose, an

algorithm able to maximize functions without explicit algebraic expression is

required. Three types of schemes are considered below.

2.2.2 Characterization of JCM

As mentioned above J(a) is estimated making use of the cell mapping technique:

JðaÞ � JCMðaÞ; a 2 I : (2.7)

34 Á. Castillo and P.J. Zufiria



In this section, the statistical properties of JCM as an estimator of J are studied

in order to support the applicability of the optimization schemes employed in

this work.

The estimator JCM gathers several approximating steps:

• First, a partition of the state space into cells is defined, so that the domain is

approximated by a set of cells. This first step restricts the possible values of the

approximate domain size to be a multiple of the cell volume.

• In addition, the cell mapping carries out two additional approximations for the

(efficient) computation of the trajectories, which also depend on the cell size:

– The approximation due to the computation of trajectories only in a finite

interval.

– The approximation due to the use of numerical methods for computing such

trajectories.

We consider first the approximation due to the cell partitioning of the state space,

by neglecting errors in the computation of trajectories, since this error can be

analytically studied. Following the cell mapping definition, those cells in the

partition whose center point belongs to DH(x
∗, a) will count as part of the approxi-

mation of DH(x
∗, a). Such a set of cells, which is denoted as DP(x∗, a) (where P

stands for “Partition” into cells), can be seen as an approximation of the Lebesgue

measure of DHðx�; aÞ, which is defined by

lðDHðx�; aÞÞ¼ infC
X
ci2C

volðciÞ; (2.8)

where C is a countable collection of cells whose union covers DHðx�; aÞ. Therefore,
we have that JðaÞ ¼ volðDHðx�; aÞÞ would be approximated by vol(DP(x∗, a)) if
the errors in the computation of trajectories were neglected.

Note that DP(x∗, a) depends on xo ¼ (a1, a2, . . ., an), the selected origin for H,

and on the cell size h. As mentioned above, a cell will belong to DP(x∗, a) if the
middle point of such a cell is included in DHðx�; aÞ. Based on a geometric

reasoning, one can expect that the error of the approximation comes from the

inclusion or exclusion of those cells ci containing points in the boundary of D
(x∗, a), that is, ci ∈ CB. These cells may or may not be included in DP(x∗, a),
depending on the fact that their center point belongs to DHðx�; aÞ. Note that xo can
be seen as a random variable. Hence, the inclusion or exclusion of vol(ci) in vol
(DP(x∗, a)) adds up an error to the estimator which can also be seen as a random

variable Eci . Although potentially Eci 2 ½�V;V� (V ¼ hn being the volume of a cell),

for small values of h and smooth domain boundaries (which can be approximated

by hyperplanes), one can expect Eci 2 ½� V
2
; V
2
� having a symmetric distribution

(which under some assumptions can be considered to be uniform). In any case,

EðEciÞ ¼ 0 and VarðEciÞ 	 V2

4
.

The total size of the cellular domain, vol(DP(x∗, a)), is computed as the sum of

the volumes of interior and boundary cells. The error associated with the total
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volume estimation, e, can be computed as the sum of the errors corresponding to the

boundary cells ci ∈ CB:

E ¼
X
ci2CB

Eci : (2.9)

It is important to note that Eci are not independent from each other, their joint

distribution strongly depending on the geometry of DHðx�; aÞ with respect to the

cell partitioning. In any case, the variance of e can be bounded VarðEÞ 	 ð#CBÞ2 V2

4
,

where #CB stands for the cardinality of CB. (Note that #CB ¼ Oðh�ðn�1ÞÞ so that

VarðEÞ ¼ Oðh2Þ and will tend to zero as h ! 0.)

Coming back to the cell mapping technique, besides the state space partition, it

computes an approximation of system trajectories in order to approximate

invariants and attraction domains. Such approximations include errors due to the

state space partition and also errors due to the computation of trajectories, as

explained above. Therefore, the cell mapping domain DCM(x∗, a) provides an

approximation of DHðx�; aÞ which in general will depend on xo and h as well as

on the numerical methods employed for the computation of trajectories. Hence, one

can also denote it as DCM(xo, h, p)(x∗, a), where p stands for the parameters

characterizing the numerical approximation of trajectories. Hence, one can charac-

terize the overall approximation of J(a) as follows

JCMðaÞ ¼ JCMðxo;h;pÞðx�; aÞ ¼ volðDCMðxo;h;pÞðx�; aÞÞ ¼ JðaÞ þ x; (2.10)

where x is also a random variable which gathers e as well as numerical trajectory

computation errors.

Concerning the convergence of the approximation, one can prove that for the

simple cell mapping (SCM)

lim
h!0

volðDCMðxo;h;pÞðx�; aÞÞ ¼ volðDHðx�; aÞÞ; (2.11)

that is, limh ! 0 J
CM(xo, h, p)(x∗, a)¼ J(a). This means that even if all the sources of

error are considered (due to the three types of approximations mentioned above),

convergence to the true value can be guaranteed as the cell size h tends to zero (see
Riaza and Zufiria 1999).

Note that in general JCM(a) has no explicit algebraic expression, and its distri-

bution cannot be characterized analytically. Also, the approximation error x (and

consequently, JCM(a)) will follow a distribution which depends on specific features

of the problem under analysis. In order to get some insight into the statistical

properties of JCM, some Monte Carlo simulations have been carried out. In particu-

lar, Figs. 2.1–2.3 show the results of the application of the Monte Carlo technique:

a rough estimation of the distribution of the random variable JCM(a) has been

obtained for three different problems.
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Fig. 2.1 Estimation distribution for van der Pol with b ¼ 1

Fig. 2.2 Estimation distribution for van der Pol with b ¼ 5
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2.3 Modifications to CM Implementation

Several remarks about the application and improvement of CM for estimating the

size of domains of attraction are presented in this section.

When CM is applied to analyze a dynamical system, some fake solutions can

appear. They are cellular invariants which do not correspond to invariants from the

original continuous system. These spurious invariants can show up due to either

slow dynamics or near to periodic solutions and equilibria. The effects of this type

of cellular solutions represent the main difficulty found in the application of CM to

our problem.

For instance, when approximating the domain of attraction of a single equilib-

rium point x∗ known to be the only invariant in a given region, CM might detect a

fixed cell where x∗ is located and another cellular invariant formed by k cells

around that fixed cell. This is clearly a fake cellular solution having its own cellular

attraction domain. A mistake will be made if only the cellular domain from the fixed

cell is taken as an approximation to the attraction domain of x∗. The appearance of
fake solutions might be avoided by changing some characteristics of the CM. If this

does not work, the two cellular domains can be joined providing the required

approximation.

This process of joining domains starts by distinguishing spurious solutions.

Then, one must associate their cellular domain of attraction with the corresponding

Fig. 2.3 Estimation distribution for saturated control system
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true invariant set. For doing so, the distance from a cellular invariant to each one of

the equilibria of the continuous system is computed first. If the minimum of those

distances is lower than a prescribed value, the invariant is considered spurious, its

cellular domain being associated with the nearest equilibrium point. If the mini-

mum distance is greater than the reference value, the invariant is not treated as a

fake solution.

In some cases the procedure introduced above may not avoid the effects due to

fake solutions. The success of this procedure is dependent on the type of dynamical

systems under consideration. For instance, in those systems which are known to

have a single attractor, all cells in the cellular attraction domains could be taken as

associated with the attractor.

2.4 Optimization Techniques

In this section, the main features of the different optimization schemes are outlined.

2.4.1 Genetic Algorithm

Genetic algorithms are search algorithms based on the dynamics of natural selec-

tion and natural genetics (Davis 1991; Goldberg 1989). They are mainly employed

for finding extreme points in functions where other methods do not work due to the

complexity or limitations in the search space. For instance, genetic algorithms are

appropriate in case that only raw function evaluations can be performed but no

additional information about the function (structure, derivatives, etc.) is available.

This is what happens in the type of problems treated in this chapter, where the only

available information is the value vol(DCM(x∗, a0)) for a given a0 ∈ I .
In general, a genetic algorithm starts from an initial population composed of

individuals (parameter values in our problem). Each individual is represented by

a code and evaluated by a fitness function (JCM in the problem treated here).

The algorithm develops processes of selection, crossover, mutation, and substitu-
tion. It tries to improve population fitness, generation by generation, and it finishes

when a certain percentage of identical individuals is reached, providing then the

best-found individual, which approximates the optimum we are pursuing. For more

information on genetic algorithms, see Davis (1991), Goldberg (1989) and

references therein.

The genetic algorithm used in the simulation examples of this chapter is a basic

particular case of the standard procedure: individuals are represented by binary

strings of 16 bits (in our case, an individual refers to a parameter value of the

dynamical system). Real coding could also be used, being especially suited for

multiparameter problems. Every generation is composed by 15 individuals; the

fitness function is taken as the function to be maximized (in our problem it is

JCM(a) ¼ vol(DCM(x∗, a)).
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The algorithm starts generating randomly 15 individuals which form the initial

population. Every bit value, 0 or 1, is selected with a probability of 1/2. Then, in the

selection process, individuals with a high fitness will have a high probability of

being selected. This probability is computed as a sum of two weighed terms. One of

them is the inverse of the number of individuals in a generation; the other one is the

normalized individual fitness (this is obtained dividing each fitness value by the

sum of the fitness values of all individuals in the actual generation).

Crossover follows the selection process. It constructs couples with adjoining

individuals in the list provided by the selection. Then, it interchanges pieces of

string between individuals in the same couple after a cross site has been randomly

selected. This affects only 60% of couples.

New individuals from crossover go through a mutation. This is accomplished by

a change (with a probability of 0. 3) in one of their bits chosen randomly.

Insertion of new individuals into the population is performed such that individuals

with a low fitness value will have a high probability of being replaced. Replacement

probabilities are obtained by subtracting the selection probabilities from 1.

After each insertion, the replacement probabilities are recalculated. The new

individual will have zero probability to be replaced again, and the rest of

probabilities will be normalized.

When crossover, mutation, and substitution have finished for all couples, the

process restarts for the new generation.

The algorithm finishes when 90% of individuals in a generation are identical.

Since the number of generations needed to fit such requirement can be too high, an

upper bound in the number of computed generations will be defined. This number is

chosen looking for a trade-off between obtaining a good approximation of the

optimal point and minimizing the computational time (i.e., calculating the smallest

number of fitness values). If the predefined maximum number of generations is

reached, the algorithm selects the individual showing the highest fitness value

during the whole process.

2.4.2 Kiefer–Wolfowitz Scheme

Loosely speaking, the Kiefer–Wolfowitz (K–W) algorithm is a stochastic version of

the well-known steepest descent (SD) optimization method for cases in which the

function to be maximized is not directly available. The SD algorithm is given by the

following dynamical systems:

• Discrete form

akþ1 ¼ ak þ Ekf aðakÞ: (2.12)

• Continuous form

_a ¼ f aðaÞ; (2.13)
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where f(�) is the function to be maximized and fa(�) is its derivative (one dimen-

sional case being considered).

SD can be applied if f(�) and fa(�) have known analytical expressions. In case

those functions were not available but noisy measurements of f(�) could be

provided, then an option is estimating f(�) and also its derivative. Incorporating

this idea to the SD method, the K–W algorithm appears, being defined by the

following difference equation:

akþ1 ¼ ak þ Ekðf̂ ðak þ hÞ � f̂ ðak � hÞÞ=2h; (2.14)

where f̂ ð�Þ represents a random variable which estimates f(�). Note that in our

problem f is J and f̂ is given by JCM; hence, the K–W scheme fits very well with

our data availability and associated computational costs.

Stochastic approximation theory assures that, under certain conditions on the

step size and the random variables characterizing the estimation procedure, this

algorithm converges to a local maximum of f(�). This asseveration is based on the

fact that the equation given above follows in mean the differential equation (2.13),

the continuous version of the SDmethod. More details about K–W algorithm can be

found in Kushner and Yin (1997).

2.4.3 Neural Network-Based Schemes

One of the main uses of supervised neural networks (NN) is the approximation of

the explicit expression of a function f(�) from which only raw sampling values are

known (Hassoun 1995).

Hence, the application of an NN to our problem will provide an analytical

approximation (let us say, g) of the function JCM(�), so that its derivatives are easily
computed. The next step is to maximize the NN output value using an efficient

optimization method, for instance, the steepest descent algorithm or any other

traditional scheme, which can make use of the analytical expression of the function

to be maximized and its derivatives. Note that these derivatives can be computed

following a scheme that is similar to the back-propagation algorithm. One only

needs to take into account that:

• The derivative takes the form @g
@x ¼

P
jdjwj.

• dj can be computed recursively from dj + 1, satisfying the same relationship as in

the backpropagation algorithm.

• ds (output error) is equal to 1 (for the case of linear output).

Different schemes can be defined depending on the way that the training proce-

dure and optimization of the NN output are combined. For instance, the optimization

procedure can be carried out after an elaborated training, this procedure will be

labeled as NN(1) for comparative purposes. Besides that, the optimization procedure

can be alternated in the training process, being this scheme named NN(2).
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Alternatively, an online scheme can be implemented for getting initial

approximations of the maximum to be successively refined. Then, new data can

be computed in the neighborhood of this initial maximum estimate, in order to

refine such approximation. In addition, some function values that are far from the

initial estimate can also be incorporated, in order to avoid getting stuck in local

maxima. This procedure has been labeled as NN(3).

2.5 Simulation Examples

In this section, the effectiveness of the proposed techniques is tested on three

different dynamical systems. First, a dynamical system having a cubic term with

a complicated parameter dependency, second the well-known van der Pol equation

with standard parametrization, and finally the tuning of a controller with actuator

saturation (this problem depends on two parameters).

2.5.1 Example 1

In this example, the method is applied to a nonlinear system with a complicated

dependency on a parameter. The equations defining such system are

_x1 ¼ ð1þ cos2aÞx2;
_x2 ¼ �x2 þ ða2 � 10aþ 5Þðx1 � x1

3Þ: (2.15)

The selected equilibrium point for the analysis is x∗ ¼ (0, 0). The rectangle

where CM is focused is H ¼ ½�4; 4� � ½�4; 4�, and I ¼ [1, 9] is the set of param-

eter values where an optimum is looked for. Since (0, 0) is an attractor 8a ∈ I , we
can look for �a 2 I= volðDðð0; 0Þ; �aÞ \ HÞ ¼ maxfvolðDðð0; 0Þ; aÞ \ HÞ; a 2 Ig.

As it has been explained in previous sections, we work with approximated values

for the function J(�) ¼ vol(D(x∗, �) \ H), the approximations being provided by

CM. Hence, JCM(�) ¼ vol(DCM(x∗, �)) will denote the function determined by the

CM approximations. In this example, the simple cell mapping (Hsu 1987) is used as

cellular method, classical fourth-order Runge–Kutta as numerical integration

method and the region H is split into 81 � 81 cells.

The genetic algorithm chosen to maximize the mentioned function has the

structure and characteristics described in Sect. 2.4.1. In this case the maximum

number of generations will be fixed to 5, so that the number of fitness values to be

calculated is bounded by 15 � 5 ¼ 75.
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The algorithm has been run four times, providing as a result values of the

parameter a in the range [4. 6, 5. 1] with corresponding JCM values in

[13. 3, 14. 2]. It took the algorithm around 7 min for providing each estimation of

the �a optimal value.

For the purpose of efficient evaluation, JCM was computed for 1,000 values taken

randomly in I ¼ [1, 9] (this process took around 2 h and 30 min). The representa-

tion of those points can be seen in Fig. 2.4.

The results provided by the genetic algorithm are close to the real optimal value

of JCM in I ¼ [1, 9] (Fig. 2.4). This shows the good performance of the procedure

in this particular case. One of the cellular attraction domains computed in this

example can be seen in Fig. 2.5.

The simulation results for the different optimization methods are displayed in

the following table.

It is important to note that the highest computational cost is associated with the

function evaluation process. Taking this into account, each of the studied schemes

has specific features to be explained below. Hence, this table is only informative

and does not have precise comparative purposes.

Fig. 2.4 Representation of function JCM(�)

Time Solution

Genetic 420 s [4.6,5.1]

K–W 45 s 4.71

NN(1) 32 s 4.69

NN(2) 32 s 4.69

NN(3) 240 s 4.76
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As expected, the computational cost of the genetic algorithm applied to this

example is remarkably high, but it always provides an estimate of the global

optimum, although it may be not too accurate (ranging from 4. 6 to 5. 1).

Regarding K–W algorithm it has been checked that this method requires much

less computational time than the GA method, but it presents some risk of getting

stuck in a local maximum (20% of failure).

The computational requirements of the NN(1) are low when using a reduced set

of data, whereas a proper random selection of such data provides good results in

general. The whole computational cost (32 s) can be decomposed in 28 s for

obtaining data (evaluating the function), 3.8 s for network training and 0.02 s for

each SD iteration (very low cost). Once the network has been trained, the global

maximum can be easily determined by trying different initial conditions of the SD

method at very low cost.

The NN(2) method, which incorporates SD iterations during the NN training

process, has a similar computational cost to NN(1). The advantage of this method is

that it can incorporate some stopping criterion based on the sequence of maxima

provided by the SD method during the whole process. This means that the algorithm

may provide good results in early NN training stages without waiting for a

completely trained NN.

The NN(3) method being online oriented (such as GA and K–W) is computa-

tionally expensive due to the need of a higher number of function evaluations for

maximum refinement purposes. This method also provides information concerning

the minimum number of data required for a good function approximation. This

information can be employed, for instance, in methods NN(1) and NN(2) (as

occurred in this simulation example).

Fig. 2.5 Domain of attraction (Example 1)
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Finally, it should be taken into account that all the NN methods provide an

analytical expression for the function approximation, an additional information not

obtained through the applications of the other alternative methods. Therefore, SD

can be applied in all NN-based methods a posteriori, using different initial

conditions, at low cost, thus avoiding the problem of local maxima.

2.5.2 Example 2

This example deals with the van der Pol equation and considers negative parameter

values. In that range the behavior is well known, having an unstable limit cycle,

with the origin as an attractor whose attraction domain happens to be the region

delimited by the limit cycle.

The equations of the system are

_x1 ¼ x2;

_x2 ¼ �bð1� x21Þx2 � x1:
(2.16)

The selected equilibrium point for the analysis is x∗ ¼ (0, 0). The rectangle

where CM is focused is H ¼ ½�8; 8� � ½�8; 8�, and I ¼ [0. 1, 5] is the set of

parameter values where an optimum is searched for. Since (0, 0) is an attractor

8b 2 I , we can look for �b 2 I= volðDðð0; 0Þ; �bÞÞ ¼ maxfvolðDðð0; 0Þ; bÞÞ;
b 2 Ig. In this exampleDðð0; 0Þ; �bÞ � H, 8b 2 I , so the search process maximizes

the whole domain of attraction under consideration.

As in example 1, JCMð�Þ ¼ bf ð�Þ is characterized by using the SCM. Again, the

fourth order Runge–Kutta method is applied and H is divided into 161 �161 cells.

The selected genetic algorithm follows again the structure and features men-

tioned in Sect. 2.4.1, having 5 as the maximum number of generations.

The algorithm has been run, spending around 20 min for providing each estimation

of the �b optimal value. The adjoining cell mapping technique (ACM) (Guttalu and

Zufiria 1993; Zufiria and Guttalu 1993) was also tested being less time consuming but

providing worse estimates of the sizes of attraction domains. Looking for a compro-

misebetweenSCMandACM, theuse of the hybrid cellmapping technique seems tobe

very promising (Riaza and Zufiria 1999). The SCM-based procedure obtained values

of the parameter b in the range [4. 97, 4. 99] with corresponding JCM values in

[28. 86, 28. 91].Hence, it seems that the optimal value is reached at the upper extreme

of I . As a second part of the analysis in this example we searched for the parameter

value which minimizes the size of D((0, 0), �) (i.e., maximizes the function vol
(H) � JCM(�). The genetic algorithm provided values in [0. 58, 0. 69].

JCM has been computed for 500 values chosen uniformly in I ¼ [0. 1, 5]

(see Fig. 2.6). About 4 h and 30 min have been necessary for the whole computa-

tional process. It can be seen in Fig. 2.6 that the genetic algorithm provides fair

approximations to the minimizing parameter value in I ¼ [0. 1, 5]. Nevertheless,
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the location of such minimum could be improved via a further analysis focused in

the interval [0. 1, 1]. In this case, the obtained values are in [0. 17, 0. 23] with

function values in the range [12. 53, 12. 66]. These latest values are good

approximations of the minimum in I ¼ [0. 1, 5].

The results of the maximizing process and the minimizing (general and focused)

process are also represented in Fig. 2.6. The domain obtained for b ¼ 5,

corresponding to the maximum value, appears in Fig. 2.7.

2.5.3 Example 3: Control Tuning

This example considers the design of a control system with saturated actuators:

_x ¼ Axþ B � satðFxÞ;

A ¼ 0 1

1 0

� �
; B ¼

0

5

" #
; F ¼ ½f 1; f 2�: (2.17)

where sat(u) ¼ sign(u) � min{1, |u|}. For fixed feedback vector F ¼ ½�2;�1�, this
system has x∗ ¼ (0, 0) as an asymptotically stable equilibrium point, and it has

been employed by several authors (see, for instance Hu et al. 2002, 2005) to

illustrate different schemes to estimate the domain of attraction via the use of

Lyapunov functions, being such estimates quite conservative. Here, the problem

Fig. 2.6 Representation of function JCM(�)
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of tuning feedback f1 and f2 components has been addressed in order to maximize

such domain of attraction.

The system can be defined piecewise as follows:

_x1ðtÞ
_x2ðtÞ

� �
¼ x2

x1 þ 5ðf 1x1 þ f 2x2Þ
� �

; (2.18)

when j f1x1 + f2x2 j 	 1, and

_x1ðtÞ
_x2ðtÞ

" #
¼ x2

x1 þ 5 signðf 1x1 þ f 2x2Þ
� �

(2.19)

elsewhere.

Note that the origin (0, 0) will always be an equilibrium point of the system.

Assuming f2 < 0, we get that for f1 < � 0. 2 the origin is asymptotically

stable, and the system has two additional (unstable) equilibria at ( � 5, 0)

and (5, 0). Therefore, the analysis focuses on the region ðf 1; f 2Þ 2 ð�1;�0:2Þ
�ð�1; 0Þ.

When applying the different optimization approaches described in this chapter,

the results are quite sensitive to the initial conditions (seeds for the genetic scheme,

and initial conditions for Kiefer–Wolfowitz and NN schemes) since the domain

CM-estimate reaches a maximum in a parameter region including ðf 1; f 2Þ 2
½�1:8;�0:6� � ½�2:0;�1:0� as it can be seen at Fig. 2.8. In any case, the three

Fig. 2.7 Domain of attraction for b ¼ 5 (Example 2)
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methods provide solutions within such region. Note that taking ðf 1; f 2Þ ¼ ð�2;�1Þ
as in Hu et al. (2002, 2005) provides a domain CM-estimate smaller than when

choosing any pair of values in the mentioned optimal region.

Figure 2.9 shows the obtained domain of attraction for ðf 1; f 2Þ ¼ ð�1:47;�1Þ
which is clearly larger than the previous existing estimates in the literature.

Fig. 2.8 Representation of the cost function in Example 3
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Fig. 2.9 Domain of attraction for tuned feedback ðf 1; f 2Þ ¼ ð�1:47;�1Þ (Example 3)
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2.6 Concluding Remarks

Several computational methods to optimize domains of attraction in parametrized

dynamical systems have been introduced in this chapter. These methods employ

estimates provided by an adaptation of the cell mapping technique for the global

analysis of such systems. Three different schemes of optimization are used: genetic

algorithms, Kiefer–Wolfowitz algorithm, and Neural Network-based methods.

The good performance of the proposed procedures has been illustrated in three

particular examples, including the van der Pol nonlinear oscillator and the tuning of

a controller with actuator saturation.
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Politécnica de Madrid (UPM), Spain.

References

Arkin RC (1998) Behavior-based robotics. The MIT Press, Cambridge

Brockett RW, Li H (2003) A light weight rotary double pendulum: Maximizing the domain of

attraction. In: Proceedings of 42 IEEE CDC, Maui, Hawaii USA, pp 3299–3304
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