Chapter 2
Pyomo Modeling Strategies

Abstract This chapter illustrates different strategies for formulating and optimizing
algebraic optimization models using Pyomo. We provide a brief overview of the core
modeling components supported by Pyomo. Then, we describe how to formulate
both concrete and abstract models with Pyomo. Finally, we provide a brief tutorial
on how these models can be analyzed with the pyomo command.

2.1 Modeling Components

Pyomo supports an object-oriented design for the definition of optimization models.
The basic steps of a simple modeling process are as follows:

1. Create model and declare components
2. Instantiate the model

3. Apply solver
4.

Interrogate solver results

In practice, these steps may be applied repeatedly with different data or with dif-
ferent constraints applied to the model. However, we focus on this simple modeling
process to illustrate different strategies for modeling with Pyomo.

A Pyomo model consists of a collection of modeling components that define
different aspects of the model. Pyomo includes the modeling components that are
commonly supported by modern AMLs: index sets, symbolic parameters, decision
variables, objectives, and constraints. These modeling components are defined in
Pyomo through the following Python classes:

Set set data that is used to define a model instance
Param parameter data that is used to define a model instance
Var decision variables in a model
Objective expressions that are minimized or maximized in a model
Constraint constraint expressions in a model
W.E. Hart et al., Pyomo—Optimization Modeling in Python, 13

Springer Optimization and Its Applications 67, DOI 10.1007/978-1-4614-3226-5 2,
© Springer Science+Business Media, LLC 2012



14 2 Pyomo Modeling Strategies

Two model classes provide a context for defining and initializing these modeling
components: ConcreteModel and Abst ractModel.' For example, modeling
components can be directly added to an AbstractModel object as an attribute of
the object:

model = AbstractModel ()
model.I = Set ()
model.p = Param(model.TI)

The model objectis a class instance of the Abst ractModel class, and model . I
is a Set object that is contained by this model. Many modeling components in Py-
omo can be optionally specified as indexed components: collections of components
that are referenced using one or more values. In this example, the parameter p is
indexed with set I.

NOTE: For simplicity, many short examples in this book omit the Python im-
port statement for coopr . pyomo. These examples assume that this package
has been previously imported with the following command:

from coopr.pyomo import x

This command imports all of the classes, functions and data from the
coopr .pyomo package; see Appendix B for further details about importing
Python packages.

The following sections describe different strategies for creating models with Py-
omo. We begin with strategies for generating concrete models and progress to more
general strategies for abstract models. To illustrate this flexibility, we consider a
generalization of the simple LP that we introduced in Chapter 1:

min Z;’:lcixi
S.t. Z;’:laijxiij Vi=1...m 2.1
)CiZO Vi=1...n

The following LP is a model instance (i.e., a model object with fully specified data)

of the abstract LP 2.1:
min xj + 2x

s.t. 3x;+4x>1
2x1 +5xp > 2
x1,x >0

(2.2)

! In versions 1.x and 2.x of Coopr, the Model class serves as an alias for the AbstractModel
class. Both the aliasing and the Model class will be deprecated in Coopr 3.1 and subsequent
releases.



2.2 Concrete Models: Specifying Components Via Expressions 15

The examples in this chapter illustrate different ways of formulating both abstract
and concrete models.

We conclude this chapter with a brief introduction to the pyomo command,
which can be used to optimize Pyomo models within a Unix or Windows com-
mand shell. Additionally, we summarize how Pyomo model scripts can be setup to
construct and solve model instances. Note that additional detail about Pyomo mod-
eling components can be found in Chapter 3, Chapter 4, and Chapter 5. Additional
detail about the pyomo command and scripting with Pyomo models can be found
in Chapter 7.

2.2 Concrete Models: Specifying Components Via Expressions

The simplest way to express a concrete model is by directly creating the mod-
eling components with expressions that specify numerical values; the alternative,
two-step process involving an abstract model is described in Section 2.4. The
ConcreteModel class is used to define these types of models:

model = ConcreteModel ()

In contrast to AbstractModel objects, model components contained in
ConcreteModel objects are immediately initialized as they are added to the
model instance.

Decision variables are required to define non-trivial expressions in Pyomo. In the
simplest case, we can define each decision variable separately:

model.x_1 = Var (within=NonNegativeReals)
model.x_2 = Var (within=NonNegativeReals)

The within argument used in these declarations constrains the values of the de-
fined variables to the set of non-negative real numbers, in this case by having Pyomo
to automatically generate the associated lower bound constraints.

An optimization objective is defined by passing an algebraic expression involving
numeric constants and Pyomo variables as an argument — via the expr keyword —
to the Ob jective class constructor:

model.obj = Objective (expr=model.x_1 + 2xmodel.x_2)

The objective expression is defined implicitly by Pyomo, using overloading of the
Python multiplication and addition operators. This is done automatically so the mod-
eller need only give the expression as shown in the example. Similarly, constraints
of a concrete model are defined by passing an expression as an argument — again via
the expr keyword — to the Constraint class constructor:

model.conl = Constraint (expr=3*model.x_1 + 4xmodel.x_2 >= 1)
model.con2 = Constraint (expr=2+model.x_1 + 5xmodel.x_2 >= 2)

Note that this expression additionally specifies a constraint bound, via overloading
of the Python >= operator. Example 2.A.1 includes the entire formulation for this
concrete model.



16 2 Pyomo Modeling Strategies

For large concrete models, the use of explicit variables is cumbersome, because
it requires separate declarations for each variable in the model. To address this issue,
Pyomo supports the notion of variable indexing. For example, the variable x can be
defined with an explicit index set:

model.x = Var([1l,2], within=NonNegativeReals)

This indexed variable can be used to specify the objectives and constraints with a
natural, extensible syntax:

model.obj = Objective (expr=model.x[1l] + 2xmodel.x[2])
model.conl = Constraint (expr=3+model.x[1] + 4xmodel.x[2]>=1)
model.con2 = Constraint (expr=2+model.x[1] + 5S5xmodel.x[2]>=2)

Indexed variables allow logically related sets of variables to be grouped under a
common name, and naturally differentiated via a sub-script.

Example 2.A.2 includes the formulation for the indexed concrete model of For-
mulation (2.2).

A limitation of the formulation in Example 2.A.2 is that the data used is explicitly
expressed in the specification of the index set for x and the numerical values in the
constraints and objective. Any change in data values requires potentially extensive
modifications to the concrete model. Alternatively, this data can be symbolically
specified using standard Python data structures and subsequently used in the formu-
lation of the expressions for objectives and constraints. For example, the following
declarations define Python dictionary objects that represent the data used in the ob-
jectives and constraints for Formulation (2.2):

N = [1,2]

c = {1:1, 2:2}

a = {(1,1):3, (2,1):4, (1,2):2, (2,2):5}
b= {1:1, 2:2}

Using this symbolic data, the objective can be simply redefined as follows:

‘model.obj = Objective (expr=c[l]*model.x[1] + c[2]*model.x[2]w

An even more extensible formulation of this objective uses Python iteration syntax
to sum over a set of related (indexed) decision variables. The Python sum function
and generator syntax can be used to provide a concise specification of a summation:

‘model.obj = Objective (expr=sum(c[i]*model.x[i] for i in N)) ‘

This syntax specifies that the terms c [1] »model.x [1] are generated by iterating
over the set N. As these terms are generated, the function sum adds them together
to form the overall expression. This type of inlining of summations is a powerful
feature that provides a syntax that is similar to that used in AMLs with custom
languages. Example 2.A.3 includes the complete formulation of the concrete model
using these external data declarations.



2.3 Concrete Models: Specifying Components Via Rules 17

2.3 Concrete Models: Specifying Components Via Rules

Although the abstract formulation in Formulation (2.1) specifies a set of constraints,
each constraint declared in Example 2.A.3 is defined separately. As in the case of
decision variables, this modeling approach will become cumbersome for large mod-
els.

Pyomo addresses this and other, related issues by allowing modeling components
to be initialized with user-defined functions, which we call rules. The idea is that
complex initialization of a collection of constraints or objectives (for example) can
be managed by a function that generates each constraint or objective expression
individually. Similarly, rules can be used to construct complex sets and parameters
in a generic manner.

Example 2.A.4 illustrates the use of a rule to define the constraints for Formu-
lation (2.2) in a generic manner. The index set M defines the indices of the con-
straint con, and the function con_rule is used to construct the individual con-
straint expressions. The arguments to this rule are the constraint indices, in addition
to the model instance that is being constructed. As with all components added to
a ConcreteModel object, initialization is immediately executed for all values
of the specified index set. Note that the name of a rule used to define a constraint
(or other modeling component) is not restricted. However, some advanced Pyomo
features require the use of unique rule names (e.g., see Chapter 10).

Although the function arguments for component rules are similar for all compo-
nent types, the expected type of the values returned are different:

Set rule must return a Python set or list object
Param rule must return an integer or float value
Objective rule must return an expression
Constraint rule must return a constraint expression.

The distinction between an objective and constraint expression is simply the impo-
sition of a lower or upper bound or, the case of a constraint, both. The Set and
Param classes also support direct initialization with the initialize argument.
This argument allows the user to specify the data that initializes this class, thereby
avoiding the need to specify a Python function for a rule argument.

Example 2.A.5 illustrates the use of rule and initialize arguments in the
context of the full spectrum of modeling components. This example is more ver-
bose than Example 2.A.4, and represents the model in a less flexible way. Thus, the
modeling representation in Example 2.A.4 might be preferable. However, Exam-
ple 2.A.5 avoids the specification of global data, which promotes encapsulation that
may be important in complex applications.



18 2 Pyomo Modeling Strategies

2.4 Abstract Models

In many contexts a strong separation of model and data is either helpful or necessary.
Model data may not be immediately available, or it may be stored in an external
database or spreadsheet. Alternatively, it may simply be desirable to represent a
model in an abstract form that is independent of the manner in which the data is
managed.

A simple strategy for managing models abstractly is to create a Python func-
tion whose arguments reflect the data that is needed to create a concrete model.
Example 2.A.6 illustrates this approach using the concrete model developed in Ex-
ample 2.A.4. The function create_model has arguments N, M, c, a, and b that
represent the data needed to create a concrete model for Formulation (2.1). Con-
sequently, this function provides a strong separation of model and data, and it can
be viewed as a constructor for an abstract model. The code in Examples 2.A.4 and
2.A.6 can be executed using the pyomo command (see Section 2.5), ultimately
yielding identical model instances and therefore identical optimization solutions.

Pyomo also supports the definition of abstract models that are defined indepen-
dent of any specific data. Example 2.A.7.1 illustrates the definition of an abstract
model in Pyomo for Formulation (2.1). In contrast to concrete models, abstract mod-
els strictly define the existence of model components and the relationships between
them (e.g., the fact that set N is used to index parameter c).

The abstract model in Example 2.A.7.1 differs from the concrete model in Exam-
ple 2.A.5 in three main respects. The first difference is that the class Abst ractModel
is used instead of ConcreteModel. This informs Pyomo that this is an abstract
model that will be constructed with auxiliary data. Because data is not immediately
available, the construction of modeling components is deferred until a model in-
stance is generated. The second difference is that declarations of data components
do not contain references to the data that will be used to construct these components.
The final difference is that all objective and constraint components must be defined
via rules. This is a requirement in abstract models, since the construction of these
components ultimately depends on the availability of specific data.

NOTE: Pyomo does allow for hybrid models where some components are ini-
tialized with data while others are defined abstractly. Further, Pyomo data com-
ponents can be defined with default values that are used when data is not spec-
ified. These options are discussed in Chapters 3, 4, and 5. However, with few
exceptions these hybrid models must be defined with the AbstractModel
class, and thus Pyomo treats them as an abstract model.

Pyomo includes a rich set of options for initializing an abstract model to create
a model instance that can then be optimized (see Chapter 6). A simple strategy
is to supply a data command file that specifies values for set and parameter data.



2.5 Optimizing Models 19

The syntax of Pyomo’s data command files is very similar to the data command
syntax supported by AMPL [4]. A goal of Pyomo is to support the same syntax
for set and param data commands that is used in AMPL. However, the syntax for
other commands relating to file inclusion and table imports and exports is somewhat
different (see Chapter 6). Example 2.A.7.2 shows a file of data commands that can
be used to initialize the abstract model in Example 2.A.7.1. This process is described
in Section 2.5.

2.5 Optimizing Models

The previous sections have outlined different strategies for creating and populating
a Pyomo model object. After the modeler has specified how this will be done, the
Python commands for doing it are generally invoked using an executable script. The
most straightforward way is to invoke the pyomo command that calls a pre-written
script to perform optimization in a standard manner. Alternatively, a script can be
created to customize the process using solver components from Coopr as introduced
in Section 2.5.2.

2.5.1 Optimization with the pyomo Command

The Pyomo software distribution includes the pyomo command that can be used
to construct a Pyomo model, create a model instance from user-supplied data (in
the case of abstract models), apply an optimizer, and summarize the results. For
example, the following command line optimizes the concretel . py model using
the default LP solver glpk:

‘pyomo —--solver=glpk concretel.py ‘

Similarly, the following command line optimizes the abstract5 . py model using
datain abstract5.dat, also using glpk:

‘pyomo ——solver=glpk abstractb.py abstractb.dat ‘

When the pyomo command loads a user-defined Pyomo model, by default it looks
for a ConcreteModel or AbstractModel named model in the supplied
Python file. We have used this name for all models introduced in this chapter. How-
ever, if a name other than mode1 is used, this can be specified via the pyomo option
—-model-name=MODEL_NAME (e.g., ——model-name=mymodel).

The pyomo command automatically executes the following steps:

1. Create a model

2. Read the instance data (if applicable)

3. Generate a model instance (if the model is abstract)
4

. Apply simple preprocessors to the model instance



20 2 Pyomo Modeling Strategies

5. Apply a solver to the model instance
6. Load the results into the model instance

7. Display the solver results

A variety of optional command-line arguments are provided to further guide and
provide additional information about the optimization process; documentation of
the various available options is available by specifying the ——he1p option. Options
can control how much or even if debugging information is printed, including logging
information generated by the optimizer and a summary of the model generated by
Pyomo. Further, Pyomo can be configured to keep all intermediate files used during
optimization, which facilitates debugging of the model construction process. See
Chapter 7 for further details about this command.

2.5.2 Optimization Scripts

Scripts that control the optimization process provide users with powerful pro-
grammability. To introduce the topic, we describe a simple Python script to perform
optimization of a Pyomo model instance. Suppose that the model in Example 2.A.1
is stored in the file concretel.py. The script in Example 2.A.8 can then be
used to import this model, display the created model, create a solver interface, per-
form optimization, and display the results. Note that this script does not rely on
the coopr . pyomo package directly. Pyomo is only used to create an optimization
model. Subsequent optimization and analysis of this model is handled in a generic
manner with other Coopr packages.

Once a Pyomo model has been created, it can be printed using the pprint
method:

model.pprint ()

This command summarizes the information in the Pyomo model. For concrete mod-
els, this includes the constraint and objective expressions. In abstract models, this
information is omitted unless the model object has been constructed with externally
supplied data.

Before performing optimization, Pyomo needs to perform various preprocessing
steps to collect variables, simplify expressions, and other pre-optimization tasks.
Such preprocessing is automatically performed by the create method of both the
concrete and abstract Pyomo models:

instance = model.create()
instance.pprint ()

For concrete models this method simply returns the model instance, with various an-
notations performed by the preprocessor. For abstract models, additional arguments
specifying the data used to construct the model instance must be supplied. We note
that Pyomo’s preprocessing capabilities do not currently involve the presolve oper-



2.6 Discussion 21

ations that are commonly employed by industrial AMLSs to simplify models before
sending them to an optimizer.

Next, we apply an optimizer to find an optimal solution to our model instance.
For example, the GLPK [29] linear programming solver can be used within Pyomo
as follows:

opt = SolverFactory ("glpk")
results = opt.solve(instance)

The first line in this example creates a Python object to interface to the GLPK solver.
The Pyomo model instance is then optimized, with the solver returning an object that
contains the solution(s) generated during optimization. This optimization process is
executed using components of the coopr . opt package, which manage the setup
and execution of optimizers. Additionally, Coopr optimization plugins are used to
manage the execution of specific optimizers.

Finally, the results of the optimization can be displayed simply by executing the
following command:

results.write ()

This output is in the YAML format [62], which is a highly structured data format
that is also human readable.

The process for optimizing abstract models (given a data source) is only slightly
different. Suppose that the model in Example 2.A.7.1 is stored in the file
abstract5.py, while the data in Example 2.A.7.2 is stored in the file
abstract5.dat. The script in Example 2.A.9 imports this model, creates a
model instance from the supplied data, creates a solver interface, performs opti-
mization, and displays the results. The primary difference (other than the use of an
abstract model) is the specification of a data file, which defines the sets and param-
eters that are used to construct the model instance.

2.6 Discussion

Perhaps the two Python modeling tools most similar to Pyomo are PuLP [47] and
APLEpy [6]. These packages both support the construction of concrete models using
Python objects. However, Pyomo is clearly distinguished by its ability to support the
definition of abstract models. Although most of this chapter has focused on exam-
ples using concrete models, most of the development effort in Pyomo has focused on
the mechanisms that support abstract models. In fact, the ConcreteModel class
is just a specialization of that mechanism to immediately construct model compo-
nents!

Another distinguishing aspect of Pyomo is the fact that models are complete
and self-contained Python objects that a user creates. We believe that this is a fea-
ture, since it allows the user to create and managed multiple models simultaneously.
However, we have heard users complain about the additional syntax that this re-



22 2 Pyomo Modeling Strategies

quires. In this way, PuLP and APLEpy may be a bit simpler for beginning users,
perhaps at the expense of some object-orientation.

In practice, we have observed that users working on abstract models tend to work
with the pyomo command, while users working on concrete models tend to work
with Python scripts. The pyomo command is relatively mature, since its interface is
well-defined. However, Pyomo’s scripting capabilities are still being extended. Al-
though the simple examples shown in this chapter are straightforward, more com-
plex examples that we have developed often rely on features of Coopr and Pyomo
that were not intended for general, public use. Consequently, we expect that the
scripting capabilities of Coopr and Pyomo will significantly evolve in future re-
leases of this software.

2.A Examples

2.A.1 Concrete Pyomo Model with Explicit Variables

A concrete Pyomo model for Formulation (2.2) using explicit variables.

from coopr.pyomo import =«

model = ConcreteModel ()

model.x_1 = Var (within=NonNegativeReals)

model.x_2 = Var (within=NonNegativeReals)

model.obj = Objective (expr=model.x_1 + 2+model.x_2)
model.conl = Constraint (expr=3+model.x_1 + 4xmodel.x_2 >= 1)
model.con2 = Constraint (expr=2+model.x_1 + 5xmodel.x_2 >= 2)

2.A.2 Concrete Pyomo Model with Indexed Variables

A concrete Pyomo model for Formulation (2.2) using indexed variables.

from coopr.pyomo import =

model = ConcreteModel ()

model.x = Var([1l,2], within=NonNegativeReals)

model.obj = Objective (expr=model.x[1l] + 2xmodel.x[2])
model.conl = Constraint (expr=3+model.x[1] + 4xmodel.x[2]>=1)
model.con2 = Constraint (expr=2+model.x[1] + 5S5xmodel.x[2]>=2)




2.A Examples 23

2.A.3 Concrete Pyomo Model with External Data

A concrete Pyomo model for Formulation (2.2) with (a) external data declarations
and (b) expressions defined using Python’s generator syntax.

from coopr.pyomo import =
N = [1,2]
c = {1:1, 2:2}
a = {(1,1):3, (2,1):4, (1,2):2, (2,2):5}
b {1:1, 2:2}
model = ConcreteModel ()
model.x = Var (N, within=NonNegativeReals)
model.obj = Objective (expr=
sum(c[i]*model.x[i] for i in N))
model.conl = Constraint (expr=
sum(a[i, 1] *model.x[1i] for i in N) >= b[l])
model.con2 = Constraint (expr=
sum(a[i, 2] *model.x[1] for i in N) >= b[2])

2.A.4 Concrete Pyomo Model with Constraint Rules

A concrete Pyomo model for Formulation (2.2) using a constraint rule to create
constraints con.

from coopr.pyomo import =x

N = [1,2]

M= [1,2]

c = {1:1, 2:2}

a= {(1,1):3, (2,1):4, (1,2):2, (2,2):5}

b= {1:1, 2:2}

model = ConcreteModel ()

model.x = Var (N, within=NonNegativeReals)

model.obj = Objective (expr=sum(c[i]*model.x[i] for i in N))

def con_rule (model, m):
return sum(a[i,m]+*model.x[i] for i in N) >= b[m]
model.con = Constraint (M, rule=con_rule)




24 2 Pyomo Modeling Strategies
2.A.5 Concrete Pyomo Model with Abstract Component

Declarations

A concrete Pyomo model for Formulation (2.2) that uses rule and initialize
arguments for all modeling components.

from coopr.pyomo import =

model = ConcreteModel ()

def N_rule (model) :
return [1,2]
model.N = Set (rule=N_rule)

model.M = Set (initialize=[1,2])
model.c = Param(model.N, initialize={1:1, 2:2})
model.a = Param(model.N, model.M,
initialize={(1,1):3, (2,1):4, (1,2):2, (2,2):5})
model.b = Param(model.M, initialize={1:1, 2:2})

model.x = Var (model.N, within=NonNegativeReals)

def obj_rule(model) :
return sum(model.c[i]*model.x[i] for i in model.N)
model.obj = Objective (rule=obj_rule)

def con_rule (model, m):
return sum(model.a[i,m]*model.x[i] for i in model.N) \
>= model.b[m]
model.con = Constraint (model.M, rule=con_rule)




2.A Examples

2.A.6 Using a Function to Construct a Concrete Pyomo Model

25

A function that creates a concrete Pyomo model for Formulation (2.1) using only

data provide in the argument list.

from coopr.pyomo import =

def create_model (N=[], M=[], c={}, a={}, b={}):
model = ConcreteModel ()
model.x = Var (N, within=NonNegativeReals)
model.obj = Objective (expr=
sum(c[i]+model.x[1] for i in N))

def con_rule (model, m):

return sum(a[i,m]*model.x[i] for i in N) >= b[m]
model.con = Constraint (M, rule=con_rule)
return model

model = create_model (N = [1,2], M = [1,2], c = {1:1, 2:2},
a = {(,1):3, (2,1):4, (1,2):2, (2,2):5},
b= {1:1, 2:2})

2.A.7 Abstract Pyomo Model

2.A.7.1 Pyomo Model

An abstract Pyomo model for Formulation (2.1).

from coopr.pyomo import x

model = AbstractModel ()

model.N = Set ()

model.M = Set ()

model.c = Param(model.N)

model.a = Param(model.N, model.M)
model.b = Param (model.M)

model.x = Var (model.N, within=NonNegativeReals)

def obj_rule (model) :
return sum(model.c[i]+*model.x[i] for i in model.N)
model.obj = Objective (rule=obj_rule)

def con_rule (model, m):
return sum(model.a[i,m]*model.x[i] for i in model.N) \
>= model.b[m]
model.con = Constraint (model.M, rule=con_rule)




26 2 Pyomo Modeling Strategies
2.A.7.2 Data Commands

Data commands for the abstract Pyomo model in Example 2.A.7.1 that are used to
generate the concrete model in Formulation (2.2).

set N =1 2 ;

set M :

I
—
N
~

param c :=
11
2 2 ;

param a :=

N =N
NN
a1 N

param b :=
11
2 2 ;

2.A.8 A Python Script that Optimizes a Concrete Pyomo Model

A Python script that creates the concrete Pyomo model in Example 2.A.1 and per-
forms optimization using the GLPK linear programming solver.

from coopr.opt import SolverFactory
from concretel import model

model.pprint ()

instance = model.create ()
instance.pprint ()

opt = SolverFactory ("glpk")
results = opt.solve (instance)

results.write ()




2.A Examples

2.A.9 A Python Script that Optimizes an Abstract Pyomo Model

27

A Python script that creates a model instance from the abstract Pyomo model in
Example 2.A.7.1 and performs optimization using the GLPK linear programming

solver.

from coopr.opt import SolverFactory
from abstract5 import model

model.pprint ()

instance = model.create (’abstract5.dat’)
instance.pprint ()

opt = SolverFactory ("glpk")
results = opt.solve (instance)

results.write ()




2 Springer
http://www.springer.com/978-1-4614-3225-8

Pyomo - Optimization Modeling in Python

Hart, W.E.; Laird, C.; Watson, |.-P.; Woodruff, D.L

2012, ¥V, 238 p., Hardcowver
ISBEMN: 978-1-4614-3225-8



	Chapter 2 Pyomo Modeling Strategies
	2.1 Modeling Components
	2.2 Concrete Models: Specifying Components Via Expressions
	2.3 Concrete Models: Specifying Components Via Rules
	2.4 Abstract Models
	2.5 Optimizing Models
	2.5.1 Optimization with the pyomo Command
	2.5.2 Optimization Scripts

	2.6 Discussion
	2.A Examples
	2.A.1 Concrete Pyomo Model with Explicit Variables
	2.A.2 Concrete Pyomo Model with Indexed Variables
	2.A.3 Concrete Pyomo Model with External Data
	2.A.4 Concrete Pyomo Model with Constraint Rules
	2.A.5 Concrete Pyomo Model with Abstract Component Declarations
	2.A.6 Using a Function to Construct a Concrete Pyomo Model
	2.A.7 Abstract Pyomo Model
	2.A.7.1 Pyomo Model
	2.A.7.2 Data Commands

	2.A.8 A Python Script that Optimizes a Concrete Pyomo Model
	2.A.9 A Python Script that Optimizes an Abstract Pyomo Model



