Chapter 2
Intriguing Properties

2.1 Preliminaries and Notation

In this book, all graphs are connected and undirected, unless otherwise stated.
We follow the graph terminology and conventions from Harary [59], where the
reader can find an excellent introduction to graph theory. Consider a graph
G = (V(G),E(@)) = (V,E), where V is the set of vertices of G, |[V| = N,
and E is the set of edges of G. A graph with IV vertices is said to be a graph
of order N. As the graph G is undirected, for every edge (i,j) € F there
exists an opposite edge (j,i) € E, where i # j. A loop is an edge (i,1) joining
a vertex to itself. We do not consider multi-edges, which are distinct edges
that connect the same pair of vertices, and we use the terms edge and arc
interchangeably.

Subgraphs and Regularity Consider a graph G’, and let V(G’) be the
set of its vertices and E(G’) be the set of its edges. Then G’ is a subgraph
of Gif V(G') CV(G) and E(G') C E(G). A subgraph G’ is a spanning sub-
graph if V(G') = V(G). From now on, the term subgraph refers to a spanning
subgraph, unless otherwise stated. A vertex j is a neighbour of i, or vertex j
is adjacent to i, if there exists an edge between them, that is, (i,j) € E(G).
A vertex v has a degree d if it has d neighbours, and we write deg(v) = d. A
graph is k-regular if every vertex i € V has the same degree k, and a cubic
graph is a 3-regular graph.

Walks, Paths and Cycles A walk is a sequence of vertices (vg, v1,...,0p)
where each edge (v;,v;41) € Efori=0,...,n—1. A walk is said to be closed
if vg = vy, and open otherwise. A walk is a path if all vertices in the sequence
are distinct, that is, v; # v; for all © # j. A path is a cycle if it is closed. The
length of a walk, a path or a cycle is the number of edges on the walk, the
path or the cycle, respectively. The girth of a graph is the length of a shortest
cycle on the graph, excluding cycles of length two. On the other hand, the
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10 2 Intriguing Properties

circumference of a graph is the length of a longest cycle on the graph. The
circumference of a Hamiltonian graph of order N is N, as any Hamiltonian
cycle is a longest cycle of the graph.

Example 2.1 We give examples of an open walk (Figure 2.1), an open path
(Figure 2.2) and a cycle (Figure 2.3).
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Fig. 2.1: An open walk (1,2,3,4,2,1,4)
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Fig. 2.2: An open path (1, 3,2,4)
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Fig. 2.3: A cycle (1,3,2,4,1)

Adjacency Matrices The adjacency matric A = [a;;] of a graph G has
elements

1 for (i,j) € E,
Q5 = .
0 otherwise.
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The adjacency matrix of an undirected graph is always symmetric. Because
it is a one-to-one representation of a (labelled) graph, the adjacency matrix
is one of the most investigated matrices in graph theory. We can obtain much
interesting information about a given graph by studying its adjacency ma-
trix. For instance, the number of walks of length &k from vertex i to vertex j
is the (i,7)th entry of the matrix A* [28].

Laplacian Matrices Another well-studied matrix in graph theory is the
Laplacian matriz L = [{;;] where

deg(i) ifi=j,
b =4 -1 if i # j and (i,j) € E, (2.1)
0 otherwise.

The degree matrix D of G has diagonal elements d;; = deg(i) fori =1,..., N.
It is clear that

L=D-A. (2.2)

A normalised Laplacian matriz is defined as L= [Zij], where

1 if i = 7,
- -1
T e — if 7 i and (7,7) € E, 2.
b= Viaiday 770 2
0 otherwise.

Spectrum of a Graph The spectrum of a graph can refer to either the
set of eigenvalues of the adjacency matrix, or of the Laplacian matrix, or of
the normalised Laplacian matrix of the graph. For an excellent discussion of
normalised Laplacian matrices, we refer the interested reader to Chung [24].

2.2 Fractal-like Structure of Graphs

In this section, we present an intriguing self-similar structure that groups
cubic graphs according to the numbers of closed walks of various sizes in
each graph. The procedure of obtaining this self-similar structure is: for each
cubic graph G and its adjacency matrix A, we evaluate the sample mean
1(A) and variance 0?(A) of the exponentials of all eigenvalues of $A. As
the eigenvalues of the adjacency matrix of a cubic graph are real and belong
to the interval [—3, 3], the eigenvalues of %A belong to the interval [—1,1].
Thus, each cubic graph G corresponds to a point (u(A),0?(A)) in these
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mean-variance coordinates. We illustrate this procedure with the following
example.

Example 2.2 Consider the labelled Petersen graph.

Fig. 2.4: Labelled Petersen graph

Its adjacency matriz A is given by

where “’ denotes 0. The eigenvalues of 1/3A are 1,-2/3,-2/3,-2/3,—-2/3,
1/3,1/3,1/3,1/3,1/3. Consequently,

1
n(A) = To(el +4e7 /3 4+ 5e!/?) = 1.1750, (2.5)

and
o?(A) = 0.4376, (2.6)

and we obtain the point (0.1750,0.4376) for the Petersen graph.

Continuing the procedure of obtaining the self-similar structure, we then
plot the mean-variance coordinates for all cubic graphs of the same order.
We identify a very interesting behavior for N taking values from 10 to 18.
For example, the structures for N = 14 and N = 16 appear as in, respec-
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tively, Figures 2.5 and 2.6.
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Fig. 2.5: Mean-variance plot for cubic graphs of order 14
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Fig. 2.6: Mean-variance plot for cubic graphs of order 16
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In these two figures, it is evident that the resulting scattergram in the mean-
variance coordinates consists of thread-like clusters with similar slopes of and
distances between consecutive clusters. Moreover, the value of variance at the
bottom of each segment is strictly increasing from left to right in the plot.
Ejov et al. [33] use the term multifilar to refer to this thread-like structure,
with each approximately linear cluster being called a filar. The authors make
an important observation that the overall structure is self-similar. In partic-
ular, zooming in on each of these filars shows us similar but smaller sub-filars
that are also made up of approximately straight and parallel segments, shifted
gradually from left to right. We illustrate this self-similarity in Figures 2.7
and 2.8, by showing plots of two successive enlargements of the first filar of
Figure 2.5.
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Fig. 2.7: Zooming in on the first, from the left, filar in Figure 2.5—first level

Using a form of Thara-Selberg trace formula derived in Mnev [80], Ejov et
al. [33] explain the filar memberships for each graph. In the overall clus-
tering, all graphs belonging to each filar have the same number of triangles
(cycles of length three) and these numbers strictly increase from the left most
filar to the right most, starting from zero. In the first level of zooming-in, all
graphs in a particular sub-filar have the same number of quadrangles (cycles
of length four) while the number of triangles over all these sub-filars is fixed.
This pattern repeats itself, with each higher level of zooming-in correspond-
ing to a larger cycle size.

Consider another frequently used matrix function in the spectral theory of
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Fig. 2.8: Zooming in on the first, from the left, filar in Figure 2.5—second level

linear operators: the resolvent of tA for ¢t € (0,1/3). It appears that we can
reproduce the self-similar phenomenon described above in the mean-variance
coordinates with different slopes of and distances between segments [36]. In
Chapter 9, we use a modification of the Thara-Selberg trace formula [80] to
justify the multifilar structure of the observed plots and to estimate the slopes
of and distances between filars, consistently with numerical evidence.

It is worth noting that in the aforementioned self-similar phenomenon, non-
Hamiltonian graphs seem to be separated in two groups. The first group
contains easy non-Hamiltonian graphs that seem to be located at the tops
of (the most zoomed in) sub-filars. We call a non-Hamiltonian graph easy if
it contains one or more bridges. A bridge is an edge the removal of which
disconnects the graph. A bridge graph is an easy non-Hamiltonian graph be-
cause these bridges, and consequently the bridge graphs, can be identified in
polynomial time [72] (in fact, in linear time in N'). We call a non-Hamiltonian
graph that is not a bridge graph a hard non-Hamiltonian graph. In the self-
replicating structure, hard non-Hamiltonian graphs (the second group) seem
to be found at the bottom ends of (the most zoomed in) sub-filars. In these
sub-filars, the Hamiltonian graphs are strictly in between these two groups
of non-Hamiltonian graphs. To illustrate this observation, we plot the mean-
variance coordinates for the trace of the matrix resolvent, over the set of all
cubic graphs of order 14, in Figure 2.9, where dots represent Hamiltonian
graphs and crosses represent non-Hamiltonian graphs.
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Fig. 2.9: Mean-Variance plot for cubic graphs of order 14. Here, the dots represent
Hamiltonian graphs and crosses represent non-Hamiltonian graphs

We also include a zooming-in plot (see Figure 2.10) for more clarity. All
crosses that can be seen clearly in this plot are either at the top or the bot-
tom of their sub-filars.

In Chapter 9, we revisit this observation in more detail, and explore further
interesting properties that arise from it.

2.3 Invariants of Graphs

A graph invariant is a function that maps the set of graphs to some other
set, such as the set of natural numbers in such a way that certain “similar”
graphs are all mapped onto the same number. Informally, we can think of a
graph invariant as a numerical property associated with a graph that does
not depend on the graph labelling or drawing. Examples of graph invariants
include the number of vertices, the number of edges, the number of connected
components, the graph spectrum, and the chromatic number, which is the
minimum number of colours it requires to colour the vertices in a given graph
in such a way that no two connected vertices share the same colour.
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Fig. 2.10: Mean-Variance plot—zooming in. Here, the dots represent Hamiltonian
graphs and crosses represent non-Hamiltonian graphs

For each graph G of order N, we introduce a set F(G) of matrices on G,
where

N
j=1
pi; > 0 for all (4,5) € E}. (2.7)

In Chapter 3, we show that these matrices have probabilistic interpretations.
For now, we refer to F(G) as the set of feasible matrices on G, and drop the
dependency on G' when no confusion can arise. If p;; is either 1 or 0 for all
1,7 € V, the matrix P is said to be deterministic. Every deterministic matrix
P € F(G) corresponds to a spanning subgraph of G that has exactly one
edge coming out of each vertex.

For each P € F, we define the matrix
WP)=1-P+1/NJ, (2.8)

where I is the N x N identity matrix, and J is an N x N matrix of which
every entry is unity. Next, we note that the maximum value of the determi-
nant of W(P), over the set F, is a graph invariant. It is in fact equal to the
circumference of the graph, that is, the longest cycle of the graph. Conse-



18 2 Intriguing Properties

quently, solving the Hamiltonian cycle problem for a graph G is equivalent
to maximising the determinant of W(P) over the set F(G). In Chapter 5, we
prove the above property in a more general case, where 1/N is replaced by
any constant o« € R™. In the same chapter, we also show that when we apply
a linear, singular perturbation to the determinant functional, Hamiltonian
cycles remain the maximisers over F.

Example 2.3 Consider a cubic graph G of order 6, which we call the enve-
lope graph (Figure 2.11). One of the only two G-vertex cubic graphs, both of
which are Hamiltonian, the envelope graph has siz Hamiltonian cycles.

1 2

4 3

Fig. 2.11: The envelope graph

Let Hy and Hy be the two Hamiltonian cycles on the envelope graph, depicted
in Figures 5.3 and 5.4, respectively.

1 2 1 2
4 3 4 3

Fig. 2.12: The Hamiltonian cycle Hy Fig. 2.13: The Hamiltonian cycle Ha

The transition matrices P1 and Py associated with the Hamiltonian cycles
Hy and Hs, respectively, are
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Simple calculations give us
det(I—P; +1/6J) =det(I—Py+1/6J) =6.

Let Ty and Ty be two subgraphs of the envelope graph, depicted respectively
in Figures 2.14 and 2.15. Subgraph Ty has one cycle, which is of length 3.
Subgraph Ty has one cycle, which is of length 4.

1 2 1 2
I 5 65 5 65
4 3 4 3

Fig. 2.14: Subgraph 77 with one cycle Fig. 2.15: Subgraph 75 with one cycle

Because of their appearance, later on, we refer to subgraphs such as Ty and
Ty as noose cycles. The transition matrices Ps and P4 corresponding to
subgraphs Ty and Ty, respectively, are

and Py=

It is easy to check that

det(I-P35+1/6J) = 3,
and

det(I— P4 +1/6J) = 4.

Let Sy and Sy be two subgraphs of the envelope, depicted in Figures 5.7 and
5.8. Each of subgraphs S1 and Sy has two disjoint cycles, both disjoint cycles
in S1 are of length 3, while one cycle in S is of length 4 and the other is of
length 2.
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Fig. 2.16: Subgraph S Fig. 2.17: Subgraph Ss

The transition matrices Ps and Pg corresponding to subgraphs T1 and T,
respectively, are

1-- 1
..... 1 |
1. ... 1
1.« 1.
1 1
Again, it is easy to check that
det(I—Pg, +1/6J) = det(I — Pg, +1/6J) = 0. (2.10)

This example suggests that Hamiltonian cycles, indeed, yield the mazximal
values of the determinant functional det W (P).

In Example 2.3, it is not coincidental that the determinant functional has a
value of 3 (or 4) at a subgraph containing a single cycle of length 3 (or 4), or
that the determinant functional is zero at subgraphs containing two disjoint
cycles. In Chapter 5, we prove that the determinant of W(P) is always k for
a deterministic matrix P that corresponds to a subgraph containing a single
cycle of length k. On the other hand, this determinant functional is always
zero for a deterministic matrix P that corresponds to a subgraph containing
two or more disjoint cycles.

In Chapter 3, we discuss the probabilistic interpretations of matrices P,
W(P), the inverse of the latter and other relevant matrices. These proba-
bilistic interpretations exhibit the connection between the theory of Markov
chains and the Hamiltonian cycle problem. Chapter 4 extends probabilistic
approaches to the Hamiltonian cycle problem to include Markov decision
processes. In Chapter 6, we use probabilistic arguments to prove that Hamil-
tonian cycles are minimisers of the trace functional of the inverse of a matrix
similar to W(P).
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