Chapter 2
Quadratic Operators and Quadratic Functional
Equation

M. Adam and S. Czerwik

Abstract In the first part of this paper, we consider some quadratic difference
operators (e.g., Lobaczewski difference operators) and quadratic-linear difference
operators (d’Alembert difference operators and quadratic difference operators) in
some special function spaces X;. We present results about boundedness and find
the norms of such operators. We also present new results about the quadratic func-
tional equation. The second part is devoted to the so-called double quadratic differ-
ence property in the class of differentiable functions. As an application we prove
the stability result in the sense of Ulam—Hyers—Rassias for the quadratic functional
equation in a special class of differentiable functions.
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2.1 The X, and X f Spaces

We shall introduce the spaces X, and X% (see [7]). A. Bielecki also studied similar
spaces in [4] and applied them in the theory of differential equations.

Definition 2.1 Let X and Y be two normed vector spaces and A > 0. Define

Xo={f: X>Y:|fo] =Mp x e x},
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where M is a real constant depending on f. Moreover, for f € X

£l = sug{e—*”*” lreo|}- (2.1)

Let us note that the space X, with the norm (2.1) was considered by S. Czerwik
and K. Dhutek in [10]. It is easy to prove the following

Lemma 2.1 The space (X;, || - ||), where || - || is defined by (2.1), is a linear normed
space.

Definition 2.2 Let X and Y be two normed vector spaces and A > 0. Define
X2:= lg: XxX—>Y:|glx,y| = MgeMIFIFIYD -y oy e x}
where M, is a real constant depending on g. Moreover, for g € X %

gl = sup {e IRV g, )]}, @2)
x,yeX

‘We have

Lemma 2.2 The space (X2, Il - 1), where || - || is defined by (2.2), is a linear normed
space.

2.2 Quadratic Difference Operator in X, Spaces
We define the quadratic difference operator Q( f) by

QN y)i=flx+y+flx—=y)=2fx)=2f() (2.3)

forx,ye X, feX,.
Then we have

Theorem 2.1 The quadratic difference operator Q: X; — X2, given by the for-
mula (2.3), is a linear bounded operator satisfying the inequality

[en] =s6lfll. feXi 2.4
Proof First, we shall verify that if f € X;, then Q(f) € X% We have
leH ] =[fx+y+fx—y-2f@) -2
< Mfek(llir,vH) + Mfgk(llx—yll) + 2Mfe/\(HXII) + ZMfek(HyH)
< 6Mfek(IIXH+IIyH),

thus Q(f) € X% as claimed.
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Clearly, Q is linear. For f € X, we obtain

loH)| = sup e IIHFDI e +y) + fx —y) =2 () =2 )|

x,yeX

sup e HIFFID| £ x4 y) [+ sup e FBIHD | £ox — )]
x,yeX x,yeX

+2sup e PIFIHD| £ ()| 42 sup e HIHIHYD | £(3) |
xeX yeX

IA

IAIE+ AN+ 210+ 21 =6l f Il

Therefore,

loH| <6lfll. feX,

which concludes the proof. O

Under some additional assumptions, we can prove some further results. In fact,
we have

Theorem 2.2 Let R C X, R C Y and | x| = |x| for x € R. Then
12l =6. (2.5
Proof Let {x,} be a strictly decreasing sequence of positive numbers such that
lim x, =0.
n—00
Let us define for n € N a function f, by

_e2kx,, ,

X = Xp,
. oM x =2x,,
Su(x) = ekan, x=0.
0, otherwise.

Clearly, we have
| fa@) | <ot xex,

so f, € X, for all n € N. Moreover,

eZAxn , x= 0,
20X —
Y e X =Xp
o = T
1, X =2x,,
0, otherwise.
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Because the sequence {x,} is a decreasing sequence of positive numbers convergent
to zero, we obtain that || f;, || = ¢>** for all n € N. We also have

o = supX{e*“”"‘”“y”) lfx+y)+ fx—y)—2f@) —2f O]}
X,y€

> e—Ax,,

SnQxp) + f(0) — 4fn(xn)|| = e M. gt = 6.

Thus ||Q(fn)|l = 6 for n € N. We also know from (2.4) that || Q| < 6. Suppose on
the contrary that || Q] < 6. Then there exists ¢ > 0 such that

lotf] <@ =ollfall.  fu € Xa.

On the other hand, we have for f, € X;

6 <o) < 6 —e)e? .

Taking into account that x,, — 0 as n — oo, we get 6 < 6 — ¢, where ¢ > 0, which is
impossible. Thus we obtain eventually that || Q|| = 6, and the proof is complete. [

For further information on new results concerning the quadratic difference oper-
ator on other spaces, see also the papers [9, 11, 12].

2.3 D’Alembert and Lobaczewski Difference Operators in X
Spaces

In this section, we shall recall the definition of the quadratic bounded operator. The
Lobaczewski difference operator is an interesting example of a quadratic operator.
Here we shall present the ideas and main results obtained by S. Czerwik and
K. Krél in [13].
Let X and Y be linear spaces over a field K.

Definition 2.3 An operator Q: X — Y is called quadratic if it satisfies the follow-
ing equations

Qx+y)+0x —y)=20x)+20(1), x,y€eX, (2.6)
Qkx)=k*Q(x), xeX, kek. (2.7)

Definition 2.4 A quadratic operator Q: X — Y, where X, Y are linear normed
spaces over K, is called bounded if there exists an M > 0 such that

[o | < MixI?, xeX. 2.8)
A norm of a quadratic bounded operator Q: X — Y is defined by

101l := sup{| Q)| : llxll < 1}. (2.9)
xeX
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By Bp(X,Y) we denote the space of all bounded quadratic operators. It is easy
to prove that B (X, Y) with the norm given by (2.9) is a linear normed space.

Let C denote the set of all complex numbers. For a set X, a symbol CX denotes
the set of all functions f: X — C.

Definition 2.5 For a linear space X, the Lobaczewski difference operator L: CX —
CX? is defined by

Xty

L(f)(x,y) = f2< 5

)—f(x)f(y), x,yeX. (2.10)

One can verify that we have

Remark 2.1 The Lobaczewski difference operator L: CX — CX ? defined by (2.10)
is a quadratic operator.

We can also prove that the Lobaczewski operator L: X; — X 2 where Y =C, is
a quadratic bounded operator. We have even more (see [13]).

Theorem 2.3 Let Y = C. The Lobaczewski difference operator defined by (2.10)
belongs to Bg (X3, X%), and for all f € X; we have

lLH| <2071 2.11)

Under some additional assumptions, we can find the norm of L. In fact, the fol-
lowing is true.

Theorem 2.4 Let R, C X, Y =C, and || x| = |x| for all x € R4.. Then
LIl =2, (2.12)
where L is given by (2.10).

The proof, similar to the proof of Theorem 2.2, can be found in [13].
Now we shall present results about the d’ Alembert difference operator.

Definition 2.6 We denote by By o the space

Bro(X,¥):={T e Y*:3L e B(X,Y)and 3Q € By(X, ¥)
such that T = L + Q}.

Here, of course, B(X, Y) stands for the space of linear bounded operators from
XtoY.
ForT =L+ Q € BLo(X,Y), we define

ITN ==Ll + Q]
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We say that such an operator T is a bounded linear-quadratic operator.

Definition 2.7 Let X be a linear space. The d’Alembert difference operator A :
CX — CX? is defined by

AN y) i =fx+y)+ fax—y)=2f@)f(), x yeX (2.13)
In the sequel, we present the following

Theorem 2.5 ([13]) Let Y = C and X be a normed space. The d’Alembert differ-
ence operator A: X; — X% defined by (2.13) belongs to By g (X3, X%), and for all
f € X, we have

lAH| =21 F11+ 201117

Proof On account of (2.13), we get A = L4 + Q 4, where the linear operator L 4 :
X, —> X % and the quadratic operator Q4 : X; — X % are given by

La(Hx,y)=Ffx+y)+ fx—y),
0a(Hx,y):==2fx)f().

Now, for any f € X, we obtain successively

[LaH] = sup {e*PIFD[£Ge43) + fx =)}

x,yeX

< supx{e—M“xHH‘y“) fG+ 0|} + supx{e—““x||+”y“) f =)
X,y€ X,y€

< sup {e M FGe 4 )|} + sup {e | pe— [} =201 711
x,yeX x,yeX

Therefore, Lo € B(X ;\,Xf). We shall now prove that Q4 is bounded and
1Ol =2. Indeed, for f € X, we get

|oaH|| = sup {27 ) F(3)|}
x,yeX

=2sup{e ] F )]} - sug{eikl‘y” lF|} =21171%

xeX

Thus Q4 € BQ(X;L,X%) and ||Qall=2. Since A = L4 + Q4, we get that A €
Bro(Xs, X?) and

JAN | = La(H)+ QaD| <[ LaH] + [QaH] <2011+ 2017,

as claimed. O

Under additional assumptions, one can compute the norm of A. Namely, we have
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Theorem 2.6 Let X be a linear normed space, Ry C X, Y =C, and || x| = |x| for
x €Ry. Then

Al =4.

The proof, similar to the proof of Theorem 2.2, can be found in [13].

2.4 Quadratic Functional Equation and Functional Equations
for Quadratic Differences

At first, we shall give the formula for the general solution of the generalized
quadratic functional equation on a group. The result is due to K. Diutek (see [7]).

Theorem 2.7 Let G| and G be groups with division by two. Let A, B,C, D: G| —
G satisfy the equation

AX)+B(y)=Cx+y)+D(x—-y), x,yeGCy.

Then there exist a quadratic function K : G| — G (i.e., a function satisfying the
equation (2.6)), additive functions E, F : G; — G; and constants Si, S, S3, 54 €
G such that

A(x)=2Kx)+ E(x) + F(x) + S1.
B(x)=2Kx)+ E(x) — F(x) + S,
Cx)=Kx)+ Ex)+ 83,
Dx)=K(x)+ F(x)+ S4

forall x € Gy and S| + S» = S3 + S4.

Now we shall state the result concerning the properties of the quadratic difference
operator Q on L? -spaces; for more details, see [11].

Theorem 2.8 Let (G, X, ) be a complete measurable Abelian group, u(G) < 0o
and let (E, || - ||) be a Banach space. If 1 < p < 0o, then the quadratic difference
operator

. P P
0:LI(G.E)— LY, (G xG,E)

given by (2.3) is linear, continuous, and invertible. Moreover, the inverse operator
O~ defined for h € Q[Lﬁ (G, E)] is continuous and has the form

07'h() = (2u(G)) ™! /G hx, ) dp(x).
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For some problems, particularly for the problem of Ulam—Hyers—Rassias stabil-
ity of functional equations, functional equations for quadratic differences are very
useful (see [3, 7, 8]). Let us present a few such equations, which we will need in the
proof of Theorem 2.11.

Theorem 2.9 Let X, Y be Abelian groups and f: X — Y be a function. Then Q(f)
given by formula (2.3) satisfies the following functional equations

0N +y, s+ +0(Hx—y,s =) +20(/)(x,y) +20(f)(s,1)
=0(Nx+s,y+0D)+0(NHx =5,y —1)+20(f)(x,5)

+20(NH .0, (2.14)
QN x+y,9)+0(fHx —y,s)+20(/)(x,y)

=0(NHx+s5, )+ Q(NHx =5,y +20(f)(x,5), (2.15)
0N +y. D)+ 0(fHx —y, ) +20(f)(x,y)

=0, y+0+0(fHx,y =) +20(f)(y. 1) (2.16)

forall x,y,s, teX.

There are also interesting partial differential equations for quadratic differences
(see [3,7, 8]). Let X and Y be normed spaces. The space of all functions f: X — Y
that are n-times differentiable will be denoted by D" (X, Y). By 9} f, k=1,2, we
denote, as usual, the nth partial derivative of f: X x X — Y with respect to the kth
variable.

Theorem 2.10 Let f: X — Y be a function such that Q(f) € D*(X x X, Y). Then
we have

#(Q(N)(x +y,0)+33(Q())(x —y,0)

=202(Q(f))(x, y) + 23 (Q())(x,0), 2.17)
#2(Q(NH)(x+y,0)+33(0(H))x —y,0)
=233(Q(N))(x, ) + 23 (Q(N))(y, 0), (2.18)

205 (Q(H))(x, ) =3 (Q(H))(x +¥,0) =33 (Q())(x —y,0)  (2.19)
forallx,y e X.

From Theorems 2.9 and 2.10, we easily obtain the following corollary.

Corollary 2.1 Let f: X — Y be a function such that Q(f) € D*(X x X,Y). Then

we have

91(Q())(0,0) =0, (2.20)
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8% (2())(0,0) =0,
32(0())(0,0) =0. 2.21)

Moreover, for all x € X we have

2(Q(N)(x,0) = 3(Q())(0,0). (2.22)

2.5 Double Quadratic Difference Property

In 1940, S.M. Ulam posed the following problem (cf. [29]):
We are given a group (X, +) and a metric group (Y, 4, d). Given ¢ > 0, does
there exist a § > O such that if f: X — Y satisfies the inequality

d[f(x+y), fx)+ f(y)] <8 forallx,yeX,

then a homomorphism A: X — Y exists with
d[f(x),A(x)] <& forallx e X?

One can ask a similar question for other important functional equations. The first
partial solution of this problem was given by D.H. Hyers [16] under the assumption
that X and Y are Banach spaces. In 1978, Themistocles M. Rassias extended the
theorem of Hyers by considering an unbounded Cauchy difference (see [23]). Dur-
ing the last decades, the stability problems of various functional equations have been
extensively investigated by many authors (see, e.g., [1, 2, 7, 8, 14, 15, 17, 18, 24—
27]).

Assume that X and Y are normed spaces. For a function f: X — Y, we put

”f”sup = Sup Hf(x)”
xeX

For the quadratic difference, the stability problem can be reformulated as follows.
Let ¢ > 0 be given. Does there exist a § > 0 such that if f: X — Y satisfies

H Q(f)Hsup <34,

then there exists a quadratic function K : X — Y with
f - K”sup <e?

We can consider Ulam’s problem for different norms. In this paper, we are going
to prove the stability of the quadratic functional equation in the class of differen-
tiable functions. The same problem for the Cauchy type functional equations was
solved by J. Tabor and J. Tabor in [28].

Let X and Y be a real normed space and a real Banach space, respectively. By
Np, N, R we denote the sets of all nonnegative integers, positive integers, and real
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numbers, respectively. Let f: X — Y be an n-times Fréchet differentiable func-
tion. By D" f, n € N, we denote the nth derivative of f, and D° f stands for f. By
C"(X,Y) we denote the space of n-times continuously differentiable functions and
by BC"(X,Y) the subspace of C"(X,Y) consisting of bounded functions. More-
over, CO(X ,Y) and C*°(X, Y) stand for the space of continuous functions and the
space of infinitely many times continuously differentiable functions, respectively.

Following an idea of J. Tabor and J. Tabor [28], we assume that we are given a
normin X x X such that ||(x1, x2)| is a function of ||x|| and ||x2||, and the following
condition is satisfied

|G, 0] =[©.x)|=lxl, xeX.
Letii: X > X x X, i2: X = X x X be injections defined by

1x):=(x,0, xeX,
i2(y):=(0,y), yeX.

Let L: X x X — X be a bounded linear mapping. It follows directly from the as-
sumed conditions on the norm in X x X that

ILoirll < LIl = IILIl,
L oiz|l <Lzl = IL]l.

Therefore, if FF: X x X — Y is n-times differentiable for n € N, then

01 F (x, )| = |DF(x,y) oitll < [IDF(x, y)ll, 223
2 F (x, )| = IDF (x,y) oiall < IDF(x, y)l| '
and
18; 7282 F (x, )|l < IID'F(x, ), (224
182872 F (x, y)|| < IID'F(x, y)||

forallx,ye Xandi=2,3,...,n.
Let n e N and let f: X — Y be n-times differentiable. Then Q(f) is also n-
times differentiable, and by (2.24) we have

|Df(x+y) = Df(x —y) =2Df (0| < [D(Q(N))x, . (2.25)
ID*f(x +y)+D*f(x —y) —2D* ()| < | D*(Q(H) . »)| (2.26)

for all x, y € X. Moreover, for n > 3, we obtain from (2.24)
ID f(x +y) + D f(x — y)|| < [ D' (Q(H)(x, »)| (2.27)

forallx,ye Xandi =3, 4, ..., n.
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We will prove that the class C"(R, Y) has the so-called double quadratic dif-
ference property, i.e., if f: R — Y is such a function that Q(f) € C"(R x R, Y),
then there exists exactly one quadratic function Ko: R — Y such that f — K €
C"(R,Y) (see also [3]). The problem of the double difference property for the
Cauchy difference C(f)(x,y) := f(x + y) — f(x) — f(y) € C"(X x X,Y) has
been investigated in [28]. For more details about the double difference property, the
reader is referred to [19].

Lemma 2.3 (See also [3]) Let f: X — Y be a function such that Q(f) € C3(X x
X,Y). Then Ko: X — Y given by the formula

1
Ko(x) = f(x) = f(O) + Eaz(Q(f))(O, 0)(x)

1 1 pt
-~ 5/ / #(Q(N)(ux,0)(x*)dudt, xeX  (2.28)
0 Jo
is a quadratic function.

Proof Let fi(x) := f(x) — f(0) for all x € X. Then Q(f1) = Q(f) +2f(0) €
C"(X x X,Y) and Q(f1)(0,0) = 0. Moreover, d2(Q(f1)) = 32(Q(f)) and
8§(Q(f1)) = 822(Q(f)). Let us fix arbitrary x, y € X and consider a function

o) :=0(f)x,ty), teR.

Obviously, ¢ € CZ(R, Y). Then we have

Do(t) =31 (Q(f)tx, ty)(x) + R (Q(f1))tx, ty)(y), teR.

Hence and from (2.20), we get

Dy(0) = 3:(Q(f1))(0,0)(y).

Therefore, we obtain
O/, y) = p(1) — p(0) = /01 Do) di = /0] /O D2p(u) du dt + Dp(0)
=/01/0' DX(Q(f0) wx, uy)(x, ) dudt + 3(Q(f1)) (0, 0)(»)
:/0] /Ol A (QUM)) (ux, uy)(x?) dudt
+2/01 /0 0% () ux, uy)(xy) dudt

1 pt
+/O /0 35 (Q(f0) wx, uy)(y*) dudt + 3:(Q (1)) (0, 0)(y).
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Thus
1 pt
Q(ﬂ)(x,y):/o /0 (0 e, ) (o) dudr
1 pt
+2 /0 /0 0% (Q(f1)) (ux. uy) (xy) du dt

1 pt
+/0 /0 33 (Q(f)) (ux, uy)(y?) dudt

+%(Q(M)0,0(), x,yeX. (2.29)

We define the function Ky: X — Y by the formula
1
Ko(x) := f1(x) + EBZ(Q(fl))(O’ 0)(x)

1 pt
—%f / 3 (Q(f))(ux,0)(x*) dudt, xeX.
0 Jo

We show that Ky is a quadratic function. By making use of (2.17), (2.18), (2.19),
and (2.29), we obtain for all x, y € X

Ko(x +y) + Ko(x — y) —2Ko(x) — 2Ko(y)
= Q(fD)(x,y) — (Q(f1))(0,0)(y)

1 1 t
—5/0 /0 3 (Q(f)) (ux +uy, 0)(x + y)* du dt
1 1 t
—5/ / 33 (Q() (ux — uy,0)(x — y)* dudt
0 0
1 t
+/ / 33 (Q(f1)) (ux, 0)(x*) du dt
0 0
1 t
+ /0 /0 2(0(f) 1y, 0)(y%) du dt
1 t
2/0 /0 AT (QUM) (ux, uy)(x?) dudt
1 t
+2 /0 /0 0%, (Q(f1)) (ux. uy) (xy) du dt
1 t
+ /0 /0 83 (Q(f1)) (ux, uy)(y*) dudt

1 t
—%/0 /0 3 (Q(f) (ux +uy, 0)(x*) dudt
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1 pt
—fo /0 92(Q() (x + 1y, 0)(xy) duds
1 1 t ) )
_5/0 /0 82(Q(f) (ux + uy. 0)(y?) du ds
1! "2 2
_E,/ / BZ(Q(f]))(ux—uy,O)(x )dudt
0 JO
1 pt
+/0 /0 322(Q(f1))(ux—uy,O)(xy)dudt
1! " 2
_E/ / 82(Q(f1))(ux—uy,0)(y )dudt
0 JO
1 pt
+/ / 3 (Q(f1) (ux, 0)(x?) du dt
0 JO
1 pt
+ fo /O 22(0(f0) @y, 0)(»%) dudr
1 t 1
=f0 fo[af(Q(fo)(ux,uy)—58§(Q<f1>)(ux+uy,0)
1
— §8§(Q(f1))(ux —uy,0) + 33 (Q(f1)) (ux, 0)}()9) dudt

1 t
+ fo /0 [20%(Q()) ux. uy) — 92(Q(f1)) (ux +uy, 0)

+33(Q(f) (ux — uy, 0)](xy) du dr

1 t !
+/0 /O[a%(Q(fo)(ux,uy)_Eazz(Q(fl))(uHuy,O)

1
— 533 (Q()) wx —uy.0) + 33 (Q(f1) Wy, o>](y2) dudt =0.
Therefore, K is a quadratic function, which completes the proof. g

Theorem 2.11 Let n > 2 be a fixed positive integer and let f: R — Y be a func-
tion such that Q(f) € C"(R x R, Y). Then there exists a unique quadratic function
Ko: R— Y such that f — Ko e C"(R,Y) and D2(f — K¢)(0) = 0. Moreover, we
have for all x e R

L[, 1
D(f — Ko)(x) = Efo 33 (Q(N))(s,0)ds — Eaz(Q(f))(O,O),

1
D*(f — Ko)(x) = 5822(Q(f))(x, 0),
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1
|D*(f — Ko)(0)| < E“ Do) x, 0|, keN\{1}, k <n.

Proof Let fi(x) := f(x) — f(0) for all x € R. On account of Lemma 2.3, there
exists a quadratic function K given by (2.28). Now we prove that f — Kg is a
differentiable function. Fix arbitrary x, h € R, h # 0. Then we get

1
Z[fl(x +h) — Ko(x + h) — (fi(x) — Ko(x))]
1Irr 't
z‘[‘/ / 33 (Q(fD)) (u(x +h),0)(x + h)*dudt
hi2Jo Jo
1
- 582(Q(f1))(0,0)(x +h
IR 1
_5/0 /0 322(Q(f1))(ux,0)(x2)dudt+Eaz(Q(fl))(o,o)(x)}
1 x+h v 5
=g[/0 /Oaz(Q(fl))(s,O)dsdv
_/0 /0 azz(Q(fl))(S,O)dsdv—BQ(Q(fl))((),())(h)]
1 x+h pv
Zﬂ[/ /(;822(Q(f1))(5,0)dsdv—BQ(Q(fl))((),o)(h)]
1 1 px+th
= E[/O /0 33 (Q(f1) (s, 0)(h)ds dt — d2(Q (1)) (O, O)(h)]
1T ! fr+ih
[ [ #eweoasa-nem)oo]
1
- 5/ / 33 (Q(f1))(s,0)ds dt
0 Jo
1 | |
_Eaz(Q(fl))(0,0)=E/0 BZZ(Q(f]))(s,O)ds—Eaz(Q(fl))(()’o)

for h — 0. Hence the function f — Ko = f1 — Ko + f(0) is differentiable at every
x €R, H(0(f1) = H(Q(f)), 3(Q(f1) =03(Q(f)) and

1 [ 1
D(f—Ko)(x)=5/O 822(Q(f))(s,0)ds—Eaz(Q(f))(O,O), xeR. (230)

Moreover, since the function f — Ky is differentiable at every x € R, then there
exists also the second difference derivative which is equal to the second derivative
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(see [21]). We show that

2 1o
D*(f = Ko)(x) = 38;(Q())(x,0), x€R.
Fix arbitrary x, 4 € R and let a function ¥ : R — Y be given by

Y(t):=0(f1)(x,th), teR.

Then ¥ € C"*(R, Y) and we have
o(fD)(x, h) =¥ 1) —¥(0)
1 t
=/0 /0 3 () (x, uh)(h?) du dt

+0(Q(f))(x, 00(h), x,heR.

From (2.22) we get

0(Q(f1))(x,0)=(Q(f1))0,0), xeR,

hence

1 t
Q<f1><x,h>=/0 /0 03(Q (/) (x, uh)(h?) dudt

+82(Q(f1)(0,0)(h), x,heR.

Next, from (2.18) we obtain
1 t
//822(Q(f1))(x+uh,0)(h2)dudt
0 JO
1 t
+f / 3 (Q(f)(x — uh,0)(h?) du dt
0 JO

1 pt
=2/ f 33 (Q(f1)) (x, uh)(h?) du dt
0 Jo

1 t
+2/ / 3 (Q(f))(uh,0)(h*)dudt, x,heR.
0 0

Therefore, using (2.31) and (2.32), for each fixed x, & € R we have

1
- 58%(Q(ﬁ))<x, 0)(n?)

27

2.31)

(2.32)

Six +h) — Ko(x +h) —2f1(x) +2Ko(x) + fi(x —h) — Ko(x — h)
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1
= HQ(fn(x, h) +2f1(h) —2Ko(h) — 58§(Q<f1>)(x,0>(h2)

1 t
N H/o /0 03 (Q(f1)) (x, uh) (W) du dt + 32(Q(f1)) (0, 0) ()

1 pt
+f / 33 (Q(f)) (uh,0)(h?) dudt
0 Jo

1
— % (0(f1))(0,0)(h) — 5a%(Q(fo)(x, 0)(h?)

1 pt
=”1/ / 82(Q(f)) (x + uh, 0)(h?) du dt
2Jo Jo
1 1 pt ) 5
+§/0 /O 3 (Q(fD)(x —uh,0)(h*) dudt

1 pt
—/O /0 32 (Q(f1)(x, 0)(h?) du dt

1 t 1 1
N H[) fo [Eazz(Q(f]))(x+“h’0)+5322(Q(f1))(x—uh,O)

- 35 (Q(f))(x, 0)} (h*) du dt

2
< ||2[I" sup
uel0,1]

1
‘Eaf(Q(ﬁ))(eruh,O)

1
+ 503 (QUM) (x = uh, 0) = 33(Q(/) (x, 0) H
Since 822(Q(f1)) = 822(Q(f)) is a continuous function,

1 1
5822(Q(f1))(x +uh,0) + Ea%(Q(fo)oc —uh,0) —33(Q(f1))(x,0) = 0

for h — 0. Hence we get

1
D*(f — Ko)(x) = Eag(Q(f))(x, 0), xeR. (2.33)

Since 33 (Q(f))(x,0) € C"2(R x R, Y), one has 33(Q(f))(x,0) € C"2(R, Y).
Finally, D?(f — K¢) € C"2(R,Y), i.e., f — Ko € C"(R, Y). Moreover, from (2.21)
we also have

1
D*(f — Ko)(0) = 583(Q(f>)(0, 0) =0.

To prove the uniqueness of Ky, consider quadratic functions K1, K»: R — Y
such that f — K1, f — Ko € C"(R, Y), D*>(f — K1)(0) = D*(f — K»)(0) =0 and



2 Quadratic Operators and Quadratic Functional Equation 29

conditions (2.30), (2.33) hold. Then K| — K> is a quadratic function and K| — K; €
C"(R, Y). Therefore, for every x € R, we have

D*(K\ — K2)(x) = D*((f — K2) — (f — K1) (x)
= D*(f — K2)(x) — D*(f — K1)(x) =0.

Since D*(K; — K) =0, D(K| — K»)(x) is a constant function for every x € R.
But
D(K1 — K2)(0) =D(f — K2)(0) — D(f — K1)(0) =0,

so D(K| — K») = 0. Analogously, we have that (K| — K»)(x) is a constant function
for every x € R; and since (K| — K7)(0) =0, it yields that K} = K>.
It remains to prove that

k Lok
|D*(f = Koy || < EHD (Q(N)x, 0], keN\{1}, k<n (2.34)
for every x € R. Let g := f — Ko. Then g € C"(R, Y), and consequently we have

Q(g) = Q(f) € C"(R x R, Y). Making use of (2.26) and the fact that D?g(0) =0,
we obtain

1
| D% = |D?e) = D2 )] < 5| D*(Q@)(x, 0], x€R,

which proves (2.34) for k = 2. For 3 <k <n, k € N, condition (2.34) follows di-
rectly from (2.27), which completes the proof. 0

Corollary 2.2 ([3]) Under the assumptions of Theorem 2.11, we have

1
ID*(f — Ko) ()| < 3 ID*(Q(H))(©0,0)], keNo\(l}, k<n, (235

1
| D*(f = Ko < 51D (Q(N)]

w =3 ke N\{1}, k <n. (2.36)

sup’

Proof The case k =0 in (2.35) is trivial because obviously f(0) = —% 0(£)(0,0).
From (2.34) we obtain (2.35) for k > 2 and (2.36). The proof is completed. O

Remark 2.2 Let the assumptions of Theorem 2.11 be satisfied and let
02(Q())(0,0) = 0. Then the inequality (2.34) (and consequently (2.35) and (2.36))
also holds for k = 1.

Proof If 3,(Q(f))(0,0) = 0, then from (2.30) we obtain D(f — Ko)(0) = 0. Let
g:=f — Ko. Hence g € C"(R,Y), Q(g) = 0(f) e C"(Rx R,Y), and C(g) €
C"(R x R, Y). Therefore, on account of (2.23), we get

|Dg(x+y) — Dg(y)| < | D(C())(x, )

, x,yeR. (2.37)
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One can easily check that for any function #: R — Y the following equality holds

2C(N)(x, y) +2C (M (x, —y) = QW) (x, y) + Q(W)(x, —y), x,y€R,

where C(f) denotes the Cauchy difference. Then, in particular, for a function g we
obtain

1 1
D(C(g))(x,0) = ED(Q(g))(x,O) = ED(Q(f))(x,O), xeR.

Therefore, by virtue of (2.37) with y = 0, from the above equality and the fact that
Dg(0) =0, we have

9

1
[ g0 = [ D) = D@ < [ D(C())(x, 0] = 5| D(2()) (x, 0)
x e R,

which proves the inequality (2.34) for k = 1. U

It is still an open problem to prove that the function f — Ky which occurs in
Theorem 2.11 is differentiable for every x € X, where X denotes a real normed
space.

Corollary 2.3 ([3]) The quadratic function Ko: R — Y occurring in Lemma 2.3
and Theorem 2.11 can be defined by the formula

Kﬂx%:%n@gJﬁ[f<%>—%f<—g>——ZfGD} x€R. (2.38)

Theorem 2.11 states, in particular, that the class of infinitely many times differ-
entiable functions has the double quadratic difference property. We may show that
the class of analytic functions also has this property.

Corollary 2.4 ([3]) Let f: R — Y be a function such that Q(f) is analytic. Then
there exists exactly one quadratic function K : R — Y such that f — K is analytic

and D*(f — K)(0) =0.
Now we give some auxiliary results which will be used in the sequel.

Lemma 2.4 ([5]) Let (G, +) be an Abelian group. If a function f: G — Y satisfies
the inequality

lfx+»+ fx—y)=2fx)—2f()|<e, x.y€G

for some ¢ > 0, then there exists a unique quadratic function K : G — Y such that

1
lfx) — K@ < 56 X €G.
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Moreover, the function K is given by the formula

K = lim L&)

n—oo 22n

eG.

In [6], S. Czerwik provided a generalization of the above result and also proved
that if a function R >t — f(tx) is continuous for each fixed x € E, where E de-
notes a real normed space, then K (tx) = 1?K(x) forallt e Rand x € E.

The following lemma is some kind of an analogue to the Mean Value Theorem
for real valued functions.

Lemma 2.5 ([20]) Let a mapping T: B — Y, B C X, where B is an open set, be
two times Fréchet differentiable. Let x,h € B, and let for every 0 <o <1, (x +
ah) € B. Then

1
|7 +h)—Tx)—DT(x)h| < 5||h||20s,upl|| DT (x +ah)|.
<<

Similarly as for the case of Euler’s Theorem for positive homogeneous functions
(see [22]), one can prove the following lemma.

Lemma 2.6 Let T: R — Y be a homogeneous function of degree 2 such that T €
C%(R,Y). Then

T(x)= %xzDzT(x), xeR. (2.39)

Proof Since T is a homogeneous function of degree 2, then
T (ax) = a2T(x), x,a eR.

Let us fix an arbitrary x € R. Differentiating both sides of the above equality with
respect to o, we obtain

D’T(ax)x>=2T(x), «acR.

Since x € R was chosen arbitrarily, for « = 1 we get the equality (2.39), which
completes the proof. g

Lemma 2.7 Let K: R — Y be a quadratic function and let f: R — Y be a map-
ping such that f € C*(R, Y). Assume also that f — K is bounded and

sup |D*f(x) = DX f(y)| <e (2.40)
(x,y)eRxR

for some ¢ > 0. Then K is differentiable and

sup| D*K (x) — D*f(x)| <e. (2.41)
xeR
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Proof Since f — K is bounded, then Q(f) is also bounded and, on account of
Lemma 2.4, we have

f@2"x)

I x eR.

K0 = i

Since f is a continuous at each x € R, K is also continuous and it is of the form
(see also [7])
K(x)=x*K(1), xeR.

Thus K is differentiable. Let us fix an arbitrary y € R. Applying Lemma 2.5 to the
function

1 20
T(x):=f@x) = x"D7f(y). xeR

and the inequality (2.40), we get for all x ¢ R

122 12 2 2
Hﬂm—Efo@y<ﬂm—ﬂvm>SEMsKWDﬂm—Df@w

1
< —¢|x|?.
2
Replacing x by 2"x and dividing both sides of the above inequality by 2", we have

f©) xDf(0)
22n on

2" 1
‘ f(zan) - Exzsz()’) -

1

” < —8|x|2, x eR.
2

Letting n — 0o, we conclude that

1 1
HK(x) — Exzz)?f(y) < 58|x|2, xeR.

Therefore, by virtue of Lemma 2.6, we obtain

1 2
< - , eR,
< 2f9|)c| X

1 1
‘§x2D2K(x) — §x202f(y)

and hence
|ID*K(x) = D*f(y)| <&, xeR.

Since y was arbitrary,

sup| D*K (x) — D*f(x)| <e,
xeR

which completes the proof. g
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Theorem 2.12 Let n > 2 be a fixed positive integer and let f: R — Y be such a
Sfunction that Q(f) € BC"(R xR, Y). Then there exists a unique quadratic function
Ks: R — Y such that f — Koo € BC"(R, Y). Moreover,

1
ID*(f — Ks) (O] < 3 ID*(Q(H))(0,0)], keNo\(2}, k<n, (2.42)

1
|D*(f - Koo)”sup < 5||D’<(Q(f)) ||Sup, k e No\{1}, k <n. (2.43)

Proof By virtue of Theorem 2.11, there exists a unique quadratic function Ko: R —
Y such that f; := f — Ko € C"(R, Y). Then Q(f;) = Q(f) e BC"(R xR, Y). It
means, in particular, that Q( f1) is bounded. By Lemma 2.4, there exists a unique
quadratic function K : R — Y such that

1
sup[ fix) = Ki) = 5 sup o, - (2.44)
xeR (x,y)eRxR
We put
Koo(x) =Kox)+ K1(x), xelR.
Clearly, K is also a quadratic function and f — Koo = f1 — K1 € C"(R, Y). From
(2.26) we obtain
1
sup RH D*fit) = D*fity)] =5 sup IR|| D*(Q(fM), . (245

(x,y)eRx (x,y)eRx

Conditions (2.44) and (2.45) mean that the functions fj and K satisfy the assump-
tions of Lemma 2.7 with

1
e=3 sw D0 ).

2 (x.y)eRxR

Thus K is differentiable and, by making use of (2.41) and (2.45), we get

sup ID*(f — Keo) ()| = sup ID*(fi — KD

| =

=<

sup RH D*(Q(f)(x, |- (2.46)

(x,y)eRx
For k = 0, the inequality (2.42) is obvious; for k = 1, it follows from (2.25); and for

k > 3, itis a trivial consequence of (2.27). Making use of (2.44), (2.46), and (2.27),
we obtain (2.43), which completes the proof. U

Corollary 2.5 The quadratic function K, occurring in Theorem 2.12 can be de-
fined by the formula

Koo(r) = lim L2

n—oo 22n

x eR.
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Proof The formula for K is a trivial consequence of the fact that the function
f — K is bounded. O

Comparing the formulae for Ko and K, one can easily notice that these func-
tions are usually different. We will see it in the following example.

Example Let f: R — Y be a bounded function such that f € C2(R, Y). Since f is
bounded, K+, = 0. One can easily check that the following equalities hold:

32(Q(f))(0,0)=—-2Df(0),
3 (Q(f))(x,0)=2D*f(x) —2D*f(0), xeR.

Therefore, by applying the formula of K¢ given by (2.28), we obtain that
1 2 2
Ko(x) = ED fO0)x°, xeR, (2.47)
hence

D?’Ko(x) = D*f(0), xeR.

Thus Ko = K+ if and only if D? f(0) = 0.
Clearly, one can also obtain the formula (2.47) from (2.38).

2.6 Stability

Let f: X — Y be a function such that f € C"(X,Y) for n € Ny. In subspaces
of C”(X ,Y), one can consider different norms defined in terms of || D' f(0)|,
| D' flisup for i <n.For example, the following norms

n—1

1£1:= D" F O + D" f ] s
i=0

1£1:= YD f [l (2.48)
i=0

If1l:=, max |D'fg,,

are used very often. Obviously, several other norms can be introduced. We will prove
the stability result for the quadratic difference Q(f) in a possibly general setting.
We will use the following convention: if m,n € Ng and m > n, then ) !_, a; =0.

In the sequel, we will use the following assumptions introduced in [28]. Let n €
Np U {oco} be fixed. In the set [0, 00]#"*2 we introduce the following order

(x1, x2, ..) =01, ¥2, -.0)

iff x; <y;fori eN,i <2n+2.



2 Quadratic Operators and Quadratic Functional Equation 35

Let p: [0, 00]*"t2 — [0, 00] be any function satisfying the following condi-
tions:

(i) p(x+y) < px)+pO»), x,y €0, 002,
(i) p(ax) =ap(x), x,y € [0, 00?2, « € [0, 0o],
(iii) x <y = p(x) < p(y), x,y € [0, 00]*" 2.

We additionally assume that O - oo = 0. From (ii) we obtain that p(0) = 0.
We define the mapping @ : C™(X,Y) — [0, 00]*"*2 by the formula

@(f):= (| £

|Df(0)

+ 1S Nlsups s IDf llsups ---)

and put
Sp(X,Y):={feC"(X,Y): p(P(f)) <oo}.

Since p(0) =0, S, contains at least the zero function. It is easy to notice that S, is
a linear space and that p o @|§), is a seminorm. We will denote this seminorm by
|l - Il ,. The same notations we will apply for the space C"*(X x X, Y).

Now we are able to prove the main theorem of this section.

Theorem 2.13 Let f: R — Y be a function such that Q(f) € Sp,(R xR, Y) and
2(Q(f))(0,0) = 0. We additionally assume that the function p does not depend

on the second or fourth and fifth variables. Then there exists a quadratic function
K:R—Y suchthat f — K € S,(R,Y) and

1
If =Klp =510l

Proof Assume that Q(f) € C"(R x R, Y). Suppose that p does not depend on the
second variable. Then

»0, 00, 0, ..)=p(0, 0, 0, ...)=0.

By Theorem 2.11, there exists exactly one quadratic function Kog: R — Y satisfying
conditions (2.35) and (2.36). Then

1
@(f = Ko) < 5[¢(Q(f)) +(0,00,0,..)],

and hence from (i), (ii), and (iii) we have

p(@(0(N)).

N —

1
p(P(f —Kp)) < Ep(fp(Q(f)) +(0,00,0,...)) <

ie.,

1
1f = Kol = 5|2,
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Suppose now that p does not depend on the fourth and fifth variables. If Q(f) €
BC"(R x R, Y), then by Theorem 2.12 there exists exactly one quadratic function
Koo : R — Y satisfying conditions (2.42) and (2.43). Hence

1
D(f —Koo) < E[qb(Q(f)) +(0,0,0, 00, 00,0,...)],

and consequently from (i), (ii), and (iii) we get

1 1
P(P(f = Koo) = 7p(2(Q(f)) +(0,0,0,00,00,0,..)) = =p((Q(f)),
ie.,

1
If = Kesllp = 5[],

If Q(f) is unbounded, then ||Q(f)|lsup = 00. By Theorem 2.11, we can find
a quadratic function such that the conditions (2.35) and (2.36) hold. Then @ (f —
Kp) < %fD(Q(f)), and hence

1
If = Koll, = 5[ Q(H] -
The proof is completed. O

One can easily notice that if we defined for n € Ny

n
PO X2, s X2ng2) 1= ) X2i 1+ Xon42, (2.49)

i=1

then we would obtain stability of the quadratic functional equation in the norm
defined by the formula (2.48).
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