
Chapter 2
Metabolic Networks and Their Evolution

Andreas Wagner

Abstract Since the last decade of the twentieth century, systems biology has gained
the ability to study the structure and function of genome-scale metabolic networks.
These are systems of hundreds to thousands of chemical reactions that sustain life.
Most of these reactions are catalyzed by enzymes which are encoded by genes.
A metabolic network extracts chemical elements and energy from the environment,
and converts them into forms that the organism can use. The function of a whole
metabolic network constrains evolutionary changes in its parts. I will discuss here
three classes of such changes, and how they are constrained by the function of the
whole. These are the accumulation of amino acid changes in enzyme-coding genes,
duplication of enzyme-coding genes, and changes in the regulation of enzymes.
Conversely, evolutionary change in network parts can alter the function of the whole
network. I will discuss here two such changes, namely the elimination of reactions
from a metabolic network through loss of function mutations in enzyme-coding
genes, and the addition of metabolic reactions, for example through mechanisms
such as horizontal gene transfer. Reaction addition also provides a window into the
evolution of metabolic innovations, the ability of a metabolism to sustain life on
new sources of energy and of chemical elements.

1 Introduction

Metabolic networks are large systems of chemical reactions that serve two main
purposes. The first is to convert sources of energy in the environment into forms
of energy useful to an organism. The second is to synthesize small molecules
needed for cell growth from sources of chemical elements—nutrients—in the
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environment. These small molecules typically comprise the 20 amino acids found in
proteins, DNA nucleotides, RNA nucleotides, lipids, and several enzyme cofactors.
To fulfill the dual purposes of metabolism, the metabolic network of a free-living
organism requires hundreds or more reactions, depending on the complexity of
the environment they operate in [1, 2]. Most of these reactions are catalyzed
by enzymes, which are encoded by genes. Together, they carry out the complex
chemical transformations necessary to sustain life.

The structure, function, and evolution of metabolic networks have attracted a
great amount of research interest for many decades [3–12]. Older work primarily
focuses on small networks, comprising a handful of reactions, or on linear sequences
of reactions. Experimental analysis of such small-scale systems involves classical
biochemistry, including measurements of enzyme concentrations, enzyme activities,
reaction rate constants, or metabolic fluxes—the rates at which enzymes convert
substrates into products. Quantitative models of such small systems typically are
kinetic models that use ordinary differential equations to study the changes in the
concentrations of individual metabolites over time. The parameters of these equa-
tions include biochemically measurable quantities such as those I just mentioned
[12].

With the rise to prominence of systems biology in the mid-1990s increasing at-
tention started to focus on genome-scale metabolic systems. Such systems comprise
not just few but hundreds or even thousands of reactions. That is, they comprise most
or all reactions that take place in an organism’s metabolism. Two technological and
methodological advances made the analysis of such large metabolic networks fea-
sible [2]. The first was that complete genome sequences were beginning to become
available, first for the small genomes of prokaryotes, and subsequently for the much
larger genomes of eukaryotes. Comprehensive information about the genes that an
organism’s genome harbors can provide unprecedented insights into the metabolic
enzymes a genome encodes, and into the chemical reactions that an organism’s
metabolic network can catalyze. The second, closely related development was the
ability to identify the complete or nearly complete set of chemical reactions that
proceed in an organism’s metabolism. This second development was facilitated by
complete genome sequences, but it also required in-depth analyses of many years of
accumulated biochemical literature in well-studied organisms, such as the bacterium
Escherichia coli or the yeast Saccharomyces cerevisiae.

A quantitative understanding of genome-scale metabolic networks is difficult to
achieve with as much detail as is possible for smaller networks. For example, it
would be very difficult to estimate kinetic rate constants for hundreds of enzymes.
It would also be very difficult to measure all metabolic fluxes in a large metabolic
network: Methods using isotopic tracers and other tools [12–15] can measure
the metabolic flux through many but not all reactions. They need to infer the
fluxes through the remaining reactions from assumptions about the structure of a
metabolic network. These technical difficulties put detailed kinetic models with
measured parameters for all or even most reactions of a genome-scale metabolic
network beyond our reach. Therefore, many approaches to understand the function
of genome-scale metabolic networks focus on coarser-grained representations of
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such networks. An especially prominent and fruitful approach in this area is called
flux balance analysis (FBA), which requires only stoichiometric information about
individual reactions, and which can predict the biosynthetic abilities of a network
under some general assumptions (Box 1).

Box 1: Constraint-based modeling and flux balance analysis (FBA)

An important goal of systems biology is to predict a metabolic phenotype, the
identity of the molecules that a metabolic network can synthesize, as well as
their rate of synthesis, from a metabolic genotype, the set of enzymes encoded
by a genome and their regulation. Experimental techniques have made great
strides in this area [13–15], but they cannot (yet) determine phenotypes
of genome-scale metabolic networks. Thus, computational approaches are
indispensable for this purpose. One such approach is FBA, which is based
on constraint-based modeling [16–18]. FBA has two objectives. First, it
uses constraints given by reaction stoichiometry, reversibility, and maximal
nutrient uptake rates of an organism to predict the metabolic fluxes that are
allowed in a metabolic steady state, for all network reactions. Such a steady
state would be attained by a cell population that is exposed to the same
environment over extended periods of times, such as in a chemostat. Second,
FBA then uses linear programming [19] to identify those allowed metabolic
fluxes that maximize certain desired phenotypic properties, such as ATP or
NADPH production, or the rate at which biomass with a known chemical
composition is produced [10,16,17,20–22,24]. This latter rate is particularly
important, because it is a proxy for the maximal rate at which cells can grow
and divide. FBA is only one among several constraint-based techniques. Other
examples include minimization of metabolic adjustment (MOMA), which
aims to predict how metabolic networks react to loss of individual chemical
reactions [25]. Extreme pathway analysis, elementary mode analysis, and the
minimal metabolic behavior (MMB) approach decompose allowable fluxes
into minimal sets analogous to basis vectors [26–32].

Aside from the steady-state assumption, the main limitation of most
constraint-based methods is that they do not account for the regulation of
enzymes, such as through transcriptional regulation. Efforts to incorporate
regulation [33–36] are still hampered by limited empirical data. Nonetheless,
constraint-based metabolic phenotype predictions are often in good agree-
ment with experimental data [21, 25, 37]. Where they are not, microbial
laboratory evolution experiments have shown that within a few hundred
generations, a microbial strains’ growth phenotype in a given environment
can approach the FBA-predicted phenotype [38]. This means that regulatory
constraints can be overcome on short evolutionary time scales.

(continued)
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(continued)
To use constraint-based modeling for any one organism, the reactions in

its metabolic network have to be known, as do its biomass composition,
and nutrient uptake constraints. It is important to realize that the qual-
ity of phenotypic predictions obtained through constraint-based modeling
depends critically on the accuracy and completeness of this information.
Through a combination of manual curation and integration of genome-scale
sequence data and functional genomics data, metabolic networks have been
reconstructed for more than 40 organisms [39]. Such reconstructions are
time-consuming and challenged by several factors, such as incorrect gene
annotations, missing information on enzymes, elemental reaction imbalances,
and incomplete information on reaction directionality, specificity, and ther-
modynamics. Increasingly, methods are being developed to overcome these
and other obstacles [39–41].

I will focus here on genome-scale metabolic networks for two reasons. First,
we have learned a substantial amount about their structure and their evolution
in recent years. Second, they are the first systems that allow a comprehensive
understanding of the relationship between a metabolic genotype (the DNA that
encodes all metabolic enzymes an organism harbors) and a metabolic phenotype, the
biosynthetic and energetic abilities of a metabolic network in a given environment.
In other words, genome-scale metabolic networks are the first class of systems
for which we can build a bridge between genotype and phenotype on the scale of
entire organisms. Together, these two features make metabolic networks ideal study
objects for the study of evolving biological systems, that is, for an Evolutionary
Systems Biology.

A metabolic network is a whole comprised of many enzyme parts. To understand
its structure and function, an evolutionary perspective is useful. The whole network
constrains how its parts change over time. That is, natural selection on the function
of the whole imposes constraints on the parts. Conversely, the parts and their
changes influence the function of the whole. I will here discuss the evolution of
metabolic networks from these two complementary perspectives. First, I will discuss
different aspects of the evolution of network parts, and how the whole network
constrains this evolution. Second, I will discuss changes in these parts that can
change the function of the whole. This latter aspect is especially important, because
it can teach us about how evolutionary change in metabolic networks can lead to
new biosynthetic abilities. That is, it can teach us how metabolic innovations arise in
evolution. Although it is useful to distinguish these two classes of influence—whole
on parts, parts on whole—I note that they are not strictly separable. For example,
when an altered part changes what the whole network is doing, the new network
function may create new constraints on changes in its parts.
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2 A Whole Constraining Its Parts

2.1 Constrained Evolution of Network Enzymes

There are three principal processes that are relevant to the evolution of a metabolic
network’s parts, that is, to the enzymes that catalyze its reactions. The first
is the accumulation of changes—point mutations—in the DNA sequence of the
genes encoding these enzymes. The second is the duplication of enzyme-coding
genes. The third includes changes in the regulation of enzyme activities, for
example through changes in the regulatory DNA sequences that help regulate the
transcription of enzyme-coding genes. I will discuss the three processes in this order.

Not every point mutation that occurs in an enzyme-coding gene will survive
and be passed on to subsequent generations. Mutations that destroy an essential
enzyme’s function and eliminate the metabolic flux through an essential reaction, for
example, will be lethal to their carrier. The incidence of surviving point mutations in
an enzyme-coding gene can be estimated by comparing the gene’s DNA sequence
to that of an orthologous gene—a gene with which it shared an ancestor in the
past. Since the time of their common ancestor, two classes of point mutations may
have occurred in either gene. The first are called synonymous or silent mutations.
These are mutations that changed the DNA sequence of the gene, but due to the
redundancy of the genetic code did not affect the amino acid sequence of the
encoded protein. The second class of mutations is called non-synonymous or amino
acid replacement mutations. These mutations did change the amino acid sequence
of the encoded proteins, and may therefore also have changed the protein’s function.
The relative incidence of these two kinds of mutations, and the extent to which they
have been preserved in evolution is commonly estimated through the fraction of
synonymous changes that occurred at synonymous sites, often denoted as Ks, and
through the fraction of non-synonymous changes per non-synonymous site Ka [42].
These measures take into consideration that different nucleotide sites in a gene have
a different likelihood to undergo synonymous or non-synonymous change.

Silent mutations are subject to weaker selection than non-synonymous mutations,
at least for most proteins and for most nucleotide sites in a gene [42, 43]. (Some
silent mutations may cause changes in gene expression that are subject to selection.)
For most enzyme-coding genes, one would therefore expect that Ka is smaller
than Ks. In other words, the ratio Ka/Ks will be less than one, because fewer non-
synonymous than silent changes are preserved in extant genes. The smaller this
ratio is, the fewer amino acid replacement changes have been tolerated in the
evolutionary history of a gene. In other words, a gene with a very small ratio Ka/Ks

has experienced stronger selection in its history than a gene with a large ratio Ka/Ks.
Evolutionary constraints can depend on an enzyme’s location in a genome-scale

metabolic network, and on the metabolic flux through the enzyme. To render this
assertion more precise I need to define what I mean by the location of an enzyme.
One can represent a metabolic network as a graph, a mathematical object that
consists of nodes (enzymes), and where any two nodes can be connected. In a
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metabolic network, two enzymes are connected, if they share at least one metabolite
as a substrate or as a product [44]. In the language of graph theory, two enzymes
that are connected are also called neighbors. The number of enzymes that any one
enzyme is connected to is called the degree or, more colloquially, the connectivity of
the enzyme. Some enzymes are highly connected (they have high degree), whereas
others are not highly connected. Many enzymes in central metabolic processes, such
as central energy metabolism, are highly connected, whereas enzymes involved in
peripheral pathways are often lowly connected. An enzyme’s connectivity can be
viewed as a measure of its position in the network, and of how central a role it
might play in the network. (Other notions of position and centrality are also used in
graph theory [45].)

The connectivity of an enzyme can influence its rate of evolution. For instance,
in the metabolic network of the yeast S. cerevisiae, more highly connected enzymes
evolve more slowly. That is, their ratio Ka/Ks is lower than for less connected
enzymes [46]. Similar observations have been made in the fruit fly Drosophila
melanogaster [47]. The likely reason comes from the effects of perturbations—for
example caused by mutations—on the rate at which a highly connected enzyme
catalyzes formation of its reaction product. Products of highly connected enzymes
may be substrates for many other reactions. Perturbations in forming such products
are thus more likely to be detrimental than perturbations in less highly connected
enzymes. The association between enzyme connectivity and constraint, however, is
not strong and may even be absent in some groups of organisms, such as mammals
[48] and E. coli [49].

Analogous observations hold for enzymes with high metabolic flux. These are
enzymes that turn over many molecules of substrate per unit time, and they are
often involved in central metabolic processes. Specifically, enzymes with high flux
tend to evolve more slowly [46]. They can tolerate fewer amino acid changes than
enzymes with low flux. The reason becomes clear if one considers that most amino
acid substitutions will reduce rather than increase an enzyme’s activity, and thus
reduce the metabolic flux that the enzyme can support. The observation that fewer
amino acid changes can be tolerated in enzymes with high flux means that reduced
flux in such enzymes is more likely to have adverse consequences for the organism,
and that such enzymes are thus likely to be eliminated via natural selection. In other
words, the biological function of a metabolic network constrains the evolution of its
parts by point mutations. More precisely, it constrains the evolution of different parts
to different extent. Parts with high flux and high connectivity are more constrained,
and from this perspective, more important to the network’s function, than parts with
low flux.

In addition to the relationship between enzyme connectivity, flux, and constraints
on enzyme evolution, several other observations have been made about the con-
strained evolution of metabolic genes. For instance, metabolic genes can be more
constrained in their evolution than non-metabolic genes, at least in mammals and
in Drosophila [47, 48]. In addition, different classes of enzymes are constrained
to a different degree. For example, in Drosophila, enzymes that are involved in
metabolizing xenobiotic substances are less constrained in their evolution than other
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enzymes [47]. In mammals, enzymes expressed in the nucleus are more highly
constrained than enzymes expressed in the cytoplasm [48].

In a minority of genes, the incidence of amino acid changing substitutions
may actually exceed that of silent substitutions. In these genes, the ratio Ka/Ks

may exceed 1. Patterns like this indicate the action of positive selection, that
is, one or more amino acid changes were favored by selection, and have swept
through an evolving population, which can explain the elevated rate of amino acid
change. A ratio of Ka/Ks that exceeds 1 indicates beneficial functional changes in
a protein. Unfortunately, without detailed and laborious biochemical analyses it can
be difficult to understand why a change is beneficial.

In general, only a minority of genes is subject to positive selection at any one
time. In the genus Drosophila, for example, fewer than 10% of enzyme-coding
genes appear to be under positive selection [47]. In many of these genes, the
reason for their functional change has not been characterized, but exceptions exist.
For example, the gene encoding the enzyme glutathione-S-transferase is under
positive selection. The likely reason is that the changes in glutathione-S-transferase
help improve the enzyme’s ability to detoxify pesticides such as DDT, and thus help
flies survive these pesticides [50].

2.2 Gene Duplication

The second major process that can affect metabolic network parts is the duplication
of enzyme-coding genes. Gene duplication is a ubiquitous process in the evolution
of most genomes. For example, as many as half of the genes in the human
genome have a duplicate [51]. Gene duplications arise as by-products of DNA
recombination and DNA repair processes that sometimes duplicate stretches of an
organism’s DNA. The duplicated stretches can be very short, comprising only a few
nucleotides, or they can be very long, comprising large segments of chromosome,
entire chromosomes, or even the entire genome. If any duplicated stretch of DNA
includes at least one gene, a gene duplication has occurred. Most duplicate genes
are eliminated from a genome shortly after the duplication [52]. However, a small
fraction of duplicates is usually preserved, indicating that their duplication either did
no harm or was favored by selection. Over time duplicates may preserve a similar
function, they may acquire specialized functions, or they may evolve completely
new functions [53, 54].

If the functional demands on a metabolic network were irrelevant for duplications
in its enzyme-coding genes, then the incidence of preserved duplications should
be the same for all metabolic genes. This, however, is not the case, indicating that
network structure and function influences gene duplication patterns. For example, in
mammalian metabolic networks [55], duplications are preferentially preserved in
genes whose products transport metabolites into cells. In cattle, genes encoding
metabolic enzymes that are involved in milk production are more likely to have
duplicates, indicating that natural selection may have influenced duplication patterns
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in these genes [55]. Even adaptive genetic changes in laboratory evolution experi-
ments, that is, changes that occur on short evolutionary time-scales, can be mediated
by gene duplications. For instance, in populations of yeast cells cultivated under
conditions where glucose limits the rate of cell growth, duplications in high affinity
hexose transporter genes accumulate [56]. Such duplications allow yeast cells to
scavenge scarce glucose from the environment.

The metabolic significance of gene duplications is that they can increase the
level of an enzyme’s expression. Enzymes that are products of duplicated genes
may occur in higher concentrations in the cell, and they may therefore support
greater metabolic flux through them. One might therefore predict that enzymes
with high metabolic flux should often be the product of duplicate genes. This
prediction is borne out by existing observations. For example, high-flux enzymes
in the metabolism of the yeast S. cerevisiae are more often encoded by duplicate
genes than low-flux enzymes [46]. Thus, here again a function of the whole
network constrains the evolution of its parts, in this case through gene duplication.
Specifically, the preservation of gene duplications is favored in enzyme-coding
genes whose protein products catalyze high-flux reactions. Many such genes occur
in central metabolism.

An extreme form of duplication is the duplication of an entire genome. After such
a genome duplication, most duplicated genes typically get lost over time, and only a
small fraction of them remain. The remaining fraction may not comprise a random
subset of metabolic genes. For example, it has been shown that the enzyme-coding
genes preserved in duplicate after an ancient genome duplication in S. cerevisiae
preferentially encode glycolytic enzymes. This preferential preservation allows a
higher flux through glycolysis relative to other parts of yeast’s metabolism, because
it increases the total amount of glycolytic enzymes relative to other enzymes.
It allows yeast cells to ferment glucose more effectively, and it may have helped
yeast cells survive in a glucose-rich environment [57].

Taken together, these observations suggest that the constraint that a whole
metabolic network imposes on the duplication of its parts arises through the
increased enzyme expression that such duplications cause. If increased expression
of an enzyme is advantageous, for example because it allows greater flux through a
metabolic reaction, duplications in the gene encoding the enzyme may be preserved
preferentially.

2.3 Gene Regulation

The third and final major process that can affect metabolic network parts is the
evolution of their regulation. It is the most difficult process to study, because
regulation can have many facets. Enzymes can be regulated on the level of their
RNA expression, their protein expression, their biochemical activity, for example
through phosphorylation, and in many other ways. Studies of how individual
enzymes are regulated have a long history [12]. However, information about such
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small-scale regulatory changes has not yet given rise to a principled understanding
of how the regulation of all enzymes in a metabolic network evolves. Only this much
is certain: Regulation is extremely malleable and can change on short evolutionary
time-scales for many enzymes. For example, laboratory evolution experiments in
which E. coli cells adapt evolutionarily to new nutrients show that such change can
occur in a few hundred generations, can alter the transcription of many genes, and
can occur differently in parallel experiments [58]. Regulatory changes like those
observed in laboratory evolution experiments reflect changes in the demands that a
whole metabolic network operating in a new environment places on the function of
its parts.

In closing this section, it is worth mentioning that all three processes—gene
sequence evolution, gene duplication, and regulatory evolution—usually occur si-
multaneously. For example, several enzyme-coding genes in the yeast tricarboxylic
acid (TCA) cycle have undergone duplication, and have subsequently diverged in
their sequence and expression, which reflects their adaptation to operate in different
cell compartments [59].

3 Parts Transforming the Whole

I will next discuss changes that affect the number and identity of the chemical
reactions in a metabolic network. These are qualitative changes that can alter a
network’s biosynthetic abilities profoundly. As opposed to the quantitative changes
that I discussed so far, which typically just reduce or increase the rate at which a
network can synthesize biomass in a given environment, such qualitative changes
are changes in parts that can transform the whole network. They may eliminate
the network’s ability to sustain life in a given environment, or they may allow the
network to sustain life in new chemical environments. The latter kind of change
is an especially worthy subject of study, because it speaks to the fundamental
evolutionary question of how new traits arise in evolution.

The reaction complements of metabolic networks can vary greatly among organ-
isms. For example, metabolic annotations available for more than 200 completely
sequenced bacterial genomes suggest that metabolic networks can differ in more
than 50% of their reactions [60]. Even different strains of the same organism, such
as E. coli, may differ in more than 100 metabolic reactions [61].

It is often useful to think of a metabolism as being partitioned into two major
parts, a core and a periphery. Core metabolism comprises processes central to life,
such as glycolysis, the TCA cycle, or the pentose phosphate shunt. The periphery
includes reactions that are needed to metabolize specific sources of chemical
elements. It converts these elements into compounds that the core metabolism
can process further. The periphery also includes secondary metabolism, which
synthesizes molecules such as alkaloids or pigments that are not absolutely essential
for life, but that serve other important functions, such as protection against a hostile
environment.
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Core metabolism is held to be highly optimized in different ways [62, 63].
For example, it has been suggested that among a number of alternative “designs” of
the TCA cycle, the structure of the cycle realized in nature uses the smallest number
of chemical transformations, and produces the highest yield in ATP [63]. However,
even such central parts of metabolism can vary among different organisms. For
example, analysis of completely sequenced bacterial genomes suggests that the
TCA cycle may be incomplete in multiple species [64]. Although changes in core
metabolism do occur, variation in the reaction complement of a metabolic network
tends to be more frequent in the periphery of metabolism.

3.1 Reaction Deletions

The first of two major kinds of qualitative changes in a metabolic network is
the elimination of reactions. Such elimination can occur through loss of function
mutations in enzyme-coding genes. It is often observed for organisms living in
environments that undergo little change, such as endoparasitic or endosymbiotic
single-celled organisms, which live inside other organisms. Examples include
Buchnera aphidicola, an endosymbiotic relative of E. coli, which lives inside the
cells of aphids [65, 66]. Buchnera provides its host with essential amino acids in
an association that has persisted for many million years [66]. During this time the
genome of Buchnera has lost many genes, and its metabolic network has lost many
chemical reactions [67]. For example, while the metabolic network of E. coli has
more than 900 reactions [68], that of Buchnera has merely 263 metabolic reactions
[67]. E. coli is a metabolic generalist whose metabolic network can sustain life on
dozens of different carbon sources in otherwise minimal chemical environments.
The metabolic network of Buchnera has lost this versatility, because it is no longer
needed. Similar reductions in genome sizes and metabolic networks have been
observed in other organisms, such as the human pathogen Mycoplasma pneumonia,
whose metabolic network comprises only 189 reactions [69]. More generally, a
reduction in network size and versatility to live in multiple environments would
be expected under prolonged exposure to the same environment [70, 71].

Flux balance analysis (FBA, Box 1) can predict the spectrum of molecules that
can be synthesized by a given metabolic network from a set of nutrients in the
environment. FBA is also useful to reconstruct the evolutionary trajectory that can
transform a complex metabolic network like that of E. coli into the much simpler
network of its relative Buchnera through a sequence of mutations that eliminate
enzyme-coding genes and reactions from a metabolic network [72,73]. For example,
one can predict the reaction complement of B. aphidicola with about 80% accuracy
from knowledge about the E. coli metabolic network, and about the environment in
which Buchnera lives [73].
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3.2 Reaction Additions

The second major class of qualitative changes to a metabolic network is the addition
of chemical reactions. There are several mechanisms by which reactions can get
added to a network. For example, after a duplication of an enzyme-coding gene,
one of the duplicates may preserve its enzymatic function, whereas the other may
evolve a new catalytic function. Mechanisms like this require the origin of new
catalytic functions in enzymes. Other mechanisms do not. Consider horizontal gene
transfer. Through this mechanism, new enzyme-coding genes can be imported into
a genome from the genomes of other organisms. Through horizontal gene transfer
reactions can get added to a metabolic network without the need to evolve new
enzymatic activities from scratch. It is thus an especially powerful way of evolving
new metabolic traits. I will briefly discuss its incidence before returning to metabolic
network evolution.

Horizontal gene transfer occurs both in prokaryotes and eukaryotes, but it is
much more prevalent in prokaryotes. It can change genome organization on short
evolutionary time-scales [74–82]. For example, DNA is transferred into the E. coli
genome at a rate of 64 kilobase pairs per million years [83]. With an average gene
length of approximately 1 kilobase pairs [84], this rate amounts to the transfer of 64
genes per million years. Even closely related E. coli strains can differ by more than
one megabase pair of DNA [77], or more than 20% of their genome, and they may
have experienced of the order of 100 gene additions through horizontal transfer
relative to other strains [74]. Because some 30% of E. coli genes have metabolic
functions [1,84], the effect of such horizontal gene transfer on metabolism is surely
profound. The addition of new DNA can be compensated by the deletion of other
DNA, and many newly added genes reside in the genome only for short amounts of
time [75, 83]. Gene turnover in microbial genomes can thus be very high.

A recent study used FBA (Box 1), as well as information about horizontal
gene transfer into the E. coli genome to examine evolutionary changes in E.
coli metabolism [75]. It concluded that metabolic genes that are preserved after
horizontal transfer are often responsible for metabolic reactions that transport and
metabolize nutrients. Such genes may be preserved, because they allow the organism
to survive in specific nutrient environments. The relevant reactions are located at
the periphery of metabolism and not at its core. The study also showed that gene
duplication played a relatively small role in the evolution of E. coli metabolism,
at least in the last hundred million years [75]. This observation underscores the
importance of horizontal gene transfer in metabolic evolution. Horizontal gene
transfer may be one of the reasons why prokaryotes are masters of metabolic
innovation. They have evolved the ability to survive on an immensely broad
spectrum of nutrients, including sources of carbon such as crude oil, hydrogen,
methane, toxic xenobiotics, and antibiotics [85–91].
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4 A Systematic Analysis of Metabolic Innovation

New phenotypes that provide a qualitative advantage to an organism’s ability to
survive or reproduce are also known as evolutionary innovations. The ability to
sustain life on a new nutrient can be considered an evolutionary innovation in
metabolism. We know many evolutionary innovations (metabolic and others). They
are fascinating and well-studied examples of natural history [92]. But beyond the
well-worn idea that innovations require a combination of mutation and natural
selection, we know little about the principles underlying their origins. To identify
such principles requires that one can study the relationship between genotype and
phenotype systematically, not just for one genotype and one phenotype, but for many
genotypes and many phenotypes. To determine phenotypes of many organisms is
still difficult, time consuming, and an area of active methods development [93].
Thus, systems where one can predict phenotype from genotype are currently the best
starting points for understanding principles of innovation. Metabolism is one such
system, because tools such as FBA (Box 1) can help us understand its genotype–
phenotype relationship. In the next section, I will summarize recent work that has
advanced our understanding of metabolic innovations.

To appreciate the key difficulties in understanding the origins of metabolic
innovations, I first need to make the notion of metabolic genotype and phenotype
more precise (Fig. 2.1). An organism’s metabolic genotype is the part of the
organism’s genome that encodes metabolic enzymes. However, it is often more
expedient to represent this genotype more compactly, such as through the presence
or absence of specific enzyme-catalyzed reactions in the network [95]. The current
known “universe” of metabolic reactions comprises more than 5,000 such reactions,
each of which can be present or absent in the metabolic network of any one
organism. This means that there are more than 25000 possible metabolic networks
[95,96], distinguished from one another through the presence or absence of different
reactions (enzyme-coding genes). Together, they form a vast collection, a space
of metabolic genotypes. This space is much larger than the number of metabolic
networks that could have existed on earth since life’s origin.

In this space, one can define a distance between metabolic genotypes as the
fraction of metabolic reactions in which these genotypes differ. Two genotypes
(metabolic networks) would differ maximally if they did not share a single reaction.
Two genotypes are neighbors in this space if they differ minimally, that is, in only
one metabolic reaction. The neighborhood of a genotype G comprises all of its
neighbors, more than 5,000 metabolic networks, each of which differing from G
in one reaction. Metabolic genotype space is a high dimensional space with many
counterintuitive properties, whose structure is akin to that of hypercubes—cubes in
multidimensional spaces [97, 98].

To classify metabolic phenotypes, it is expedient to focus on metabolism’s central
task, the ability to sustain life—to synthesize all biomass molecules—in different
chemical environments [95]. For example, if one focuses on carbon metabolism,
one can ask which molecules can serve as sole carbon and energy sources for a
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Fig. 2.1 Metabolic genotypes and phenotypes. The metabolic genotype of a genome-scale
metabolic network can be represented in discrete form as a binary string, each of whose entries
corresponds to one biochemical reaction in a “universe” of known reactions. Individual entries
indicate the presence (“1,” black type in stoichiometric equation) and absence (“0,” gray type) of
an enzyme-coding gene whose product catalyzes the respective reaction. Metabolic phenotypes
can be represented by a binary string whose entries correspond to individual carbon sources. The
string contains a “1” for every carbon source (black type), for which a metabolic network can
synthesize all major biomass molecules, if this source is the only available carbon source. Flux
balance analysis can be used to predict metabolic phenotypes from metabolic genotypes. Figure
and caption adapted from [94]. Used by permission from Oxford University Press

metabolic network. To represent such phenotypes systematically, one can use some
number of common carbon sources, say 100 different molecules, and write these as a
list (Fig. 2.1, right panel). A metabolic phenotype can then be represented as a binary
string, where one writes a one next to a carbon source in the list, if the network
can sustain life on it, and a zero if it cannot. Note that for 100 carbon sources,
there is already an astronomical number of 2100 possible metabolic phenotypes, each
of them encapsulating viability in a different spectrum of chemical environments.
Analogous classifications are possible for sources of other elements [71]. FBA and
constraint-based modeling (Box 1) allow us to compute metabolic phenotypes from
metabolic genotypes.

All evolution occurs in populations of organisms. We can envision such a
population, each of whose members may have a different metabolic genotype, as
a collection of points in metabolic genotype space. Such a population explores
metabolic genotype space through mutation (changes in enzyme-coding genes that
add or delete reactions from a network) and natural selection that preserves well-
adapted phenotypes. Suppose that individuals in this population have a metabolic
phenotype that is well adapted to a population’s current environment. When that
environment changes, a new phenotype may become superior to the old phenotype.
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For example, individuals with the old phenotype may not have been able to thrive
on some carbon source, say ethanol. In the new environment ethanol may be an
abundant carbon source. It would be advantageous if organisms in the population
could “find” genotypes with this phenotype, and thus begin to use ethanol as a sole
carbon source.

The following considerations illustrate two major difficulties with finding such
novel and superior metabolic phenotypes through a blind evolutionary search
conducted by a population in the vast metabolic genotype space. First, imagine that
only one or a few metabolic genotypes in this space have the superior phenotype.
Because this space is so large, it would be difficult or impossible to find these
genotypes in realistic amounts of time. Second, during this search, individuals in
a population have to preserve their old phenotype, which allows them to survive
on existing nutrients. If any mutation abolished this ability, its carrier would perish.
In other words, while the population explores the vast genotype space for new and
potentially useful phenotypes, it needs to preserve its old phenotype. It needs to
conserve the old while exploring the new.

These problems may seem difficult to overcome. However, systematic analyses
of metabolic genotype space, conducted by sampling thousands of metabolic
networks from this space and by computing their phenotypes, reveal two major
features of this space that help overcome them [71, 94, 96].

The first feature is that there are not few but hyperastronomically many genotypes
with a given metabolic phenotype. For example, there are more than 10800 metabolic
networks with 2,000 reactions that can synthesize all the small biomass molecules of
the bacterium E. coli using glucose as the sole carbon source. What is more, these
metabolic genotypes are connected in metabolic genotype space in the following
sense [71, 99]. One can step from one metabolic genotype to its neighbor, to the
neighbor’s neighbor, and so forth, without changing the metabolic phenotype, until
one has traversed a large fraction of the space. Specifically, metabolic networks with
the same phenotype may share as little as 30% of their reactions [71]. The reactions
they do share form part of core metabolism. Most other reactions can vary.

Figure 2.2 illustrates schematically how one can envision the organization of
metabolic genotypes with any one particular phenotype. The left-hand panel shows
a large rectangle which stands for genotype space. Inscribed in this rectangle is
a single open circle, intended to illustrate that a metabolic genotype (a metabolic
network) is a single point in this space. The right-hand side shows an identical
rectangle, but with many open inscribed circles. Each of them corresponds to a
single metabolic genotype with the same phenotype P. Two genotypes (circles) are
connected by a straight line if they are neighbors. The panel illustrates that metabolic
networks with the same phenotype form a vast network of networks—a genotype
network—that reaches far through genotype space. I note that a two-dimensional
image like this just provides a crude visual crutch. It allows us merely to get a
modicum of visual intuition about the organization of a space that is vast and that
has many dimensions.

Large genotype networks that extend far through metabolic genotype space are
not a peculiarity of specific metabolic phenotypes. They exist for a broad range of
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Metabolic network
(Metabolic genotype)

A network of metabolic networks
(a genotype network)

Fig. 2.2 Genotype networks. The large rectangle in each panel stands for genotype space. The left
panel shows a single open circle inscribed in this space, which stands for a hypothetical metabolic
genotype, that is, a metabolic network with a specific set of enzyme-catalyzed reactions and some
phenotype P. The right panel shows a large collection of circles, each corresponding to a metabolic
genotype with the same phenotype P. Two circles are linked by a straight line if they are neighbors,
that is, if the metabolic networks that they represent differ in a single chemical reaction. The linked
circles form a large network of metabolic genotypes—a genotype network. See text for details

phenotypes able to sustain life on many different sole carbon sources, on multiple
carbon sources, as well as on sources of other chemical elements [71, 94, 96]. That
is, each such phenotype has an associated genotype network that is typically large
and reaches far through genotype space. Genotype networks are generic features
of metabolic genotype space. Their existence is a consequence of their robustness
to genetic change, which in turn is linked with life in changing environments
[70, 100–105].

A second important feature regards the neighborhoods of different genotypes
with the same phenotype. Consider two genotypes G1 and G2 that have identical
phenotypes P, and all genotypes in the two neighborhoods of these two genotypes.
Using tools such as FBA, one can examine the genotypes in these neighborhoods
one by one, and establish a list P1 and P2 of all phenotypes different from P in
the neighborhoods of G1 and G2, respectively. One can then ask whether the new
phenotypes in P1 are mostly the same as the new phenotypes in P2, or if they
are very different. Here is the answer: Even if G1 and G2 differ only modestly in
the reactions that they contain, P1 and P2 typically contain mostly different new
phenotypes. In other words, the spectrum of new phenotypes in the neighborhood
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of one metabolic genotype is typically not identical to that in the neighborhood of
another genotype. In other words, different neighborhoods of metabolic networks—
even networks with the same phenotype—contain different novel phenotypes. The
extent of this diversity is not very sensitive to specific phenotypes P [71,94,96]. It is
another generic feature of metabolic genotype space.

Figure 2.3 illustrates these observations. Like the right panel of Fig. 2.2, this
figure also shows a hypothetical genotype network (open circles) whose members
have some phenotype P. In addition, it shows multiple colored circles, each of which
stands for a genotype with a phenotype different from P. Each color corresponds
to a different phenotype. Each of these genotypes are neighbors of a genotype on
the genotype network. The figure also shows two dashed circles that circumscribe
the neighborhood of two different genotypes in the circles’ center. The two circles
contain different new phenotypes (colors), illustrating the principle I just mentioned.
Note again that this figure is a highly simplified sketch of a high-dimensional
genotype space. For example, metabolic genotypes have thousands of neighbors, not
just the few neighbors shown here. In addition, the genotypes with new phenotypes
(colors) generally also form large genotype networks, which are not shown here.

In sum, two generic properties characterize metabolic genotype space. The first
is that genotypes with the same phenotype form large and far-reaching genotype
networks. The second is that the neighborhoods of different genotypes on the same
genotype network typically contain different metabolic phenotypes. Together, these
features facilitate the evolutionary search of novel phenotypes through mutation and
natural selection in genotype space. First, the fact that there are astronomically many
and not few genotypes with the same phenotype facilitates the encounter of any
one genotype with this phenotype. Second, genotype networks with their diverse
neighborhoods facilitate the exploration of many novel phenotypes while preserv-
ing existing phenotypes. The reason is that genotype networks allow metabolic
genotypes to be changed through addition and elimination of reactions, while
preserving their phenotype. During such change, individuals in a population of
evolving organisms can explore ever-changing neighborhoods of genotype space,
which allows them to access a broad spectrum of novel phenotypes, many more
than if genotype networks did not exist.

I note that the features of metabolic genotype space that I described here
may depend on the particular class of phenotype one studies. However, they are
probably widespread, because they also exist in multiple other classes of systems,
including regulatory circuits, proteins, and RNA [106–110]. In general, they occur
in systems whose genotype–phenotyperelationship is such that more genotypes than
phenotypes exist, and where phenotypes are to some extent robust to changes in
genotype [94].
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Fig. 2.3 Diverse genotypic neighborhoods in genotype space. As in Fig. 2.2, the large collection
of open circles stands for a hypothetical genotype network, that is, a large connected set of
metabolic genotypes with the same phenotype. Circles in different colors correspond to genotypes
that are neighbors of a genotype on this genotype network, but that have different phenotypes.
Each color stands for a different phenotype. Each of the two large dotted circles stands for the
neighborhood of a genotype, which is at the center of the circle. The two neighborhoods each
contain two genotypes with new phenotypes (colored circles). However, the identity of these
phenotypes differ between the two neighborhoods, as indicated by their different colors (yellow
and beige in one neighborhood, blue and red in the other). See text for details. Adapted from [94].
Used by permission from Oxford University Press
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5 Conclusions and Future Challenges

Theodosius Dobzhansky’s old adage that “nothing in biology makes sense except
in the light of evolution” [92] also applies to metabolism. We will understand the
structure of genome-scale metabolic networks to the extent that we will understand
their evolution. Our efforts in this area are just beginning. In recent years, our
ability to reconstruct evolutionary processes in the laboratory has made great strides,
as have efforts to determining different aspects of metabolic phenotypes. Many
of the studies I discussed here are based on comparative analyses of metabolic
networks, aided by computational predictions of metabolic phenotypes. In the
foreseeable future, it may become possible to integrate the observations I discussed
here with experimental observations. Doing so may lead to a more comprehensive
understanding of how a whole metabolic network influences the evolution of its
parts, and how these parts influenced the whole.

The ability to predict metabolic phenotype from metabolic genotype has opened
completely new avenues for a systematic understanding of metabolic innovation.
It allows us to study metabolic innovations not one by one, as case studies in natural
history, but systematically, as part of a metabolic genotype space that encapsulates
all possible metabolisms. Such a systematic approach allows us to ask whether
fundamental principles exist that facilitate metabolic innovations. Here also, we
are at a beginning. Genotype networks and their diverse neighborhood are two
features of genotype space that facilitate innovation, but this space may harbor many
other secrets. The tools of Evolutionary Systems Biology will allow us to uncover
these secrets.
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