
Chapter 2
Markov Chain Monte Carlo Methods
over Discrete Sample Space

2.1 Constructing a Connected Markov Chain over
a Conditional Sample Space: Markov Basis

In the previous chapter we discussed exact tests for some simple models of
contingency tables. As we discussed at the end of Sect. 1.3, the Markov chain Monte
Carlo method is general and useful when the cardinality of conditional sample space
(fiber) is large. We first consider connectivity of a Markov chain, without fully
specifying the transition probabilities.

Consider the independence model of general two-way contingency tables in
Sect. 1.3. The fiber is the set of I × J contingency tables with fixed row sums and
column sums:

Fttt = {xxx ≥ 0 | xi+, i ∈ [I], x+ j, j ∈ [J] are fixed according to ttt}. (2.1)

Let A be the configuration in (1.18). The kernel of A is denoted by kerA. The set of
integer vectors in kerA is called the integer kernel of A and is denoted by

kerZ A = {zzz | Azzz = 0,zzz ∈ Z
η}, η = IJ.

An element of kerZ A is called a move for the configuration A. If xxx and yyy belong to
the same fiber Fttt , then yyy− xxx is a move, because

A(yyy− xxx) = Ayyy−Axxx = ttt − ttt = 0. (2.2)

Now consider the following integer matrix zzz = zzz(i1, i2; j1, j2) = {zi j},

zi j =

⎧
⎨

⎩

+1, (i, j) = (i1, j1),(i2, j2),
−1, (i, j) = (i1, j2),(i2, j1),

0, otherwise.
(2.3)
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The nonzero elements of zzz(i1, i2; j1, j2) are depicted as

j1 j2
i1 +1 −1
i2 −1 +1

. (2.4)

Adding zzz(i1, i2; j1, j2) to a contingency table xxx does not alter the row sums and the
column sums. Hence zzz(i1, i2; j1, j2) is a move for A in (1.18); that is, zzz(i1, i2; j1, j2)∈
kerZ A. We call a move of the form (2.4) a basic move for the independence model
of two-way contingency tables. Because of the elements −1 in zzz(i1, i2; j1, j2), xxx+ zzz
contains a negative element if xi2 j1 = 0 or xi1 j2 = 0. If both of these elements are
positive, then xxx+ zzz is in Fttt if xxx ∈Fttt . We have “moved” from xxx to xxx+ zzz in Fttt . This
is why we call zzz(i1, i2; j1, j2) a move. The following is an example of adding a move
for the case of I = J = 3, i1 = j1 = 1, i2 = j2 = 2.

2 1 1 4
2 0 2 4
1 2 0 3
5 3 3

+

1 −1 0
−1 1 0
0 0 0

=

3 0 1 4
1 1 2 4
1 2 0 3
5 3 3

.

Suppose that we always use the last row I and the last column J in the move and
let i2 = I and j2 = J. Then

{zzz(i1, I; j1,J) | 1 ≤ i1 ≤ I− 1,1 ≤ j1 ≤ J− 1}
forms a basis of kerZ A. More precisely the set forms a lattice basis of kerZ A in
the sense that every zzz ∈ kerZ A is uniquely written as an integer combination of
zzz(i1, I; j1,J)s. In fact the elements of the last row and the last column of zzz = {zi j} ∈
kerZ A are uniquely determined from the other elements. Hence zzz ∈ kerZ A can be
uniquely written as

zzz =
I−1

∑
i1=1

J−1

∑
j1=1

zi1 j1 × zzz(i1, I; j1,J), (2.5)

because both sides have the same elements in the first I − 1 rows and the first J − 1
columns. This is related to use of the last level as the base level discussed at the end
of Chap. 1.

Note that the lattice basis is very simple for the independence model of I × J
tables. However, for the fiber in (2.1) we are requiring nonnegativeness of the
frequency vectors. As an example consider the following two elements of the fiber
for I = J = 3 with 1 = x1+ = x2+ = x+1 = x+2, 0 = x3+ = x+3.

1 0 0 1
0 1 0 1
0 0 0 0
1 1 0 2

,

0 1 0 1
1 0 0 1
0 0 0 0
1 1 0 2

.
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We see that we cannot add or subtract any of zzz(i1,3; j1,3) to/from these tables
without making some cell frequency negative. However, obviously these two tables
are connected by the following move:

1 −1 0
−1 1 0
0 0 0

.

This example suggests that we can move around a fiber if we can use all moves of
the form (2.3).

Let B ⊂ kerZ A be a finite set of moves for a configuration A. B is called a
Markov basis if for all fibers Fttt and for all elements xxx,yyy ∈ Fttt , xxx �= yyy, there exist
K > 0, zzz1, . . . ,zzzK ∈ B and ε1, . . . ,εK ∈ {−1,1}, such that

yyy = xxx+
K

∑
k=1

εkzzzk, xxx+
L

∑
k=1

εkzzzk ∈ Fttt , L = 1, . . . ,K − 1. (2.6)

The first condition says that by adding or subtracting elements of B, we can move
from xxx to yyy. The second condition says that on the way from xxx to yyy we never
encounter a negative frequency. Therefore if a Markov basis B is given, then we can
move all over any fiber by adding or subtracting moves from B. Thus connectivity
of every fiber is guaranteed by a Markov basis. We define Markov basis again in
Chap. 4 for a general configuration A. In this introductory explanation, we give a
proof that a Markov basis for the I×J independence model of two-way contingency
tables is given by the set of moves zzz(i1, i2; j1, j2). We state this as a theorem.

Theorem 2.1. Let

B = {zzz(i1, i2; j1, j2) | 1 ≤ i1 < i2 ≤ I,1 ≤ j1 < j2 ≤ J}.

B forms a Markov basis for the I× J independence model of two-way contingency
tables.

The following proof is a typical “distance reducing argument,” that is frequently
used in later chapters of this book.

Proof. We argue by contradiction. Suppose that B is not a Markov basis. Then there
exists a fiber Fttt and two elements xxx,yyy ∈ Fttt of the fiber, such that we cannot move
from xxx to yyy by the moves of B as in (2.6). Let

Nxxx = {yyy ∈ Fttt | we cannot move from xxx to yyy by moves of B}.

Then Nxxx is not empty by assumption. For zzz= {zi j}∈ kerZ A, let |zzz|=∑I
i=1 ∑J

j=1 |zi j |
denote its 1-norm. In Sect. 4.3 we define degzzz as |zzz|/2.
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Define

yyy∗ = argmin
yyy∈Nxxx

|xxx− yyy|. (2.7)

yyy∗ is one of the closest elements of Fttt that cannot be reached from xxx by B:

|xxx− yyy∗|= min
yyy∈Nxxx

|xxx− yyy|.

Now let www = xxx− yyy∗ and consider the signs of elements of www. Because www contains
a positive element, let wi1 j1 > 0. Then because www is a move, there exist j2 �= j1
with wi1 j2 < 0 and i2 �= i1 with wi2 j1 < 0. Hence for yyy∗ = {y∗i j} we have y∗i1 j2

> 0,
y∗i2 j1

> 0. Then

yyy∗+ zzz(i1, i2; j1, j2) ∈ Fttt .

yyy∗ cannot be reached from xxx by B, therefore yyy∗+ zzz(i1, i2; j1, j2) cannot be reached
from xxx by B either and yyy∗+ zzz(i1, i2; j1, j2) ∈ Nxxx. Now we check the value of |xxx−
(yyy∗+ zzz(i1, i2; j1, j2))|.
• If wi2 j2 > 0, then |xxx− (yyy∗+ zzz(i1, i2; j1, j2))|= |xxx− yyy∗|− 4 ,
• If wi2 j2 ≤ 0, then |xxx− (yyy∗+ zzz(i1, i2; j1, j2))|= |xxx− yyy∗|− 2 .

Therefore for both cases, |xxx − (yyy∗ + zzz(i1, i2; j1, j2))| < |xxx − yyy∗|. However, this
contradicts the minimality in (2.7) of yyy∗. �	

By this theorem, we can construct a connected Markov chain over any fiber. We
choose i1, i2 ∈ [I] and j1, j2 ∈ [J] randomly. We add or subtract zzz(i1, i2; j1, j2) to/from
the current state xxx and move to yyy = xxx+ zzz(i1, i2; j1, j2) as long as there is no negative
frequency in yyy. In the case where yyy contains a negative element, we choose another
set of indices i1, i2 ∈ [I] and j1, j2 ∈ [J] and continue. Then connectivity of every
fiber is guaranteed by Theorem 2.1.

Note that in the above explanation we are not precisely specifying the probability
distribution of choosing an element zzz(i1, i2; j1, j2). Also, when we say “add or
subtract,” we are not exactly saying which to choose. In fact, we should choose the
sign of a move zzz(i1, i2; j1, j2) (i.e., whether we add it or subtract it) with probability
1/2. This is related to the Markov chain symmetry for the Metropolis–Hastings
algorithm in the next section. Other than the choice of the sign of a move, the
distribution for choosing a move can be arbitrary.

In this section we considered the independence model of two-way contingency
tables. We now briefly mention the conditional independence model of three-way
contingency tables. As we saw in the previous section, the conditional independence
model of three-way contingency tables can be treated as the two-way independence
model given each level of the conditioning variable. Therefore a Markov basis for
the conditional independence model of three-way contingency tables is given as a
union of Markov bases for two-way cases in each slice of the contingency table
given the level of the conditioning variable. The two-way independence model and
the conditional independence model of three-way contingency tables are actually
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simple examples. Markov bases for more complicated models of contingency tables
are in fact difficult and each model needs separate consideration. One notable
exception is the decomposable model studied in Chap. 8.

On the other hand, there exists a general algorithm to compute a Markov basis in
the form of the Gröbner basis for any configuration. So is the problem of obtaining
a Markov basis already solved by a general algorithm? The answer is yes and no,
depending on the viewpoint. The existence of a general algorithm means that the
answer is yes from a certain theoretical viewpoint. On the other hand, for practical
purposes, the computation of the Gröbner basis for a complicated model is often
infeasible in a practical amount of time and in this sense the answer is no. Therefore,
both theoretical investigations of Markov bases for specific models and the further
general improvements in the algorithms for Gröbner basis computation are very
much needed at present.

2.2 Adjusting Transition Probabilities
by Metropolis–Hastings Algorithm

In this section we explain how to construct a Markov chain that has a specified
distribution as the stationary distribution. A good reference on important facts on
Markov chains is Häggström [69].

Consider a Markov chain over a finite sample space F . Suppose that the elements
of F are given as

F = {xxx1, . . . ,xxxs}. (2.8)

Let {Zt , t = 0,1,2, . . .}, Zt ∈ F , be a Markov chain over F with the transition
probability Q = (qi j):

qi j = P(Zt+1 = xxx j | Zt = xxxi), 1 ≤ i, j ≤ s.

A Markov chain is called symmetric if Q is a symmetric matrix (qi j = q ji).
Let

πππ = (π1, . . . ,πs)

denote the initial probability distribution of Z0 (by standard notation, we consider πππ
as a row vector). πππ is called a stationary distribution if

πππ = πππQ.

πππ is the eigenvector from the left of Q with the eigenvalue 1.
It is known that the stationary distribution exists uniquely under the assumption

that the Markov chain is irreducible and aperiodic. We only consider Markov
chains satisfying these conditions. Under these conditions, starting from an ar-
bitrary state Z0 = xxxi, the distribution of Zt for large t is close to the stationary
distribution πππ . Therefore if we can construct a Markov chain with the “target”
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stationary distribution πππ , then by running a Markov chain and discarding a large
number t of initial steps (called burn-in steps), we can consider Zt+1,Zt+2, . . . as
observations from the stationary distribution πππ .

For our problem, the target distribution πππ is already given as the hypergeometric
distribution over the fiber in (1.31). We want to construct a Markov chain over
Fttt just for the purpose of sampling from the hypergeometric distribution. For this
purpose the Metropolis–Hastings algorithm is very useful. By the algorithm, once
we can construct an arbitrary irreducible (i.e., connected) chain over Fttt , we can
easily modify the stationary distribution to the given target distribution πππ .

Theorem 2.2 (Metropolis–Hastings algorithm). Let πππ be a probability distribu-
tion on F . Let R = (ri j) be the transition probability matrix of an irreducible,
aperiodic, and symmetric Markov chain over F . Define Q = (qi j) by

qij = rij min

(

1,
π j

πi

)

, i �= j,

qii = 1−∑
j �=i

qi j. (2.9)

Then Q satisfies πππ = πππQ.

This result is a special case of Hastings [82] and the symmetry assumption on R
can be removed relatively easily. In this book we only consider symmetric R and the
simple statement of the above theorem is sufficient for our purposes.

Proof (Theorem 2.2). It suffices to show that the above Q is “reversible” in the
following sense.

πiqi j = π jq ji. (2.10)

In fact, under the reversibility

πi = πi

s

∑
j=1

qi j =
s

∑
j=1

π jq ji

and we have πππ = πππQ. Now (2.10) clearly holds for i = j. Also for i �= j

πiqij = πirij min

(

1,
π j

πi

)

= rij min(πi,π j) ;

hence (2.10) holds if ri j = r ji. �	
Equation (2.10) is often called the detailed balance or detailed balance equation.
An important advantage of the Markov chain Monte Carlo method is that it

does not need the explicit evaluation of the normalizing constant of the stationary
distribution πππ . We only need to know πππ up to a multiplicative constant. In fact in
(2.9) the stationary distribution only appears in the form of ratios of its elements
πi/π j and the normalizing constant is canceled.

Another important point in (2.9) is how the transition probability ri j is modified.
It is modified by min(1,π j/πi), which does not depend on how ri j is specified.
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In fact (2.9) can be understood as follows. ri j is the proposal transition probability.
Suppose that we are at state i and we propose to move to j with the conditional prob-
ability ri j by some random mechanism. Then after the proposal, we actually move to
j with probability min(1,π j/πi) (or stay at i with probability 1−min(1,π j/πi)). We
can do this even without knowing the value of ri j , as long as it is symmetric. This
fact is relevant in the application of the Markov basis, because when a Markov basis
element is chosen “randomly,” the probability distribution of choosing an element
can be arbitrary, as long as there is a positive probability of choosing every element.
Irrespective of the distribution, the Metropolis–Hastings algorithm yields a Markov
chain whose stationary distribution is πππ .

By Theorem 2.2 we only need to construct one Markov chain, which is
irreducible, aperiodic, and symmetric. By the Metropolis–Hastings algorithm,
we can then modify the transition probability to achieve the desired stationary
distribution πππ .

In the previous section we obtained a Markov basis for two-way tables. Once
a Markov basis is obtained for some model, it is easy to construct an irreducible
and symmetric Markov chain over FAxxxo , where xxxo is the observed frequency vector
and FAxxxo is the fiber containing xxxo. For example, at each step of the Markov chain,
randomly choose an element zzz ∈ B of the Markov basis and the sign ε ∈ {−1,+1}.
If xxx + εzzz ∈ Fttt then we move to xxx + εzzz. If xxx + εzzz �∈ Fttt we stay at xxx. Then the
resulting Markov chain is irreducible and symmetric. It is important to note that this
holds irrespective of the distribution of choosing an element from B, as long as each
element of B is chosen with positive probability. On the other hand, the sign of ε
should be chosen with probability 1/2.

We can then apply the Metropolis–Hastings algorithm of Theorem 2.2 to this
Markov chain. The resulting algorithm is given as follows.

Algorithm 2.1

Input: Observed frequency vector xxxo, Markov basis B, number of steps N,
configuration A, the null distribution f (·), test statistic T (·), ttt = Axxxo.

Output: Estimate of the p-value.
Variables: obs, count, sig, xxx, xxxnext .
Step 1: obs= T (xxxo), xxx = xxxo, count= 0, sig= 0.
Step 2: Choose zzz ∈ B randomly. Choose ε ∈ {−1,+1} with probability 1

2 .
Step 3: If xxx+ εzzz �∈ Fttt then xxxnext = xxx and go to Step 5. If xxx+ εzzz ∈ Fttt then let u

be a uniform random number between 0 and 1.
Step 4: If u ≤ f (xxx+εzzz)

f (xxx) then let xxxnext = xxx+ εzzz and go to Step 5. If u > f (xxx+εzzz)
f (xxx)

then let xxxnext = xxx and go to Step 5.
Step 5: If T (xxxnext)≥ obs then let sig= sig+ 1 .
Step 6: xxx = xxxnext , count= count+ 1 .
Step 7: If count< N then go to Step 2.
Step 8: The estimate of p-value is sig/N .

We should mention one important point concerning the counting of steps. There
are two cases where we stay at the same state xxxnext = xxx. One case is that we reject
a move zzz because xxx+ εzzz �∈ Fttt in Step 3. Another case is that the proposed state is
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Fig. 2.1 The fiber F2
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Fig. 2.2 Transition
probabilities ignoring
rejections in Step 3

rejected because of u > f (xxx+ εzzz)/ f (xxx) in Step 4. In both cases, we evaluate the
value of the test statistic T (xxxnext) = T (xxx) and the counter count is increased. For
unbiased estimation of the p-value, we need to include both cases in evaluation of
T and the counting of the steps.

In Step 3, if xxx is close to the boundary of Fttt , then it may be the case that xxx+εzzz �∈
Fttt with high probability. In this case we might be tempted to choose zzz depending
on xxx such that the probability of xxx+ εzzz ∈ Fttt is higher. This is an interesting topic
for investigation, although it is not trivial to guarantee the symmetry ri j = r ji if we
choose a move depending on the state.

The above point can be illustrated by the following very simple example.
Consider a configuration A= (1,1), which is a 1×2 matrix. Let t = Axxx, xxx = (x1,x2)

′
and consider the fiber with t = 2:

F2 = {(x1,x2) | x1 + x2 = 2,x1,x2 ∈ N}, N= {0,1,2, . . .}.

Then zzz = (1,−1)′ is a move, which obviously connects F2. The fiber is depicted as
in Fig. 2.1, where the states are labeled by the values of x1.

Note that zzz cannot be subtracted from (0,2) and zzz cannot be added to (2,0),
because these operations produce −1. Therefore if we are at (0,2) we can only add
zzz. Similarly if we are at (2,0) we can only subtract zzz. Now suppose that we want to
sample from the uniform distribution over F2. Then in the Metropolis–Hastings
algorithm, min(1,π j/πi) ≡ 1. Therefore we stay at the same state only because
of Step 3 of Algorithm 1. If we ignore the rejections in Step 3 for this example,
the transition probabilities of the chain are depicted in Fig. 2.2. The stationary
distribution of this chain is given by

(π(0,2),π(1,1),π(2,0)) =
(

1
4
,

1
2
,

1
4

)

,

which is not uniform.
On the other hand if we count the rejections in Step 3, then the Markov chain

has self-loops and the transition probabilities of the chain are depicted in Fig. 2.3.
For this chain the stationary distribution is the uniform distribution, which was our
target.
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Algorithm 2.1 is a very simple algorithm and various improvements are possible.
For example, grouping several steps of Algorithm 2.1 in one step makes the
convergence to the stationary distribution faster. This can be achieved as follows.

Algorithm 2.2 Modify Steps 2, 3, 4 in Algorithm 2.1 as follows.

Step 2: Choose zzz ∈ B randomly.
Step 3: Let I = {n | xxx+ nzzz ∈ Fttt}.
Step 4: Choose xxxnext from {xxx+ nzzz | n ∈ I} according to the probability

pn =
f (xxx+ nzzz)

∑
n∈I

f (xxx+ nzzz)
.

Note that both in Algorithms 2.1 and 2.2, the target distribution f (·) appears in
the form of the ratio. Hence we do not need to compute the normalizing constant for
f (·). Often the computation of the normalizing constant is difficult, therefore this is
an important advantage of the Markov chain Monte Carlo method.
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