Chapter 2

The Pontryagin Maximum Principle:

From Necessary Conditions to the Construction
of an Optimal Solution

We now proceed to the study of a finite-dimensional optimal control problem, i.e.,
a dynamic optimization problem in which the state of the system, x = x(¢), is linked
in time to the application of a control function, u = u(r), by means of the solution
to an ordinary differential equation whose right-hand side is shaped by the control.
We now consider multidimensional systems in which both the state and the control
variables no longer need to be scalar. In particular, the results presented here also
provide high-dimensional generalizations for the classical theorems of the calculus
of variations developed in Chap. 1. So far, we have considered only the simplest
problem in the calculus of variations in which the functional is minimized over all
curves that satisfy prescribed boundary conditions. Much more than in the calculus
of variations, an optimal control problem is determined by its constraints. Of these,
the most important one is represented by the dynamics, which in this text will always
be given by an ordinary differential equation,

x:f(tvxvu(t))a

and the optimization is carried out over a subset of solutions to this differential
equation, so-called admissible controlled trajectories, not just simply over all
differentiable curves. In most optimal control problems, the controls are required
to satisfy control constraints in the form

uelU

requiring that the control function u(r) take values in a prescribed set U at (almost)
all times #. This set U is called the control set and in our formulations will always
be taken as a subset of R”, but otherwise arbitrary. For example, the choice
U ={uy,...,u,} would define a control system that is allowed to switch between r
possible settings. We also consider terminal constraints of the form

(T,x(T)) €N,
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84 2 The Pontryagin Maximum Principle

where T denotes the final time on the trajectory and N is a subset of the combined
time—state space R x R". Restrictions on the final time 7, for example a fixed
terminal time, will be included in this constraint. We shall impose assumptions that
make N a “nice” geometric object. Many more types of constraints are conceivable
and occur in real systems. For example, state-space constraints restrict the state
of the system from entering prohibited regions. Mixed control-state constraints are
simultaneous requirements on the state and control in the sense that if the state
of the system has a specific value, then only a limited choice of control actions is
available. These clearly are realistic and important scenarios. However, the inclusion
of constraints of this type leads to a more complex theory, and in this text we restrict
our treatment to what is a finite-dimensional optimal control problem with control
and terminal constraints. Given these constraints, we then consider an objective of
the form

T
S )= | Lisx(s)u(s))ds+o(T,x(T))

0
with the integral representing the running cost along the controlled trajectory and
the function ¢ defined on N defining a penalty term on the final state. A precise
problem formulation including all assumptions will be given in Sect. 2.2, which also
contains a statement of the main necessary conditions for optimality, the Pontryagin
maximum principle [193].

The rest of the chapter will then be devoted to illustrating the use of this result,
with the proof deferred until Chap.4. Among the illustrations we provide, we
include a statement of the necessary conditions for optimality for the calculus
of variations problem in R” (Sect.2.3), the classical linear-quadratic regulator
(Sects.2.1 and 2.4), several examples of optimal solutions for the time-optimal
control problem to the origin in R? for time-invariant linear systems (Sects. 2.5 and
2.6) and some classical examples of optimal control problems with a time-varying
or nonlinear dynamics (Sect.2.7). General properties of optimal solutions for the
time-optimal control problem for nonlinear systems that are affine functions of the
control(s) will be developed in Sect. 2.8, which provides an introduction to some
of the Lie derivative-based techniques that form the basis for geometric methods
in optimal control. This section also includes a discussion of singular controls
and additional necessary conditions for optimality of the corresponding controlled
trajectories, such as the Legendre—Clebsch condition. We then use the developed
theory to analyze some generic cases for the time-optimal control problem in the
plane (Sects.2.9 and 2.10). These results, due to H. Sussmann [230, 236], serve
as a first illustration of the power of geometric methods in the solution of optimal
control problems. We close this chapter (Sect. 2.11) with a derivation of the optimal
controls for the Fuller problem, a classical optimal control problem whose solutions
are given by chattering arcs, i.e., the associated controls switch infinitely often on a
finite interval and are no longer piecewise continuous.

In this chapter, the emphasis is on illustrating the use of the necessary conditions
for optimality of the maximum principle. We simplify the presentation by making
the mathematically unjustified, but in practical problems often satisfied, assumption
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that optimal controls are piecewise continuous. With only minor modifications, all
the results presented in this chapter remain valid for the more general class of locally
bounded Lebesgue measurable functions, and in subsequent chapters we then shall
work with this, for our purpose, adequately general class of controls.

We close these introductory comments with establishing our notation. The
equations of the maximum principle and many of the involved computations can
be written in a concise and elegant form that avoids the use of matrix transpositions
so common in the classical textbooks if a proper notation is established. In this
chapter, our state space will always be R"” or some open subset of it, and we write
the state x as a column vector. However, in our notation, we already here distinguish
between what in the formulation on manifolds will be tangent vectors, which we
write as column vectors, and cotangent vectors (or covectors for short), which we
write as row vectors. For example, x is a tangent vector, and thus the right-hand
side of the dynamics, f(¢,x,u) in the formulations above, is a column vector. On the
other hand, geometrically, multipliers A represent linear functionals and thus are
covectors. We denote the space of n-dimensional covectors or row vectors by (R")*,
but do not distinguish between R and R*. For a scalar continuously differentiable
function i : R" — R, x — h(x), we consistently write the gradient with respect to x

as a row vector and denote it by Vi(x) or 2 (x), i.e.,
dx

Vh(x) = %(x) = (aa—:l(x),,aa—;:(x)) .

For a vector-valued continuously differentiable map H,

hy (x)
H:Rf 5 R’ x—=Hx)=1| ... |,

Iy (x)

we denote the Jacobian matrix of the partial derivatives of the components A;(x)
with respect to the variables x; by

oh oh

H . h; .
DH(x) = g(x) = 8_xj( ) ;
oxy T Oxg 1<i, j<k

with i as row index and j as column index. Thus, the Jacobian matrix is the matrix
whose ith row is given by the gradient of the component 4;. The Hessian matrix of
a twice continuously differentiable function /1 : R" — R, x + h(x), is the matrix of

the second-order partial derivatives of # and will be denoted by D*h(x) = g—Z(x)

With the convention above, the Hessian of 4 is the Jacobian matrix of the transpose
of the gradient of 4,
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9%h 9 (Vh)"
2 _ _
D7h(x) = 57 (x) = —5—(x).
If A =(A1,...,A,) is arow vector of continuously differentiable functions A; : R" —
R, x = Aj(x), j =1,...,n, then, and consistent with the notation just introduced,

Py

we denote the matrix of the partial derivatives ( e with row index i and

) 1<i,j<n
column index j by %—’;, that is,

T T
‘g—ﬁ(x) - (%(x)) or  DA(x)=(D(AT(x))".

Not only does this formalism properly distinguish the different geometric meanings
of the variables involved, but it also allows us to write almost all formulas without
having to use transposes and simplifies the notation considerably.

Finally, we denote the space of all k x ¢ matrices of real numbers by R¥*‘, We
assume that the reader is familiar with the basic concepts of matrix algebra and recall
that a matrix P € R"™" is positive semidefinite if it is symmetric and if v/ Pv > 0
for any vector v € R"; P is said to be positive definite if P is positive semidefinite
and if in addition, v/ Pv = 0 holds only for v = 0. It is well-known from linear
algebra that a matrix P is positive definite/semidefinite if and only if all eigenvalues
are positive/nonnegative. Note that as a symmetric matrix, P has a full set of n real
eigenvalues.

2.1 Linear-Quadratic Optimal Control

Before formulating the general optimal control problem, we first fully solve by
elementary means what, from an applications point of view, justifiably may be
considered the single most important optimal control problem, the so-called linear-
quadratic regulator. Mathematically, this is but a small extension of the simplest
problem in the calculus of variations—neither control nor terminal constraints are
imposed—in the sense that the trivial dynamics X = u is replaced by a linear
differential equation X = Ax + Bu and the objective to be minimized is a positive
definite quadratic form in x and u. Standard calculus of variations techniques suffice
to solve this problem. In fact, Legendre’s idea of “completing the square” presented
in Sect. 1.4 works to perfection here and in this section we give an elementary and
self-contained derivation of the optimal solution based on Legendre’s argument.
The importance of the problem lies in its practical applications. Essentially, this
is the problem to regulate a typically nonlinear system around some reference
trajectory. In the mathematical formulation below, the reference trajectory and
control are normalized to be x = 0 and u = 0. As such, but also due to the
simplicity of its solution and the fact that this solution easily allows the inclusion
of stochastic effects (e.g., noisy measurements and estimation of the states from an
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incomplete set of measurements by means of the Kalman filter), the linear-quadratic
regulator is the theoretical basis for many practical control schemes whose aim is
to regulate a system around some set point. Real systems based on this principle
range from autopilots in commercial aircraft to advanced stability control systems in
cars to standard chemical process control. Naturally, this problem, and its manifold
extensions, are the subject of numerous textbooks on automatic control, one of the
best still being the classical text by Kwakernaak and Sivan [144]. For this reason,
this topic is not in the focus of our presentation in this text, and we shall limit
ourselves to its connection with conjugate points and perturbation feedback control
for nonlinear optimal control problems. These will be discussed in the context of
sufficient conditions for a strong local minimum in Sect. 5.3.
Let [0, 7] be a finite and fixed time horizon and suppose

A:[0,T] = RV 1+ A(r), B:[0,T] - R™™ 1+ B(1),
0:[0,T] = R™™" t— Q(t), R:[0,T] = R™"™ t+—R(),

are continuous matrix-valued functions defined on [0,7]. We assume that the
matrices Q(t) and R(¢) are symmetric and in addition that Q(r) is positive
semidefinite and R(t) is positive definite for all € [0, T]. Furthermore, let Sy € R"*"
be a constant, symmetric, and positive semidefinite matrix. The linear-quadratic
regulator then is the following optimal control problem:

[LQ] Find a continuous function u : [0,7] — R™, the control, that minimizes a
quadratic objective of the form

J(u) = % /0 ! (X" (1) (t)x(t) +u” (t)R(t)u(t)] dt + %xT(T)STx(T) @2.1)
subject to the linear dynamics
X(t) = A(t)x(t) + B(t)u(t), x(0) = xo. (2.2)

It follows from well-known results about ordinary differential equations (see
Appendix B) that the initial value problem for the homogeneous linear matrix
differential equation

X(t)=At)X(t) and  X(s)=1d

has a unique solution @(z,s), called its fundamental solution. For any initial time
s € [0,T], this solution exists over the full interval [0, T']. The unique solution x(#;xq)
to the homogeneous vector equation x(z) = A(¢)x(r) with initial condition x(0) = xo
is then given by x(#;x9) = @(z,0)x¢, and as is easily verified, the solution to the
inhomogeneous equation (2.2) is obtained by variation of constants as

x(t;x0) = @(1,0) (xo + /Ot CD(O,S)B(s)u(s)ds) .
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This solution is called the trajectory corresponding to the control u. If the matrix A
is time-invariant, then @(z,s) is simply given by the absolutely convergent matrix
exponential,

< Ak

D(t,s5) = exp(A(t —s)) zk—t—s

In the time-varying case, for scalar problems, it is still possible to write down an

explicit formula as
ot
B(1,5) = exp </ A(r)dr> :
JS

but in dimensions n > 2 this formula no longer is valid, since generally A(¢) and
exp ( f; A(r)dr) do not commute. Series expansions of the solution can still be
given in higher dimensions and are related to Lie-algebraic formulas in connection
with the Baker—Campbell-Hausdorff formula involving commutators [256] (see
also Sect.4.5), but will not be needed here. The important fact simply is that the
fundamental matrix @ exists and is unique.

Theorem 2.1.1. The solution to the linear-quadratic optimal control problem [LQ]
is given by the linear feedback control

u(t,x) = —R(1) 'B(1)TS(1)x,
where S is the solution to the Riccati terminal value problem
S+SA(t) +AT(t)S — SB(1)R(r) BT (1)S+Q(t) =0 S(T)=Sr. (2.3)
This solution S exists on the full interval [0,T] and is positive semidefinite. The
minimal value of the objective is given by %ng(O)xo

Proof. This is Legendre’s argument from the calculus of variations adjusted to this
setting. Let u : [0,7] — R™ be any continuous control and let x : [0, 7] — R” denote
the corresponding trajectory. Dropping the argument ¢ from the notation, we have
for any differentiable matrix function S € R"*" that

d .
7 (xTSx) =T Sx+xTSx+x' Sk

= (Ax+ Bu)" Sx + x Sx+ x" S(Ax + Bu),

and thus, by adjoining this quantity to the Lagrangian in the objective, we can
express the cost equivalently as

=3 / T(Q+A"S+S+SA)x+x"SBu+u"B"S"x+u"Ru] dt

1
—x}8(0)xo

42T (T)[S7 = S(T)(T) + 5
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Take S as a symmetric matrix and complete the square to get

1T
Jw) = 5 /0 [ (S+SA+ATS— SBR™'BTS+ )«
+(u+R"BTSx)"R(u+R"'B"Sx)] dt

1 1
+§xT(T)[ST —S(T)]x(T) + Exg S(0)xo.
For the moment, let us assume that there exists a solution S to the matrix Riccati
equation (2.3) over the full interval [0, T]. Then the objective simplifies to

1T 1
J(u) = 3 /O (u+R'BTSx)"R(u+ R 'BT Sx)dr + Exg S(0)xo.

Since the matrix R is continuous and positive definite over [0, 7], the minimum is
realized if and only if

u(t) = —R (0BT (1)S()x(1),

and the minimum value is given by

1
Exg S(0)xo.
Thus the optimal solution to the linear-quadratic control problem is given as a linear
feedback function, i.e., a function u, : [0,7] x R" — R™ defined in the time-state
space, given by

i (t,x) = =R~ (6)BT (1)S(1)x.

For this argument to be valid, it remains to argue that such a solution S to
the initial value problem (2.3) indeed does exist on all of [0,T]. It follows from
general results about the existence of solutions to ordinary differential equations
that such a solution exists on some maximal interval (7,7] and that as t \, 7 (i.e.,
t — T and ¢ > T), at least one of the components of the solution S() needs to
diverge to +oo or —eco. For if this were not the case, then by the local existence
theorem on ODEs, the solution could be extended further onto some small interval
(t —&,7 + €), contradicting the maximality of the interval (7,7]. In general,
however, this explosion time 7 could be nonnegative, invalidating the argument
above. That this is not the case for the linear-quadratic regulator problem is
a consequence of the positivity assumptions on the objective, specifically, the
definiteness assumptions on the matrices R, O, and St.

In order to see this, suppose the explosion time 7 of the solution to the Riccati
equation is nonnegative, T > 0, and consider the linear-quadratic regulator problem
for variable initial conditions (79,xp) € [0,T] x R". If #, > 7, then the reasoning
above is valid; thus the solution to the minimization problem [LQ] is given
by the feedback control u.(f,x), and the minimal value is J(u.) = $xJ S(fo)xo.
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This holds for arbitrary initial conditions xo. Since J(u) is always nonnegative by
our assumptions on the matrices in the objective, the matrix S(#p) must be positive
semidefinite. But we can choose #, arbitrarily in the interval (7,T], and thus it
follows that the matrix S(¢) is positive semidefinite on this interval. Furthermore,
since for any other control u defined on [ty, T| we have that

1
J(u) = Eng(to)xo,
using the control # = 0, we obtain an upper bound in the form

1 1 T
0< Eng(to)xo < Exg ( D(1,t0)" Q1) D(t,t0)dt + ‘D(T,to)TSTQ’(T,fo)) Xo
fo
(2.4)

for every xo € R". Choosing for the initial condition xq the ith coordinate vectors,
ei = (0,...,0,1,0,...,0)7, with the 1 in the ith position, the lower estimate in
Eq. (2.4) gives S;i(f) > 0. The upper estimate is continuous in # on the full interval
[0,T] and thus remains bounded over the full interval. Hence there exists a positive
constant C such that

0<Si(t) <C forall 1€ (1,T].
Choosing xg = ¢; = 0¢;, we furthermore obtain
0<(ej+ 6ej)TS(t0)(e,~ +0¢;) = Sii(to) +268i;(t0) + GZSjj(t())
for all 8 € R, which is equivalent to
S7i(to) < Sii(to)S;j(to)-

But then all entries S;;(fo) of the matrix S(fo) take values in the interval [—C,C]
for all times fy from the interval (7,T]. Hence there cannot be an explosion of the
solution as #p \, 7. This contradicts the fact that (7, 7] is the maximal interval of

existence for the solution S of Eq. (2.3). Thus we must have 7 < 0, and the solution
to the Riccati equation exists over the full interval [0, T]. O

2.2 Optimal Control Problems

We now formulate the optimal control problem to be considered in this text and
introduce the main necessary conditions for optimality, the Pontryagin maximum
principle [193].
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2.2.1 Control Systems

We think of a control system as a collection of time-dependent vector fields on a
differentiable manifold parameterized by controls that by means of the solutions
of the corresponding ordinary differential equations, give rise to a family of
controlled trajectories. An optimal control problem then is the task to minimize
some functional over these controlled trajectories subject to additional constraints.
We shall postpone a precise definition along these lines until Chap. 4, where we
actually prove the maximum principle. Here, in view of the still introductory
character of this chapter, we retain the more elementary formulation of optimal
control problems with state space R"”. However, we already arrange the material
according to this framework.

Definition 2.2.1. A control system is a 4-tuple ¥ = (M, U, f,% ) consisting of a
state space M, a control set U, a dynamics f, and a class % of admissible controls.

Throughout this chapter, we make the following assumptions about the data
defining the control system:

1. The state space M is an open and connected subset of R”.

2. The control set U is a subset of R”. No further regularity conditions on the
structure of U need to be imposed, although in many practical situations U is
compact and convex.

3. The dynamics x = f(t,x,u) is defined by a family of time-varying vector fields f
parameterized by the control values u € U,

[RxMxU—=TR", (t,x,u)— f(t,xu),

i.e., f assigns to every point (#,x,u) € R x M x U a (tangent) vector f(¢,x,u) €
R”. We assume that the time-varying vector fields are continuous in (f,x,u),
differentiable in x for fixed (r,u) € R x U, and that the partial derivatives
%(r,x, u) are continuous as a function of all variables; no differentiability
assumptions in the control variable u are made.

4. The class % of admissible controls is taken to be piecewise continuous functions
u defined on a compact interval / C R with values in the control set U. Without
loss of generality, we assume that controls are continuous from the left.

These specifications are simplifications of the setting considered in Chap. 4. Here
our aim is to formulate the fundamental necessary conditions for optimality and then
to illustrate how these conditions can be put to work. For this, the simpler framework
formulated above that requires only some knowledge of advanced calculus and
ordinary differential equations is adequate, and it simplifies the technical aspects of
the theory. In the more general framework considered in Chap. 4, the state space
M will be a C"-manifold, and the class % of admissible controls will consist
of all locally bounded Lebesgue measurable functions u that take values in the
control set U, i.e., given a compact interval I C R, there exists a compact subset
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V of U such that u takes values in V almost everywhere on /. In particular, if the
control set U already is compact, then admissible controls are simply Lebesgue
measurable functions that take values in U almost everywhere. The need for taking
as admissible controls the class of Lebesgue measurable functions lies in the fact
that the class of piecewise continuous controls simply is too small, and this will
already be seen in Sect.2.11 of this chapter, to guarantee the existence of optimal
solutions. Greater generality is required for several important and fundamental
results to be valid. Locally bounded Lebesgue measurable functions are pointwise
limits of piecewise continuous functions and provide the required closure properties
needed for many arguments. A brief exposition of Lebesgue measurable functions
is given in Appendix D, but this will be needed only in Chaps.3, 4, and some
of 6. Similarly, many control systems, especially those connected with mechanical
systems (e.g., robotic manipulators) have natural state-space descriptions that are
manifolds. Clearly, the circle S' is a far superior model for the state space of a
fixed-amplitude oscillation than R?. The sphere S is the only reasonable model to
calculate the shortest air route from Paris to Sydney. But these generalizations will
be considered only in Chap. 4.

In the same spirit, we always impose conditions on the dynamics that for a
given admissible control, guarantee not only the existence of solutions to the
differential equation, but also its uniqueness. From an engineering perspective,
this is as important1 a condition as existence of solutions, and we will insist on
it being satisfied. Using the practical class of piecewise continuous controls in this
chapter suffices for our arguments and simplifies the reasoning. Given any piecewise
continuous control u € %/ defined over some open interval J, it follows from
standard local existence and uniqueness results for ordinary differential equations
(see Appendix B) that for any initial condition x(zp) = xo with #y € J, there exists a
unique solution x to the initial value problem

x(t) = f(t,x,u(?)), x(t9) = xo, (2.5)

defined over some maximal interval (7_, 7} ) C J that contains #.

Definition 2.2.2 (Admissible controlled trajectory). Given an admissible control
u € % defined over an interval J, let x be the unique solution to the initial value
problem (2.5) with maximal interval of definition I = (7_, 7. ). We call this solution
x the trajectory corresponding to the control u and call the pair (x,u) an admissible
controlled trajectory over the interval /.

An optimal control problem then consists in finding, among all admissible con-
trolled trajectories, one that minimizes an objective, possibly subject to additional
constraints. In this text, in addition to the control constraints that are implicit in the
definition of the control set, we consider only terminal constraints in the form of a
target set into which the controls need to steer the system. However, we restrict the

'From our point of view, uniqueness may be the more important of the two conditions.
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terminal set to have the regular geometric structure of a k-dimensional embedded
submanifold N in R x M (see Appendix C). More specifically, we assume that

N={(t,x) eRxM: ¥(t,x) =0},

where ¥ : R x M — R"™ 1k (. x) = P(t,x) = (wo(t,%),..., Ypi(t,x))7T, is a
continuously differentiable mapping and the matrix DY of the partial derivatives
with respect to (¢,x) is of full rank n+ 1 — k everywhere on N, i.e., the gradients of
the functions yy(¢,x),..., W,—x(f,x) are linearly independent on N.

Finally, the objective is given in so-called Bolza form as the integral of a
Lagrangian L plus a penalty term ¢. For the Lagrangian we make the same regularity
assumptions as on the dynamics f, i.e., the function

L:RxMxU—=R, (t,x,u)— L(t,x,u),

is continuousin (¢,x, u), differentiable in x for fixed (z,u) € R x U, and the derivative
%(t,x,u) is continuous as a function of all variables. The penalty term ¢ is given

by a continuously differentiable function
O:RxM—=R, (t,x)— o(t,x).

Clearly, this function needs to be defined only on N. Since we assume that N is
an embedded submanifold of R"*!, if necessary, we can always extend ¢ to a
differentiable function ¢ : R x M — R locally, and thus for simplicity we assume
that ¢ is defined in the ambient state space. The objective or cost functional is then

given as
T

F ()= [ L(s,x(s),u(s))ds+ o(T,x(T)), (2.6)

Jtg

where x is the unique trajectory corresponding to the control u. The terminal time T
can be fixed or free. A fixed terminal time simply will be modeled as the equation
@o(t,x) =t —T in the mapping ¥ defining the constraint in N. The initial time 7y
and initial condition x( are fixed, but arbitrary. Then the optimal control problem is
the following one:

[OC] Minimize the objective # (u) over all admissible controlled trajecto-
ries (x,u) defined over an interval [fy,T] that satisfy the terminal constraint
(T,x(T)) € N.

2.2.2 The Pontryagin Maximum Principle

The maximum principle of optimal control gives the fundamental necessary con-
ditions for a controlled trajectory (x,u) to be optimal. It was developed in the
mid 1950s in the Soviet Union by a group of mathematicians under the leadership
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of L.S. Pontryagin, also including V.G. Boltyanskii, R.V. Gamkrelidze, and E.F.
Mishchenko, and is known as the Pontryagin maximum principle [41, 193]. Below,
and consistent with our choice of admissible controls, we give its formulation
under the additional assumption that the optimal control is piecewise continuous.
Recall that we write tangent vectors as column vectors and cotangent vectors (i.e.,
multipliers) as row vectors.

Definition 2.2.3 (Hamiltonian). The (control) Hamiltonian function H of the
optimal control problem [OC] is defined as

H:Rx[0,0) x (R")* xR"xR" - R

with
H(t, Ao, A,x,u) = AL(t,x,u) + A f(t,x,u). 2.7)

Theorem 2.2.1 (Pontryagin maximum principle). [193] Let (x,,u.) be a con-
trolled trajectory defined over the interval [ty,T] with the control u, piecewise
continuous. If (x.,uy) is optimal, then there exist a constant Ay > 0 and a covector
A 1o, T] — (R")*, the so-called adjoint variable, such that the following conditions
are satisfied:

1. Nontriviality of the multipliers: (Ag,A(t)) # 0 for all t € [ty, T].
2. Adjoint equation: the adjoint variable A is a solution to the time-varying linear
differential equation

A1) = = ALy (t, %2 (), s (£)) — A (1) (8, %4 (), 1 (1)). (2.8)
3. Minimum condition: everywhere in [ty, T| we have that

H(t, A, At),x. (1), (1)) = minH (£, Ao, A (1), x: (1), v). (2.9)

velU

If the Lagrangian L and the dynamics f are continuously differentiable in t, then
the function

et H(t, Ao, A(),x.(f),u. (1))

is continuously differentiable with derivative given by

_dh

i) = 0= 2 1.20,20) . (0.0, ). 2.10)

4. Transversality condition: at the endpoint of the controlled trajectory, the covector

(H 4 Xo0@r, —A + X@y)

is orthogonal to the terminal constraint N, i.e., there exists a multiplier v €
(R™1=KY* such that
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H+ A@ + vD,¥ =0, A=l + VD,V at (T,x.(T)). (2.11)

The following statement is an immediate special case.

Corollary 2.2.1. Ifthe Lagrangian L and the dynamics f are time-invariant (do not
depend on't), then the function h:t — H (t, Ao, A (1), x,(t),u.(t)) is constant. If ¢ and
W also do not depend on t (and in this case the terminal time T necessarily is free),
then for any multiplier (Ay, A) that satisfies the conditions of the maximum principle,
the Hamiltonian H vanishes identically along the optimal controlled trajectory
(X, Uy ):

H(t, 20, A1), x. (1), (1)) = 0. O

We start our discussions of the maximum principle by introducing some useful
terminology and give a brief and somewhat informal description of the significance
of each condition.

Definition 2.2.4 (Extremals; normal and abnormal). We call controlled trajec-
tories (x,u) for which there exist multipliers Ay and A such that the conditions
of the maximum principle are satisfied extremals, and the triples (x,u,(Ap,A))
including the multipliers are called extremal lifts (to the cotangent bundle in case
of manifolds). If Ay > 0, then the extremal lift is called normal while it is called
abnormal if Ao = 0.

1. Normal and abnormal extremal lifts. The maximum principle takes the form of
a multiplier rule with multiplier (A9, A (¢)). The nontriviality condition precludes
a trivial solution of these conditions with (A9, A(¢)) = (0,0). Since the conditions
are linear in the multipliers (Ao, A ), it is always possible to normalize this vector.
For example, if A9 > 0, then the conditions do not change if we divide by A
and instead consider as the new multiplier (1,2 (¢)), where A (1) = A(t)/Ao.
Thus, without loss of generality, we may always assume that Ay = 1 if the
extremal lift is normal. Note that it is a property of the extremal lift, not the
controlled trajectory, to be normal or abnormal. It is possible that both normal
and abnormal extremal lifts exist for a given controlled trajectory (x,u). For this
reason, controlled trajectories for which only abnormal extremal lifts exist are
sometimes called strictly abnormal. We shall see in Sect. 2.3 that all extremals
for the simplest problem in the calculus of variations are normal, and this fact
actually is the source of the terminology, which goes back to Carathéodory
[67]. In spite of their name, abnormal extremals are by no means pathological
situations, and if they exist, they often play an important role in determining
the structure of optimal solutions. We shall see in Sect. 2.6 that the synthesis of
optimal trajectories for the problem of steering points to the origin time-optimally
for the harmonic oscillator with bounded controls, a simple and standard text
book example, contains optimal, strictly abnormal extremals and that these play
a crucial role in determining the overall structure of the solutions.

2. Adjoint system. First note that as a solution to a linear time-varying ordinary
differential equation with piecewise continuous entries, the adjoint variable A (-)
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exists over the full interval [fo,7]. We shall see in the proof of the maximum
principle in Sect. 4.2 that (Ag,A()) arises as a normal vector to a hyperplane in
(r,x)-space (hence also the nontriviality condition) that evolves in time according
to the adjoint equation. This equation arises as the adjoint in the sense of linear
ordinary differential equations of the so-called variational equation

y:fx(tvx*(t)vu*(t))% (212)

which transports tangent vectors (that will be generated by means of variations)
along a reference controlled trajectory # — (x.(¢),u.(t)). Solutions of the adjoint
system provide the corresponding transport for covectors along this curve.
In terms of the Hamiltonian H, the coupled system consisting of the dynamics
and the adjoint equation can be written as

(1) = 202000500, 0)) and 20) =~ 20,20, 2.0),5.(0)0,0)

EY
(2.13)

and thus forms a Hamiltonian system that is coupled with the control u, through
the minimization condition (2.9).

. Minimum condition. In the original formulation of the theorem by Pontryagin
et al. [193], this condition was formulated as a maximum condition and gave the
result its name. In fact, depending on the choice of the signs associated with the
multipliers Ay and A, the maximum principle can be stated in four equivalent
versions. Here, since most of the problems we will be considering are cast as
minimization problems, we prefer this more natural formulation, but retain the
classical name. The minimum condition (2.9) states that in order to solve the
minimization problem on the function space of controls, the control u, needs
to be chosen so that for some extremal lift, it minimizes the Hamiltonian H
pointwise over the control set U, i.e., for every ¢ € [tp, T], the control u.(z) is
a minimizer of the function v — H(z, A, A(¢),x.(¢),v) over the control set U.
Note that it is not required just that the control satisfy the necessary conditions
for minimality—and this is how a weak version of the maximum principle is
formulated—but that the control u,(¢) be a true minimizer over the control set U.
This condition typically is the starting point for any analysis of an optimal control
problem. Formally, we first try to “solve” the minimization condition (2.9) for
the control u as a function of the other variables, u = u(t,x,;A0,A), and then
substitute the “result” into the differential equations for dynamics and adjoint
variable to get

x = f(t,x,u(t,x;20,A)), x(t9) = xo,
A1) = —AoL (£, x:(1), u(t, x5 A0, A)) — A(0) fr (£, (2), (2, %05 A0, 1)),

Since multiple solutions to the minimization problem can exist, this is not in
general a unique specification of the control. Even if the minimization problem
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does have a unique solution, this solution depends on the multiplier, i.e., lives in
the cotangent bundle, and thus need not give rise to unique controlled trajectories.

4. Transversality conditions. Equations (2.5) and (2.8) form a system in 2n+ 1
variables (the state x, the multiplier A, and the terminal time 7') with the initial
condition xq specified for the state at time #y. Information about the remaining
n—+ 1 conditions is contained in the transversality conditions at the endpoint. The
requirement that the terminal state lie on the manifold N, (7,x(T)) € N, imposes
n+ 1 —k conditions and thus leaves k degrees of freedom. The adjoint variable
A(T) € (R™)" at the terminal time T is determined on the k-dimensional tangent
space to N at (T,x.(T)) by the relation

AT) =A@ (T, x.(T)) + vDW(T,x.(T)

and the multiplier v € (R”“’k) " in this equation accounts for n — (n+1—k) =
k— 1 degrees of freedom, with the last degree of freedom taken up by the equation

H(T, 20, A(T),x:(T),u«(T)) + 0@ (T,x.(T)) + vD¥(T,x.(T)) = 0

which gives information about the terminal time 7. Overall, there thus are
2n + 1 equations for the boundary values x(T'), A(T), and T. Hence, at least
in nondegenerate situations, the transversality conditions provide the required
information about the missing boundary conditions for both the adjoint variable
and the terminal time 7.

The geometric statement that the vector (H + 0@y, —A + A9 @) is orthogonal
to the terminal constraint N at the endpoint of the controlled trajectory is
valid for any embedded submanifold N. For since the condition is local, it is
always possible to choose a collection of functions y;, i =0,...,n —k, so that
N = {(t,x) : ¥(t,x) = 0} and the gradients of the functions y; are linearly
independent at (7, x,(T)). The gradients Vy; are all orthogonal to N, and since
they are linearly independent, they span the space normal to N. Thus any covector
normal to N at (7,x,(T)) is a linear combination of these covectors. Since the
gradients are the rows of the matrix DY¥(T,x.(T)), there exists a row vector
v =(vy,...,Vy_x) such that

(H+ 200, —A + Ao@y) = —Vv (D,'¥, D, ).

This is equivalent to the formulation given in the theorem.

Summarizing, in order to solve an optimal control problem, in principle, we need
to find all solutions to a boundary value problem on state and costate, coupled by a
minimization condition, and then compare the costs that the projections of these so-
lutions onto the controlled trajectories give. Clearly, this is not an easy problem, and
thus the rest of this chapter will be spent on illustrating how one may go about doing
this for some classes of optimal control problems, namely (i) once more the simplest
problem in the calculus of variations, but now in dimension n, (ii) the linear-
quadratic regulator, but now deriving its solution using the maximum principle,
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(iii) the time-optimal control problem for linear time-invariant systems, and (iv)
time-optimal control for general single-input, nonlinear, control-affine systems in
the plane.

2.3 The Simplest Problem in the Calculus of Variations in R"

We once more consider the simplest problem in the calculus of variations, but now in
arbitrary dimension n. This is a special case of an optimal control problem, and we
illustrate how far-reaching the conditions of the maximum principle are by briefly
deriving the highdimensional versions of the necessary conditions for optimality
developed in Chap. 1.

Let L: [a,b] x R" x R" — R, (t,x,u) — L(t,x,u), be a continuous function that
for fixed ¢ € [a,b], is differentiable in (x,u) with the partial derivatives %(r,x, u)
and % (t,x,u) continuous in all variables. Also, let A and B be two given points in
R”". We then consider the following problem:

[CV] Find, among all continuously differentiable curves x : [a,b] — R”" that
satisfy the boundary conditions x(a) = A and x(b) = B, one that minimizes the
functional

16 = / Lt x(0),5(0) ).

Calculus of variations problems are optimal control problems with a trivial
dynamics, x = u, and no restrictions on the control set: the state space is given
by M = R", the control set U is all of R”, and within our framework, the class %
of admissible controls is given by all piecewise continuous functions; the terminal
manifold N is zero-dimensional given by the point B. If x, : [a,b] — R" is an optimal
solution, then with u, (r) = %,(¢), the conditions of the maximum principle state that
there exist a constant Ay > 0 and an adjoint variable A : [a,b] — (R")* satisfying

M0) =~ G (1,5.(0),10.0)

such that (A9, A (7)) # 0 for all 7 € [a,b] and

AoL(t,x: (1), u (1)) + A (1)u(t) = 52]% [AoL(t,x.(t),v) + A(t)v] = const. (2.14)

Since the interval [a,b] and the endpoint are fixed, no transversality conditions
apply: the vector v can be any vector in (R"*1)* leaving the terminal values of A
and H (b, Ay, A(b),x.(b),u. (b)) free. But extremals for the simplest problem in the
calculus of variations are always normal: If Ay = 0, then the minimum condition
(2.14) implies that u,(¢) minimizes the linear function v — A(¢)v over R”. But such
a minimum exists only if A (z) = 0, and this then contradicts the nontriviality of the
multipliers. Thus Ay cannot vanish, and without loss of generality we may normalize
itas g = 1.
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The first-order necessary conditions for minimizing the function
v L(t,x.(1),v) + A(t)v
over R” then imply that

JdL

5, (1% (t), (1)) + A(1) = 0.
Combining this relation with the adjoint equation, while identifying X, with the
control u, gives the standard form of the Euler—Lagrange equation, now valid for
the coordinates of the respective gradients of the Lagrangian

d (JL oL
— | ==, x:(1), % (1)) ) = == (1,2 (1), %:(2)).
(5 080)) = SH0n0x0)
The actual minimum condition (2.14) of the maximum principle is the Weierstrass
condition of the calculus of variations: recall that the Weierstrass excess function £
was defined as

oL
E(ta-xayau) = L(ta-xau) _L(tvxay) - a_(tvxay)(u_y);

X
thus condition (2.14) states that
E(t,x.(t),%(t),u) >0 forall u € R".

As shown in Sect. 1.6, this is a necessary condition for a strong local minimum of
a very different character from that of the Euler—Lagrange equation. Recall that the
piecewise continuous variations used in its proof allowed the derivatives to diverge,
and thus this no longer is a necessary condition for a weak minimum. We shall see
in Sect. 4.2 that Weierstrass’s variations pointed the path to the variations used in
the proof of the maximum principle.

If the Lagrangian L is twice continuously differentiable, additional regularity
statements about extremals easily follow from the maximum principle. For example,
the second-order necessary condition for the function v — L(z,x.(¢),v) + A(f)v to
have a minimum over R” at X, (¢) implies that the Hessian matrix

2
2 L ). 1.0)

is positive semidefinite for # € [a,b]. This is the multi-dimensional version of the
Legendre condition. The strengthened Legendre condition holds over the interval
[a,b] if this matrix is positive definite for # € [a,b]. In this case, as in the scalar
case, the Hilbert differentiability theorem is valid, and the extremal x, is twice
continuously differentiable. The argument is the same as in the scalar case: for some
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constant ¢ the extremal x, is a solution to the Euler—Lagrange equation in integrated

form, 5 5
L , 1 9L , B
x(t,x*(t),x*(t)) -/ x(r,x*(s),x*(s))ds—C— 0,

and defining a function F (¢,w) as

Ft,w) = %(z‘,x*(t),w) - /a[ %(t,x*(s),x*(s))ds—c,

the equation F(z,w) = 0 has the solution w(r) = %.(¢). By the implicit function
theorem, this solution is continuously differentiable if the partial derivative

2
5.0 = T 0).5.0)

is nonsingular. Hence x, is twice continuously differentiable at all points where the
strengthened Legendre condition holds.

The connections between optimal control and problems in the calculus of
variations can be carried further including generalizations of the Jacobi condition
and field theory. These aspects will be developed in Chap. 5.

2.4 The Linear-Quadratic Regulator Revisited

We briefly return to the linear-quadratic regulator and give a derivation of the
optimal feedback control law from the conditions of the maximum principle. This
argument is instructive and will be expanded further in Sect. 5.3 in connection with
conjugate points for the optimal control problem. Also, in low dimensions, explicit
solutions of the Riccati equation for the feedback gain S can be computed using
these constructions, and we illustrate this with two scalar examples. As in the
calculus of variations, there are no restrictions on the control set, i.e., U = R",
but now a dynamics (albeit a simple linear one) is involved. In fact, since the
Hamiltonian H is strictly convex in the control , for this case, variational arguments
as they were developed in Chap.1 would still be sufficient to characterize the
minimum.

2.4.1 A Derivation of the Optimal Control from the Maximum
Principle

Recall that the linear quadratic regulator [LQ] is the problem of minimizing a
quadratic objective of the form
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1 T T T 1 T
Jw) =5 /0 7 (0)Q(0x(r) T (DR (r)u(r)] e+ 3T (T)S7x(T)

over all (piecewise) continuous functions u : [0,7] — R™ defined over a fixed
interval [0, T'] subject to a linear dynamics

x(r) =A(t)x(t) + B(t)u(t), x(0) = xo.

The entries of the matrices A(-), B(-), R(-), and Q(-) are continuous functions on
the interval [0,7], and the matrices R(-) and Q(-) are symmetric; R(-) is positive
definite, and Q(+) positive semidefinite; S7 is a constant positive definite matrix.

As in the simplest problem of the calculus of variations, all extremals are normal:
formally, since the problem is a minimization over a fixed interval [0,7] without
terminal constraints, the submanifold N is described by a single function 'V : [0, o) x
M — R, (t,x) — ¥(t,x) =t — T, defining the final time T, and the transversality
condition (2.11) reduces to A(T) = Apx” (T)Sr. Thus, the adjoint equation with
terminal condition is given by

A=—2xTQ(t) —AA(t),  A(T) = Aox” (T)Sr.

If Ao =0, then A is a solution to a homogeneous linear equation with 0 boundary
conditions, hence identically zero. But this contradicts the nontriviality statement
of the maximum principle. Thus, without loss of generality, we set A9 = 1. The
Hamiltonian function H then takes the form

H= %xTQ(t)x—l- %MTR(t)u—i—/'L(A(t)x—i—B(t)u),

and since the matrix R is positive definite, is strictly convex with a unique minimum
given by the stationary point of the gradient in u,

%—IZ =u'R(t) + AB(t) =0,
ie.,
u=—R )BT (t)AT. (2.15)

For the subsequent calculation it is more convenient to write the equations in terms
of AT, and we therefore define u = A”. Substituting Eq. (2.15) into the system
and adjoint equation gives the following classical linear two-point boundary value
problem for x and u:

()= "2 ) G- Gim) =Gt
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This is the n-dimensional analogue of the linear Hamiltonian system considered in
Sect. 1.4. Its solution is easily obtained from the solution of the associated matrix
differential equation

X\ [ A(t) —B(ORt)'B()T\ (X X©0)\ [(1d

Yy ) \-0() —At)T Y)’ Y(ry) \sr)’
The following classical result generalizes Proposition 1.4.1 to the multidimensional
case and establishes the connections between solutions to Riccati equations and
quotients of solutions to linear differential equations in general. In the engineering

literature, e.g., [64], this technique and its generalizations are known as the sweep
method.

Proposition 2.4.1. Suppose A(-), B(-), M(-), and N(-) are continuous n X n matri-
ces defined on [0,T] and let (X,Y)T be the solution to the initial value problem

XN (A M) (XY X(0)) _ (%o (2.16)
Y —N —B Y Y(0) Yo
Suppose Xy is nonsingular. Then the solution X (t) is nonsingular on the full interval
[0,T] if and only if the solution S to the Riccati equation

S+SA(t)+B(t)S—SM(1)S+N()=0,  S(0) =YX, ", (2.17)
exists on the full interval [0, T], and in this case we have that
Y(t)=St)X(¢). (2.18)

The solution S to the Riccati equation (2.17) has a finite escape time at t = 7T if and
only if T is the first time when the matrix X (t) becomes singular.

Proof. [=] Suppose X (¢) is nonsingular for all € [0,T]. Then S(z) = Y (£)X (t)~!
is well-defined over [0,7], and we need only verify that S satisfies the Riccati
equation (2.17). This is shown with a direct calculation: omitting the variable ¢,
we have that

. d . d
S=—wxXx H=vrx"'+yv— (x7 1.
Since X (t)X (t)~' =1d, it follows that
d . d
0=—XXH=xx""T4+x—(x"!

or

d 1 e ——
— (X =-X XX
S ,
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and thus
S=yx'—yx'xx !

Substituting the differential equations for X and ¥ gives
S=(-NX—-BY)X ' —S(AX —MY)X ! = —SA— BS+SMS—N.

[<] Conversely, suppose a solution S to the Riccati equation exists on all of
[0,T]. The linear equation

U=(A@)-M1)SH)U,  Ult) =Xo,

has a solution U = U (¢) defined over the full interval [0, T]. Setting V () = S(¢)U (¢),
we have V(0) = S(0)Xp = ¥) and

V = SU +SU = (—SA — BS+SMS — N)U +S(A — MS)U = —NU — BV. (2.19)

Thus the pair (U ,V)T is a solution to the initial value problem (2.16). But so is
(X,Y)T, and by the uniqueness of solutions we have (X,Y) = (U,V), ie., Y(t) =
S()X (¢).

Suppose that there exists a time 7 for which X () is singular. Pick xo # 0
such that X (7)xp = 0 and let x(¢) = X (t)xo and y(¢) = Y (¢)xo. Then x(t) = 0 and
y(t) =Y (7)xo = S(7)x(7) = 0, and thus since (x,y)” satisfies a homogeneous linear
differential equation, both x and y vanish identically. But x(0) = X (0)xq # 0, since
X (0) is nonsingular. Contradiction. Thus X (¢) is nonsingular over all of [0,7]. O

For the linear-quadratic problem we already have seen in Theorem 2.1.1 that the
associated Riccati equation has a solution over the full interval [0,7], and thus we
have p(¢) = S(t)x(t), or in the original notation, A7 () = S(t)x(¢). Hence, as we
already know, the optimal control is given by

u(t) = —R(t) 'B()TS(t)x(r).

This argument, however, is based only on necessary conditions and thus by itself
does not prove the optimality of this control law. But of course, we already know
that the control is optimal from Sect. 2.1.

2.4.2 Two Scalar Examples

We illustrate the solution procedure with two scalar examples in which the Riccati
equation can be solved in analytic form.

Example 2.4.1. Let x and u be scalar and consider the problem to minimize the
objective

J(u) =

N —

z
/ (qx2 + uz) dt
0
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subject to the dynamics
X = ax+ bu, x(0) = xo, 0<tr<T.

For example, this is a simple model of regulating the pH value of some chemical
component [139]. The variable x denotes the deviation of the pH value from a preset
nominal value and the pH value is regulated through a controlling agent with the rate
of change in pH proportional to a weighted sum of its current value and the strength
of the controlling ingredient u, also measured by its deviation from the nominal pH
value; a and b are known positive constants and xg is the known initial value.

This formulation fits the model exactly, and thus the optimal control is given in
feedback form as

u,(t) = —bS(t)x.(t), 0<tr<T,

where S(¢) is the solution to the Riccati equation (2.3),
S+2aS—b*S*+q=0,  S(T)=0.

A scalar Riccati equation can always be reduced to a second-order homogeneous
linear differential equation by making the substitution

o _
S
o

which gives

1 (do—(6)2\ . 2 1 /é\?
7 (M5) =35 (5) 5 (§) o

1 /¢ ~ 2a )
53

and thus we obtain the following second-order homogeneous equation with constant
coefficients:

Equivalently,

¢ +2a¢ —gb*¢ = 0.
From the terminal condition on S we get ¢(T) = 0, and since we are just looking for

a nontrivial solution, we may take ¢(T) = 1. Setting kK = /a® + gb?, the explicit
solution is given as

6(r) = ¢ 01 [cosh (i (¢ - T)) + = sinh ( (1 - )|, o0<i<T,
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and thus

1 e\ 1 ksinh(x (t—T))+acosh(k(t—T))
=5 (M) T2 (“‘ KKcosh(K(t—T))—l—asinh(i((t—T)))’

with the optimal time-varying feedback gain given by —bS(r).

Example 2.4.2 (Inventory control). [139] In most regulator problems, the variables
are normalized as deviations from predetermined set points. In this example, a
simple inventory control problem, the desired values are left as predetermined time-
varying quantities, and we illustrate the changes that arise in the argument for such
a model that involves a modified form of the Lagrangian in the objective. The
reasoning given here easily extends to the general case (for example, see [64, 144]).

Consider a company that produces some good and has desired levels for the
production and inventory over a planning horizon [0, T| represented by u,(¢) and
x4(t), respectively. If the demand at time ¢ is denoted by d(t), then the rate of change
of the inventory level x(¢) is given by

x(t) =u(t)—d(t), x(0) = xo.

If the firm’s objective is to maintain the inventory and production levels, then it is
reasonable to minimize a functional of the form

1) =3 [ alale) ~ O + ) — a0,

where r and ¢ are positive weights selected by the company. In this problem, we
have the restrictions x(¢) > 0 and u(z) > 0 that do not fit into the linear-quadratic
regulator model, but making the natural assumption that x; and u,; are positive
continuous functions, for sufficiently high weights » and g we can assume that these
conditions will not be violated. In other words, we solve the problem ignoring these
constraints, but then need to verify that the optimal solution does not violate them.
The other, less significant change to the model formulation analyzed so far is that
the objective, when multiplied out, contains linear terms in x and u as well. These
are easily incorporated into the sweep method described above. (This topic will still
be picked up in greater generality in Sect.5.3.)

The above change in the problem formulation does not alter the fact that
extremals are normal, and the Hamiltonian for the problem is

H(t, A ox,u) = g (x—2xq(1))% + % (u—1g(t))> + A(u—d(1)).

Minimization of the Hamiltonian over u € R leads to A = —r(u, — uy) and hence

.0)

u(t) =— +ug(t), 0<t<T.
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Substituting this relation into the dynamics and combining with the adjoint equation
gives the inhomogeneous linear system

a0 = ) - ),

A1) = —qx. (1) + gxa(t),
with boundary conditions x..(0) = xp and A, (T') = 0. In this case, the solutions are

related by
A1) = alt) +b(0)x.(1), (2.20)

for some C!-functions a and b that satisfy the terminal conditions a(7T) = 0 and
b(T) = 0. Differentiating Eq. (2.20), we get that

Ay = d+ bx, + b,
which, upon substituting for A, and X, yields

-+ bluglr) —d(0) ~ gsal) — 2 + (b—b—:w) % =0,

This equation will be satisfied if we choose a and b such that

atblugle) —d(0) ~gxa() -2 =0, a(m)=0, @21
. b2
b-—+q=0, b(I)=0. (2.22)

Equation (2.22) is the Riccati equation for a related standard linear-quadratic
optimal control problem [LQ] and has a solution over the full interval [0, 7] because
of the positivity of g and r. Equation (2.21) then is a time-varying linear ODE
defined over the full interval and thus also has a solution over the interval [0,T].
As for Example 2.4.1, the solution b to the Riccati equation can be calculated
explicitly by making a substitution of the form

) 1
o__1,
0] r
yielding the second-order equation
o="2¢.
r

Setting K = \/g, the solution for terminal conditions ¢(7) = 1 and ¢(T) = 0 is
given by ¢ () = cosh(x(t — T)) and thus
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b(r) = —rxtanh (k(t — T)) = rktanh (x(T —1)).

We still need to find a(¢). This solution depends on the demand d(r) and the specified
production levels x,(z). If these are constants, say the firm controlling the inventory
desires to have the production rate equal to the demand rate, u; = d = const, while at
the same time maintaining a constant level of inventory, x; = const, then Eq. (2.21)
becomes

a—@a—qxdzo, a(T)=0.
r

Solving this equation, it follows that
_gqxq .
a(t) = T tanh (x(t —T)) = —/qrxstanh (k(T —1)).

Hence the optimal feedback control u,(z,x) is given by

u(t,x) = — +d:—M+d

= ktanh (k(T —1)) (xg — x.(¢)) + d, 0<t<T.

Thus the optimal control equals the constant demand rate d plus a time-varying
inventory correction factor proportional to the deviation from the set point.

2.5 Time-Optimal Control for Linear Time-Invariant
Systems

The two classes of problems considered so far, the simplest problem in the calculus
of variations and the linear-quadratic regulator, were both problems without con-
straints on the control set and as such, are examples that still could be fully analyzed
with techniques from the calculus of variations. We now consider examples from
another class of classical problems for which this no longer is the case: time-optimal
control to a point for a time-invariant linear system with bounded controls.

[LTOC] Given a time-invariant linear control system

X X = Ax+ Bu, AcR™, BeR™™

)

find among all piecewise continuous controls « that take values in the hypercube

U=<uecR":||ul|]o= max |u;] <153,
i=1

yeeesll

one that steers a given (but arbitrary) initial point xy € R” into the origin 0 in
minimum time.
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In the formulation of Sect.2.2, we have M = R", L(t,x,u) = 1, f(t,x,u) =
Ax+ Bu, @ =0, and V¥ is given by ¥ : [0,00) x M — R", (¢,x) — ¥(r,x) = x,
i.e.,, N={x € R": x = 0}. Since both initial and terminal points on the state are
specified, in this case the transversality conditions give no information about the
multiplier A. Formally, we have %—f(t,x) =1d and thus A(T) = v, an arbitrary
covector from (R")*. But the transversality condition on the final time 7 implies

that H(T, Ag,A,x,u) = 0. Since
H = A+ A(Ax+ Bu)
is time-invariant, it follows that along any extremal, we have
H(t, A0, A(1),x:(1),u(2)) = 0.

In particular, A(z) can never vanish, since otherwise also A9 = 0. The adjoint
equation is given by ‘
A=—-AA,

and the minimum condition implies that for each i = 1,...,m, the ith component

ul) (t) of an optimal control must satisfy

j 1 if A(1)b; <O,
=37 i<
—1 if A(¢)b; > 0,
where b; is the ith column of B. Summarizing, we thus have the following version
of the Maximum Principle for the optimal control problem [LTOC]:

Theorem 2.5.1 (Maximum principle for problem [LTOC]). Let (x.,u.) be a
controlled trajectory defined over the interval [ty,T| that minimizes the time of
transfer from xy € R" to the origin. Then there exists a nontrivial solution A :
[to, T] — (R")* to the adjoint equation .. = —AA so that the control u, satisfies

0 ) = {+1 if A(t)b; <0, 023

—1 if A(z)b; > 0,
and the Hamiltonian is identically zero on [ty,T], H(t, o, A(t),x.(1),us(t)) = 0.

The necessary conditions of this theorem are also sufficient for optimality under
some easily verifiable controllability assumption on the system X. For the moment,
consider a system X of the form

X X=Ax+Bu, x(0)=p, uecl, (2.24)
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with a general control set U C R™. Since the system is time-invariant, without loss
of generality we normalize the initial time to 7y = 0, and the solution x(-; p) to the
initial value problem (2.24) is given by

(tp) =+ [ A IBu(s)s (2.25)
JO

Definition 2.5.1 (Reachable and controllable sets). The time-z-reachable set from
p is the set of all points g € R” that can be reached from p by means of an admissible
control defined on the interval [0,],

!
Reachs,(p) = {q €ER":Ju€ % suchthatg = eA’p—i-/ eA(’S)Bu(s)ds} .
’ 0

The reachable set from p is the union of all time-z-reachable sets for ¢ > 0,

Reachy(p) = U Reachs,(p).

>0

The time-£-controllable set to ¢ is the set of all points p € R” that can be steered into
¢ by means of an admissible control defined on the interval [0,7],

t
Contrs,(q) = {p ER":Ju€ % such thatg = eA’p—i—/ eA(’S)Bu(s)ds} :
0

The controllable set to g is the union of all time-¢-controllable sets for # > 0,

Contrz(g) = | J Contrs,(q).

t>0

Clearly, a point g is reachable from p in time ¢ if and only if p is controllable to g
in time ¢. Thus, generally, we restrict out attention to reachable sets. It is clear from
Eq. (2.25) that

Reachg, (p) = ¢* p + Reachy, (0)

and henceforth we consider only the case p = 0.

A special situation arises if there are no restrictions on the control set, i.e., if U =
R™. That is, we are considering the problem of whether in principle it is possible
to steer a point p into another point ¢. In this case, for every ¢+ > 0 the reachable
set Reachy (0) is a linear subspace (and in fact, the same one regardless of the size
of the interval), known as the controllable subspace € (A,B). This is the subspace
spanned by the columns of the so-called Kalman matrix, i.e.,

%(A,B) =Im (B,AB,A’B,..., A" 'B). (2.26)
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Theorem 2.5.2. IfU = R"™, then for everyt >0
Reachs ;(0) = ¢ (A,B) = Contrs,(0).

Proof. We fix t and first show that the reachable set Reachy,(0) is given by the
image ImW (z) of the matrix

W(t) = /[ A=) BRT AT (=9 g,
Jo
Choosing continuous time-varying controls of the form
u(s) = BTeAT(F”p,

it follows that

x(r) = ./Ot eA(tfs)Bu(s)ds =W()p,

and thus ImW (r) C Reachs,(0). But W(r) is a symmetric matrix, and hence the full
space R” is the direct sum of the image and the kernel of W (z) [113],

R"=TmW (t)@kerW (z).

Furthermore, the kernel is the orthogonal complement of the image, kerW (r) =
ImW (¢)*, and it therefore suffices to show that

kerW (t) C Reachs ,(0)".

Given any point y € kerW (¢), we have that
t r t T 2
0= (y,W(t)y) = / yTeA(tf")BBTeA (’ﬂ)yds = / HBTeA (tfs)yHst,
0 0

and thus y” e*(=5) B = 0 on the interval [0,]. Since any point ¢ in the reachable set
Reachs ,(0) is of the form

t
q= / A9 Bu(s)ds
0
for some control u, we thus have that
r
o) = [ 5T Bus)ds =0
0

for all ¢ € Reachy,(0). Hence y € Reachy,(0)* as claimed. Overall, it therefore
follows that
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Reachs;(0) =ImW(r) forall 7> 0.

It remains to compute this image, or equivalently, the kernel of W (). If y €
kerW (t), then as shown above, y/¢*!"9)B = 0 on the interval [0,7]. Since this
function is real-analytic, this is equivalent to the fact that all derivatives vanish at
t=0,1i.e.,

yA*"B=0 forall keN.

By the Cayley-Hamilton theorem [113], A" can be expressed as a linear combina-
tion of the powers A’ for i =0, 1,...,n— 1, and thus this is equivalent to
yI(B,AB,A’B,..., A" 'B) = 0.
Hence the columns of the Kalman matrix
K = (B,AB,A’B,...,A""'B)
span the orthogonal complement to ker W (¢); that is, they span ImW (¢). This proves

the result. O

Definition 2.5.2 (Completely controllable). The linear system X is said to be
completely controllable if € (A,B) = R".

Thus, if the system X is completely controllable, then in principle, it is possible
to go from any point pg € R” to any other point p; € R" in arbitrarily short time 7.
(Simply take the control that steers the point 0 into the point p; — e’ pg in time T'.)
Obviously, the shorter the time-interval is, the larger the control values need to
become, and if the controls are bounded, then complete controllability no longer
ensures that such a transfer is possible. In fact, as we shall see in the examples in
the next section, with a bound on the controls, it may no longer be possible to steer
po into p; at all. However, for the system X with control set given by the hypercube

=ueR": ||ulle= max |u] <
U R™ <1
i=1,...m

(more generally, for any control set U that has 0 as interior point), this notion
of complete controllability makes the conditions of the maximum principle also
sufficient for optimality.

Theorem 2.5.3. Consider the time-optimal control problem to the origin for the
time-invariant linear system

X X = Ax+ Bu, AecR™, BeR™™
with control set
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If the system X is completely controllable, then a control u : [0,T] — U is time-
optimal if and only if there exists a nontrivial solution A : [0,T] — (R")" to the
adjoint equation A = —AA such that

A(¢)Bu(t) = minA(t)Bv. (2.27)
velU

This theorem will be proven in Sect.3.5. Thus, for the time-optimal control
problem for linear time-invariant systems, the conditions of the maximum principle
are both necessary and sufficient for optimality under an easily verifiable algebraic
condition. Note that the minimum condition (2.27) gives no information about
ugf)(t) for times ¢ when A(t)b; = 0. The function @;(¢) = A(¢)b; is called the ith
switching function, and its properties determine the structure of optimal controls.
For instance, if @;(¢) has a simple zero at time 7, then the control switches between
+1 and —1 at 7. Controls that oscillate only between the upper and lower values
+1 are called bang-bang controls. For general nonlinear systems with locally
bounded Lebesgue measurable functions as controls, the switching functions may
have complicated zerosets (see Sect. 2.8). But for linear systems, as we shall show in
Chap. 3, these phenomena play a minor role, and we therefore do not discuss these
features here. Rather, we close this section with a useful criterion on the eigenvalues
of the matrix A that ensures that optimal controls are bang-bang and gives a bound

on the number of switching times.

Proposition 2.5.1. If all eigenvalues of the matrix A are real, then optimal controls
for the single-input linear control system

X =Ax+bu, AceR™, beR", lul <1,

are bang-bang with at most n — 1 switching times.

Proof. Tt follows from the adjoint equation, A= —AA, that the derivatives of the
switching function @(z) = A(¢)b are given by

D(1) = —A(1)Ab, D(1) =A(1)A%b, ..., @V (1) =(—1)"A"b,

By the Cayley—Hamilton theorem, the matrix —A is a root of its characteristic
polynomial, y_4(—A) = 0, say

x-a(t) =det(t-1d+A) = 1" +a, 1" +---+ait +ao.
Thus (—A)" can be written as a linear combination of lower powers of A,
(=A)" = —a, 1(-A)" ' = —a;(—A) — apld.
The switching function therefore satisfies the nth-order linear differential equation

O (1) +a, 1 @ V() + -+ a1 P(t)+ag=0
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with constant coefficients, where the polynomial is the characteristic polynomial of
the matrix —A. Since all eigenvalues of A, and thus also those of —A, are real, the
general solution @ to this differential equation is of the form

k
D(t) =Y pi(t)e ", (2.28)
i=1
where 0, ..., 04 are the distinct eigenvalues of the matrix A and p; are polynomials

of degree at most d;, where d; is the algebraic multiplicity of the eigenvalue o, that
is, the multiplicity of ¢ as a zero of the characteristic polynomial of A. Expressions
of this type are called exponential polynomials, and the result of the proposition
follows from a general property of these functions. Define the degree Deg @ of an
exponential polynomial of the form (2.28) as

k
Deg @ = Y (1+deg p;),

i=1

where deg p; denotes the usual degree of the polynomial p;. Then the proposition
follows from the following lemma:

Lemma 2.5.1. A nontrivial exponential polynomial of the form

of degree Deg @ = r has at most r — 1 zeros.

Proof. The proof is by induction on the degree r. If Deg @ = 1, then @ is of the
form @ (1) = ce~ ™ with ¢ # 0 and hence @ has no zeros. Thus, inductively, assume
that the statement is correct for all exponential polynomials of degree at most » and
assume that @ is of degree »+ 1. Then

¥(r) = (1) = py (1) +2pl eler—oo

also is an exponential polynomial of degree r+ 1, and we have

k

V(1) = pr(0) + X, (pile) + (06— o) pi(1)) el =",

i=2

Since differentiation of the polynomial lowers the degree, degp; = degp; — 1, the
derivative ¥ is an exponential polynomlal of strictly smaller degree, Deg ¥ < r.
Hence, by the inductive assumption, ¥ has at most r — 1 zeros. By the mean value
theorem, V¥ therefore has at most r zeros. Hence so does ®. O
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2.6 Time-Optimal Control for Planar Linear Time-Invariant
Systems: Examples

We give several examples that illustrate how the conditions of the maximum
principle can be used to construct optimal solutions for linear time-optimal control
problems. The examples are two-dimensional, but the procedures are generally
applicable. We start with the classical model of time-optimal control to the origin
for the double integrator.

2.6.1 The Double Integrator

The double integrator is a mathematical model of an object moving along a
horizontal line without friction, and the goal is to bring it to rest at the origin in
minimum time. Here x(¢) denotes the position of the object at time ¢, %(¢) its velocity,
and u(r) the external force applied to the object. Mathematically, we take as variable
x = (x1,x)7 = (x,x)7, and the dynamics can be written in the form

() ()

The Hamiltonian H is given by

H=2X+A Kg(l)>x+ (?)u] = Ao+ Mxz + Ao,

and thus the minimum condition implies that

u(t) =

+1 if L,(r) <0,
—1 if Ax(z) > 0.

Obviously, the matrix A has the double eigenvalue 0, and thus by Proposition 2.5.1,
optimal controls are bang-bang with at most one switching. Naturally, for this simple
model this also is easily seen directly: The adjoint equation is given by

; 01
A== (oo)’

or

and thus
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Hence any solution of the adjoint equation is an affine function A,(r) = ot + f and
has at most one zero. Therefore optimal controls are bang-bang with at most one
switching.

Once this structure is known, it is straightforward to synthesize all possible
extremals. We simply need to analyze the phase portraits of the two systems
corresponding to the constant controls # = +1 and u = —1 and then consider all
possible combinations that steer the system into the origin and have no more than
one switching. Let X denote the vector field corresponding to control u = —1, i.e.,

X1 = x and X, = —1. Forming Z—;‘; = —xp, we see that the integral curves have the

formx; = — %x% +a with a € R some constant. Analogously, if Y denotes the vector
field corresponding to control u = +1, then we have X; = x, and X, = 1, and now
the integral curves are given by x; = %x% + b with b € R another constant. Thus, all
integral curves are parabolas opening left for # = —1 and right for u = +1. Among
all these curves, however, there are only two that steer the system into the origin
directly, namely

1
F+3x1:§3€% for x; <0
and
1,
F—3X1:—§x2 for xp; > 0.

Only these two half-parabolas are integral curves that steer the system into the
origin; the other two halves that were dropped steer the system away from the origin.
Thus any optimal trajectory needs to arrive at the origin along either I'} or I_. Bang-
bang trajectories that have exactly one switching are now constructed by integrating
the vector field X backward from any point in I'} and integrating ¥ backward from
any pointin I_.

Denote the resulting family of extremal controlled trajectories by .%. It is clear
that away from I; and I, this family .# covers the entire state space injectively
and for every initial condition (x,x3) # (0,0) there exists a unique extremal in
Z that is bang-bang with at most one switching and steers the system into the
origin forward in time. This family is shown in Fig.2.1. In general, such a family
of controlled trajectories is called an extremal synthesis (and this will be the main
topic of Chap. 6). Note that for each trajectory, the control at (x,x;) depends only
on the actual point (x1,x;), but not on the path along which this point was reached
and thus we can describe the controls associated with this family as a discontinuous
feedback control. If we define regions

1
Gy = {(xl,xz) Ty < —sgn(xg)zx%}

and

1
G_= {(xl,xz) D> —sgn(xz)zx%},
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Fig. 2.1 Synthesis of optimal controlled trajectories for the time-optimal control problem to the
origin for the double integrator

then the corresponding controls are given by

) +1 for xel1UGy,
M* X)) =
—1 for xeI_UG_.

It follows from Theorem 2.5.3 that the controlled trajectories in this family are
optimal. For this simple example, this can also easily be verified directly [41]: Let
(%1,%2) # (0,0) be an arbitrary initial condition and let 7' denote the time it takes
for the system to reach the origin along the controlled trajectory in the family .%.
Suppose there exists another control i that steers (¥,X;) into the origin in time
T < T. Without loss of generality, consider the case that the control in the family .#
is given by

{—1 for 0<t<o,
u(r) =

+1 for a<t<T.

Define functions
D(t)=—x1(t) +x20)(t— @)

and
(1) =—% (1) +%(1)( — ),
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where (x1(-),x2(-)) is the solution from the family .# and (%(-),%2(-)) is the
solution corresponding to the control &#. Then we have that

D(t) = —i1(t) +x02(t)(t — ) +x2(t) =u(t)(t — 00) = |t — |
and
Y(t) = —x1(t) +50t)(t — o) +%(t) = a(t)(t — ).
Since U = [—1,1], it follows that ¥(¢) < |¥(t)| < ®(¢) and thus

T T
/0 o (1)dt > /O ¥ (1)dr.
Hence
O(T) — @(0) > ¥(T) — ¥(0).

But by construction,
CD(O) =—X] —0X) = lP(O),

and since ¥(T') = 0 (the system is at the origin at time T), we have ®(T) > 0. But
then

0</TT |t—oc|dt:/TTd>(t)dt:CD(T)—(D(T):—CD(T)go.

Contradiction. This proves that the family .% is an optimal synthesis of controlled
trajectories.

The general question of optimality of an extremal synthesis will be considered
in the context of sufficient conditions for optimality in Chap.6. For the linear
systems considered in this section, the optimality of all the syntheses constructed
here follows from Theorem 2.5.3.

2.6.2 A Hyperbolic Saddle

We now consider a system that has both a positive and negative eigenvalue:

01 0
X = <.
X <1O>x—|—<1>u, lu| <1

Again, the system is completely controllable,

K = (b,Ab) = ((1) é) ,

and the eigenvalues of A are 4 = —1 and y, = +1. Hence optimal controls are
bang-bang with at most one switching, and an extremal synthesis is sufficient for
optimality.



118 2 The Pontryagin Maximum Principle
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Fig. 2.2 Phase portrait for u = +1 (left) and for u = —1 (right)

As for the double integrator, geometric properties of the phase portrait of the
uncontrolled system determine the structure of the overall synthesis of optimal
controlled trajectories. The origin is a hyperbolic saddle for the system 7z = Az, and
the stable and unstable subspaces at the equilibria are spanned by the eigenvectors
vi and v, of the eigenvalues () and i, respectively,

(1) ()

That is, if p is a multiple of vy, then the solution z(¢) to the initial value problem
t=Az z(0) = p, is given by z(t) = ¢ p = ¢ " p and thus satisfies lim, .. z(t) =0,
while for multiples of v, the solution is given by z(¢) = e’ p = ¢’ p and thus satisfies
lim;_,_. z(t) = 0. The phase portraits for the controlled vector fields with u = +1 or
u = —1 are simply shifted versions of the phase portrait of the homogeneous system
Z = Az along the x;-axis and are shown in Fig. 2.2.

If, as above, we denote by X the vector field corresponding to the control u = —1
and by Y the vector field corresponding to the control u = +1, i.e.,

X(x)=Ax—b=( i ) Y(x)=AX+b=(x1xfrl>,

then these vector fields now have a hyperbolic saddle at the points p = (+1,0) and
p— = (—1,0) and the stable and unstable subspaces of the matrix A are translated
to become lines through p, and p_. Note that there again exist unique trajectories
I'_ of X and I} of Y that steer the system into the origin forward in time, shown
as solid black curves in Fig. 2.2. Their continuations, which will not be part of the
synthesis, are shown dashed. As with the double integrator, an extremal synthesis
is then constructed by integrating X backward from points in I} and ¥ backward
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from points in I". However, it is now no longer possible to steer every point into
the origin as it was the case with the double integrator, and the controllable set is
bounded by the stable manifolds of the equilibria p; and p_, that is, by the lines

E; = p4 +linspan{v; } = {xERZ (X +x=+1}

and
E_=p_+linspan{v;} = {x € R? 1 x| +x, = —1}.

Clearly, for any admissible control u, we have that

d
= (x1+x)=(x1+x)+u

and since |u| < 1, we always have % (x1 +x2) < 0 at points (xj,xz) satisfying
X1 +x < —1 and % (x1 +x2) > 0 at points satisfying x; +x; > 1. Thus no point
outside of

C={(x1,%): -1 <xi+x <1}

can be steered into the origin. On the other hand, if a point lies in %, then
it is clear from the phase portraits that there exists a unique bang-bang control
with at most one switching that steers this initial condition into the origin. This
family of controlled trajectories is illustrated in Fig. 2.3. By construction this family
of controlled trajectories is an extremal synthesis, and hence it is optimal by
Theorem 2.5.3.

This example illustrates the obvious fact that complete controllability does not
allow one to freely steer the system into arbitrary points if constraints are imposed
on the control. As seen in Example 2.4.1, if the eigenvalues are critical, i.e., lie on
the imaginary axis, then the instability can be fully overcome by any kind of control
action (of course, the control set needs to contain the origin in its interior). Generally,
for unstable systems with eigenvalues with positive real parts a certain degree of
instability can be overcome depending on the size of the control that is allowed.
In Example 2.4.2, when there still existed a one-dimensional stable subspace for
the system, it was this subspace (and the size on the control) that determined the
controllable set. The next example shows what happens if the system is an unstable
node without any stable trajectories at all. Even in this case, the control is still able
to overcome some of the instabilities, and the controllable set still is open.

2.6.3 An Unstable Node

Consider the system

x_<§;)x+<(1)>u, ue[-1,1].
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Fig. 2.3 Synthesis of optimal controlled trajectories for the time-optimal control problem to the
origin for a hyperbolic saddle

As above, the system is completely controllable,

Kz(b,Ab)z(?é),

with two real eigenvalues, u; = 1 and u, = 4, and as before, optimal controls are
bang-bang with at most one switching and an extremal synthesis is optimal.

The uncontrolled system is an unstable node, and the phase portraits for the
controlled vector fields X and Y corresponding to the constant controls u = —1 and
u=+1, respectively, again are simply shifted versions along the x-axis of the phase
portrait of Z = Az shown in Fig. 2.4. In this case, the solutions along the eigenvectors
do not play an important role, but instead the boundary of the controllable set is
given by two specific trajectories AL and A_ of the vector fields X and Y: AL is
the backward orbit of the trajectory of the vector field Y that passes through the

equilibrium point p_ = (— %, %) of the vector field X at time 0 and converges to the

equilibrium p; = (%, —%) of the vector field Y as t — —oo, and symmetrically, A_
is the backward orbit of the trajectory of the vector field X that passes through the
equilibrium point p of the vector field Y at time 0 and converges to the equilibrium
p— of the vector field X as r — —oo. The concatenation of these two curves with
the equilibria p; and p_ forms a simple closed curve, and the controllable set &
is the interior of this closed curve with & as its boundary. The optimal synthesis is
constructed analogously as for the double integrator and the hyperbolic saddle by
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Fig. 2.4 Phase portrait of Z = Az for an unstable node

integrating the vector fields X and Y backward from the unique trajectories I of X
and I} of Y that steer the system into the origin forward in time, and it is illustrated
in Fig. 2.5.

2.6.4 The Harmonic Oscillator

We close this section with an example of a matrix A that has complex eigenvalues.
Because of the inherent oscillatory character of these systems, the number of
switchings no longer can be bounded. We consider the harmonic oscillator. As
before, x(t) denotes the position of the object at time 7, %(¢) its velocity, and u(r) the
external force applied to the object, and we write the state as x = (x,x2)7 = (x,x)7.
Now the dynamics takes the form

= (08 )x (7))

and the Hamiltonian H is given by

H=2X+A K—Ol (1)>x—|— (?)u} = Ao+ Axo+ Ao (—x1 +u).
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Fig. 2.5 Synthesis of optimal controlled trajectories for the time-optimal control problem to the
origin for an unstable node

Thus again, the minimum condition implies that

+1 if )Lz(l‘) <0,

“WE110 i a) o,

As for all linear systems, the adjoint equation is given by the system itself run
backward, but written as a row vector

or '

A=A, Ay =—A1,
and thus 4

A,Z = E (—A’l) == _)Lz

Hence, all solutions of the adjoint equation are integral curves of the harmonic
oscillator. Thus again optimal controls are bang-bang, but now we cannot give
an a priori bound on the number of switchings. In fact, depending on the initial
condition, this number can be arbitrarily large. However, since switchings are the
zeros of a solution to the harmonic oscillator, it follows that all switchings T, are
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spaced exactly T units apart, and the first switching 7; can take any value in the
interval (0, 7]. Analytically, any solution A, of the adjoint equation is of the form
A (t) = acost + bsint for some constants @ and b and therefore can be written in
phase-angle form as

Aa(t) =Acos(t— @)

with amplitude A = v/a® + b? and phase ¢ = arctan (g)

With this information, as with the examples above, it is again straightforward to
synthesize all possible extremals by analyzing the phase portraits of the systems
corresponding to the constant controls ¥ = +1 and ¥ = —1 and then consider
all possible concatenations that switch exactly 7 units of time apart. As before,
let X and Y denote the vector fields corresponding to the controls © = —1 and
u = +1, respectively. Integral curves of X are circles with center at the point
p— = (—1,0), and integral curves of Y are circles with center at p; = (1,0), both
traversed clockwise. Exactly as in the case of the double integrator, among all these
trajectories there are only two that steer the system into the origin directly, namely

Iy:[-n0— R?, 1+ (x1(£),x2(t)) = (1 — cos(t),sin(t)),

and
r:[-n0 — R%, ¢+ (x1(t),x2(1)) = (=1 4 cos(t), —sin(r)).

Note that I'_ is the curve obtained by reflecting I'. at the origin, and only these two
semicircles are admissible extremal trajectories, since switchings must be spaced
7 units apart. Thus there cannot be any segment of an optimal X or Y trajectory
longer than 7. Any extremal control that steers the system into the origin needs to
do so along either Iy or I'_ as final segment. The full family .% is now constructed
by picking a point ¢ (¢) € Iy (respectively g_(¢) € I"") for a time ¢ € [—7,0) and
integrating the vector fields X and Y (respectively, ¥ and X) backward from ¢ (¢)
(respectively g_(t)), switching between these vector fields at all times precisely
7 units apart. Thus, with the final time normalized to 0, the switchings occur at
times t, t — m, t — 27, ... and the curves where the switchings occur, the so-called
switching curves, are obtained inductively by following the flow of X, respectively
Y, for exactly 7 units of time starting with Iy and I". Since integral curves are
concentric circles centered at p., this generates a family of shifted semicircles of
type I; below the positive xj-axis and of type I above the negative xj-axis as
depicted in Fig. 2.6. In this figure, the curves I\ and I are shown as solid curves
since these are actually integral curves of X and Y, while all their translates are
strictly switching curves that do not correspond to integral curves and are shown
dashed. On all points on these translates, the controls switch between +1 and —1
and the corresponding trajectories cross the switching curves.

As with the double integrator, the family .# covers the entire state space
injectively, and for every initial condition (x?,x(z)) there exists a unique bang-bang
extremal that steers the system into the origin. So again we have an extremal
synthesis, and the control can be given as a feedback control. If we denote the
switching locus by 1" and let G denote the region below 1" in the (x;,x;)-plane
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Fig. 2.6 Synthesis of optimal controlled trajectories for time-optimal control to the origin for the
harmonic oscillator

and G_ the region above 1’, then the control is again a discontinuous feedback of
the form
+1 for X€F+UG+,

—1 for xel_UG-_.

ui(x) =

As with the other examples considered in this section, by Theorem 2.5.3 the
family .# of controlled trajectories is an optimal synthesis.

We close this section with pointing out the special nature of the trajectories that
end with the full semicircles Iy and I'_. Let ¥4 and y_ be the controlled trajectories
in the field .# that end at the origin at time O by following the full arcs Iy and
I', respectively, and have switchings at all negative integer multiples of 7. These
two extremal trajectories are strictly abnormal, i.e., the only way to satisfy the
conditions of the maximum principle is with Ay = 0. Thus, the trajectories y; and
Y- are examples of optimal trajectories whose extremals are abnormal.

Proposition 2.6.1. The extremals corresponding to Yy and Y- are unique (up to a
positive multiple) and are strictly abnormal.

Proof. Without loss of generality, we consider y_. Since the system is time-
invariant, we can normalize the final time to be T = 0 and integrate backward. Then,
as used already above, the parametrization of y_ (respectively I_) over the interval
[—m,0] is given by

x1(t) =—1+cos(t) and xp(r) = —sin(r).
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The times t = —7 and ¢ = 0 are switching times. Since A itself is a solution of the
harmonic oscillator, only multiples of sin(¢) will satisfy this condition, and since the
control is u = —1 on [—,0], we must have A (¢) = orsin(¢) for some o < 0. Hence

A1(t) = —Ay(1) = —accos(r), and on [—1,0] the Hamiltonian H takes the form

H = o+ A (1)x2(1) + Az (2) (—x1 (1) + u(r))
= Ao+ occos(r) sin(t) + orsin(z) (1 —cos(r) — 1)
= .

But it follows from Theorem 2.5.1 that H = 0, and thus we must have g = 0. O

2.7 Extensions of the Model: Two Examples

The examples considered so far fall into well-established classes, linear-quadratic
optimal control and time-optimal control for time-invariant linear systems. But the
techniques that were used apply more generally, and as further illustration of how to
use the conditions of the maximum principle, we shall solve a basic trading problem
in economics and a classical example of a nonlinear system, the so-called moon
landing problem, that will lead us to a discussion of general nonlinear control-affine
systems in the next section.

2.7.1 An Economic Trading Model

We consider a simple model of a firm that buys and sells a product and has cash
and the quantity of this product as its two assets; denote the values of these assets at
time 7 by x;(¢) and x,(¢), respectively [139]. The initial values of the assets, x;(0)
and x,(0), are given. If the company’s reservation utility for the price of the product
at the end of some planning period [0, T] is denoted by 7, then the firm’s goal is to
maximize

C(Lt) =X (T) + EXQ(T).

Ideally, the reservation utility would agree with the price at time 7, but a priori this
price is unknown. The control in the problem, represented by u(z), is the rate of
buying and selling the product at time ¢ with u(r) > 0 considered a purchase and
u(t) < 0 a sale. We assume that at any time, there are (self-imposed) limits on the
amount of the product the company wants to buy or sell, say m < u(r) < M with
m < 0 and M > 0 given constants. If p(z) denotes the price of the product at time 7,
then the effect of a trading operation on the company’s assets is given by

51(1) = —ona(0) = pult),  a(e) = u),
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where o > 0 is a constant associated with the cost of storing a unit of the product
and the term p()u(z) gives the cost of purchase or the revenue from sales at time .
The dynamics now has the form x = Ax + B(¢)u, where A is time-invariant, but B

is time-varying,
A= 0-a and B(t) = —p(1) .
00 1

The Hamiltonian H for the problem is
H=H(t,A,x,u) = A (—ox, — p(t)u) + Aot = —adixa + (A — Aip(t)) u,
and the adjoint equations are given by
A =0, A =,
with transversality conditions
M(T)=—~Lo,  M(T)=—2om.

Notice the minus signs in the transversality conditions that arise, since in our
formulation, we minimize the objective J(u) = —C(u). If Ay =0, then also A () =0,
contradicting the nontriviality of the multiplier, and thus we normalize Ay = 1.
Hence

Mt)=—-1 and (1) =o(T —1) —m, 0<tr<T.

The minimization condition on the Hamiltonian therefore implies that the optimal
control u,(t) satisfies

wa(t) = m if p@t)>a(t—T)+m,
' M if pit)<o(t—T)+m,

while it is not specified through the minimization condition if p(t) = a(t — T) + 7.
In fact, if the price were to follow this linear relationship, then the minimization
condition would be inconclusive, and this leads to the concept of singular controls
that we shall describe in Sect. 2.8. Here we consider only the simpler case in which p
is continuous and piecewise continuously differentiable with p(r) # o everywhere.
In this case, whenever p(t) = a(t —T) + m, then p crosses the line {(r) =
ot —T)+ m, and at every such crossing a switch from m to M or vice versa occurs.
Let us illustrate this solution with a particular case of price function as given below

for the numerical values7 =9, m=—1,M =1, and o = %:
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- sell buy sell buy sell
O 1 1 1 1 1 1 1 1
0 1 2 3 4 6 7 8 9
Fig. 2.7 An optimal trading strategy
—3t+4 for 0<1<2,
1 for 2<tr <3,
t—2 for 3<r <5,
p(t) =
—t+8 for 5<tr<6,
t—4 for 6 <t <8,
4 for 8<r<9

Choosing m = 4, we get that A(¢)

1

3

t — 1, and Fig.2.7 illustrates the optimal

buy-sell decisions for this price function. The optimal control for the problem thus is

u (1)

T &3 oz 3

for
for
for
for

for

0<t<1.64,
1.64<t<45,
45<t<5.25,
525<1<75,
75<t<0.
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2.7.2 The Moon-Landing Problem

We now consider a problem with a nonlinear dynamics, but for which the synthesis
of optimal controlled trajectories can still easily be obtained with the procedure used
for time-invariant linear systems. This is a highly simplified version of the dynamics
underlying the real version of a spacecraft making a vertical soft landing on the
surface of the moon while minimizing fuel consumption [95]. The state variables
are h, the height of the space craft above the lunar surface; v, its vertical velocity
oriented upward; and m, its mass. Fuel consumption lowers the mass and because of
the orientation, increases the velocity, since the jets are used to slow down the free
fall of the craft. The simplified dynamical equations therefore take the form

h=v, h(0) = ho, (2.29)

p=—g+ 2L v(0) = vo, (2.30)
m

= —ku, m(0) =M +F, (2.31)

where g is the moon’s gravitational constant and « denotes the control of the system.
By means of the constant k, we normalize the control set to be U = [0, 1]. The
coefficients M and F in the initial condition for m denote the mass of the spacecraft
and the total mass of the fuel at the beginning of descent. The optimal control
problem then becomes the following:

[ML] For a free terminal time 7', minimize the total amount of fuel used,

over all piecewise continuous functions u : [0, 7] — [0, 1], subject to the dynamics
(2.29)—(2.31) and terminal conditions

hT)=0 and v(T) =0.

Clearly, an implicit assumption in the model is the state constraint 4 > 0, and
obviously we also cannot allow that 2 = 0 at some intermediate time with negative
velocity v. However, for the moment we ignore these constraints, and it will be seen
that the optimal solution fulfills these obvious physical side conditions.

The Hamiltonian function for the moon-landing problem is given as

H=Xu+Mv+2A (—g—i—l) —7L3ku—llv—7tzg+u</'lo—&—l3k).
m m

If (x.,us) is an optimal controlled trajectory defined over the interval [0, 7], then
there exist a constant A9 > 0 and an adjoint variable A = (4;,42,43) : [0,T] —
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(R?) " such that the following conditions are satisfied: (a) Ag and A (¢) do not vanish
simultaneously over [0, 7], (b) A(¢) satisfies the adjoint equations

A =0, =M, 13:/12%,
m

with transversality condition A3(7T) = 0, and (c) the control u.(¢) minimizes the
Hamiltonian H as a function of u over the control set [0, 1] with minimum value 0.
Since the Hamiltonian H is linear in u, this minimum is determined by the sign
of the function
M (1)

D(t) = /10+W —A3(t)k,

and we have that

0 if @(t) >0,
u«(t) = 4 undefined if @(t)=0,
1 if @(r)<0.

Again @ is the switching function of the problem.

For the time-optimal control problem, intuition would say that the optimal
solution should be free fall (u. = 0) followed, at the right moment, by a maximum
thrust (u, = 1) to slow down the craft to make a soft landing. This corresponds
to a bang-bang control that has exactly one switching from # = 0 to u = 1. For
this problem, this also is the minimum-fuel-consumption solution. To see this, we
analyze the derivative of the switching function. It follows from the dynamics and
adjoint equation that

If A; =0, then the switching function @ is constant. But @ cannot vanish identically,
since the condition that H = A;v — Ag + u®(¢) = 0 then also gives that 4, = 0,
which implies A3 = 0 as well and thus also 4y = 0 from @ = 0, contradicting the
nontriviality of the multipliers. Clearly, @ also cannot be positive, since v decreases
along the control # = 0, and thus we cannot meet the terminal condition v = 0.
Hence, in this case, @ must be negative, giving the constant control u.(z) = 1. This
corresponds to braking with full thrust throughout, and clearly this is the optimal
control for specific initial conditions. If A; # 0, then the switching function is strictly
monotone and thus has at most one zero. Again, the only choice that can satisfy the
terminal condition is A; > 0, and hence optimal controls must be bang-bang with at
most one switching fromu =0to u = 1.

Once this is known, a field of extremals can be constructed as before in the
examples for linear systems. Suppose the control is given by u, = 1 on the interval
[, T]. It then follows from the terminal conditions #(T) = 0 and v(T') = 0 that
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Fig. 2.8 Switching curve and optimal controlled trajectories near the final time 7

k2 M+F k

v(C)-g(T—C)%—%ln(l—k[(VIT—;IE)).

) == 5o - 0= M (1= =) T

Plotting i({) against v({), we get a curve 2, § — (h(&),v({)), that represents the
set of all initial conditions (height and velocity pairs) that would result in a soft
landing with full thrust #, = 1. Since there exists a restriction that the total amount
of fuel will burn in time % seconds, one further needs to restrict the curve to the

{-values in the interval [T — %, T]. The first part of the trajectory simply is free fall
(uy. = 0), and the initial portions of the equations are given by

1
h(r) = —Egtz—i—vot—i-ho and v(r)=—gr+wv

so that |
h(t) =ho— 5 (V(t)—vg), t>0. (2.32)
8
Once this parabola meets the curve 2, the thrusters need to be engaged at full force
to make a soft landing. If the parabola does not meet the switching curve %, a soft

landing is impossible. Figure 2.8 illustrates the synthesis.
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2.8 Singular Controls and Lie Derivatives

Both the linear time-optimal control problems in the plane and also the examples
considered in the previous section lead to minimizing a Hamiltonian function that
is linear in a scalar control u over a compact interval [a,b]. Clearly, this minimum
is attained at u = a if the function @ multiplying u is positive and at u = b if this
function is negative. In the examples we have considered so far, it always turned out
that optimal controls were bang-bang, i.e., consisted of a finite number of switchings
between u = a and u = b. We shall show in Sect. 3.6, that this is “always” the
case for a time-invariant linear system whose control set is a compact polyhedron.
More precisely, for these systems, it is always possible to find an optimal control
that switches finitely many times between controls that take their values in one of
the vertices of the control set; in addition, the number of switchings over a finite
interval [0, T'] can be bounded. This no longer holds once the dynamics of the control
system becomes nonlinear: optimal controls need not be bang-bang, and even when
optimal controls switch only between u = a and u = b, the number of switchings
on a compact interval [0, 7] can be countably infinite. We shall see in the remaining
sections of this chapter that these phenomena are linked with controls that arise
when the function @ multiplying u vanishes over some interval, so-called singular
controls. We now develop geometric tools and techniques required for their analysis.

2.8.1 Time-Optimal Control for a Single-Input Control-Affine
Nonlinear System

Again we use the time-optimal control problem as the vehicle to develop these tools,
but now allow for nonlinearities in the state. We consider a time-invariant, single-
input, control-affine system X of the form

T i=f)t+glu,  f.gEVI(Q), xeQ. (233

Here, 2 is a domain (i.e., an open and connected subset) in R”, and f: Q2 — R”
and g : 2 — R” are two infinitely often continuously differentiable vector fields
defined on Q. We use V"(Q) to denote the set of all vector fields defined on
Q for which all components are C"(Q)-functions, i.e., are defined and r times
continuously differentiable on €. Clearly, the C* assumption is without loss of
generality and can be replaced by requiring that the vector fields be sufficiently
smooth, say f,g € V"(Q), with r large enough for all the derivatives that arise to
exist.

[NTOC] Given a time-invariant, single-input, control-affine control system X of
the form (2.33), among all piecewise continuous (more generally, Lebesgue
measurable) controls u that take values in the compact interval [—1,1], u :
[0,T] — [—1,1], find one that steers a given initial point p € £ into a target
point ¢ €  in minimum time.
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In the formulation of Sect. 2.2, we have that M = Q, L(t,x,u) = 1, f(t,x,u) =
f(x)+g(x)u, =0,and ¥ is given by ¥ : [0,00) x Q — Q, (£,x) — ¥(t,x) =x—q,
i.e., N = {q}. As with the linear system, since both initial and terminal points on
the state are specified, the transversality conditions give no information about the
multiplier A, and the terminal value A(T) is free. But the transversality condition
on the final time T implies that H(T, Ap,A,x,u) = 0, and since

H =2+ A (f(x)+g(x)u) = Ao+ (A, f(x) + g (x)u)

is time-invariant, it follows that the Hamiltonian vanishes identically along any
extremal. Equivalently, we have that

(1), Fxe (1)) + us (1) g (x: (¢)) = const < 0.

We freely use the notation (-,-) for the inner product. In particular, note that this
implies that A(¢) # 0, since otherwise also Ay = 0 contradicting the nontriviality
condition of the maximum principle. The adjoint equation is given by

A1) = =2 (1) (Df (x.(1)) + us(1)Dg (x.(1))).,

where Df and Dg denote the matrices of the partial derivatives of the vector fields
f and g, respectively, and the minimum condition implies that

u*(t>_{+ Lt (A(0),8(x(1))) <0,
=1 if  (A(r),8(x«(1))) > 0.

Summarizing, we thus have the following result:

Theorem 2.8.1 (Maximum principle for problem (NTOC)). Let (x,,u.) be a
controlled trajectory defined over the interval [0,T]. If (x.,u.) minimizes the time
of transfer from p € Q to q € Q, then there exists a nontrivial solution A : [0,T] —
(R™)* to the adjoint equation

2(t) = =A(6) (DF(x. (1)) + . (1)Dg (. (1)) (2.34)
such that

(A (0), £ e (6)) + 1 (1) g (. (1)) = const < 0

and the control u, satisfies

(1) = —sgn (A (1), g(x(1))) -
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2.8.2 The Switching Function and Singular Controls

Definition 2.8.1 (Switching function). Let I" be an extremal lift for the problem
[NTOC] consisting of a controlled trajectory (x.,u,) defined over the interval [0, T]
with corresponding adjoint vector A : [0,T] — (R")*. The function

@r (1) = A(1)g(x(1)) = (A (1), 8(x:(1))) (2.35)

is called the (corresponding) switching function.

We usually drop the subscript I" in the notation if the extremal under consider-
ation is understood. Clearly, properties of the switching function @ determine the
structure of the optimal controls. As long as @ is not zero, the optimal control is
simply given by

u,(t) = —sgn O(r)

and thus takes its value in one of the vertices of the control set. A priori, the control
is not determined by the minimum condition at times when @(z) = 0. Naturally,
if @(1) =0 and the derivative @ (1) exists and does not vanish, then the control
switches between u = — 1 and u = +1 with the order depending on the sign of @ (7).
Such a time 7 simply is a bang-bang junction, exactly as with linear systems. On the
other hand, if @(r) were to vanish identically on an open interval , then although the
minimization property by itself gives no information about the control, in this case,
also all the derivatives of @(¢) must vanish, and this, except for some degenerate
situations, generally does determine the control as well. Controls of this kind are the
singular controls referred to above, while we refer to the constant controls u = —1
and u = +1 as bang controls. Strictly speaking, to be singular is not a property of
the control, but of the extremal lift, since it clearly also depends on the multiplier A
defining the switching function.

Definition 2.8.2 (Singular controls and extremals). Let I" be an extremal lift for
the problem [NTOC] consisting of a controlled trajectory (x.,u.) defined over the
interval [0, T| with corresponding adjoint vector A : [0, 7] — (R")*. We say that the
control u is singular on an open interval I C [0, T'] if the switching function vanishes
identically on . The corresponding portion of the trajectory x defined over I is called
a singular arc, and I" a singular extremal (respectively, singular extremal lift).

Historically, this terminology has its origin in the following simple observation:
in terms of the Hamiltonian H for problem [NTOC], the switching function can be
expressed as

(1) = 2 (g, A1) 0)0. 1),

and thus the condition @(r) = 0 formally is the first-order necessary condition for
the Hamiltonian to have a minimum in the interior of the control set. For a general
optimal control problem, extremal lifts are called singular, respectively nonsingular,
over an open interval [ if the first-order necessary condition
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JH
a_(l()al(t)u-x*(t%u*(t)) = O
u
is satisfied for # € I and if the matrix of the second-order partial derivatives,

’H
T 0 205,000,

is singular, respectively nonsingular, on /. For problem [NTOC], this quantity is
always zero, and thus any optimal control that takes values in the interior of the
control set is necessarily singular. On the other hand, for example, for the linear-
quadratic optimal control problem [LQ] considered earlier, this matrix is always
positive definite and all extremals are nonsingular.

In order to solve the problem [NTOC], optimal controls need to be synthesized
from bang and singular controls, the potential candidates for optimality, through an
analysis of the zero set Z¢ of the switching function,

Zo={t€[0,T]: ®(t)=0}.

This, however, can become a very difficult problem, since a priori, all we know
about Z is that it is a closed set.

Proposition 2.8.1. Given any closed subset Z C R", there exists a nonnegative C™-
Sunction @ suchthat Z ={y € R" : ¢(y) = 0}.

Proof. [108] Let B = Z¢, the complement of Z. Since R” is second countable (see
Appendix C), there exists a sequence of open balls B;, i € N, such that B = U;cnB;.
It is a standard calculus exercise to verify that the function I" defined by

1
) = exp (_W) for y<l1,
0 for y>1,

is C™: derivatives of arbitrary order exist and all derivatives at y = 1 from the left
vanish. Let D = B,(p) be an open ball with radius r centered at p. Defining a radially
symmetric function y : D — R” by

2
o) =T <|y;2p| )

it then follows that y is nonnegative, y € C*(D), and y vanishes identically outside
of D. For each open ball B;, i € N, let y; be the correspondingly defined function.
For a multi-index o = (a,...,04), o €N, let |o| = a; + -+ o, and denote the
corresponding partial derivatives of y; by D*ys;,
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0% ... 0%y
pey = L%
ayal . ayan
Let
M; = sup [D%wil;
lor|<i

since all functions y; have compact support and the summation is finite, all the
numbers M; are finite. Thus the series

converges uniformly (we have ||y;|| < M; for all i € N), and so do all its partial
derivatives. For since also ||D*y;|| < M; for all i > ||, the termwise differentiated

series
oo Da l’/t

2 5,

converges uniformly and its limit is the oth derivative of ¢, D%@. Thus ¢ is a C*-
function that is positive on each ball B; and vanishes identically outside U;cnB;, 1.€.,
onZ. O

Thus, in principle, the zero set Zg of the switching function can be an arbitrary
closed subset of the interval [0, 7], and a better understanding of this set is needed
to solve the optimal control problem [NTOC]. In order to achieve this, we now
analyze the derivatives of the switching function. Since both A and the state x satisfy
differential equations, the switching function @ is differentiable, and we obtain

B(1) = A(1)g(x. (1)) + A (1) Dg (x: (1))t (1)
= —A() [Df (x: (1)) + us(1)Dg (x:(1))] (x:(1))
+l(l) (X (1)) f (x: (1)) 4w (1)8 (x4 (1))
) = Df (x(2)) g (x (1)) (2.36)

The coefficients at u.(t) cancel, and thus the derivative of the switching function
does not depend on the control u,. Hence @(t) is once more differentiable, and
we can iterate this calculation to find higher-order derivatives. This very much is
the approach pursued in older textbooks on the subject. However, brute force is not
necessarily always a good strategy, and now it is of benefit to develop the proper
formalism. The key is to observe that the tangent vector that multiplies A in (2.36)
is the coordinate expression of the Lie bracket of the vector fields f and g, and
this quantity is of fundamental importance in the control of nonlinear systems. We
therefore digress to give some of the background that not only is fundamental for
nonlinear optimal control theory in general, but also provides us with an elegant and
transparent scheme to carry out the required calculations.
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2.8.3 Lie Derivatives and the Lie Bracket

As before, let 2 be a domain in R” and denote the space of all infinitely often
continuously differentiable functions on 2 by C*(Q). Alsolet X : Q — R" be a C*
vector field defined on 2, X € V*=(Q). As before, the assumption r =  is taken
for simplicity of notation, and it suffices to have all functions and vector fields to
be r-times continuously differentiable with the blanket assumption that r is large
enough for all the required differentiations to be permissible. The vector field X
can be viewed as defining a first-order differential operator from the space C*=(£2)
into C*(2) by taking at every point g € Q the directional derivative of a function
¢ € C~() in the direction of the vector field X (¢), i.e.,

X:C°(Q)—=C7(Q2), ¢o—Xo,

defined by
(X9)(q) = Vo(q)-X(q),

where V¢ denotes the gradient of the function @, as always written as a row vector.
While this is a convenient notation, which we freely use, in order to distinguish
the values of the vector field from its action when considered as an operator, it is
more customary to denote this operator by Ly, i.e., Lx (¢)(q) = (X¢)(g), and this
function is called the Lie derivative of the function ¢ along the vector field X.

Definition 2.8.3 (Lie bracket). The Lie bracket of two vector fields X and Y
defined on €2 is the operator defined by the commutator

[X,Y]=XoY—YoX =XY—YX.

Formally, this is a second-order differential operator. But in fact, all second-order
terms cancel, and the Lie bracket defines another first-order differential operator.
For if we denote the Hessian matrix of a function @ by H(¢) and the action of this
symmetric matrix on the vector fields X and ¥ by H(¢)(X,Y), then we simply have
that

XYo)-Y(Xo)=X(Vo-Y)-Y(Vo-X)
V(Vo-Y)- X-V(Vp-X)-Y
=H(¢)(Y,X)+Ve-DY-X —H(¢)(X,Y)—Vo-DX-Y
Vo-(DY-X —DX-Y).

Q-

This calculation verifies that if X : Q - R", z—~ X(z),and ¥ : Q — R", z+— Y (2),
are coordinates for these vector fields, then the coordinate expression for the Lie
bracket is given by

[X,Y](z) =DY(z)-X(z) — DX (z) - Y(2). (2.37)
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This computation directly extends to calculating Lie brackets if we consider C~
vector fields as a module over C*(Q), i.e., multiply the vector fields by smooth
functions.

Lemma 2.8.1. Suppose o and 3 are smooth functions on Q, o, B € C*(Q), and
X and Y are C” vector fields on 2. Then

[aX,BY]=aB[X.Y]+a(LxB)Y — B(Lyo)X.
Proof. This simply follows from the product rule:
[aX, BY] = (aX (BY)) — (BY (aX))

=a{(XB)Y +BXY}—B{(Ya)X+oYX}
=ofBX,Y]+a(XB)Y -BYo)X.

A more important, and less obvious identity is the Jacobi identity.
Proposition 2.8.2. For any C” vector fields X, Y, and Z defined on €2 we have that
X, [V, Z]]+ Y, [Z,X]] + (2, [X, Y]] = 0.
Proof. Again, computing as operators, we have that
=X(YZ-2Y)-(YZ-ZY)X
=XYZ-XZY -YZX +ZYX.

Adding the corresponding terms for the other brackets thus gives

X, [V, Z]]+[v,[Z2,X]] + [Z,[X,Y]
= (XYZ—XZY —YZX +ZYX)+ (YZX —YXZ — ZXY + XZY)
+(ZXY —ZYX —XYZ+YXZ),

and all terms cancel. a
Note that the Jacobi identity can be written in the form
X, [Y.Z]| = [[X,Y],Z] + [¥,[X,Z]],

and this simply states that taking the Lie bracket with X (i.e., the Lie derivative of
a vector field along X) satisfies the product rule. These rules show that the vector
fields, understood as differential operators, form a Lie algebra. A Lie algebra over
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R is a real vector space & together with a bilinear operator [-,-] : & x & — & such
that for all X, Y, and Z € & we have [X,Y] = —[Y,X] and [X,[Y,Z]| + [Y,[Z,X]] +
[Z,[X,Y]] = 0. Many of the essential concepts and computational tools that will be
developed in Sect. 4.5 depend only on these general identities abstracted from the
above properties of vector fields.

These notions allow us to restate the formula for the derivative of the switching
function in a more general format, equally simple, but of great importance.

Theorem 2.8.2. Let Z: Q — R”" be a differentiable vector field defined on Q and
let (x,u) be a controlled trajectory defined over an interval I with trajectory in Q.
Let A be a solution to the corresponding adjoint equation and define the function

P(1) = (A(2), Z(x(2)))-

Then ¥ is differentiable with derivative given by
P ()= (A1), [f +ug, Z](x(1))).

Proof. This is the same calculation as above. Note that for any row vector
A € (R")*, matrix A € R"™", and column vector x € R" we have that (1,Ax) =
AAx = (AA,x). Thus, and dropping the argument ¢ in the calculation, we have that

¥(1) = <7L, Z(x)> + (A, DZ(x),)
— (A (Df(x)+uDg(x)), Z(x)) + (A, DZ(x) (f(x) +ug(x)))
= (A, DZ(x)f(x) = Df(x)Z(x)) + u(A, DZ(x)g(x) — Dg(x)Z(x))
=4, [f.Z](x)) +u(A(1), [8,Z)(x)),

which, for simplicity of notation, we also write as ¥(t) = (A(t), [f + ug,Z](x(t))),
noting that u(z) simply is a real number under differentiation with respect to the
state variables involved in the calculation of the Lie brackets. ad

2.8.4 The Order of a Singular Control
and the Legendre-Clebsch Conditions

It follows from Theorem 2.8.2 that the first and second derivatives of the switching
function @(r) = (A(r),g(x(r))) are given by

D(1) = (A(t), [f.8](x(1))) (2.38)

and

D(1) = (A1), [f. 1.8l (x(1))) +ut) (A1), [.[7.8]](x(2)))- (2.39)
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If now I' = ((x,u),A) is an extremal lift for which the control is singular on an open
interval /, then all derivatives of @ vanish identically on /, so that we have

(@), [f,8l(x(2))) =0

and
(A@), [f5 1S, 8l](x(2))) +u(t) (A1), [g,[f,8]](x(z))) = 0.

Clearly, at times ¢ when (A(¢), [g,[f,g]](x(z))) does not vanish, this equation
determines the singular control, and this leads to the following definition:

Definition 2.8.4 (Order 1 singular control). Let I' = ((x,u),A) be an extremal
lift for the problem [NTOC] consisting of a controlled trajectory (x,u«) defined over
the interval [0,7] with corresponding adjoint vector A : [0,7] — (R")*. If " is a
singular extremal lift over an open interval I, then I', and also the control u, are
said to be singular of order 1 over I if (A(¢), [g,[f,&]](x(¢))) does not vanish on the
interval 1.

We thus immediately have the following formula for the singular control in terms
of the state and multiplier.

Proposition 2.8.3. If I" = ((x,u),A) is a singular extremal lift of order 1 over an
open interval I, then the singular control is given by

A0, ALY
ing(!) = 70, g gl ) (2-40)

Note that this formula defines the singular control as a function of the state and
the multiplier, and thus it depends on the extremal lift. In differential-geometric
terms, it defines the singular control in the cotangent bundle (see Appendix C).
Generally, it is not a feedback function in the state space. However, more can be said
in low dimensions 7 of the state space and this will be pursued later on. Naturally,
this formula in no way guarantees that the control bounds imposed in the problem
are satisfied, and thus using(t) is admissible only if the values of this expression lie
in the control set, the interval [—1,1].

Similar to the Legendre condition in the calculus of variations, for singular
controls a generalized version of the Legendre condition also is necessary for
optimality. This result will be proven in Sect. 4.6.1.

Theorem 2.8.3 (Legendre—Clebsch condition). Suppose the controlled trajectory
(x«,u.) defined over the interval [0,T] minimizes the time of transfer from p € Q
to q € L for problem [NTOC], and the control u, is singular over an open interval
I C [0,T]. Then there exists an extremal lift I' = ((xy,u.),A) with the property that

(A(0); [g,[f>8l)(x(1))) <O forall 7€l

Definition 2.8.5 (Strengthened Legendre—Clebsch condition). Let I'=((x,u),A)
be an extremal lift for the problem [NTOC] consisting of a controlled trajectory (x,u)
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defined over the interval [0, 7] and corresponding adjoint vector 4 : [0,7] — (R")*
that is singular of order 1 over an open interval /. We say that the strengthened
Legendre—Clebsch condition is satisfied along I" over I if (1(z), [g,[f,g]](x(z))) is
negative on /, and that it is violated if this expression is positive.

An important property of singular extremals that satisfy the strengthened
Legendre—Clebsch condition is that if the singular control takes values in the interior
of the control set, then at any time ¢ € I, it can be concatenated with either of the
two bang controls #u = —1 and u = 41 in the sense that this generates junctions
that satisfy the conditions of the maximum principle. As before, let X = f — g and
Y = f + g denote the corresponding vector fields. We write XS for a concatenation
of a trajectory corresponding to the control u = —1 with a singular arc; i.e., for some
€ > 0 the control is given by

u(t){_l for te(t—eg,1),

B Using(t) for te€[1,T7+€).

The time 7 is called a junction time, and the corresponding point x(7) a junction
point. Similarly, concatenations of the type Y'S, SX, and SY are defined, and we use
the symbol B to denote any one of X or Y.

Proposition 2.8.4. Let I = ((x,u),A) be an extremal lift for the problem [NTOC]
defined over the interval [0, T] that is singular over an open interval I and suppose
the strengthened Legendre—Clebsch condition is satisfied on 1. If the singular control
at the time T € I has a value in the open interval (—1,1), then there exists an € > 0
such that any concatenation of the singular control with a bang control u = —1 or
u = +1 at time 7 satisfies the necessary conditions of the maximum principle; i.e.,
concatenations of the types BS and SB are allowed.

Proof. 1t follows from Eq. (2.40) that the singular control is continuous if the
strengthened Legendre—Clebsch condition is satisfied and so trivially are the
constant controls u = +1. For any control u that is continuous from the left (—)
or right (+), the second derivative of the switching function at time 7 is given by

O(12) = (A(7), [f; 11,8l (x(7))) + u(12) (A(7), [g,[f 8]l (x(2))) ,

and it vanishes identically along the singular control. If the strengthened Legendre—
Clebsch condition is satisfied, then we have A(7)[g, [f,g]](x(7)) < 0. By assump-
tion, the singular control takes values in the interior of the control set, u(7) €
(—1,1), and thus we get for u = —1 that

@ () = (A(7), [X, £, 8]l (x(2)))
= (A1), [/, [f:8ll(x(1))) = (A(7), [g, [/ 8l)(x(1)))
> (A(1), [, 11,8l (x(7))) +u(zs) (A(7), [g, [/, 8](x(7))) =0,
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and for u = +1 we have

@ () = (A(1), [V, £, 8]l (x(2)))
= (A(
< (A1), 1,11, 8l1(x(7))) +u(zs) (A7), [g, [/, 8ll(x(7))) = 0.

A
:_/
=~
=~
oo,
—
=
—~
_a
S~—
S~—
Nt
+
—~
>~
—
ﬁ
?/
o’
=~
oo,
—
=
—~
a
S~—
S~—
Nt

For each control, these signs are consistent with both entry and exit from the singular
arc. For example, if u = —1 on an interval (7 — €, 7), then the switching function has
a local minimum at time ¢ = 7 with minimum value 0, and thus @ is positive over
this interval, consistent with the minimum condition of the maximum principle. O

The order of a singular control over an interval I need not be constant, since
the function (A(¢), [g,[f,g]](x(z))) may vanish on some portions of . If these are
isolated times, then typically at those times the local optimality status of the singular
control changes from minimizing to maximizing, and the resulting subintervals
simply need to be analyzed separately. A more degenerate situation would arise if
(A1), [g,]f,g]](x(r))) were to vanish identically on some subinterval J C I. In this
case, many more relations need to be satisfied for the conditions to be consistent.
Since we have both

(@), [f,[f:8ll(x(@))) =0 and  (A(2), [g,[f,8ll(x(1))) =0 forallzeJ,

differentiating both identities, we get the following two equations on J:

@), I 11,81 ((0) +ule) A ), [, [f [l (x(1)))

0
0= (A(0), [/, [g,[f> &l (x(1))) + u(t) (A(1), [8,[g, [f ]} (x(2))) -

Each condition by itself determines the control if the functions multiplying the
control u(t) are not zero. Since the pair (1,u(t)) is a nontrivial solution to this
homogeneous system, however, we also need to have the compatibility condition

A @), 151, 18l x0)) (), [8 (s, [l x(0) = (A0, L&, £ [} (x(2))),

where we use that by the Jacobi identity,

g, [f[f>elll = f. s, [f 8]l

It is clear that these are increasingly more and more demanding requirements for the
singular extremal to satisfy, and it seems plausible that “typically” these conditions
should be difficult to satisfy, even in higher dimensions. This indeed is correct and
can be made precise in the sense that “generically” singular extremals are of order
1, as shown by Bonnard and Chyba in [44, Sects. 8.3 and 8.5].

While this result, and also the results by Chitour, Jean and Trélat [71, 72] imply
that we should not expect higher-order singular extremals for too many systems, this
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does not mean that these do not exist nor that these may not be of particular interest
for some specific problem. One common way in which these higher-order singular
extremals arise is that the control vector field g and the Lie bracket [f,g] commute,
i.e., that

g, [f:&]] = 0.

In this case, the brackets [f,[g, [f,g]]] and [g, [g,[f,&]]] also are zero, and thus the
calculation of the derivatives of the switching function simply continues as

@) (r) = (A(2), [f.1f[f.lll(x(1))) = O

and

Y (1) = (A1), £, 1, [F. 18 x0))) +ue) (), [, 1f L1 [ g]]]](X(t))>(2:4(i-)

This seems an adequate place to introduce a shorter notation for the iterated Lie
brackets. It is common (for reasons that are connected with what is called the adjoint
representation in Lie theory [256]) to think of taking the Lie bracket of a fixed vector
field X with another vector field as a linear operator on the set of all smooth vector
fields defined on 2, V=°(£2), and to denote it by ad X,

adX :V=(Q) =V (Q), Yw—adx(Y)=I[X,Y]
The composition of these operators is then defined as
ady = ad, ' oady,
so that, for example, we have

£, 1 1F [ 8]l]] = ad f(g).

In this notation, Eq. (2.41) can be written more compactly as

Y (1) = (A1), ad}(g) (x(1))) +u(t) (A (1), [g,ad7 (9))(x(r))) = 0.

Definition 2.8.6 (Higher-order singular control). Let I" be an extremal lift for
the problem [NTOC] consisting of a controlled trajectory (x,u) defined over the
interval [0, 7] and corresponding adjoint vector A : [0,7] — (R")* that is singular
over an open interval /. The singular control is said to be of intrinsic order k over I if
the following conditions are satisfied: (/) the first 2k — 1 derivatives of the switching
function do not depend on the control « and vanish identically, i.e., fori=1,...,2k—
1 we have that

@) (1) = (A(1), ad}(g) (x(1))) = 0,
and (2) <l(t), adek(g)(x(t))> does not vanish on I.
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Theorem 2.8.4 (Generalized Legendre—Clebsch condition). Suppose the con-
trolled trajectory (x.,us) defined over the interval [0,T] minimizes the time of
transfer from p € Q to q € Q for problem [NTOC] and the control u, is singular of
intrinsic order k over an open interval I C [0,T]. Then there exists an extremal lift
I' = ((x«,ux),A) with the property that

(— )kid_Zka_H
du dt** du

_ (_1)’<<,1(t), [g,adj!‘”(g)](x(t))> >0 forall rel.

(Ao, A (1), x: (1), u (1))

This result is also known as the Kelley condition [131, 132,262]. For a singular
extremal of intrinsic order 2, it states that

(A(t), [g.ad(g)](x(t))) >0 forall tel, (2.42)

and a proof of this condition will be given in Sect.4.6.2. The strengthened version
of this condition has very interesting consequences.

Proposition 2.8.5. Let I" = ((x,u),A) be an extremal lift for the problem [NTOC]
defined over the interval [0,T] that is singular of intrinsic order 2 over an open
interval I for which

(A1), [g,ad;»(g)](x(t)» >0 forall rel

Suppose that the singular control u takes values in the interior of the control set
over the interval I. Then at no time T € I can the control u be concatenated with a
bang control u = —1 or u = +1: concatenations of the types BS and SB violate the
conditions of the maximum principle and are not optimal.

Proof. Without loss of generality, we consider a concatenation of the type SX at
time T € I. That is, we assume that for some € > 0 the control is singular over the
interval (T —€,7) and is given by u = —1 over the interval (7,7 + €). Since the
singular control is of order 2, the first three derivatives of the switching function
do not depend on the control and thus are all continuous and given by ®() (1) =

<A(t), adl}f(g) (x(t))>, i = 1,2,3. The fourth derivative of @ at T from the right is
thus given by

W (1) = (A(1), adf(g) (x(2))) — (A(7), [8:ad (g)](x(2)))
<(A(1), [f +u(r)g,ad(9)](x(1))) =0,
since the singular control u(7) takes a value in (—1, 1). Thus the switching function

has a local maximum for # = 7 and is negative over the interval (7,7 + €). But
then the minimization property of the Hamiltonian implies that the control must be
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u = +1. The analogous contradiction arises for concatenations of the type SY or for
the order BS. O

This result implies that an optimal singular arc of order 2 cannot be concatenated
with a bang control. In fact, an optimal control needs to switch infinitely many times
between the controls u = —1 and u = +1 on any interval (7,7 + €) if a singular
junction occurs at time 7. Corresponding trajectories are called chattering arcs. In
Sect.2.11 we shall give an example that shows that these can be optimal for the
seemingly most innocent-looking system.

2.8.5 Multi-input Systems and the Goh Condition

We close this section with some comments about the multi-input case in which the
dynamics takes the form

m
x)+ Y, gi(x)ui, x€eQ, uel. (2.43)

As before, for simplicity, we assume that all vector fields are C™ on €. Clearly, now
geometric properties of the control set U C R™ matter. If U is a compact polyhedron,
then the Hamiltonian will be minimized at one of the vertices, and singular controls
arise as the minimum is attained along one of the faces of the polyhedron. The
situation that most closely resembles the structures for the single-input case above,
and probably is the practically most important one, occurs when the control set is a
multi-dimensional rectangle,

U= [alvﬁl] X X [amvﬁm]'

In this case, the minimization of the Hamiltonian function

H=7Lo+<l,f(x)+ig,~(x)u,~> Ao+ (A, f(x) Z(I)u,
i=1

still splits into m scalar minimization problems as in the single-input case, and
optimal controls satisfy

mo)—{% 80 = (R0, 16:0) <0
B it )= (A1), glxlt))) >

As before, now the switching functions @;, i = 1,...,m, need to be analyzed
to determine the optimal controls, and in principle, this follows the pattern dis-
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cussed above. For example, Theorem 2.8.2 applies to give the derivatives of the
switching functions as

Pi(r) = <7L(f) f+ ig.i“.ivgi] (x(f))>

< () fagl +§,uj < gjagl]( ())>

In contrast to the single-input case, now the derivative @; depends on the controls; on
the controls other than u;, that is. Hence, whether higher derivatives can be computed
depends on the type of the controls, since these now need to be differentiated in time.
Clearly, this is no issue for those components that are bang controls, but it needs
to be checked if some of the controls are singular. All this leads to a much more
elaborate analysis, which is best left for the particular problem under consideration.
For example, if only one of the components is singular, with all other controls held
constant, all the necessary conditions for optimality for the single-input control
system are applicable. If more than one component is singular at the same time,
the following result, the so-called Goh condition, [107] provides an extra necessary
condition for optimality. This condition will be derived in Sect. 4.6.3.

Theorem 2.8.5 (Goh condition). [107] Suppose the controlled trajectory (x.,u.)
defined over the interval [0, T| minimizes the time of transfer from p € Q to g € Q for
the multi-input control system with dynamics given by Eq. (2.43) and a rectangular
control set U. Suppose the ith and jth controls are simultaneously singular over an
open interval I C [0,T]. Then there exists an extremal lift I' = ((x«,u.),A) with the
property that

(A1), [gi,8)](x(r))) =0 forall rel.

2.9 Time-Optimal Control for Nonlinear Systems
in the Plane

We use the time-optimal control problem [NTOC] in the plane as an instrument to
provide a first illustration of the use of geometric methods and the Lie-derivative-
based techniques introduced above in the analysis of optimal control problems.
These results are due to H. Sussmann, who in a series of papers [230, 236-238],
gave a complete solution for this optimal control problem in dimension 2. The two-
dimensional problem allows for easy visualization of the results, yet the general
problem quickly gets very difficult, both in dimension 2 and even more so in higher
dimensions. While Sussmann’s results and the monograph by Boscain and Piccoli
[51] provide a comprehensive analysis of the time-optimal control problem for
two-dimensional systems, only partial results about the structure of time-optimal
controls in higher dimensions (mostly in R3 [54, 141,210,211] and some in R*
[221]) are currently known.
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[TOC in R?]  Let £ be an open and simply connected subset of R and let f : Q —
R? and g : Q — R? be two C* vector fields defined on Q. For the control-affine
system X with dynamics given by

X = f(x)+g(x)u,

among all piecewise continuous (more generally, Lebesgue measurable) controls
u,u:[0,T] — [—1,1], find one that steers a given initial point ¢; € 2 into a target
point g € © (while remaining in £2) in minimum time.

Our aim is to determine the concatenation structure of optimal controls whose
trajectories entirely lie in £2. More precisely, we are asking the question what can be
said about time-optimal controlled trajectories that lie in €2 if certain assumptions
are made on the vector fields f and g at some reference point p € €. We consider
Q to be a sufficiently small neighborhood of the point p, and thus by continuity,
any inequality-type condition imposed on the values of f and g and/or their Lie
brackets at p can also be assumed to hold in 2. But we shall develop the arguments
as much as possible semiglobally, i.e., state them in a way that they are valid for sets
Q that satisfy the required conditions throughout. It is natural to tackle this question
by proceeding from the most general to increasingly more and more degenerate
situations. That is, we first assume that the vectors f(p) and g(p) and other relevant
Lie brackets are in general position, i.e., are linearly independent, and then proceed
to consider more degenerate cases in which dependencies are allowed. In this spirit,
throughout this section we make the following assumption:

(A0) The vector fields f and g are linearly independent everywhere on Q C R.

Under this assumption, in this and the next section, we fully determine the
structure of time-optimal controlled trajectories that lie in €2 under generic con-
ditions. These results are due to H. Sussmann, and in our presentation we follow
his arguments that beautifully illustrate the use of geometric techniques in optimal
control theory. In particular, as we proceed, it will become clear how these methods
are needed to complement the first-order conditions of the Pontryagin maximum
principle in order to arrive at deep and sharp results such as Proposition 2.9.5. Some
of these results that we shall develop go well beyond the conditions of the maximum
principle.

2.9.1 Optimal Bang-Bang Controls in the Simple Subcases

Lemma 2.9.1. Any control corresponding to an abnormal extremal whose trajec-
tory lies in € is constant equal tou=+1oru= —1.

Proof. Let I' = ((x,u),A) be an extremal and suppose Ao = 0. If the switching
function @ (1) = (A(¢), g(x(¢))) vanishes at some time 7, then it follows from
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H(r) = (A (1), f(x(1))) +u(t) (A(1), g(x(1))) = =40

that we also must have (A(7), f(x(7))) = 0. Hence A(7) vanishes against both
f(x(7)) and g(x(7)). Since these two vectors are linearly independent, it follows
that A (1) = 0. But this contradicts the nontriviality of the multipliers. Hence there
cannot be any zeros for the switching function, and thus the corresponding controls
must be constant. O

Having taken care of this special case, we henceforth assume that all extremals
are normal and set Ao = 1. In particular, whenever 7 is a switching time, it follows
that

(A1), f(x(1))) = 1. (2.44)

Using f and g as a basis, we can express any higher-order bracket of f and g as a
linear combination of this basis. In particular, there exist smooth functions o and f3,
o, B € C~(£), such that for all x € Q we have that

[f:8)(x) = a(x) f(x) + B (x)8(x)- (2.45)

We say an optimal controlled trajectory is of type XY if the corresponding control
is bang-bang with at most one switching from u = —1 to u = +1 and use analogous
labels for controlled trajectories that are concatenations of more segments. For
example, a controlled trajectory of type XY SY is a concatenation of an X-trajectory
followed by a Y-trajectory, a singular arc, and one more Y -trajectory. However, we
always allow for the possibility that some of the segments are absent and thus a
specific trajectory of type XY SY may simply be a concatenation of an X-trajectory
with a single Y -trajectory.

Proposition 2.9.1. If o does not vanish on 2, then optimal controlled trajectories
that lie in Q are of type XY if o is positive and of type YX if o is negative.
Corresponding optimal controls are bang-bang with at most one switching.

Proof. Recall that as always, X = f —g and Y = f +g. Let (x,u) be an optimal
controlled trajectory that transfers a point ¢ € £2 into the point g, € € in minimum
time with the trajectory x lying in Q and let A be an adjoint vector such that the
conditions of the maximum principle are satisfied. If 7 is a zero of the corresponding
switching function, then we have that

®(1) = (A(7), [£.8](x(7)))

=
= o(x(1)) - (A(1), f(x(2))) + B(x(1)) - (A(7), g(x(1)))

= —o(x(7)).

Since « has constant sign on €2, it follows that at every zero of @, the derivative
of the switching function @ is nonzero and has the same sign. But then @ can have
at most one zero, changing from positive to negative if > 0 and from negative
to positive if @ < 0. Thus optimal controls must switch from u = —1 to u = +1 if
o > 0and from u = +1 to u = —1 if & < 0. This proves the result. a
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For example, for the harmonic oscillator of Sect. 2.6, we have that

[f,8](x) = (_01> = —xiz (_qu> —% ((1)) = a(x)Ax+ B (x)g.

We can take as Q either the upper or lower half-plane, Q; = {(x1,x2) : x2 > 0} or
Q_ = {(x1,x2) : x» < 0}, and it follows that optimal trajectories that entirely lie in
Q. or £_ are bang-bang with at most one switching and that the switchings are
fromu=+1tou=—1in Q and fromu = —1 to u = +1 in Q2_. Also, note that
the controls corresponding to the abnormal trajectories y; and - that lie in €2 and
€_ are constant. As this example shows, there clearly can be more switchings, but
the trajectories need to leave and reenter the region €2 for this to be possible.

This proposition settles the local structure of time-optimal controlled trajectories
near all points p where o does not vanish, i.e., where g and the Lie-bracket [f,g]
are in general position as well. Clearly, this does not suffice to settle the structure
of optimal controls since there may and generally will exist some points where the
vector fields g and [f,g] are linearly dependent and the local structure near these
points will need to be determined too. Proceeding from the general case to the more
special ones, but still maintaining condition (A0), we now assume that o/(p) = 0.
At the same time, however, we want for this to occur in as nondegenerate a scenario
as possible. That is, no other equality relations that would matter should hold at p.
In terms of singularity theory, after determining the structure of optimal controlled
trajectories near points of codimension 0 (only two inequality relations are imposed,
one in the form of assumption (A0), the other as o(p) # 0, but no equality relations
hold at the reference point), we now proceed to the analysis of the codimension 1
scenario when we allow for exactly one equality constraint, but otherwise again only
impose inequality relations. More specifically we assume that

(A1) The vector fields f and g are linearly independent everywhere on  C R?
and there exists a point p € Q with a¢(p) = 0, but the Lie derivatives of o along
X =f—gandY = f+ g do not vanish on €,

(Xoa)(x) =Lx(a)(x) #0, (Yo)(x)=Ly(a)(x)#0  forallxe Q.

Furthermore, we assume that the zero set .¥ = {x € Q : «a(x) =0} is a
curve (embedded one-dimensional submanifold) in € that divides €2 into two
connected subregions 2, = {x€ Q: a(x) >0}and Q_ ={x€ Q: o(x) <0}
sothat 2 =Q_U.YUQ,.

With the understanding that €2 is a sufficiently small neighborhood of p, this
geometric assumption on the structure of the zero set of a simply follows from
the implicit function theorem, since the assumption on the Lie derivatives implies
that the gradient of « is non zero at p. On the other hand, several of the results
below are valid as long as €2 has this geometric separation property, not just in
small neighborhoods, and therefore we prefer to state the results as such.
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Fig. 2.9 Assumption (A1): subcases with (leff) and without (right) a singular arc

Assumption (A1) by itself does not lead to a unique structure of time-optimal
trajectories, but several subcases exist, since it matters to which side of .’ the vector
fields X and Y point (see Fig.2.9).

Proposition 2.9.2. Assuming condition (Al), if Lx (0t) = X o and Ly (&) =Y o have
the same sign on £2, then optimal controlled trajectories that lie in €2 are of type
YXY ifthe Lie derivatives are positive and of type XY X if they are negative. Optimal
controls are bang-bang with at most two switchings.

Proof. As above, let (x,u) be an optimal controlled trajectory that transfers a point
q1 € £ into the point g €  in minimum time with the trajectory x lying in Q2
and let A be an adjoint vector such that the conditions of the maximum principle are
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satisfied. Note that under these assumptions, the directional derivative of o along the
trajectory x is strictly increasing or decreasing. For at any point x(¢), the dynamics
f(x(#)) +u(t)g(x(r)) is a convex combination of the vectors X (x(r)) and Y (x(z)),

FO(0) +ul0)g (1)) = 5 (X +) (x(0)) + u0) 3 (0 = X)(x(0)
= S (= ul)X((0) + 3 (14 eV (x(0)),
and thus
(Lrag®) (6(0) = 5 (1wl Exar(e(0) + 5 (14wl Eyoa(s)). (246

Regardless of the control value u(r) € [—1, 1], this quantity is positive if Lxa and
Ly o are positive and negative if these quantities are negative. But then the trajectory
x can cross the curve .’ at most once. By Proposition 2.9.1, optimal controlled
trajectories are of type YX in Q_ and of type XY in Q. Thus, if Lyo and Ly o are
positive, then trajectories move from the region £2_ into €2, and overall trajectories
that lie in €2 can at most be of type YXY. Similarly, if Ly o and Ly o are negative,
then trajectories move from €2 into £2_, and now trajectories that lie in €2 can at
most be of type XY X. In either case, optimal controls are bang-bang with at most
two switchings. a

2.9.2 Fast and Slow Singular Arcs

If the vector fields X and Y point to opposite sides of the curve ¥ = {x€ Q : a(x) =
0}, then this curve is a singular arc.

Proposition 2.9.3. Assuming condition (Al), if Lx (0t) = X ot and Ly (&) =Y o have
opposite signs on Q, then % is a singular arc. If ' = ((x,u), L) is a corresponding
singular extremal lift, then the strengthened Legendre—Clebsch condition is satisfied
if Ly o is negative, and it is violated if Lx . is positive.

Proof. In this case, X and Y always point to opposite sides of .. Hence, at every
point x € . there exists a convex combination # = u(x) such that the vector f(x) +
u(x)g(x) is tangent to .7 at x. This control is the unique solution to the equation
Lyyugo0 =0, i.e., solving from Eq. (2.46), we have that

Lxo Lyo
u(z) = XA HLroto),

LXoc(x) — LyOC(x)
Since Ly o and Ly o have opposite signs, it follows that this value u(x) lies strictly
between —1 and +1, i.e., lies in the interior of the control set. In particular, it is
admissible. Thus, if this control is optimal, then it must be singular.
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We verify that the associated controlled trajectory through an initial condition
g € . is extremal by constructing a singular extremal lift I = ((x,u),A). Let x =
x(r) be the solution to the initial value problem

x=fx)+uxel),  x0) =g

This solution exists over a maximal interval (r_, 7 ) with7_ <0 <ry.Lety € (Rz) :
be a covector such that

(v.8(9))=0 and (v, f(g))=—1

and let A = A(¢) be the solution of the corresponding adjoint equation

A ==L (Df(x(t)) +u(x(1)Dg(x(r))

with initial condition A(0) = y. This triple defines a singular extremal lift if the
switching function @(¢) = (A(¢), g(x(r))) vanishes identically on (¢_,z). But this
is clear by construction: we have (Ly,,0t) x(t) =0, and since a(q) = 0, it follows
that oc(x(z)) =0 on (z_,2.). Hence we get
() = (A1), [f.8](x(1)))
o(x(1)) (A (1), f(x(2))) + B (x(2)) - (A(1), 8(x(2)))
= Bx(0)@().
But @(0) = (y, g(g)) = 0, and so the switching function vanishes identically.
Hence I' is a normal singular extremal lift.

It remains to check the Legendre—Clebsch condition. Using Lemma 2.8.1, it
follows that

g, [f:8l] = g, 0f + Bg] = (Ly) f — [ f, 8] + (LgB)sg-

Along the singular extremal, (A,g(x))
Eq. (2.44), it also follows that (A ( ), flx

(A1), [ [f:8ll(x(1))) = —Lgx(x(1))

—L

0 and (A,[f,g](x)) =0, and thus, using
1))) = —1. Hence

0

o (0) = 5 (Lxo - Lya) (). (247)

1
2
This quantity has the same sign as Ly, and the strengthened Legendre—Clebsch
condition is satisfied if (A(z), [g,[f,&]](x(?))) < 0. Hence the result follows. 0

The Legendre—Clebsch condition distinguishes fast from slow singular arcs. On
a set € in the plane where f and g are linearly independent, this can be seen with
an instructive geometric argument by introducing a 1-form that measures the time
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along the trajectories. Differential forms provide a superior formalism for these
computations, and for the sake of completeness, we provide the needed definitions
and results. These are standard concepts from differential geometry and can be
found in any text on the subject, such as, for example, [50, 256]. One-forms are
simply linear functionals on the space of all tangent vectors; hence the space of 1-
forms on €2 is a two-dimensional vector space as well. If we write x = xje; + xze2,
where {ey,e;} is the canonical ordered basis for R?, we denote the corresponding
dual basis by dx| and dx,; that is, dx; is the linear functional that satisfies

1 ifi=j,
dia i) —
(dxirei) {o ifij.

Since f and g are linearly independent on €2, there exists a unique 1-form w on (2
that satisfies

(o(x), fx) =1 and (o(x), g(x)) =0 forall x € Q. (2.48)

This form  is easily computed: if f and g have the representations

Flx) = <f1(x17x2)> and  g(x) = <g1(x1,xz)) ,

fa(x1,x2) g2(x1,x2)

then
(x) = g2(x)dxi —gi()dx, _ ga(x)dx1 — gi(x)dxs
f1(x)g2(x) = f2(x)g1(x) det(f(x),g(x))

with det(f(x),g(x)) denoting the determinant of the matrix

(f 181 )

12 &

This determinant does not vanish on (2, since the vector fields f and g are
linearly independent. Depending on the sign of this determinant, the ordered basis
% ={f,g} is said to be positively, respectively negatively, oriented.

Let (x,u) be a controlled trajectory defined over an interval [fy, ;] with trajectory
x lying in Q. Then the line integral of @ along the curve x(-) is given by

/x<.) 0= /to ' (o(x(1),%(t)) dt

= | (o), fx@)di+ | ult)((x(), g(x()))dt

fo fo

(2.49)

|
= dt =t —ty,
fo
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Fig. 2.10 Positively (left) and negatively (right) oriented vector fields f and g

so that @ measures the time along trajectories. For this reason, @ sometimes is called
the clock form [44].

We now show how this differential form w can be used to determine which type
of trajectory is faster. Consider a point ¢; € . and let (x,u) be the controlled
trajectory that steers g; to another point g, € . along the singular arc . C Q2
in time 7. If 7 is small, then there exists a unique XY-trajectory that also steers q;
into g and lies in Q. Simply consider the forward orbit of the X-trajectory that
starts at g and the backward orbit of the Y-trajectory that ends at ¢g,. Since X and Y
point to opposite sides of .7, it follows that these two orbits intersect in some point
r € . Suppose it takes time s to go from ¢, to r along X and time ¢ to go from r to
q» along Y. If we denote the mapping that follows the flow of the vector field X for
time s by WX, then we can write r = ¥X (¢1), and analogously, for ¥, we have that
g2 = WY (r). Overall, therefore,

g =¥ (r) =¥ (¥ (q) = (¥ o ¥") (q1).

Stokes’s theorem allows us to compare the time s+ ¢ along the XY-trajectory with
the time 7 along the singular arc. Denote the closed curve consisting of the XY-
trajectory concatenated with the singular arc run backward from ¢; to g; by A. The
orientation of this closed curve matters in Stokes’s theorem, and A has the same
orientation as the ordered basis B ={f, g}: since

det (X (x), Y (x)) = det (f(x) — g(x), f(x) +g(x)) = 2det(f(x),8(x)),

the ordered basis {X,Y} has the same orientation as {f,g}. But if {X,Y} is
positively oriented, the curve A is traversed counterclockwise, while it is traversed
clockwise if {X,Y} is oriented negatively (see Fig. 2.10).
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Without loss of generality, we assume that the orientation of A is positive. Then
Stokes’s theorem [50,256] gives that

s+t—r:/a):/dw
A R

where R denotes the region enclosed by A. For a 1-form w given as

n

o(x) = 2 Ei(x)dx;

i=1

with &; smooth functions, the 2-form dw is defined as
n
(x) = d&i(x) Adx;
i=1

with

Q_J
t!‘n

s510-3 2

the differential of &;. For the wedge product, A, the rules of an alternating product
apply, i.e., dx; Adxy = —dx; Adx; and dx; Adx; = 0. In order to evaluate the area
integral on the right, we need some facts about the actions of differential forms on
vector fields. If ¢ is a smooth function defined on some domain D C R”, ¢ € C*(D),
then the action of the 1-form d¢ on a smooth vector field is simply taking the Lie

derivative of ¢ along Z,
(d9(x), Z(x)) = Lz¢ ().

For writing out the inner product in terms of the basis vectors, we have that

(x)dx;j,

(do(x)

| \
/\

ia—(p dxl-, Zn“le(x)ej>

¢
8_( x)Zj(x )<dx,, ej>

|
M=
T M:

|
1=
Q_J| Qv

<

v (X)Zi(x) = Lz¢(x).

If y is another smooth function on D, y € C*(D), then the action of the 2-form
do Ndy on a pair of smooth vector fields f and g is defined as the alternating
product

(do(x) Ndy(x), (f(x),8(x)))
= (d¢(x), f(x))-(d ( ) (%)) — (d9(x), g(x)) - (dy(x), f(x))
=Ly9(x) - Loy (x) = Le (x) - Ly (). (2.50)
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Note, in particular, that this gives O if f = g. These actions are then related to the
Lie bracket through the following relation:

Lemma 2.9.2. [50] Given any 1-form ® and smooth vector fields f and g defined
on D C R", it follows that

<d0‘)a (fag» = Lf<w7g> _Lg <60,f> - <CO, [fag]>

Proof. 1Tt suffices to prove the Lemma if o is of the form w = ¢dy, where ¢ and y
are smooth functions on D. In this case, and dropping the argument x, we have that

Ly (o,8) —Lg (o, f) — (o, [f,8])

=Ly (0dy, g) — Lg(ddy, f)—(pdv, [f.g])

=Ls(9)(dy, g) +OLr({dy,g) —Lg(9)(dV, f) — OLg (dy, f) — ¢ (d, [f.8])

=Ly (9) Le(w) + @Ly (Lg(y)) — Lg(@)Ly (W) — OLg (L (W) — 9L g ¥

=Ly () Ls(y) — Lg(9)Ls (W) + ¢ { Ly (Lg(w)) — L (Lr(w)) — Lipqw} -
But

Lipg¥ =Ls (L(y) — L (Lr(y))
and thus since dw = d¢ A dy, the result follows from Eq. (2.50). O
For the 1-form w defined by Eq. (2.48), we have (®, f) =1 and (w,g) =0, and
thus the Lie derivatives of these functions vanish giving
(do,(f,8) = —(o,[f8]) = — (0, af +Bg)
=-a(o,f)-B(w,g) =—a

Furthermore,

(do,(f,g)) = (dw,(fie1 + fre2, g1€1 + g2€2))
= fi{dw,(e1, g1e1+82e2)) + 2 (dw, (e2, g1e1+ g2€2))
= f1g1{dw, (e1, e1)) + fig2 (dw, (e, €2))
+ f81(dw, (e, 1)) + frg2 (dw, (e2, €2))
= (f182— f281) (dw, (e1, €2))
= det(f(x),g(x)) (d, (e1,e2)),

so that
<d0), (61,6‘2)> = —
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Hence

(e [0
T—(s+1) = /Rdw_/Rdet(f(x),g(x))d . (2.51)

By construction, the region R lies entirely in €2, or £2_, namely in £, if the Lie
derivative Ly o is positive and in €_ if it is negative. In the first case, the integral
is positive (recall that we assume that the basis 2 = {f, g} is positively oriented),
and thus the singular arc takes longer than the XY-trajectory, while it does better
in the second case when the region R lies in £2_. These conclusions are consistent
with the strengthened Legendre—Clebsch condition. In carrying out this argument
for YX-trajectories, the same consistency shows. This explicitly verifies that the
Legendre—Clebsch condition distinguishes fast from slow singular arcs.

This calculation can also be used to show that increasing the number of
switchings along a bang-bang trajectory speeds up the time of transfer if the
strengthened Legendre—Clebsch condition is satisfied. Again, consider the XY-
trajectory that steers ¢ into g, and is part of the curve A constructed above.
Construct an XY XY -trajectory that connects g; with ¢, in €2 as follows: (i) Starting
from g, follow the X-trajectory for time s; < s and let r| denote the point reached,
r = ‘Ps}f (q1)- (ii) At ry, change to the Y-trajectory and follow it for time 7, until the
Y-trajectory again reaches the singular curve .¥ in some point rp, r, = ‘Ptf (r)es.
(iii) Here once more switch to the X-trajectory and follow it for time s, until it
intersects the original Y-trajectory in the point r3, r3 = ‘Pg (r2). (iv) Then follow
this Y-trajectory from r3 into g, say g, = 'fg’ (r3). Thus, overall,

g2 = (¥ 0¥ oWl o) (qn).

Denote by ¢ the diamond-shaped curve that is obtained by concatenating the
X-trajectory from r; to r first with the Y-trajectory from r to r3, then with the X-
trajectory run backward from r3 to r,, and finally the Y-trajectory run backward
from ry to r (see Fig.2.11). Since we assume that the basis {f,g} is positively
oriented, the curve ¢ also is mathematically positively (counterclockwise) oriented.
Let D denote the region enclosed by ¢. Using the 1-form @, the difference in time
between the original XY -trajectory and the newly constructed XY XY -trajectory can
then be calculated as

(s+t)—(s1+t1+s2+t2) = (S—Sl)+(t—t2)—S2—t1

:_/Qa):—./;dw:—./émdx.

By construction of ¢, the region D lies entirely in Q. if Lyo > 0 and in Q_ if
Lx o < 0. Hence, the XY XY -trajectory steers g into g; faster than the XY -trajectory
does if Lyo < 0, and it is slower if Lyo > 0. Thus, if the strengthened Legendre—
Clebsch condition is satisfied, i.e., for Lyt < 0, bang-bang trajectories with more
switchings near the singular arc are faster, while they are slower if the strengthened
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Fig. 2.11 Comparison of an XY XY -trajectory with an XY -trajectory

Legendre—Clebsch condition is violated. In either case, the singular arc can closely
be approximated by bang-bang trajectories with an increasing number of switchings,
and it is therefore to be expected that in the limit, optimal controls will follow the
singular arc if the strengthened Legendre—Clebsch condition is satisfied, while they
will avoid it, i.e., have as few switchings as possible, if it is violated. This indeed is
the case.

Proposition 2.9.4. Assuming condition (Al), if Lx(o) = Xa is negative and
Ly(ot) = Yo is positive on Q, then optimal controlled trajectories that lie in Q
are of the type BSB, that is, are at most concatenations of a bang arc (X or Y)
followed by a singular arc and possibly one more bang arc.

Proof. Let (x,u) be an optimal controlled trajectory that transfers a point g; € Q
into the point ¢, € Q in minimum time with the trajectory x lying in £ and let A
be an adjoint vector such that the conditions of the maximum principle are satisfied.
Once more, recall that by Proposition 2.9.1, optimal controlled trajectories are at
most of type YX in £2_ and of type XY in Q.

Suppose ¢; € Q_. Initially, since ¢; ¢ .7, the optimal control can be only u = —1
or u = +1. If the control starts with u = —1, then since Ly (¢t) < 0, the trajectory
moves away from . = {x € Q: o(x) = 0}, and no junctions from X to Y are
possible in €2_. Hence this trajectory simply is an X-arc, and the corresponding
control is constant, given by u = —1. On the other hand, if the control starts with
u = +1, then the trajectory moves toward . = {x € Q : o(x) = 0}. In this case, it
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Fig. 2.12 Bang-bang switchings near fast (left) and slow (right) singular arcs

is possible that (a) the control switches to u = —1 before or as the singular arc .
is reached, (b) the control switches to become singular as it reaches ., or (c) this
Y-trajectory simply crosses the singular arc. In case (a), after the switching time, the
X-trajectory again moves the state away from .#” and no further switchings to Y are
allowed in _. Hence in this case the trajectory is of type Y X. In case (c), once the
Y-trajectory enters the region 2, switchings to X are no longer allowed and thus
this trajectory simply is a Y-arc with constant control u = +1. The interesting case
is (b). It follows from Proposition 2.8.4 that switchings onto and off the singular
arc are extremal at any time. Thus, in this case, after following the singular arc for
some time, the trajectory can leave . with the bang control u = —1 or u = +1.
Using an X-trajectory, the system enters the region €2_, while it enters €2 along a
Y-trajectory. In any case, no more switchings are possible in £2 by Proposition 2.9.1.
Thus overall, the structure is at most of type BSB. The analogous reasoning for an
initial condition ¢; € €2 shows the same concatenation structure to be valid. a

2.9.3 Optimal Bang-Bang Trajectories near a Slow
Singular Arc

What makes Proposition 2.9.4 work is that optimal bang-bang switchings in the
regions 2_ and Q. move the system away from the singular arc .’ if Ly (o) = X
is negative and Ly (&) = Y o is positive on Q. The resulting synthesis of the type
BSB is quite common around optimal singular arcs in small dimensions and will
still be encountered several times throughout this text (e.g., Sects. 6.2 and 7.3). If,
however, Ly (o) = X o is positive and Ly (o) = Yo is negative on £, and in this
case the singular arc is not optimal by the Legendre—Clebsch condition, or “slow,”
the opposite is true. Now optimal bang-bang junctions steer trajectories foward the
singular arc . (see Fig.2.12). In fact, in this case, there exist bang-bang extremals
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(i.e., bang-bang trajectories that satisfy the necessary conditions for optimality of
the maximum principle) whose trajectories lie in £2 and have an arbitrarily large
number of switchings. But as the geometric argument carried out above indicates,
in this case, making more switchings slows down the trajectories, and thus none
of these are optimal. This reasoning, however, is quite more intricate and goes well
beyond a direct application of the conditions of the maximum principle, but involves
the generalization of the concept of an envelope from the calculus of variations to the
optimal control problem. We shall more generally develop this theory in Sect. 5.4,
but here we include a self-contained proof of the result below due to Sussmann.

Proposition 2.9.5. [230, 236] Let 2 be a domain on which condition (Al) is
satisfied and where Lx (o) = X o is positive and Ly (o) = Yo is negative. If Q
is taken sufficiently small, then optimal controls for trajectories that lie in €2 are
bang-bang with at most one switching.

Note that in contrast to the previous results, here we need to include the
requirement that €2 be a small enough neighborhood of the reference point. This
result does not hold in the more semiglobal setting without additional assumptions.
The essential new concept involved in the proof of this result involves what are
called conjugate points in [230]. However, for reasons that will be explained below,
we prefer to use the terminology of g-dependent points instead.

Definition 2.9.1 (Variational vector field). Let (x,u) : [0,7] — Q x U be an
extremal controlled trajectory with multiplier A. A variational vector field w along
I' = ((x,u),A) is asolution w : [0, 7] — R? of the corresponding variational equation

Ww(t) ={Df(x(1)) +u(t)Dg(x(r))} - w(t)- (2.52)

The adjoint equation for the multiplier A actually is the “adjoint” in the sense
of linear differential equations to this variational equation (2.52). Thus, for any
variational vector field w along I', the function i2: [0, 7] — R, t +— h(t) = (A(t),w(?))

is constant:
h(t) = <;L(t),w(t)> (1)) = 0.

Suppose now that the switching function @(¢) = (A(¢),g(x(¢))) vanishes at times
1] < tp and let w be the variational vector field that satisfies w(z;) = g(x(z1)). Since
@(1;) =0, it then follows that (A(f2),w(r2)) = 0. But @(12) = (A(12),8(x(2))) =0
as well, and since A(r2) # 0, the vectors g(x(t2)) and w(f,) must be linearly
dependent. This leads to the following definition of g-dependent points in the plane.

Definition 2.9.2 (g-dependent). Let (x,u) : [0,7] — Q x U be an extremal con-
trolled trajectory with multiplier A. Given times #; and 1, 0 <1, <#, < T, let w(+)
be the variational vector field that satisfies w(t;) = g(x(1)). We call the points x(¢;)
and x(t2) g-dependent (along I = ((x,u),A)) if the vectors g(x(#2)) and w(t,) are
linearly dependent.

Thus, if I = ((x,u), A) is an extremal lift for which the control u switches at times
11 < tp, then the switching points x(¢;) and x(t,) are g-dependent. As the example
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of time-optimal control for the harmonic oscillator shows, optimality of trajectories
need not cease at g-dependent points. It does in the case that will be considered here,
and thus the terminology of conjugate points is used in [230]. However, we generally
prefer to restrict the terminology “conjugate point” to the case when optimality of
trajectories ceases. We shall elaborate more on this in Sect. 6.1.

The key to the proof of Proposition 2.9.5 is to establish an inversion of g-
dependent points around .. For this calculation, a good choice of coordinates
around . = {x € Q : a(x) = 0} is beneficial. The type of coordinates used here
will also be needed in Sect. 2.10 and we therefore consider a slightly weaker version
of assumption (Al). Let p € €2 be a point at which (i) the vector fields f and g (and
thus also X and Y) are linearly independent; (i) a(p) = 0, but the Lie derivative of o
along X does not vanish, Ly c(p) # 0; and (iii) the Lie derivative of o along g does
not vanish, L,0/(p) # 0. Conditions (i) and (ii) imply that the geometric properties of
& ={xe€Q: a(x)=0} required in assumption (A1) are satisfied on a sufficiently
small neighborhood of p. The third condition ensures that the vector field

Lfoc(x) Lx(x(x)—l—LyOC(x)
S = - = P
(x) = f(x) + Lea() g(x) = f(x)+ Lxo()—Ly a(x)g(X)
is well-defined near p. If the quotient % lies between —1 and +1, then this

is the singular vector field. But for the current reasoning it is not necessary that S
correspond to a trajectory of the system, only that the integral curve of S through
p be the curve .. (This was shown in the proof of Proposition 2.9.3.) Let [a,b] be
an interval that contains O in its interior on which the solution to the initial value
problem y = S(y), y(0) = p, exists. It then follows from a standard compactness
argument that there exists an € > 0 such that the solution z = z(+;s) to the initial value
problem z = X(z), z(0) = y(s), exists on the interval [—¢, €]. Using the notation ¥
for the flow, we denote this solution by

w(s,t) =" 0¥ (p).

If, in addition, the Lie derivative Ly (o) does not vanish at y(¢z) for all ¢ €
[a,b], then the X-flow is everywhere transversal to the curve . and the map
y is a diffeomorphism from some square Q(g) = (—¢,€) x (—€,€) onto some
neighborhood y(Q) of p. If we now choose this set y(Q) as Q,

Q={y(s,1): —e<s<e —e<t<e},

then the times (s,¢) € Q provide us with a good set of coordinates on Q called
canonical coordinates of the second kind in Lie theory (also, see Sects. 4.5 and 7.1).
In these coordinates, the curve . corresponds to the s-axis, . = {(s,7) € Q:1r =0},
and integral curves of the vector field X are the vertical lines s = const. We call such
a mapping v : Q —  an X-aligned chart of coordinates centered at the point p (see
Fig.2.13).
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Fig. 2.13 An X-aligned coordinate chart

Definition 2.9.3 (X-aligned chart of coordinates). An X-aligned chart of coordi-
nates (centered at p) is a diffeomorphism y,

vi0(e) CRP = Q. (s1) = y(s,) =¥ 0¥ (p),

such that X and Y are linearly independent everywhere on Q, the set .¥ = {x € Q :
o(x) = 0} is the integral curve of the vector field S through p, and the Lie derivatives
Ly o and Ly ox are everywhere nonzero on €.

Lemma 2.9.3. [230] Given an X-aligned chart of coordinates, 2 = y(Q(¢g)), for
€ small enough, there exists a differentiable function

:0—R, (s,2) = & (s,1),

that satisfies

a¢
0)=0, 25(50)=-1
C(S, ) ? at (S, ) )
and is such that two points g = (s,t) and g’ = y(s',t") in Q are g-dependent along
an X -extremal if and only if s' = s and 1’ = {(s,t). Thus { defines the mapping from
q to its g-dependent point in this X -aligned chart of coordinates.
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Proof. In these coordinates, we have that X 2 (0,1)” = £, and we write Y = (a,b)”
for some differentiable functions a and b. Since X and Y are everywhere linearly
independent on (2, the function a does not vanish on Q. Since X-trajectories are
vertical lines, the variational equation (2.52) along X -extremals is simply v (z) = 0,
and thus two points ¢ = y(s,¢) and ¢’ = y(s’,¢') in Q are g-dependent along X if
and only if s = 5’ and the vectors g(q) and g(¢’) are linearly dependent. In terms of
the coordinates of the vector fields X and Y, we have that

g:%(y_x) %(bil)’

and since a has constant sign in €2, the vectors g(g) and g(¢’) need to point in the
same direction; that is,

1%

b(s,t)—1  b(s,t')—1

a(s,t) — a(s,t')
If we define ) .
0:0-R, (s,1)— 0(s,1)= %
then 36 E(s.t)
s,t
2] (s,1) = a*(s,t)’
where

da

E(s,t) = %(s,t)a(s,t) — (b(s,t) — I)E(s,t).

This expression relates to the determinant of [f, g] and g: suppressing the arguments,
we have that

da da da
1| as ot | (0 1| or
8l =[X,g|=Dg-X == = -
[f.8l=[X,g] = Dg 2@@<1>2@
ds Ot ot
and thus
o,
1|0t 1
det([f,g],g):z ob :_Zé(sat)'
— b—1
ot

Expressing the Lie bracket [f,g] in terms of f and g, we therefore get that

S(s,1) = —4det([f,gl,¢) = —4det(af + Bg,g) = —4ader(f,g),

where o and the vector fields f and g are evaluated at the point g = y(s,7) € Q. In
particular, since o vanishes for 7 = 0 (y/(s,0) € .), it follows that £ (s,0) = 0, and
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therefore ¢ can be factored from & (s,7), say

E(s,t) =& (s,1).

Thus, with all functions and vector fields evaluated at y(s,0) € .7, it follows that

. d 0
E60 = 60 =4 5 (adalre)) = ~dixa-dets.q) 20
Hence
20
E(S,O) 0
and
%0, F(snals.r) — 25 (s,1)E(s.1)
W(S’t) a’(s,t)
gives that
06 E(s,0
W(S’O) - az((s,O)) 70

Overall, we therefore can write
0(s,1) = 0(s,0) +1%0(s,1)
for some smooth function & = 8 (s,¢) that satisfies é(sLO) # 0 forall s € [—¢,€]. By
shrinking € further, if necessary, we may assume that 6(s,z) does not vanish on Q.
If one now expresses the difference

8(s,t,t") = 0(s,1) — B(s,1")

as
8(s,t,1') = (1 —1")8(s,1,1"),

then the equation 6 (s,) = 6(s,#') is equivalent to

0=16(s, r)—(r/)zé@,r’)
(7= (1)) B(s.t) +1(Bs.1) — B(s. 1))
(1=1) [(t+1) Bs.0) +28(5,8.17)]

and thus we need to solve the equation

A(s,t,t) = (t+1) 8(s,t") +128(s,1,1') = 0.
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Clearly, A(0,0,0) =0 and

dA ~

W(S,0,0) = G(S,O) 7£ 0.
Hence, by the implicit function theorem, the equation A (s,,#) = 0 can be solved
for #' near (0,0,0) in terms of a differentiable function #' = {(s,). Furthermore, for
t = 0, we have that

0= A(S,O, C(S,O)) = C(S,O) : é(S7C(sa0))a

and since 0(s,¢) does not vanish, it follows that {(s,0) = 0 for all s € [—&,g].
Finally, differentiating A (s,7,  (s,¢)) with respect to ¢ and setting r = 0 gives

_dA dA ¢
0= E(S,O,C(S,O)) + W(S,O,C(S,O))E(S,O)

oA A ¢
= E(&O,O)ﬂLw(&O,O)E(&O)-
But
JdA JdA -
E(S’O’O) = W(svoao) =0(s,0) #0,

and therefore

a

We now prove Proposition 2.9.5: Let Q = y(Q(¢€)) be an X-aligned chart of
coordinates and suppose € is small enough that there exists a differentiable function
£:0—=R,(s,1) — §(s,t), with the properties of Lemma 2.9.3. By making € smaller
if necessary, we also may assume that %—l is negative on Q. As before, X = (0,1)7 =

% and we write Y 2 (a,b)” for some differentiable functions a and b. In these
coordinates,

do
Lyo =2 —
X ot
and
o o
Lyo = — —b
e PP

Since the singular curve . is given by the s-axis, we have o/(s,0) = 0 and therefore
%—‘;‘ (5,0) = 0 as well. Hence, at the reference point p, we get

Lyo(p)
Lya(p)

1

5(0,0), (2.53)
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and thus b(0,0) is negative. By choosing € small enough, we may assume that b
is negative everywhere on Q. Similarly, without loss of generality we assume that
Lxyo > 0and Lyo < 0 on all of Q.

Let (%,i) be a time-optimal YXY- trajectory that transfers a point g; € Q into
q2 € £ with the entire trajectory X lying in €. Denote the switching times by T and
7', T < 7/, and the corresponding junctions by r and #/, respectively. The points r and
¥ are g-dependent along X, and thus if r = y(s,¢) and ¥/ = y(s',¢’), then s’ = s and
"= {(s,1). Note that 1 < 0 and ¢’ > 0. (For by Proposition 2.9.1, Y X-junctions need
to lie in o < 0 and XY -junctions in & > 0. Since Ly > 0 on €2, we thus have r <0
and ' > 0. But {(s,0) = 0, and thus neither can be zero, since otherwise r = r'.)
The next lemma is one of the two key arguments in the construction, and it is only
for this result that we need to make the neighborhood €2 small.

Lemma 2.9.4. Let 7y denote the restriction of the YXY -trajectory X to some small
interval [T — €,7|, where T is the first switching time and let Y be the image of this
curve under the mapping Z : (s,t) — (s,§(s,t)). For € sufficiently small, the curve
Y is a trajectory of the system.

Proof. It suffices to show that the tangent vector to the curve ¥ at the point ' is
a linear combination of X (') and Y (+') with positive coefficients. For if this is the
case, then by choosing the times sufficiently close to 7, at every point ¢’ on the curve
Y there exists a continuous control u(q’) € (—1,1) such that f(q") + u(q')g(q")
is tangent to y. After a suitable reparameterization, the curve thus becomes a
trajectory of X.

This property, however, can be guaranteed only in a sufficiently small neighbor-
hood of p. The tangent vector t’ to the curve ¥ at ¥ is the image of the vector Y (r)
under the differential of the mapping Z, i.e.,

t/ _ aCl aCO (a(s,t)) _ aC a(S,la)C
g(s,t) a—(s,t) b(s,t) (s t)a (s,t)+5(s,t)b(s,t)
_ Z((sst‘,)) <ZE§Z§) + ac (s,0)als,1) + %(s,t)b(s,t) _ Z((:t‘,))b(s,/)] <(1’>
- a“((ss:t’,))y(r’)+b(s,z) ‘Z—C( 1) E g -l—%(s,t)—;l((j”ttl)) ’l’)((sstt ”x(r')
(2.54)

Since a has constant sign on Q, the quotient Z((;’;,)) is positive. The function b is

negative on Q, and by Lemma 2.9.3,
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Hence, and once more by choosing the neighborhood Q small enough, we may
assume that

a¢ a(s,t)  9¢
g(s,t) b(s.1) + E(s,t)

< —% for all (s,7) € Q.

Thus the coefficient at X (') is positive as well. O

Remark 2.9.1. The construction of an X -aligned chart of coordinates Q = y(Q(¢))
does not require that Ly oc # 0, and it is still applicable if Ly ot(p) = 0, since then
Lyo(p) = $Lxa(p) > 0. But in this case (0,0) = 0, and thus the dominance
argument above no longer can be made. For later reference, however, we already
note here that such an argument is not needed at points where the Lie derivative of
€ along Y is positive,

Lyl (s,t) = %(s,t)a(s,t) + %(s,t)b(s,t) >0,

and where b(s,') is negative. In this case, (2.54) directly gives that t' is a linear
combination of X (+') and Y (+') with positive coefficients. This will allow us to deal
with codimension-2 cases in the next section.

We now show that Lemma 2.54 precludes the optimality of the Y XY -trajectory Xx.
In fact, the curve ¥ is an envelope for the control system X, and the generalization
of the theory of envelopes to optimal control shows that it cannot be optimal. We
shall develop this theory for a general control problem in Sect.5.4 but already
here anticipate this argument with a direct calculation invoking the clock form @
introduced earlier.

Let I' be the restriction of the Y XY -trajectory to the interval [T — €,7'] so that I”
is the concatenation of the curve y with the X-trajectory that steers r into 7. Define
another trajectory I'’ of X that steers the point (7 — €) into /' by first following
the X-trajectory from %(7 — €) to its g-dependent point on the curve ¥ and then
concatenating with the X-trajectory that corresponds to ¥ (see Fig.2.14).

Lemma 2.9.5. The times along the trajectories I' and I'" are equal, T(I") = T (I'™").

Proof. The concatenation 1" of I' with the curve I'” run backward is a closed curve,
and by Stokes’s theorem, the difference in the times along these two trajectories is
given by

T(M) - T(I") = / o= /da),
Y R
where R denotes the region enclosed by Y'. The coordinate expression for m (see

Eq. (2.49)) is given by

_ gds—gidt $(b—1)ds — %adt s 1—b(s
o det(f.g) —1a B a(s,t)
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Fig. 2.14 Conjugate curve Y

and thus, and using the notation 6 from the proof of Lemma 2.9.3,

9 (b(s,r)—1 ~d0
do = > (TJ)) dsN\dt = E(s,t)ds/\dt.

Since Y is transversal to X, we can parameterize the curve y as the graph of a

function o of s over some interval [sg,s7], say V: [se,s¢] = Q, s — y(s) = (5,0(s)).
Evaluating the double integral by integrating over the vertical segments therefore

gives
st 6(s,0(s)) 20
/Rdw:/ss /G(s) =, (s0)deds
_ / [6(s,(5,0(s))) — O(s,0(s))] ds.

But by construction, the points (s,0(s)) on vy and (s,{(s,0(s)) on Y are
g-dependent, and therefore for all s € [s¢, 5],

6(s,C(s,0(5))) = 0(s,0(s))-

Hence [pd®w =0 and thus (") = T (I'"’). O
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Fig. 2.15 A variation along
a Y XY -trajectory

This precludes the optimality of I': for if I" is time-optimal, then so is I"". But
the dynamics along Y is a strict convex combination of X and Y, and thus the
control takes values in the interior of the control set. Hence it must be singular. But
o(r") > 0, and so this is not possible. Contradiction.

Since the roles of X and Y are reversible in our assumptions, it similarly can be
shown that XY X-trajectories cannot be optimal either, and thus Proposition 2.9.5 is
proven. O

This proof is the original one by H. Sussmann, and it beautifully illustrates the
underlying geometric aspects (i.e., conjugate points and envelopes) of the structure
of optimal bang-bang trajectories near a slow singular arc. We shall return to this
topic for a general n-dimensional system in Sect. 6.1.3 about transversal folds.

There exists an alternative, and in some sense more direct, algebraic approach
that is based on a variation analogous to the one used in [209] for the three-
dimensional case. Suppose again that I" is a YXY-trajectory with the switching
points given by g; and g, = ®X (g ). It is geometrically clear (see Fig.2.15), and not
difficult to verify analytically, that there exist continuously differentiable positive
functions r = r(€) and t = t(¢€) such that

@ (P (q1)) = D) (‘D}Eg) (41)) :
The difference in time between these trajectories is then given by
Ae) =s(1+¢€)—t(g) —s(e),

and the YXY-trajectory is not time-optimal if A(€) > 0 for small £ > 0. Hence,
the optimality of bang-bang trajectories with two switchings can be excluded by
computing the Taylor expansion of A at € = 0. It can be shown that the fact that
q1 and g are g-dependent points is equivalent to A’(0) = 0, and it thus becomes
necessary to compute the second derivative A”(0). This, however, requires a good
algebraic framework that is provided by a Lie-algebraic formalism that we shall
establish only in Sect. 4.5. We shall return to this second approach in Sect. 7.3 when
we analyze the corresponding situation—the structure of time-optimal bang-bang
trajectories near a slow singular arc—in dimension three.
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2.10 Input Symmetries and Codimension-2 Cases
in the Plane

The results of the last section cover the local structure of time-optimal controlled
trajectories near a point p in the plane under codimension-0 and some codimension-
1 conditions. In order to classify the structure of time-optimal controlled trajectories
for a generic time-invariant control-affine nonlinear system of the type [NTOC] in
the plane, by Thom’s transversality theorem [108] it is necessary to analyze all other
possible codimension-1 and codimension-2 conditions. Other codimension-1 condi-
tions arise if assumption (A0) is violated, i.e., if the vector fields f and g are linearly
dependent at p; codimension-2 conditions arise if two independent equality relations
are imposed. In this section, we still analyze those codimension-2 situations that
arise if condition (A0) is met. These correspond to situations in which in addition to
o/(p), also one of the Lie derivatives of o along X or Y vanishes at p. The results of
this and the previous section then collectively describe the structure of time-optimal
controls near a reference point p where the vector fields f(p) and g(p) are linearly
independent under otherwise generic conditions on the vector fields f and g.

2.10.1 Input Symmetries

In cases of higher codimensions, the number of possibilities increases significantly,
and it now helps to use input symmetries and other invariances to reduce this number.
Since the control set U = [—1,1] is invariant under a reflection at the origin, the
problem [NTOC] remains unchanged if we use as control v = —u instead. This
transformation, however, changes the vector fields: g becomes —g while f remains
the same. Thus their Lie brackets and hence also the functions o and 3 and their
Lie derivatives are affected. This allows us to normalize the signs of some of these
functions.

Definition 2.10.1 (Input symmetry). An input symmetry is a linear transforma-
tion on the vector fields f and g that leaves the control system X : x = f(x) 4 ug(x),
u € U (including the class of admissible controls), invariant.

Definition 2.10.2 (Reflection). For the system X : x = f(x) +ug(x), |u| < 1, define
the reflection p by p(f) = f and p(g) = —g, or equivalently, as the transformation
that interchanges the vector fields X and Y,

pX)=p(f—g)=p(f)—ple)=f+g=Y

and
p(Y)=p(f+g)=p(f)+plg)=f—-g=X.
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This definition naturally extends as a homomorphism to the Lie algebra generated
by the vector fields f and g if we define

p([f.el) =1Ip(f).p(g)]

and inductively extend this relation to higher-order Lie brackets. As before, we
assume that Q is a simply connected region of R? and that f and g are linearly
independent vector fields on £2. Thus, all higher-order Lie brackets of f and g can
be expressed as linear combinations of f and g with coefficients that are smooth
functions of x. Suppose [f,g](x) = o(x)f(x) + B(x)g(x) and write

p([f:8]) =p(a)p(f)+p(B)p(s)-

The effects that an input symmetry has on the higher-order brackets and coordinate
expressions can then easily be calculated through straightforward algebraic substi-
tutions. We have that

P(f),p(g) =—I[f.8] = —af—Bg=—ap(f)+Bp(g)

and thus
play=—a and  p(B)=B. (2.55)

Considering higher-order brackets, we arrive at analogous formulas for the Lie
derivatives of o and f3:

(X, [f,8ll = [X,00f + Bg] = Lx (o) f + a[X, f]+ Lx (B)g + BIX. ]
= Lx(a)f +Lx(B)g+ (a+B)[f, ¢l
= (Lx (o) + (o +B)a) f+ (Lx (B) + (o +B)B) g,

and analogously

Y, 1f,8ll = (Ly () — (& = B)et) f + (Ly (B) — (¢ — B)B) 8-

Applying the input symmetry p, we have that

p (X, [1,8l)) = [p(X) [p(£),p ()] = =¥, [/ &]]
—(Ly(e) = (a=B)o) f = (Ly(B) — (= B)B) g
= (=Ly(a)+(p() +p(B))p(a)) p(f)
+ Ly (B)+(p(a)+p(B))p(B))p(2)

and therefore

p(Lx(a)) =—Ly(e)  and  p(Lx(B))=Lyr(B).
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Since —Ly(a) = Ly (—a) = Ly(x)(p(c)), this relation can succinctly be expressed
in the form
p(Lx(a)) = Lyx)(p(ar)). (2.56)

Analogously, it follows that

p(Ly()) =Lyy)(p(a)) = —Lx ()

and
p(Ly(B)) =Ly (p(B)) = Lx (B).

Similarly, for higher-order derivatives we have that

p (Lx (@) = Lyx) (Lpx)(p(@))) = Ly (Ly(—@)) = —Ly ()

and
P (Ly () = Loy (Lpyy (p(ar))) = Lx (Lx (— ) = —Lg (ax),

and so on. Once more, the effects that an input symmetry has on the vector fields f
and g and their Lie brackets are easily obtained through straightforward algebraic
substitutions.

We briefly reconsider the results of the previous section with this point of view. If
o is positive on some region €2, we have shown that optimal controlled trajectories
that lie in €2 have at most the structure XY. Applying the input symmetry p to the
system changes the sign of o and interchanges X with Y. Thus, it directly follows
that optimal controlled trajectories are at most of type YX if o is negative (see
Proposition 2.9.1). On the other hand, in the codimension-1 situation (Al), the
relevant conditions are all invariant under this input symmetry. For example, the
singular arc is given by

. LXoc(x)—i—Lyoc(x) . LfOC

VT hat a7 et

e (L) )
B p(Lro(x _ —Lro(x =

Naturally, the strengthened Legendre—Clebsch condition (see Eq. (2.47),

(A1), [&[f:8ll(x(1))) = —Lgax(x(r)),

is invariant under this input symmetry as well. In fact, the assumptions for each of
the various codimension-1 cases considered in the last section are invariant under
p. Still, this input symmetry is useful in the proof of Proposition 2.9.5, where we
carried out the construction only for Y XY -trajectories and merely claimed that the
analogous construction excludes XY X-trajectories as well. Since p interchanges
Lx(OC) and —Ly(OC),



172 2 The Pontryagin Maximum Principle

p(Lx(a))=—-Ly(a) and  p(Ly(a))=—Lx(a),

the assumptions of Proposition 2.9.5 are invariant under p, and thus, applying p,
it immediately follows that XY X-trajectories cannot be optimal either. No further
argument is necessary.

It is in the codimension-2 scenario, that input symmetries really become useful.
We can limit our analysis to the case that one of the Lie derivatives of ¢ with respect
to X or Y vanishes, and without loss of generality, we shall consider the case when

Lx(a)(p) #0 and  Ly(a)(p) =0, while LZ(a)(p)#0.

Using a second symmetry that optimal trajectories possess, we can in addition
normalize the sign for the second Lie derivative L2 (¢)(p). Time-optimal trajectories
are also invariant under time reversal. If (x,,u, ) is a time-optimal trajectory for the
system X : X = f(x)+ug(x), lu| < 1, defined over an interval [0, 7] that steers a point
¢q1 into g7, then the pair (y,,v.) defined by y.(t) = x.(T —¢) and v, (¢t) = u.(T —1t)
is a time-optimal trajectory that steers ¢, into ¢; for the system X : y = f () +vE(),
[v| < 1, where time has been reversed. Since

Yilt) = =2%u(T —1) = = f (x(T — 1)) —u(T —1)g (x:(T — 1))
=—f(t)) —v(t)g(2),

this property can be expressed in terms of a second input symmetry that reverses the
signs of the vector fields f and g.

Definition 2.10.3 (Time reversal). For the system X : % = f(x) + ug(x), |u| < 1,
define time reversal T by 7(f) = —f and 7(g) = —g, or equivalently, by 7(X) = —X
and 7(Y) = —Y.

As above, we extend this definition to the Lie algebra generated by f and g and
then calculate the relations it implies on the coordinates with respect to the basis in
terms of f and g. Simple computations verify that

(o) = -, ©(B) =B,
T(Lx (@) = Lx (@), T(Ly(a)) = Ly(a),
T(Lg () = ~Lx (), (Lj (e)) = L (),

and it is the last relation that, without loss of generality, allows us to assume that
L} () is positive.

In a more abstract framework, the input symmetries generate a group ¢ =
{id,p, 7,70 p} of idempotent elements (i.e., p o p = id, etc.) and using them, it
is possible to reduce the number of codimension-2 scenarios by a factor of 4. It is
to be expected that the mathematically more difficult scenarios arise when the Lie
bracket configurations are invariant under this group of symmetries, and this will
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again happen for nongeneric codimension-3 situations. The codimension-2 cases,
however, essentially can be fully analyzed based on the earlier codimension-1 results
of Sect. 2.9 and some additional geometric considerations.

2.10.2 Saturating Singular Arcs

We now assume that

(A2) the vector fields f and g are linearly independent everywhere on 2 C R?
and there exists a point p € £ with a(p) = 0, but the Lie derivative of o along
X does not vanish on 2,

o(p)=0, Lx(a)(x) #0 forallx e Q;

furthermore, the Lie derivative of o along Y vanishes at p, but the second Lie
derivative of & along Y is positive on €2,

Ly(a)(p) =0, L3 (a)(x) >0 forall x € Q.

Note that Lyo(p) = 1Lx(et)(p) # 0, and thus there exists an X-aligned chart
of coordinates (centered at p), y : Q(&) C R? — Q = y(Q(¢)), (s,1) > w(s,t) =
WX o ¥S(p). As above, in these coordinates X = (0,1)7 = 5 and we write ¥ =
(a,b)T for some differentiable functions a and b. Since X and Y are everywhere
linearly independent on €2, the function a does not vanish on Q, and without loss of
generality, we assume that a is positive on £2. (If a is negative, then simply change
s in the definition of the coordinates to —s.) Assumption (A2) also implies that the
integral curve 1" of Y through the point p is tangent to the curve S = {x € Q : ¢t(x) =
0} at p and that the order of contact is 1, i.e., for r near 0,

oa(Y(r)=o(p)+Lya(p)r+ %L%oc(p)rz + o(rz)

= S a(p) +o().
Hence, except for the point p, the curve 1 lies in Q; = {x € Q : o(x) > 0} and can
be parameterized as the graph of a function of 5. By choosing € sufficiently small,
we again can assume that this parameterization is defined on the full interval [—¢€, €],
say Y : [—€,€] = Q(€), s — (s,¥(s)), and y'(0) = 0. The geometry is illustrated in
Fig.2.16.

The point p is the beginning or end point of an admissible singular arc. The
singular control at p is given by

_ Lyo(p)+Lyo(p) i
Lxa(p) —Lya(p) ’

Using (p)
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Fig. 2.16 Assumption (A2)

and thus the singular control saturates at p at its upper value. Since we normalized
a to be positive, we have Ly o(s,0) > 0 for s > 0 and Lya(s,0) < 0 for s < 0.
Depending on the sign of Ly, the singular control is admissible for one side of
the s-axis and inadmissible for the other. The singular arc itself is fast, (respectively,
satisfies the strengthened Legendre—Clebsch condition), if Ly (¢t) is negative and it
violates it if Ly (a) is positive. The structure of optimal controlled trajectories on
Q = y(Q(e)) thus depends on this sign, and we now analyze these two cases.

Proposition 2.10.1. Let Q2 be a domain on which condition (A2) is satisfied and
suppose Lx (o) = X a is positive everywhere on Q. Then, for Q sufficiently small,
optimal controlled trajectories that entirely lie in £2 are of type XY XY .

Proof. 1t follows from the results of Sect.2.9 that except for p, every point in
€ has a neighborhood such that optimal controls for trajectories that lie entirely
in this neighborhood are bang-bang. Thus optimal controlled trajectories are
concatenations of X- and Y-arcs in £2. It remains to establish the concatenation
sequence. Recall that it follows from Proposition 2.9.1 that XY -junctions can lie
only in {x € Q : a(x) > 0} and Y X-junctions must lie in {x € Q : a(x) < 0}.

As before, we consider an X-aligned chart of coordinates (centered at p), y :
0(e) — Q2 = y(Q(¢e)). In this case, X and Y point to opposite sides of the s-axis for
s < 0 and to the same side for s > 0 (see Fig. 2.16). Thus the set . = {(5,0) : s < 0}
is a slow singular arc that saturates with ugn,(p) = +1 at p and .7, = {(s5,0) : s >
0} is inadmissible. Partition Q into three regions Ry, Ry, and R, according to the
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following specifications:

Ro={(s,1) €Q: t>y(s)},
R ={(s,t) €0: 5<0,1<y(s)},

and
Ry={(s,t) €Q: s>0,1<y(s)}.

Thus Ry is the set above the integral curve 1°, and the region below this curve is
divided further into its components in {s < 0} and {s > 0} with the boundaries given
by the trajectory 1" and the negative t-axis, {(s,#) € Q:s=0,7 < 0}. Since X =
(0, l)T = % is vertical, X -trajectories cross 1’ into Ry. Once there, since Ry C 2,
at most one switching from X to Y can occur in Ry and thus trajectories cannot leave
R forward in time as long as they are contained in €2. If an optimal trajectory were
to switch from X to Y on the curve 1°, then another junction with X is possible only
at p followed possibly by one more switch to Y. It will follow from our argument
below that no prior switchings can exist in this case, and overall, such a trajectory is
at most of type XY XY.

The switchings in R; and R, can be analyzed with the tools developed in the
proof of Proposition 2.9.5. By choosing € small enough, we can assume that the
function ¢ constructed in Lemma 2.9.3 exists on Q(¢€) with the properties specified
there. It was shown in the proof of Proposition 2.9.5 that Y XY -trajectories are not
optimal if the component b in the vector field Y is negative over the neighborhood
Q(¢), but under assumption (A2) the function b vanishes at p, and we first need to
analyze its zero set in Q.

We first show that under assumption (A2), we have that

b
b(0,0) =0 and %(S,O) >0 forallse[—¢g,¢].

For recall from the proof of Proposition 2.9.5 that Ly ot = %—‘;‘ and

Lyo(s,t) = %—(:(s,t) -a(s,t)+ %—(:(s,t)-b(s,t).

The singular curve . is given by the s-axis, a(s,0) = 0, and therefore %—‘;‘ (5,0)=0.
Hence we have along the s-axis that

Lyo(s,0) = Ly a(s,0) - b(s,0), (2.57)

and thus, under assumption (A2), it follows that »(0,0) = 0. Differentiating
Eq. (2.57) once more along the vector field Y, we get that

L2 ou(s,0)=LyLya(s,0)-b(s,0) + Ly a(s,0)- <%(s,0) -a(s,0)+ %(S,O) : b(s,0)>
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Fig. 2.17 Optimal XY XY -trajectories for Lxo > 0

and therefore, upon evaluation at p = (0,0),

L30(0,0) = Ly t(0,0) - %(0,0) -a(0,0).

Hence, with our normalization of a to be positive, we get that %(0,0) > 0. In
particular, b(s,0) is negative for s < 0 and positive for s > 0. It follows from the
implicit function theorem that the equation b(s,z) = 0 can be solved in terms of
a differentiable function s = o(r), 6(0) = 0, in a neighborhood of the origin. By
making € smaller, if necessary, we may assume that the function o is defined over
the full interval [—¢, €]. Furthermore, the graph of ¢ is transversal to the integral
curve ' of Y at p (see Figs. 2.16 and 2.17).

We also need to know the signs of the Lie derivative of the function { along the
vector field Y. By definition,

LyC(s,t) = aa—f(s,t)a(s,t) + aa—f(s,t)b(s,t),

and it follows from Lemma 2.9.3 that {(s,0) = 0 and %(S,O) = —1. In particular,
all partial derivatives of { with respect to s vanish along s = 0. Hence we have that
Ly£(0,0) =0 and for s <0,

Ly{(s,0) = %(s,O)a(s,O) + g—f(s,O)b(s,O) =—b(5,0) > 0.

Furthermore, with b(0,0) = 0, the second Lie derivative with respect to ¥ at the
origin simplifies to
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L3£(0,0) = =>(0,0)=-(0,0)a(0,0) = —=-(0,0) < 0.

YC(a) at(a)as(v)a(v) as(a)<

Thus the zero set Z = {(s,t) : Ly {(s,¢) = 0} of the Lie derivative Ly { near the origin
is a one-dimensional embedded submanifold that is transversal to the singular curve
" ={(5,0): |s| < e}

Lemma 2.10.1. YXY-trajectories that lie in the closure of Ry are not optimal.

Proof. Since the zero sets of b and Ly are transversal to Y at p, it follows that
there exists an open sector V = {(s,1) € Q: s <0, r < 20|s|} that lies entirely in
the set {(s,¢) € Q: b(s,t) <0, Ly{(s,t) > 0}. Since Y is tangent to the s-axis at
p, by making € smaller if necessary, we may assume that the curve Y’ for s < 0 lies
entirely in the smaller sector W = {(s,7) € 0 : s <0, t < w|s|} (see Fig.2.17). Now
consider a Y XY -trajectory that lies in Ry and suppose it has switchings at the points
(8,7) and (5,7), respectively. If this trajectory is optimal, then the two junctions are
g-dependent along X and we have that 7' = {(§,7). Since junctions of the type XY
are optimal only in ., we have that (§,7') € W. It follows from Lemma 2.9.3 that

=50 = %(5,0)5%(?) = —F+o(D).

(We have {(s,0) = 0, and thus all derivatives in s vanish identically.) But then, for €
small enough, the first junction point (§,7) still must lie in the larger sector V where
the Lie derivative Ly { is positive, and by construction the second junction point lies
in the region where b is negative. It follows from the remark following Lemma 2.9.4
that an envelope can be constructed, and thus this trajectory cannot be optimal. O

In particular, if there is an XY -junction on the curve 1°, then there could not have
been a previous Y X-junction. Hence, as claimed earlier, such a trajectory can be at
most of type XY XY.

The remainder of the argument follows from a direct geometric analysis of X
and Y trajectories. It is possible that optimal trajectories are of the type XY XY in
{s < 0}, but then the last switching must lie above Y in Ry, and overall such a
trajectory cannot switch any more. Trajectories that do not cross 1" in {s < 0} are at
most concatenations of type XY in {s < 0}. If they switch to X at s = 0, then once
more, only one additional switch to Y in {r > 0} is possible. If they cross {s = 0}
along Y, then it is possible to have a switch to X in the fourth quadrant {(s,¢) € Q :
s >0, t <0} and one more switch to Y in the first quadrant {(s,7) € 0: >0, >0}
(cf., Fig. 2.17). In any case, an optimal controlled bang-bang trajectory that lies in
€ can have at most the concatenation sequence XY XY. O

Proposition 2.10.2. Let Q2 be a domain on which condition (A2) is satisfied and
suppose Lx (a) = X o is negative everywhere on Q. Then, for Q sufficiently small,
optimal controlled trajectories that lie entirely in Q are at most concatenations of
type XY SB.
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Fig. 2.18 Optimal XY SB-trajectories for Lyo < 0

Proof. This is the easier case, and the result follows by a direct geometric reasoning
from the codimension-1 scenarios. As above, consider an X-aligned chart of
coordinates (centered at p), v : 0(e) - Q = y(Q(¢g)). In this case X and Y
point to the same sides of the s-axis for s < 0 and to opposite sides for s > 0.
Furthermore, now .4 = {(s5,0) : s > 0} is a fast singular arc (that again saturates
with ugne(p) = +1 at p) and .7 = {(5,0) : s < 0} is inadmissible. By choosing O
small enough, it follows from Proposition 2.9.2 that optimal controlled trajectories
that lie in Q_ = {(s,¢) : s < 0}, the second and third quadrants, are at most of
type XYX, and by Proposition 2.9.4, optimal controlled trajectories that lie in
0+ = {(s,t) : s > 0}, the first and fourth quadrants, are at most of type BSB.
However, overall, at most the concatenation sequence XY SB is possible. For only
Y-trajectories can cross from Q_ into Q., and XY-junctions are optimal only in
€, the first and second quadrants, while Y X-junctions are optimal only in £2_, the
third and forth quadrants. Therefore, if a Y-trajectory crosses the 7-axis at a positive
value, then no further switching is possible, and such a trajectory can be at most
of type XY. If it crosses for t = 0 and does not switch at p, the same is true. If it
switches at p to a singular arc, then only SB is possible afterward, and this limits
the concatenation sequence to XY SB. If a switch to X occurs at p, then again no
further switches are possible, and such a trajectory is at most of type XY X. Finally,
if the crossing happens for ¢ < 0, then it is possible to switch to X in the forth
quadrant (or also on the 7-axis itself), and again in such a case we get at most XY X.
If there is no switch to X, then the Y -trajectory may reach the singular arc and switch
there, ending up with an SB concatenation. Overall, because of the directions of the
vector fields X and Y near p, only concatenations of type XY SB can be optimal (see
Fig.2.18). O

Altogether, we have shown the following result:

Theorem 2.10.1. Let p be a point where the vector fields f(p) and g(p) are linearly
independent. Then, under generic conditions on the vector fields f and g, there exists
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a neighborhood €2 of p such that optimal controlled trajectories that lie entirely
in £ are concatenations of at most four pieces of either X = f —g, Y = f+g,
or the singular arc S. At most one of these pieces can be a singular arc, and if
there are four segments, then it must be the second or third leg in the concatenation
sequence. |

In all the examples considered here, there is a very simple relation between the
number of X, Y, and singular segments in concatenation sequences that lie in a
sufficiently small neighborhood €2 of some reference point p and what is called
the codimension of the Lie-bracket configuration of the system ¥ = (f,g) at the
point p that we still briefly want to point out. Loosely speaking, this Lie-bracket
configuration consists of all the values of the vector fields f and g and their Lie
brackets at p, and its codimension is given by the number of linearly independent
“relevant” equality relations that hold between these vector fields at p. We are
assuming that f and g are linearly independent on €2 and thus always can express the
Lie bracket as [f, g] = af + Bg with some smooth functions o and  defined on Q.
In this case, the first “relevant” relation is that g and [f,g] are linearly dependent
at p, characterized by a(p) = 0. If a does not vanish on Q, the codimension-0
case, optimal controls are simply bang-bang with one switching, and the sign of «
determines the order of the switchings. If o does vanish at p, higher-order terms in
the Taylor expansion of o along the flows of X and Y at p matter, and depending
on whether these Lie derivatives of o vanish at p, more degenerate scenarios arise.
In the codimension-1 cases, characterized by the fact that both Lie derivatives of o
along X and Y do not vanish at p, only three segments are possible. If we allow that
one of the Lie derivatives vanishes, but again in a nondegenerate way, so that its
second Lie derivative is nonzero, the codimension-2 case, this number increases to
four. Overall, in each case we have the following simple relation:

%,: The maximum number of concatenations of X, Y, and singular segments in
time-optimal controlled trajectories that lie in a sufficiently small neighborhood
Q of some reference point p is given by

2+codim(X,) = dimQ + codim (X,).

This relation has also been verified for numerous cases of low codimension
in dimensions 3 and 4 (e.g., see [210, 211, 221]). For example, the possible
concatenation sequences BBB and BSB that arise in the codimension-1 cases in the
plane are precisely the time-optimal concatenation sequences in the codimension-
0 three-dimensional case (see Sect.7.3), and the optimal sequences BBBB, BBSB,
and BSBB for the codimension-2 case in the plane are the optimal sequences for the
codimension-1 cases in R3 (see Sect. 7.5) and the codimension-0 cases in R*. This is
very much like the unfolding of singularities in the theory of differentiable mappings
[108]. Thus, a general classification of the concatenation sequences that optimal
controlled trajectories for planar systems can have locally in more degenerate cases
based on Lie-theoretic conditions is not merely of intrinsic interest, but it also points
to the structures of optimal solutions in higher dimensions. We shall return to this
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topic in Chap.7. In the next section, we shall analyze another classical optimal
control problem in which the codimension of the Lie-bracket configuration becomes
infinite, and indeed, optimal trajectories require an infinite number of switchings on
a finite interval and thus are no longer piecewise continuous.

Examples of these correspondences abound not only for the time-optimal
control problem, but in general. For example, in Sect.6.2, we shall consider a
three-dimensional optimal control problem for a mathematical model for tumor
anti-angiogenesis [160] in which, because of the presence of optimal saturating
singular controls, the solution is fully characterized by the concatenation sequences
determined here for the codimension-2 scenario. Indeed, the optimal concatenation
structures encountered for the time-optimal control problem in the plane that were
analyzed in the last two sections consistently reappear in optimal solutions for
general optimal control problems in increasing dimensions.

2.11 Chattering Arcs: The Fuller Problem

The Fuller problem has its origin in electronics, arising in communication across a
nonlinear channel [34,35,94]. In this section, we give a solution to this problem, an
innocent-looking problem whose optimal controlled trajectories are chattering arcs
for which the controls switch infinitely often on an arbitrarily small interval as the
switchings accumulate at the final time. In particular, optimal controls are no longer
piecewise continuous, but lie in the class of Lebesgue measurable functions. The
reason for this behavior lies in the presence of an optimal singular arc of order 2.

[Fuller] Givena point p € R?, find a control (Lebesgue measurable function) with
values in the interval [—1, 1] that steers p into the origin under the dynamics

X1 =x2, Xo=u,

and minimizes the objective

T
J(u) = % /0 2(t)dr.

The time T of transfer is finite, but otherwise free. Since the problem is time-
invariant, we can arbitrarily shift the interval of definition for the control, and for
this problem it is more convenient to normalize the terminal time to be 0. We thus
consider the controls and trajectories to be defined over intervals [—T,0] C (—eo,0].

Theorem 2.11.1. Let { = % =0.4446236.. ., the unique positive root of the
equation 7* + %zz — % =0, and define
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x1,x) €R?: x> —sgn(xg)Cx%}.

Then, the optimal control for the Fuller problem is given in feedback form as

u.(x) = (2.58)

+1 for xe GLUIL,

—1 for xeG_UI_.
Corresponding trajectories cross the switching curves I and I_ transversally,
changing from u = —1 to u = +1 at points on I'y and from u = +1 to u = —1
at points on I_. These trajectories are chattering arcs with an infinite number of
switchings that accumulate with a geometric progression at the final time T = 0.

Figures 2.18 and 2.19 depict the optimal synthesis for the Fuller problem. It
looks very much like the synthesis for the double integrator, but with the significant
difference that the switching curve I' = I'y U {(0,0)} UT_ now is not a trajectory.
Thus trajectories always cross I' and cannot enter the origin along these curves.
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Fig. 2.20 An example of an optimal controlled trajectory (left) and a blowup near the final time
(right)

2.11.1 The Fuller Problem as a Time-Optimal Control
Problem in R?

The reason for the occurrence of the chattering controls is best understood if one
embeds the Fuller problem into a time-optimal control problem of the form [NTOC]
in R3 by adding the objective as a third variable, X3 = %x%, i.e., the drift vector field
f and control vector field g are given by

X2 O
fy=1 0 and  g(x)=| 1
%x% 0

If one then considers the time-optimal control problem to the origin, the classical
Fuller problem arises for initial conditions of the form p = (x{,x3, —J(x%,x9)),
where J(x9,x9) is the optimal value for the Fuller problem with initial condition
(x9,x9). It will be seen that the solution to the Fuller problem is unique, and thus
there exists exactly one control that steers p into the origin. Hence this control is the
time-optimal one. In fact, the solutions to the Fuller problem are optimal abnormal
extremals for this three-dimensional time-optimal control problem: the Hamiltonian

for the Fuller problem is given by
1,
H= E;Loxl + Aixo + Aou

with A9 > 0, while the Hamiltonian for the time-optimal control problem, where
we change the notation for the multiplier to y in order to distinguish these two
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formulations, is given by

1
H =y + yix2 + you+ 5‘!’3)6%-

We shall see below that extremals for the Fuller problem cannot be abnormal
(A > 0), and for the time-optimal control problem, 3 is a constant that cannot
vanish if yp = 0 with time-minimizing extremals corresponding to w3 > 0 and
maximizing ones to y3 < 0. Normalizing y3 = 1 and taking yp = 0, the conditions
of the maximum principle for these two problems agree.

The Lie brackets of the vector fields f and g are easily computed as

—1 0
el = 0 |, [flfellx)=| 0], and [g[f gll(x)=0.
0 X1

Since [g, [f, g]] vanishes identically, so do the brackets [f, [, [f,g]]] and [g, [g, [/, &]]],
and singular controls are of higher order. The other relevant fourth- and fifth-order
brackets are

0 0
adf3g(x) =101, adfg(x) =0, and g, adf3 glxy=1|o
X2 1

In particular,
(w.[g,ad}g](x)) = ys =1>0,

and the Kelley condition for optimality of an order-2 singular arc is satisfied. The
equation defining the singular control is

Y (1) = yad'g(x) + uylg,ad g (x) = u
and thus the singular control is given by
Uging = 0.

The corresponding singular extremal I'r is therefore given by u =0, x; = x; =0,
with multipliers Yy = y; = y» = 0 and y3 = 1. The classical Fuller problem can
thus be interpreted as the problem of steering a point in R3 time-optimally into an
order-2 singular arc that satisfies the Kelley condition. By Proposition 2.8.5, the sin-
gular control cannot be concatenated with a constant bang control without violating
the necessary conditions of the maximum principle. This can be accomplished only
by means of a chattering control.
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2.11.2 Elementary Properties of Extremals

We now construct an extremal synthesis for the Fuller problem following an
argument of Kupka [143]. (The optimality of this synthesis will be verified in
Sects. 5.1 and 5.2.3 by means of two completely different arguments.) Let (x,u)
be an optimal controlled trajectory that transfers p into the origin and minimizes
the integral fOTx% (t)dt. By Theorem 2.2.1, there exist a constant Ay > 0 and an
adjoint vector A = (A1,4;) such that (i) (A9, 41,42) do not vanish simultaneously,
(ii) A1 = —Aox1, A» = —A,, and (iii) the control minimizes the Hamiltonian H =
%on% + A1x3 + Ayu over the interval [—1,1] with the minimum value identically
zero.

Lemma 2.11.1. Extremals of optimal controlled trajectories are normal.

Proof. Suppose Ay = 0. The switching function @ is given by the multiplier A,
and in this case A» = 0. Hence the corresponding control u is bang-bang with at
most one switching ending with either u = +1 or u = —1. But this contradicts
Proposition 2.8.5. For if we define a new control i by adding an interval [T, T + €]
with control i#(7) = 0 on this interval, then the value of the objective does not change
under this extension, and thus # is optimal as well. But the final segment with u =0
is a singular arc of order 2, and thus it cannot be concatenated optimally with a bang
control. Contradiction. O

We henceforth normalize A9 = 1. Then the derivatives of the switching function
@ = ), are given by

(1) =-M(0), B@)=x(), PV0)=x@), OW()=ul),
and the minimum condition implies
u(t) = —sgn@(1).
In particular, the switching function is a solution to the nonsmooth differential

equation @) (r) = —sgn®(r). We start with some elementary properties of
extremals.

Lemma 2.11.2. Let u = %1, then the functions
1 2 |
Il,j: :XI—EM.XZ and Iz)i:—ﬂ,l—uxle_i_gxz

are first integrals for the extremals of the Fuller problem. That is, the functions I 1
and I 1 are constant along extremals for the controls u = %1.
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Proof. This follows by direct differentiation from the system and adjoint equations

Ill,i = X| — UxpXp = Xxp —MZXQ =0,

by = —A) —uiyxy — uxpia + X3k = x1 — uxd — utx) +3u = (1 —u)x; =0.
O

Lemma 2.11.3. Let I" = ((x,u),A) be an extremal defined over the interval [—T,0).
If T < 0 is a switching time, then T is an isolated zero of the switching function, and a
bang-bang switch occurs at time tT. This switch is fromu=+1tou=—1ifx;(7) >0
and fromu = —1tou=+1ifx(1) <O0.

Proof. Suppose @(1) = A»(7) = 0. It is clear that a bang-bang switch occurs if
A2(7) = —A4(7) does not vanish. If 1;(7) = 0 as well, then the condition

0= H(t) = %x%(r) + (D7) (2.59)

implies that x| (7) = 0, and thus, since the junction point is not the origin, we have
x2(7) # 0. But then ®(1) = d(1) = d(7) =0 and

@0 (1) = xy(1) #0.

Thus the switching function changes from negative to positive if x,(7) > 0 and from
positive to negative if x,(7) > 0 and the corresponding bang-bang switch occurs. For
the case A;(7) # 0, the same structure follows, since x,(7) and A, (7) have opposite
signs by (2.59). O

2.11.3 Symmetries of Extremals

The family of all extremals possesses two groups of symmetries, one continuous,
the other discrete, which can be used very much to advantage in calculating the
extremal synthesis. Without loss of generality, we define all extremals over the full
interval (—eoo,0] with the terminal time 7 normalized to be 7 = 0. Let ¥, denote
the multiplicative group of positive reals and define a 1-parameter group of scaling
symmetries on (—oo,0] x [—1,1] x R x (Rz)* by

t
. 0 2 3 4
g(x . (tauax17x27lla/’1’2) = (ava u, o xy, 02,0 A‘lva /’1'2) .

Proposition 2.11.1. Given an extremal lift I’ = ((x,u),A) for the Fuller problem
and o > 0, define I'* = ((x*,u®),A%) as the controlled trajectory (x*,u®*) and
corresponding adjoint vector A% that are obtained under the action of the group 4,
on the variables, that is, by
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t t t
u*(t)=u (—) . X () = o’x (a) , x5(1) = oxp (a) ,
and ; ;
M =atn (=), Mi=a'r (L)
r)=0"X o) (t)=0a"L p
Then I'* again is an extremal for the Fuller problem.

Proof. Consider the controlled trajectory (x,u) over the interval [—7,0] with initial
condition at time —7 given by (X;,%,). The rescaled control u%, restricted to [—af, 0],
then steers (¥¢%,%¥) = (0’%;,0%,) into the origin with corresponding trajectory
x%. A direct calculation verifies that the adjoint equation is invariant under this
transformation as well,

and also the Hamiltonian A remains unchanged:

H(A%(2),x%(1),u” (1))

o ()] o (5 () i () (2)
a3 (5) () n(4)) -

Furthermore, by construction, the minimum condition on the control carries over
from the extremal lift I". Hence I"% is an extremal as well. O

A second symmetry is given by reflecting controlled trajectories and their mul-
tipliers at the origin, in mathematical terms, by the action of the discrete group S,.
Let % denote the reflection symmetry defined on (—e0,0] x [—1,1] x R? x (R?)" by

X (t7u7x17x27)tl712) — (ta_uu_xlu_xb_)Lla_AQ)'

Proposition 2.11.2. Given an extremal lift ' = ((x,u), ) for the Fuller problem,
define I' = ((%,11),A) as the controlled trajectory (%,ii) and corresponding adjoint
vector A that are obtained under the action of %, that is, by

i) =—u(t), x()=-x(), X)=-x(),
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and 5 5
A,l(t)z—ll (t), )Lz(l)z—)tz(l‘).
Then I" again is an extremal for the Fuller problem.

Proof. Ttis clear that all the conditions of the maximum principle are invariant under
this transformation. O

2.11.4 A Synthesis of Invariant Extremals

Whenever a mathematical problem exhibits symmetries, it is a good strategy to seek
solutions that obey these symmetries. In fact, there is one extremal that is invariant
under the action of all symmetries ¢, for all o > 0 and #, namely the trivial solution
for u = 0 with x = 0 and A = 0. (The nontriviality condition is satisfied by A9 = 1.)
In some sense, this is responsible for the special properties of trajectories that need
to steer the system into the origin. But there also exists a specific value o for which
all extremals are invariant (as individual curves, not just as the whole family) under
the actions of Z and ¥,,. These are the optimal controlled trajectories for the Fuller
problem, and we now calculate this value.

Let I = ((x,u),A) be an extremal for the Fuller problem and suppose #) < 0
is a switching time where the control switches from u = 41 to u = —1. Since the
switchings are isolated, but must accumulate for 7 = 0, there exists a sequence
{ta}nez of switching times that converges to 0 as n — oo and the control switches
from u = +1 to u = —1 at even indices and from u = —1 to u = 41 at odd indices.
Let Iy = ((¥*,4%),A%) denote the image of the extremal I" under the combined
action o7y, of the reflection & and the group ¥, for a fixed o > 0, i.e., forall t <0,

0 =-u(L), H0=-n (L), Eo=-un(L),

o

and

1) = — P (é) L) = —a*h (é) .

By Propositions 2.11.1and 2.11.2, I, = @7, (I") again is an extremal, but generally it
will be different from I'. If the extremals I" and I, are the same, i.e., if I'(r) = I, (¢)
for all # < 0, then the extremal is a fixed point under this transformation, and we say
that it is invariant under this action. Note that if I" is «7y-invariant, then it is also
invariant under the action of any odd power o***! for all k € Z. But there always
exists a smallest @ > 1, and this number will be called the generator.

Proposition 2.11.3. let I' = ((x,u),A) be an extremal for the Fuller problem
defined over the semi-infinite interval (—eoo,0] with switching times {t,}ncz and
suppose the control switches fromu = —1 to u = 41 for even indices. If the extremal
I is invariant under the combined action <y, of the reflection Z and the group 9,
with generator a,, i.e., if I'(t) = I, (t) forallt <0, then
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[14+28 Vv33-1
= — h = - ..
o =2 where ¢ 2

The switching points lie on the curves
Iy ={(x1,x) € R?: x; = Cx%, x, <0}

and
I ={(x;,x) eR?: x; = —{x3, x, >0},

and switchings are from X = f —gtoY = f 4 g at points on I, and fromY to X at
points on I_.

Proof. The invariance condition and the choice of ¢ as the generator imply that the
switching times #; follow a geometric progression, t;_; = ot;, i € Z. Starting at the
switching time ¢y and integrating the control # = +1 until the time #; = %’, using the
first integral /; |, we obtain that

xi(0) = 33(1) = x1(0) - 73(0) 2.60)
and thus
x(n) | 1(n)—x0) 1 (X%(H) B 1) 3(t0)
xl(l‘o) 2 xl(l‘o) 2 x%(l()) X1 (t())'

It follows from the invariance of the trajectory under the action of ¢, and % that

X1 (l‘o) :)\C/?C (l‘o) = —Olle (%O) = —(szl (l‘l)

and
1

XQ(I()) :thx (l‘o) = —0x) (ao) = —0x) (l‘l). (2.61)

In particular, x;(¢1 ) and x;(#y) have opposite signs at consecutive switchings for both
i=1,2. Hence
t 1 t 1
Xl(l):——2 and 200 _ T (2.62)
X1 (l‘o) o X2 (l‘o) o

But then we get for the XY -junction at time # that

1 1/1 13 (1)
———l==(=-1
o? 2 \ o2 X1 (l‘())

or equivalently,
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Also, by Lemma 2.11.3, x, (1) is negative.

189

Similarly, if we integrate u = —1 between the switching times #; and #,, then we

get from /; _ that
1 1
x1(t2) + EX%(IZ) =x1(t1) + Ex%(H%

which then leads to

= and

Hence

=T

and Lemma 2.11.3 now implies that x,(#o) is positive. Setting

la?—1 1
=-———¢cfo0-=
¢ 2a2+1€< ’2)’

the formulas for the switching curves follow.

(2.63)

It remains to calculate the value for §. For the switching times 7y and #; we have

that
x(to) =Ex)®  and  xi(n) = —x(n)?

and thus, once more using the first integral I; , we get from Eq. (2.60) that

) = (- 3) 800 = (~¢ -3 ) o)

or equivalently, by Eq. (2.62),

(-)-(5-)

Similarly, using the first integral I, we also have that

Aa0) = 1))+ 33(0) = (i) —x(ha(o) + 330,

(2.64)

(2.65)
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It follows from the condition H (¢) = 0 that at every switching time #; we have that
1o
0= (ti) + A1 (1) x2 (1)

and thus

and thus, again by Eq. (2.62),
1., N _ (1, 1\ ;
(30-¢+3) = (o4 e+3) (2.66)

Solving Egs. (2.64) and (2.66) for o and equating the resulting expressions gives
the following relation on {:

(E-t+))’ (2 @67
(S |

This expressions simplifies to the equation

1 1

4 2
—2____—p
&+ 12 6 18 ’
which has a unique positive solution given by

V33-1
&= 24

The formula for o follows from Eq. (2.63). O

These calculations prove that if there exist extremal controlled trajectories that
are invariant under the combined action <7 defined by the composition of the group
actions Z and ¥, for some «, then the generator is given by

1420
o= ﬁ_4.1301599..., (2.68)
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and the trajectories are those corresponding to the synthesis defined in Theo-
rem 2.11.1. It is not difficult to reverse these computations and show that this
construction indeed gives rise to a family of .27, -invariant extremals.

Proposition 2.11.4. The synthesis .7 defined in Theorem 2.11.1 generates a family
of Ay -invariant extremals.

Proof. Let p > 0 and consider the point y(p) = ({p?, —p) on the switching curve
I'. We first calculate the total time 7), it takes for the controlled trajectory of the
synthesis % that starts at the point y(p) to reach the origin. If we take to = —T), as
initial time 7 for the trajectory, then the time of the next switching is #; = %, and

x(t1)
x2(to)

= —é. Since %, = 1 over [fy,#], we have that

xa(t1) —xa(to) =t1 —to = (é - 1) fo

and thus, dividing by —x, (),

<1_l> (to :1_)“2(“):”1,

o) (=p) x2 (1) o

which gives

1+ a4
T, = —ty = o = —7FPD.
T

Given y(p), define a control u, over the infinite interval (—ee,0) to have the
switching times {7, },cz given by fy = }Jj—g p < 0and t; = oty with the controls
alternating between +1 and —1 at the switching times and u,, = +1 on the interval
(to,11). Let x, = (x1,x2)7 be the corresponding trajectory. This is the controlled
trajectory generated by the synthesis % through the point y(p). Define a solution
Ap = (A1,42) of the corresponding adjoint equation by taking as initial conditions
at time 7 the values

1xi() 1

_ _ 1l _
Mi(to) = 2 5(0) 2€ p and  Ay(to) =0.

We claim that this defines an .o7-invariant extremal I}, = ((x,,u,),4,). This is fairly
obvious by construction. Clearly, the control u,, is /-invariant, and calculations
invoking the first integral /; analogous to those carried out in the proof of
Lemma 2.11.3 verify that the corresponding trajectory x,, is invariant as well. We
have taken care to choose the correct initial condition for the multiplier, and the
o/ -invariance of the adjoint vector can be verified using the other first integral I,.
Finally, the fact that the Hamiltonian is identically zero simply follows from the
fact that
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H (1) = 533 (10) + (10} (t0) + Aalo)u(i)
= —% (Cr?)’ - %sz (=p)+0=0

and %H (t) vanishes, since A is a solution to the corresponding adjoint equation.
Since every controlled trajectory generated by the synthesis .% is of this form, this
proves the proposition. O

It is easy to define a “patch” =y of controlled trajectories that generates this
synthesis. Simply take the value p = 1 and consider the point (,—1) € I';. The
first return of this trajectory to the curve I'} then is at

_ 1 1
Xy = )Cz(tz) = E)Cz(l()) = _E'

Define the function #y : [0,0) — (—e0,0] by

and let | .
1
Do = {(’vl’) i3 <p<lin(p) <tr<n(p)= %}

be the domain for a parametrization of the controlled trajectories of the Fuller
synthesis .7,

EO:DO_”RZ\{(OvO)}v (tvp)H(xl(tap)aXZ(tvp))'

Then the iterates =, under the action defined by <7,

2:D0 2 B00) () (1 (T 00,

for all n € Z cover the full state space, except for the origin.

We used invariance properties of the extremals to give a rather elegant and short
construction of an extremal synthesis. By itself, however, this does not guarantee
optimality. The optimality of this field will be verified in Sect.5.2.3. In fact, there
we shall give a rather elementary constructive argument that proves the optimality
of this synthesis based on the parameterization of the patch =.

It is also true that the extremals constructed here are the only extremals possible,
but this argument is quite a bit more technical and involved (for example, see
[34,35]). Coupled with a standard result that guarantees the existence of optimal
solutions for the Fuller problem, this indeed then proves the optimality of the
synthesis constructed. But here we are interested rather in illustrating the use of
invariance properties, a tremendously powerful tool in the analysis of nonlinear
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systems with symmetries. Our presentation here is based on ideas and arguments of
Kupka. While this problem with its solution given by chattering arcs was considered
an aberration for a long time, in his paper [143], Kupka has shown that this is
far from the truth and that chattering extremals indeed are a generic phenomenon,
i.e., are in some very precise mathematical sense “typical” in higher state-space
dimensions.

Another important point that is made with this problem is that optimal controls in
general need not be piecewise continuous for even the simplest-looking real analytic
system. It is easy to see that an arbitrary measurable control « can be the solution
of a time-optimal control problem for a system of the form x = f(x) 4+ ug(x) with
control set U = [—1, 1] and some sufficiently “weird” smooth vector fields f,g € C*.
But whether optimal controls can be that general if the vector fields are real analytic,
or whether they then do have some regularity properties, as might be expected, still
is an open problem for which only partial results exist. While the structure of these
optimal chattering controls still is rather simple, nevertheless these are not piecewise
continuous, but only Lebesgue measurable controls. And this is the correct class of
controls to consider in any optimal control problem, since it allows for a reasonable
theory of existence of optimal solutions (e.g., [33]). The main aim of this chapter
was to illustrate how the conditions of the maximum principle can be used to solve
problems, and for this the class of piecewise continuous controls is mostly adequate.
But in order to proceed with the deeper theory, even if we shall not concern ourselves
with existence theory, we shall need to allow for Lebesgue measurable controls. We
shall see next that even for linear systems this is indispensable.

2.12 Notes

Linear-quadratic optimal control is a classical design principle in automatic control
and is at the heart of many actual control schemes including autopilots on com-
mercial aircraft, process control in chemical engineering, and many other regulation
processes. There exist many excellent engineering textbooks that are fully devoted
to this subject and its extensions, both as deterministic systems and in a stochastic
(noisy) environment. For this reason, we included only the most fundamental results
on this topic. We highly recommend the classical text by Kwakernaak and Sivan
[144] to the interested reader. We used the textbook by Knowles [139] as a source
for the introductory one-dimensional examples that allow for explicit integrations
of the solutions.

Time-optimal control for linear systems also is a classical topic treated in depth
in many of the textbooks from the 1960s and 1970s such as those by Lee and Marcus
[147] and Athans and Falb [25]. We shall take up this topic in some more detail next.

The necessary conditions for optimality of singular controls presented in Sects.
2.8.4and 2.8.5 represent only the culmination of the classical research on this topic that
was carried outin the 1960s, e.g.,[31,104,107,121,122,131,132,169,173,178,201].
Wesshall prove theseresultsin Chap. 4, butusing very differentcomputational methods.
Also, the lecture notes by H.-W. Knobloch [137] provide an alternative approach to
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many of these conditions. A treatment of singular trajectories that proceeds beyond
these classical developments and takes into account conjugate points is given by
Bonnard and Kupka [48,49], and for an in-depth analysis of singular trajectories, we
highly recommend the monograph by Bonnard and Chyba [44]. Genericity properties
of singular trajectories are developed in the work by Chitour, Jean, and Trélat [71-73].

There do not exist many textbooks that provide the differential-geometric
framework that we employ in our treatment of optimal control. In fact, the early
texts that give some of these foundations are in engineering, such as those by Isidori
[120] and Nijmeijer and van der Schaft [176], but these texts focus on concepts from
automatic control such as regulation and disturbance decoupling and do not address
optimal control. The textbooks by Sontag [225] and Jurdjevic [126] address a more
mathematical audience. While focused on the foundations of nonlinear systems
theory (e.g., reachability and controllability, integral manifolds), these texts also
include an introduction to optimal control problems, however largely motivated by
linear-quadratic control problems.

The results that are included in the later sections of this chapter were for a
long time only scattered in the research literature or some edited volumes such
as [1,6] and [4]. It is only more recently that some specialized monographs have
been published that include these issues, such as those by Bonnard and Chyba [44],
Boscain and Piccoli [51], and Bressan and Piccoli [56]. Among these, the book by
Boscain and Piccoli is fully devoted to optimal control problems in the plane. We
refer the reader to this text and Sussmann’s original paper [236] for a complete
analysis of generic systems. In his papers, Sussmann carries this analysis further,
analyzing all cases of positive codimension for a nondegenerate dynamical system
with smooth vector fields f and g in C*(€Q) [236] and arbitrary real analytic vector
fields f and g in C®(Q) [237]. In [238], it is then shown how these local results
combine to provide a global solution to the problem in terms of a regular synthesis.
These results are developed further by Boscain and Piccoli, who, more generally,
analyze the time-optimal control problem and the structure of its optimal syntheses
for systems on two-dimensional manifolds [51]. Much less is known in dimension
three, and we shall pick up this topic in Chap. 7.

The Fuller problem is another classical optimal control problem. For quite
some time, the structure of its solution was considered an aberration until I.A.K.
Kupka showed that indeed this is a common phenomenon in higher dimensions
[143]. As in the Fuller problem, it arises naturally if controlled trajectories need
to follow or leave a locally optimal singular arc that is of order 2 and the singular
controls take values in the interior of the control set. While this, in principle, is
not a generic scenario, there are many interesting practical problems in which this
happens. For example, in mathematical models for tumor anti-angiogenic treatments
(see Sect.6.2), there exists an optimal singular arc of order 1 that on addition of
pharmacokinetic models for the drug action becomes of order 2, leading to optimal
chattering connections [165]. Similarly, these phenomena arise in the control of
autonomous underwater robots [74, 75]. The most comprehensive treatment of
chattering arcs so far is given in the monograph by Zelikin and Borisov [262].
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