
Chapter 2
Statistical Description of Interacting
Particle Systems

Abstract In a system which consists of many interacting particles, the statistical
mechanism of “mixing” in phase space works and makes description of the
system’s behavior on average more simple. A state and evolution of the system
is described by a statistically smoothed distribution function and the averaged
Liouville equation, i.e. the kinetic equation, with attached chain of the equations
for correlation functions.

2.1 The Averaging of Liouville’s Equation

2.1.1 Averaging Over Phase Space

As was shown in the first chapter, the exact state of a system consisting of N
interacting particles can be given by the exact distribution function (see defini-
tion (1.20)) in the six-dimensional (6D) phase space X D f r; vg. This function
is defined as the sum of ı-functions at N points of the phase space:

Of .r; v; t/ D
NX
iD1

ı .r � ri .t// ı .v � vi .t// : (2.1)

Instead of the equations of motion, we use Liouville’s equation to describe the
change of the system state (Sect. 1.1.5):

@ Of
@t

C v � rr
Of C

OF
m

� rv
Of D 0 : (2.2)

Once the exact initial state of all the particles is known, it can be represented by
N points in the phase spaceX (Fig. 2.1). The motion of these points is described by
Liouville’s equation or by the 6N equations of motion (1.25).
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Fig. 2.1 Particle trajectories
in the 6D phase space X

In fact we usually know only some average characteristics of the system’s
state, such as the temperature, density, etc. Moreover the behavior of each single
particle is in general of no interest. For this reason, instead of the exact distribution
function (2.1), let us introduce the distribution function averaged over a small
volume �X of phase space, i.e. over a small interval of coordinates �r and
velocities �v centered at the point (r; v), at a moment of time t :

h Of .r; v; t/ i
X

D 1

�X

Z

�X

Of .X; t/ dX D

D 1

�r�v

Z

�r�v

Of .r; v; t/ d 3r d 3v : (2.3)

Here d 3r D dx dy dz and d 3v D dvx dvy dvz, if use is made of Cartesian
coordinates.

To put the same in another way, the mean number of particles that present at a
moment of time t in an element of phase volume�X is

h Of .r; v; t/ iX ��X D
Z

�X

Of .r; v; t/ dX : (2.4)

The total number N of particles in the system is the integral over the whole phase
space X .

Obviously the distribution function averaged over phase volume differs from the
exact one as shown in Fig. 2.2.

2.1.2 Two Statistical Postulates

Let us average the same exact distribution function (2.1) over a small time
interval�t centered at a moment of time t :
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Fig. 2.2 The
one-dimensional analogy
of the distribution function
averaging over phase
space X : (a) the exact
distribution function (2.1),
(b) the averaged
function (2.3)

h Of .r; v; t/ i t D 1

�t

Z

�t

Of .r; v; t/ dt : (2.5)

Here �t is small in comparison with the characteristic time of the system’s
evolution:

�t � � ev : (2.6)

We assume that the following two statistical postulates concerning systems
containing a large number of particles are applicable to the system considered.

The first postulate:

The mean values h Of iX and h Of i t exist for sufficiently small �X and�t
and are independent of the averaging scales �X and �t .

Clearly the first postulate implies that the number of particles should be large.
For a small number of particles the mean value depends upon the averaging scale:
if, for instance, N D 1 then the exact distribution function (2.1) is simply a ı-
function, and the average over the variable X is h Of iX D 1=�X . For illustration,
the case .�X/1 > �X is shown in Fig. 2.3.

The second postulate is

h Of .X; t/ iX D h Of .X; t/ i t D f .X; t/ : (2.7)

In other words, the averaging of the distribution function over phase space is
equivalent to the averaging over time.
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Fig. 2.3 Averaging of the
exact distribution function Of
which is equal to a
ı-function. �X is a small
volume of the phase space X

While speaking of the small �X and �t , we assume that they are not too
small: �X must contain a reasonably large number of particles while �t must be
large in comparison with the duration of drastic changes of the exact distribution
function, such as the duration of the particle Coulomb collisions: �t 	 �c : Thus
we assume that

�c � �t � � ev (2.8)

and

h l i � �X � L : (2.9)

Here h l i � n�1=3 is a mean distance between the particles, n is a number of the
particles in a unit volume; L is a distance over which the macroscopic quantities
of the system change considerably. In this case the statistical mechanism of particle
“mixing” in phase space works, and

the averaging of the exact distribution function over the time �t is
equivalent to the averaging over the phase volume �X .

2.1.3 A Statistical Mechanism of Mixing in Phase Space

Let us understand qualitatively how the mixing mechanism works in phase
space. We start from the dynamical description of the N -particle system in 6N -
dimensional phase space in which

	 D f ri ; vi g ; i D 1; 2; : : : N; (2.10)

a point is determined (t D 0 in Fig. 2.4) by the initial conditions of all the particles.
The motion of this point, that is the dynamical evolution of the system, can be
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Fig. 2.4 The dynamical trajectory of a system of N interacting particles in the 6N -dimensional
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Fig. 2.5 The dynamical trajectories of two systems never cross each other

described by Liouville’s equation or equations of motion. The point moves along a
complicated dynamical trajectory because the interactions in a many-particle system
are extremely intricate and complicated.

The dynamical trajectory has a remarkable property which we shall illustrate by
the following example. Imagine a glass vessel containing a gas consisting of a large
number N of particles (e.g., 1023 molecules or charged particles). The state of this
gas at any moment of time is depicted by a single point in the phase space 	 .

Let us imagine another vessel which is identical to the first one, with one
exception, being that at any moment of time the gas state in the second vessel is
different from that in the first one. These states are depicted by two different points
in the space 	 . For example, at t D 0, they are points 1 and 2 in Fig. 2.5.

With the passage of time, the gas states in both vessels change, whereas the two
points in the space 	 draw two different dynamical trajectories (Fig. 2.5). These
trajectories do not intersect. If they had intersected at just one point (see point A
in Fig. 2.6a), then the state of the first gas, determined by 6N numbers (ri ; vi ),
would have coincided with the state of the second gas. These numbers could have
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Fig. 2.7 Two types of statistical averaging

been taken as the initial conditions which, in turn, would have uniquely determined
the motion. The two trajectories would have merged into one. For the same reason
the trajectory of a system cannot intersect itself (Fig. 2.6b). Thus we come to the
conclusion that

only one dynamical trajectory of a many particle system passes through
each point of the phase space 	 .

Since the trajectories differ in initial conditions, we can introduce an infinite
ensemble of systems (glass vessels) corresponding to the different initial conditions.
In a finite time the ensemble of dynamical trajectories will closely fill the phase
space 	 , without intersections. By averaging over the ensemble we can answer the
question of what the probability is that, at a moment of time t , the system will
be found in an element�	 D �ri �vi of the phase space 	 (see Fig. 2.7a):

dw D h Of .ri ; vi / i	 d	: (2.11)
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Here h Of .ri ; vi / i	 is a function of all the coordinates and velocities. It plays the
role of the probability distribution density in the phase space 	 and is called the
statistical distribution function or simply the distribution function. It is obtained
by way of statistical averaging over the ensemble and evidently corresponds to
definition (2.3).


 
 

It is rather obvious that the same probability density can be obtained in another
way—through the averaging over time. The dynamical trajectory of a system, given
a sufficient time �t , will closely cover the phase space 	 . There will be no self-
intersections; but since the trajectory is very intricate it will repeatedly pass through
the phase space element �	 (Fig. 2.7b).

Let .�t /	 be the time during which the system locates in�	 . For a sufficiently
large �t , which is formally restricted by the characteristic time of a relatively slow
evolution of the system as a whole, the ratio .�t /	 =�t tends to the limit

lim
�t!1

.�t /	
�t

D dw

d 	
D h Of .ri ; vi ; t/ i t : (2.12)

By virtue of the role of the probability density, it is clear that

the statistical averaging over the ensemble (2.11) is equivalent to the
averaging over time (2.12) as well as to the definition (2.5).

2.1.4 The Derivation of a General Kinetic Equation

Now we have everything what we need to average the exact Liouville equation (2.2).
Since the equation contains the derivatives with respect to time t and phase-space
coordinates (r; v), the procedure of averaging over the small interval �X �t is
defined as follows:

f .X; t/ D 1

�X �t

Z

�X

Z

�t

Of .X; t/ dX dt : (2.13)

Averaging the first term of the Liouville equation gives

1

�X �t

Z

�X

Z

�t

@ Of
@t
dX dt D 1

�t

Z

�t

@

@t

2
4 1

�X

Z

�X

Of dX
3
5dt D

D 1

�t

Z

�t

@

@t
f dt D @f

@t
: (2.14)
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In the last equality the use is made of the fact that, by virtue of the second postulate
of statistics (2.7), the averaging of the smooth averaged function does not change it.

Let us average the second term in (2.2):

1

�X �t

Z

�X

Z

�t

v˛
@ Of
@r˛

dX dt D 1

�X

Z

�X

v˛
@

@r˛

2
4 1

�t

Z

�t

Of dt
3
5dX D

D 1

�X

Z

�X

v˛
@

@r˛
f dX D v˛

@f

@r˛
: (2.15)

Here the index ˛ D 1; 2; 3.
In order to average the term containing the force OF, let us represent this exact

force as a sum of a mean force h F i and the force due to the difference of the real
force field from the mean (statistically smoothed) one:

OF D h F i C F 0: (2.16)

Substituting definition (2.16) in the third term in (2.2) and averaging this term,
we have

1

�X �t

Z

�X

Z

�t

OF˛
m

@ Of
@v˛

dX dt D

D hF˛ i
m

1

�X

Z

�X

@

@v˛

2
4 1

�t

Z

�t

Of dt
3
5 dXC 1

�X �t

Z

�X

Z

�t

F 0̨

m

@ Of
@v˛

dX dt D

D hF˛ i
m

@f

@v˛
C 1

�X �t

Z

�X

Z

�t

F 0̨

m

@ Of
@v˛

dX dt : (2.17)

Gathering all three terms together, we write the averaged Liouville equation in
the form

@f

@t
C v � rr f C h F i

m
� rv f D

 
@ Of
@t

!

c

;

(2.18)

where

 
@ Of
@t

!

c

D � 1

�X �t

Z

�X

Z

�t

F 0̨

m

@ Of
@v˛

dX dt :

(2.19)
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Equation (2.18) and its right-hand side (2.19) are called the kinetic equation and the
collisional integral (cf. definition (1.19)), respectively.

Therefore we have found the most general form of the kinetic equation with a
collisional integral, which is nice but cannot be directly used in plasma astrophysics,
without making some additional simplifying assumptions. The main assumption, the
binary character of collisions, will be taken into account in the next section, see also
Sect. 3.3.

2.2 A Collisional Integral and Correlation Functions

2.2.1 Binary Interactions

The statistical mechanism of mixing in phase space makes particles have no
individuality. However we have to distinguish different kinds of particles, for
example, electrons and protons, because their behaviors differ. Let Ofk .r; v; t/ be
the exact distribution function (2.1) of particles of the kind k, i.e.

Ofk .r; v; t/ D
NkX
iD1

ı .r � rki .t// ı .v � vki .t// ; (2.20)

the index i denoting the i th particle of kind k, Nk being the number of particles of
kind k. The Liouville equation (2.2) for the particles of kind k takes a view

@ Ofk
@t

C v � rr
Ofk C

OFk
mk

� rv
Ofk D 0 ; (2.21)

mk is the mass of a particle of kind k.
The force acting on a particle of kind k at a point .r; v/ of the phase space X at a

moment of time t , OFk;˛ .r; v; t/, is the sum of forces acting on this particle from all
other particles (see Fig. 2.8):

OFk;˛ .r; v; t/ D
X
l

NlX
iD1

OF .i/

kl;˛ .r; v; rli .t/; vli .t//: (2.22)

So the total force OFk;˛ .r; v; t/ depends upon the instant positions and velocities of
all the particles generally with the time delay taken into account (see Landau and
Lifshitz 1975, Chap. 8, Sect. 63).

With the help of the exact distribution function, we can rewrite formula (2.22) as
follows:

OFk;˛ .r; v; t/ D
X
l

Z

X1

Fkl;˛ .X;X1/ Ofl .X1; t/ dX1 : (2.23)
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Here we assume that an interaction law Fkl;˛ .X;X1/ is explicitly independent of
time t ;

Ofl .X; t/ D
NlX
iD1

ı .X � Xli .t//

is the exact distribution function of particles of kind l , the variable of integration is
designated as X1 D f r1; v1 g and dX1 D d 3r1 d 3v1.

Formula (2.23) takes into account that the forces considered are binary
ones, i.e. they can be represented as a sum of interactions between two
particles.

Making use of the representation (2.23), let us average the force term in the
Liouville equation (2.2), as this has been done in formula (2.17). We have

1

�X �t

Z

�X

Z

�t

1

mk

OFk;˛ .r; v; t/ @
Ofk

@v˛
dX dt D

D 1

�X �t

Z

�X

Z

�t

X
l

Z

X1

1

mk

Fkl;˛ .X;X1/ Ofl .X1; t/ @
@v˛

Ofk .X; t/ dX dX1 dt D

D 1

�X

Z

�X

X
l

Z

X1

1

mk

Fkl;˛ .X;X1/ �

� @

@v˛

2
41
�t

Z

�t

Ofk .X; t/ Ofl .X1; t/ dt
3
5dXdX1: (2.24)

Here we have taken into account that the exact distribution function Ofl .X1; t/ is
independent of the velocity v, which is a part of the variable X D f r; v g related to
the particles of the kind k.
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Formula (2.24) contains the pair products of the exact distribution
functions of different particle kinds, as is natural for the case of binary
interactions.

2.2.2 Binary Correlation

Let us represent the exact distribution function Ofk as

Ofk .X; t/ D fk .X; t/C O'k .X; t/ ; (2.25)

where fk .X; t/ is the statistically averaged distribution function, O'k .X; t/ is the
deviation of the exact distribution function from the averaged one. In general the
deviation is not small, of course. It is obvious that, according to definition (2.25),

O'k .X; t/ D Ofk .X; t/ � fk .X; t/ I

hence

h O'k .X; t/ i D 0 : (2.26)

Let us consider the integrals of pair products, appearing in the averaged force
term (2.24). In view of definition (2.25), they can be rewritten as

1

�t

Z

�t

Ofk .X; t/ Ofl .X1; t/ dt D fk .X; t/ fl .X1; t/C fkl .X;X1; t/ ; (2.27)

where

fkl .X;X1; t/ D 1

�t

Z

�t

O'k .X; t/ O'l .X1; t/ dt : (2.28)

The function fkl is referred to as the correlation function or, more exactly, the binary
correlation function.

The physical meaning of the correlation function is clear from (2.27). The left-
hand side of (2.27) means the probability to find a particle of kind k at a point X
of the phase space at a moment of time t under condition that a particle of
kind l places at a point X1 at the same time. By definition this is a conditional
probability (e.g., Gnedenko 1965, Sects. 23 and 52). In the right-hand side of (2.27)
the distribution function fk .X; t/ characterizes the probability that a particle of
kind k stays at a point X at a moment of time t . The function fl .X1; t/ plays the
analogous role for the particles of kind l .
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If the particles of kind k did not interact with those of kind l , then
their distributions would be independent, i.e. probability densities would
simply multiply:

h Ofk .X; t/ Ofl .X1; t/ i D fk .X; t/ fl .X1; t/ : (2.29)

So in the right-hand side of (2.27) there should be

fkl .X;X1; t/ D 0 : (2.30)

In other words, there would be no correlation in the particle distribution.
We consider a system of interacting particles. With the proviso that the parameter

characterizing the binary interaction, namely Coulomb collision considered below,


 i � e2

h l i

�

mv2

2

�
; (2.31)

is small under conditions in a wide range, the correlation function must be relatively
small:

if the interaction is weak, the second term in the right-hand side of (2.27)
must be small in comparison with the first one.

We shall come back to the discussion of this property in Sect. 3.1. This fundamental
property allows us to construct a theory of plasma in many cases of astrophysical
interest.

2.2.3 The Collisional Integral and Binary Correlation

Now let us substitute (2.27) in formula (2.24) for the statistically averaged force
term in the kinetic equation:

1

�X �t

Z

�X

Z

�t

1

mk

OFk;˛ .X; t/ @
Ofk

@v˛
dX dt D

D 1

�X

Z

�X

X
l

Z

X1

1

mk

Fkl;˛ .X;X1/
@

@v˛
Œ fk .X; t/ fl .X1; t/ C

Cfkl .X;X1; t/ � dX dX1 D

since: (a) the averaging of smooth functions does not change them, (b) the function
fk .X; t/ does not depend of X1, and (c) the function fl .X1; t/ does not depend of
X , we can proceed as follows
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D 1

mk

�
@

@v˛
fk .X; t/

� 8<
:
X
l

Z

X1

Fkl;˛ .X;X1/ fl .X1; t/ dX1

9=
;C

C
X
l

Z

X1

1

mk

Fkl;˛ .X;X1/
@

@v˛
fkl .X;X1; t/ dX1 D

D 1

mk

Fk;˛ .X; t/
@fk .X; t/

@v˛
C

C
X
l

Z

X1

1

mk

Fkl;˛ .X;X1/
@fkl .X;X1; t/

@v˛
dX1 : (2.32)

Here we have taken into account the following definition of the averaged force

Fk;˛ .X; t/ D
X
l

Z

X1

Fkl;˛ .X;X1/ fl .X1; t/ dX1 : (2.33)

This definition follows from averaging the definition (2.23) of the exact force OFk and
coincides with the previous definition (2.17) of the mean (smoothed or averaged)
force, since

all the deviations of the real force OFk from the mean (smooth) force Fk
are taken care of in the deviations O'k and O'l of the real distribution
functions Ofk and Ofl from their mean values fk and fl .

Thus the collisional integral can be represented in the form

 
@ Ofk
@t

!

c

D �
X
l

Z

X1

1

mk

Fkl;˛ .X;X1/
@fkl .X;X1; t/

@v˛
dX1 : (2.34)

Moreover, if in the last term of (2.32) the binary interactions can be represented
by smooth functions of the type ekel .j rk � rl j/�2 with or without account of
the Debye-Hückel shielding (see Sects. 3.2.3 and 8.2.1), then formally the velocity
dependence may be neglected.

Let us recall an important particular case considered in Sect. 1.1. For the Lorentz
force (1.15) as well as for the gravitational one (1.43), the condition (1.8) is satisfied.
Let us require that in formula (2.34)

@

@v˛
Fkl;˛ .X;X1/ D 0 : (2.35)
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In fact this condition was tacitly assumed from the early beginning, from (2.2).
Anyway, in the case (2.35), we obtain from formula (2.34) the following expression

 
@ Ofk
@t

!

c

D � @

@v˛

X
l

Z

X1

1

mk

Fkl;˛ .X;X1/ fkl .X;X1; t/ dX1 : (2.36)

Hence

the collisional integral, at least, for the Coulomb and gravity forces can be
written in the divergent form in the velocity space v :

 
@ Ofk
@t

!

c

D � @

@v˛
Jk;˛ ;

(2.37)

where the flux of particles of kind k in the velocity space (cf. Fig. 1.3b) is

Jk;˛ .X; t/ D
X
l

Z

X1

1

mk

Fkl;˛ .X;X1/ fkl .X;X1; t/ dX1 : (2.38)

Therefore we arrive to conclusion that the averaged Liouville equation or the
kinetic equation for particles of kind k

@fk .X; t/

@t
C v˛

@fk .X; t/

@r˛
C Fk;˛ .X; t/

mk

@fk .X; t/

@v˛
D

D � @

@v˛

X
l

Z

X1

1

mk

Fkl;˛ .X;X1/ fkl .X;X1; t/ dX1 (2.39)

contains the unknown function fkl . Hence the kinetic equation (2.39) for distribution
function fk is not closed. We have to find the equation for the correlation function
fkl . This will be done in the next section.

2.3 Equations for Correlation Functions

To derive the equations for correlation functions (in the first place for the function of
pair correlations fkl ), it is not necessary to introduce any new postulates or develop
new formalisms. All the necessary equations and averaging procedures are at hand.

Looking at definition (2.28), we see that we need an equation which will
describe the deviation of distribution function from its mean value, i.e. the function
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O'k D Ofk � fk . In order to derive such equation, we simply have to subtract the
averaged representation (2.39) from the exact Liouville equation (2.2). The result is

@ O'k .X; t/
@t

C v˛
@ O'k .X; t/
@r˛

C
OFk;˛
mk

@ Ofk
@v˛

� Fk;˛

mk

@fk

@v˛
D

D @

@v˛

X
l

Z

X1

1

mk

Fkl;˛ .X;X1/ fkl .X;X1/ dX1 : (2.40)

Here

OFk;˛ .X; t/ D
X
l

Z

X1

Fkl;˛ .X;X1/ Ofl .X1; t/ dX1 (2.41)

is the exact force (2.23) acting on a particle of the kind k at the point X of phase
space, and

Fk;˛ .X; t/ D
X
l

Z

X1

Fkl;˛ .X;X1/ fl .X1; t/ dX1 (2.42)

is the statistically averaged force (2.33).
Thus the difference between the exact force and the averaged one is

OFk;˛ � Fk;˛ D
X
l

Z

X1

Fkl;˛ .X;X1/ O'l .X1; t/ dX1 : (2.43)

We substitute it in (2.40) where, at first, the difference of force terms can be rewritten
as follows:

OFk;˛
mk

@ Ofk
@v˛

� Fk;˛

mk

@fk

@v˛
D

OFk;˛
mk

@

@v˛
.fk C O'k/ � Fk;˛

mk

@fk

@v˛
D

D
OFk;˛ � Fk;˛

mk

@fk

@v˛
C

OFk;˛
mk

@ O'k
@v˛

:

The result of the substitution is

OFk;˛
mk

@ Ofk
@v˛

� Fk;˛

mk

@fk

@v˛
D

D
X
l

Z

X1

1

mk

Fkl;˛ .X;X1/ O'l .X1; t/ dX1 @fk
@v˛

C Fk;˛

mk

@ O'k
@v˛

C

C
X
l

Z

X1

1

mk

Fkl;˛ .X;X1/ O'l .X1; t/ dX1 @ O'k
@v˛

: (2.44)
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On substituting (2.44) in (2.40) we have the equation for the deviation O'k of the
exact distribution function Ofk from its mean value fk :

@ O'k .X; t/
@t

C v˛
@ O'k .X; t/

@r˛
C � � � D 0 : (2.45)

Considering that we have to derive the equation for the pair correlation function

fkl .X1;X2; t/ D h O'k .X1; t/ O'l .X2; t/ i ;
let us take two equations:

one for O'k .X1; t/
@ O'k .X1; t/

@t
C v 1;˛

@ O'k .X1; t/
@ r1;˛

C Fk;˛

mk

@ O'k .X1; t/
@ v 1;˛

C � � � D 0 (2.46)

and another for O'l .X2; t/
@ O'l .X2; t/

@t
C v 2;˛

@ O'l .X2; t/
@ r2;˛

C Fl;˛

ml

@ O'l .X2; t/
@ v 2;˛

C � � � D 0 : (2.47)

Now we add the equations resulting from (2.46) multiplied by O'l and (2.47)
multiplied by O'k. We obtain

O'l @ O'k
@t

C O'k @ O'l
@t

C v 1;˛
@ O'k
@ r1;˛

O'l C v 2;˛
@ O'l
@ r2;˛

O'k C � � � D 0

or
@ . O'k O'l/
@t

C v 1;˛
@ . O'k O'l/
@ r1;˛

C v 2;˛
@ . O'k O'l/
@ r2;˛

C � � � D 0 : (2.48)

On averaging (2.48) we finally have the equation for the pair correlation function
in the following form:

@fkl .X1;X2; t/

@t
C v 1;˛

@fkl .X1;X2; t/

@ r1;˛
C v 2;˛

@fkl .X1;X2; t/

@ r2;˛
C

C Fk;˛ .X1; t/

mk

@fkl .X1;X2; t/

@ v 1;˛
C Fl;˛ .X2; t/

ml

@fkl .X1;X2; t/

@ v 2;˛
C

C @fk .X1; t/

@ v 1;˛

X
n

Z

X3

1

mk

Fkn;˛ .X1;X3/ fnl .X3;X2; t/ dX3 C

C @fl .X2; t/

@ v 2;˛

X
n

Z

X3

1

ml

F ln;˛ .X2;X3/ fnk .X3;X1; t/ dX3 D
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D � @

@ v 1;˛

X
n

Z

X3

1

mk

Fkn;˛ .X1;X3/ fkln .X1;X2;X3; t/ dX3 �

� @

@ v 2;˛

X
n

Z

X3

1

ml

F ln;˛ .X2;X3/ fkln .X1;X2;X3; t/ dX3 : (2.49)

Here

fkln .X1;X2;X3; t/ D 1

�t

Z

�t

O'k .X1; t/ O'l .X2; t/ O'n .X3; t/ dt (2.50)

is the function of triple correlations (see also Exercise 2.51).
Thus (2.49) for the pair correlation function contains the unknown function of

triple correlations. In general,

the chain of equations for correlation functions can be shown to be
unclosed: the equation for the correlation function of sth order contains
the function of the order .s C 1/.

2.4 Practice: Exercises and Answers

Exercise 2.1 (Sect. 2.3). By analogy with formula (2.27), show that

h Ofk .X1; t/ Ofl .X2; t/ Ofn .X3; t/ i D
D fk .X1; t/ fl .X2; t/ fn .X3; t/C

C fk .X1; t/ fln .X2;X3; t/ C fl .X2; t/ fkn .X1;X3; t/C
C fn .X3; t/ fkl .X1;X2; t/ C fkln .X1;X2;X3; t/ : (2.51)

Exercise 2.2. Discuss a similarity and difference between the kinetic theory
presented in this chapter and the famous BBGKY hierarchy theory developed by
Bogoliubov (1946), Born and Green (1949), Kirkwood (1946), and Yvon (1935).

Hint. Show that essential to both derivations is the weak-coupling assumption,
according to which

grazing encounters, involving small fractional energy and momentum
exchange between colliding particles, dominate the evolution of the
velocity distribution function.
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The weak-coupling assumption provides justification of the widely appreciated
practice (see Chap. 3) which leads to a very significant simplification of the original
collisional integral; for more detail see Klimontovich (1975, 1986).
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