
Chapter 2

Properties of Complex Numbers of a Real

Argument and Real Functions of a

Complex Argument

Important results can be obtained if we apply simple complex-value models in

economic modeling – complex functions of a real argument and real functions of a

complex argument. This chapter focuses on the properties of these models and the

possibility of using them in economic practice.

Complex models of a real argument represent the dependence of a complex

variable on a real argument. This dependence can be obtained only if one uses a

function that transforms real variables into complex ones. The Laplace transform is

a well-known transformation method; however, this chapter focuses on other

methods widely applied in economics. Real models of complex argument solve

another problem – the transformation of a complex variable into a real one. The

properties of the simplest models of this type are considered in this chapter with

respect to economic modeling.

2.1 General Problem of Conformal Mapping

in Complex-Valued Economics

Before using a tool of the theory of functions of a complex variable (TFCV) in

economics it is necessary to study the properties of this tool [1]. One of the methods

for understanding these properties is provided by conformal mapping of points from

one complex plane to another. With reference to various cases of the TFCV,

conformal mapping provides problems of varying degrees of complexity. We will

consider the simplest cases since an understanding of conformal mappings of

elementary complex-valued functions will allow researchers to choose the proper

complex-valued function for modeling.

Thus, we can say that conformal mapping is a convenient graphical method for

understanding how, by means of a given function, one complex variable in a

complex plane of an argument is mapped to another complex variable modeling

the value of the variable of the complex result.
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Since we work in the sphere of complex numbers, any real number may be

represented as a complex number with zero imaginary part. Then we obtain three

types of functions to be used in economic modeling.

The first type represents the relationship between a complex variable and a real

argument:

yr þ iyi ¼ Fðxr þ i0Þ ¼ f ðxrÞ þ if ðxrÞ: (2.1)

It is a complex function of a real variable.

The second type comes up when a complex argument is associated with a real

result:

yr þ i0 ¼ Fðxr þ ixiÞ ¼ frðxr; xiÞ þ ifiðxr; xiÞ ,
yr ¼ frðxr; xiÞ;
fiðxr; xiÞ ¼ 0:

(
(2.2)

It is a function of a complex argument.

The third type is the relationship between a complex variable and a complex

result:

yr þ iyi ¼ Fðxr þ ixiÞ ¼ frðxr; xiÞ þ ifiðxr; xiÞ: (2.3)

It is a complex function (a function with complex values).

The TFCV considers mainly conformal mappings of the third type. However, in

economics we can use all three as models of a complex-valued economy. This is

why it is essential to examine in depth the properties of all three types of functions.

This chapter will focus on the properties of the first two types.

2.2 Complex Functions of a Real Argument

The complex functions of a real argument represent a certain “mapping” of a set of

real numbers on a numerical axis to the plane of complex variables:

yr þ iyi ¼ Fðxþ i0Þ ¼ f ðxÞ þ if ðxÞ: (2.4)

This function transforms real variables and the respective functions to complex

variables and the respective functions.

Situations where one variable influences two others are quite frequent in eco-

nomics. For example, in marketing, consumers are grouped in particular categories

– segments where the basic indicator is a similar reaction of all consumers of this

segment to a product and its marketing support. This means that consumers with

similar levels of income (if we categorize by income) will react similarly to a given

price and buy the same quantity of the product at that price. This in turn means that
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the price yr and the consumption volume yi depend on the level of income x. With

this knowledge, one can look at the reaction to goods by consumers from various

segments as being subject to an increase in income of each segment and model this

reaction by a function of a real argument (2.4).

The variety of possible functions of a real argument that may be put forth to

model the aforementioned economic processes is limited only by the imagination of

the researcher creating the model. This is why in this section we deal only with the

simplest functions and their properties.

A linear model of a real argument,

yr þ iyi ¼ ða0 þ ia1Þ þ ðb0 þ ib1Þðxþ i0Þ ¼ ða0 þ b0xÞ þ iða1 þ b1xÞ; (2.5)

is of little interest because any change in the argument entails a directly propor-

tional change in the real and imaginary parts of the complex result. This means that

for any change in the real argument – linear or nonlinear – we have a line in a

complex plane whose slope and position thereon is completely determined by the

values of a complex proportionality coefficient.

Nonlinear transformations of a real variable to a complex plane are of practical

interest. The first of these methods is the complex involution of a real argument:

yr þ iyi ¼ ða0 þ ia1Þxðb0þib1Þ: (2.6)

The proportionality coefficient that can be placed before the argument that is

subject to involution can be not only complex, but also real or imaginary. Let us

represent the complex function of a real argument in exponential form, then (2.6)

will be written as

yr þ iyi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 þ a21

q
xb0e

iðarctga1a0þb1 ln xÞ: (2.7)

To simplify the notation of the complex proportionality coefficient, let us write it

as A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 þ a21

p
and the polar angle as a ¼ arctg a1

a0
:

The equality of the real and imaginary parts of this equation may be represented

as the following system:

yr ¼ Axb0 cosðaþ b1 ln xÞ;
yi ¼ Axb0 sinðaþ b1 ln xÞ:

(
(2.8)

It is clear that both the real and imaginary parts of this complex real variable

function change with an increase in the argument according to the cosine (real part)

and sine (imaginary part) law. Taking into account the fact that the real argument in

these trigonometric functions is not direct but a logarithm, with a uniform increase in

the real argument, periods of oscillation of both the real and imaginary parts of the

function under consideration will increase. A logarithm limits the function domain;

2.2 Complex Functions of a Real Argument 29



since a logarithm of zero does not exist, the zero point is not included in the function

domain.

If we consider the result (2.7) in the complex plane, the points of this function

will be located as follows. The module of this function

r ¼ Axb0 (2.9)

will increase with an increase in the argument x > 0 for b0 > 0 and decrease for

b0 < 0, and the polar angle will increase,

’ ¼ aþ b1 ln x; (2.10)

if b1 > 0 and decrease (move in a clockwise direction) if b1 < 0.

Hence, it is easy to see that in the complex plane function (2.6) is mapped subject

to the values of the complex exponent in the form of a convergent or divergent

spiral.

Let us consider a special case of function (2.6), where time t acts as the

argument:

yr þ iyi ¼ ða0 þ ia1Þtðb0þib1Þ: (2.11)

This function represents a complex trend and may be used in practice in certain

economic situations.

As follows from the aforementioned properties of the function under consider-

ation, the character of a complex trend will be fully determined by its coefficients.

Here are some interesting types of such trends.

Thus, if we use the trend

yrt þ iyit ¼ tð�0;5þi10Þ; (2.12)

then each of the components of the complex-valued trend will look like Figs. 2.1

and 2.2.

The same form of the trend but with other coefficients

yrt þ iyit ¼ tð0;25þi0;35Þ (2.13)

models completely different dynamics (Figs. 2.3 and 2.4).

Trends like those shown in Figs. 2.3. and 2.4 are quite frequent in the domain of

real variables; however, models describing the dynamics of trends like 2.1 and 2.2

are quite rare in studies on socioeconomic processes, except for stock markets.

The next model of a real argument may be a complex exponential function of the

real argument. It may be presented as follows:

yr þ iyi ¼ ða0 þ ia1Þeðb0þib1Þx: (2.14)
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The base of an exponential function may also be different, for example, a

complex number, but we will not consider these variants.

In the exponential form function (2.14) may look like this:

yr þ iyi ¼ Aeb0xeiðaþb1xÞ: (2.15)

As we see, the module of this function varies according to the exponential law

and variations in the polar angle are directly proportional to variations in the

argument. Since the complex coefficient of an exponent can take various values,

a modeled function can describe different variants of the dynamic whose details

differ from function (2.7), but, similarly to that function, its mapping to the complex

plane is spiral.

If we consider the real and imaginary parts of this complex function separately,

we will have a system of equations:

yr ¼ Aeb0x cosðaþ b1xÞ;
yi ¼ Aeb0x sinðaþ b1xÞ:

(
(2.16)

Now the differences between a complex exponential function of a real argument and

a complex power function of a real argument are evident. The real and imaginary parts

of an exponential function vary according to the cosine and sine laws with a constant

period of oscillations, the oscillation range varying with the change in the argument. If

b0 > 0, then the oscillation range increaseswith the growth of the argument; if b0 < 0,

then the oscillation range decreases.

A complex trend model is a simple variant of this model.

For example, for low positive values of coefficients of a complex exponent like

yrt þ iyit ¼ eð0;15þi0;05Þt (2.17)
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each of the components is described for t ¼ 1,2,. . .22 with an increasing area

(Figs. 2.5 and 2.6).

For other coefficients a considerably more complex cyclical dynamics can be

modeled, for example, if the model has the form

yrt þ iyit ¼ eð0;05þi60Þt (2.18)

then the dynamics of the real and imaginary constituents of the complex-valued

trend takes the form shown in Figs. 2.7 and 2.8.

It is seen from these figures that the function models the oscillation process with

increasing amplitude at a constant oscillation frequency.

We could continue looking at similar elementary complex functions of real

arguments, but this goes beyond the problems covered by our study. Thus, we

will consider several special nonstandard functions that are subspecies of those

mentioned previously.

First is an exponential-power function with an imaginary exponent:

yr þ iyi ¼ xix: (2.19)
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Let us present this function in exponential form:

yr þ iyi ¼ eix ln x: (2.20)

This helps us to determine a change in the real and imaginary parts with the

growth of the argument:

yr ¼ cosðx ln xÞ;
yi ¼ sinððx ln xÞ:

(
(2.21)

They change according to the cosine and sine laws with an increasing oscillation

period. A logarithm limits the function domain; since a logarithm of zero does not

exist, the zero point is not included in the function domain.

Since the module of this function is equal to one, in a complex plane the function

represents a unit circumference.

An exponential-power function with a complex exponent is an expected devel-

opment of this function:
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yr þ iyi ¼ xðxþixÞ ¼ xð1þiÞx: (2.22)

In this case, the right-hand side of the equality is easily represented in exponen-

tial form:

yr þ iyi ¼ xxeix ln x: (2.23)

This model has a domain in the positive part of real numbers since a logarithm of

a negative number, as well as a logarithm of zero, does not exist.

Let us present the real and imaginary parts of this complex function separately:

yr ¼ xx cosðx ln xÞ;
yi ¼ xx sinðx ln xÞ:

(
(2.24)

The module of this complex function increases sharply with an increase in the

argument; this is why the real and imaginary parts of the function represent an

oscillatory function with increasing oscillation period and sharply growing oscilla-

tion range. In a complex plane this function is shown as a sharply diverging spiral.

This feature gives the function little applicability in economic modeling, though the

initial part of the function could be of interest. The module of a function in the

positive neighborhood of the zero point is close to one (any number to the zero

power is equal to one); however, with an increase in the argument it will first

decrease and then increase. The module of the complex function reaches its

minimum value at the point where the first derivative is equal to zero:

dr

dx
¼ ðxxÞ0 ¼ 0

After solving this equation and using the Leibniz-Bernoulli formula we have

r0 ¼ xxð1þ ln xÞ ¼ 0:

Since |x| > 0, the module of the complex function reaches its minimum value at

the point x ¼ e�1
.

The dynamics of the polar angle u with changes in the argument within the

interval [0;1) is complicated since it is determined by the following equality:

y ¼ x ln x:

The first derivative of this relationship with respect to the argument will have the

following form:

dy
dx

¼ ðxÞ0 ln xþ xðln xÞ0 ¼ ln xþ 1;
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which means that the polar angle reaches its minimum value at the same point as the

module of the complex point x ¼ e�1
.

Thus, for the argument x¼e�1 the complex function under consideration reaches

its minimum values of both the module and polar angle. In the complex plane this

will be shown with an increase in the argument as follows. The curve starts its

movement in the clockwise direction from the neighborhood of a point with the

coordinates xr ¼ 1, xi ¼ 0 until it reaches the point where both the module and the

argument take their minimum values. The module then is equal to

rmin ¼ xx ¼ ðe�1Þe
�1

¼
�
1

e

�1
e

and the polar angle to

ymin ¼ x ln x ¼ � 1

e
:

Then, with growth of the xmodule of the complex function, its polar angle starts

growing, too. In the complex plane this growth is revealed in movement along the

same line but in a counterclockwise direction.

Then the function module starts growing sharply, which leads to an increase in

the values of the real and imaginary parts of the function under consideration. The

separate dynamics of the real and imaginary parts of this complex function at low

values of the real argument x ¼ [0;2) are of more interest. This dynamics is given in

Fig. 2.9.

It is possible to narrow the spiral span and increase or reduce the rotation

frequency by involution of the complex proportionality coefficient, which is differ-

ent from the complex unit:
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yr þ iyi ¼ xðb0þib1Þx: (2.25)

For different values of the real and imaginary parts of this coefficient, for the

function under consideration there one obtains a great variety of spirals in the

complex plane, as well as various types of dynamics of the real and imaginary parts

of the complex function (Fig. 2.10).

We can continue the logic of the real argument transformation to the complex

plane by suggesting a complex exponential-power function with a complex base:

yr þ iyi ¼ ðxþ ixÞx ¼ ðxð1þ iÞÞx: (2.26)

Its exponential form will look like this:

yr þ iyi ¼ ð
ffiffiffi
2

p
xÞxeip4x: (2.27)

Then for the real and imaginary parts of this complex function we have

yr ¼ ð
ffiffiffi
2

p
xÞx cos

�
p
4
x

�
;

yi ¼ ð
ffiffiffi
2

p
xÞx sin

�
p
4
x

�
:

8>>><
>>>:

The zero point of the real argument is included in the function domain. In

general this function looks like a spiral; however, at low values its behavior is

complicated as its polar angle increases with the growth of the real argument and its

module first decreases, reaches its minimum, and starts increasing again.

The first derivative of the module is
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r0 ¼ ð
ffiffiffi
2

p
xÞx

�
xffiffiffi
2

p
x
þ lnð

ffiffiffi
2

p
xÞ
�
:

If we set it equal to zero we obtain a point where the module takes minimum

values:

x ¼ e
� 1ffiffi

2
pffiffiffi
2

p ¼ 0:348652215

Taking into account these specifics, for initial values of the real argument the

complex function will have nonlinear dynamics (Fig. 2.11).

The last elementary function of a real argument is a complex exponential-power

function with a complex base and complex exponent:

yr þ iyi ¼ ðxþ ixÞðxþixÞ ¼ ðxð1þ iÞÞð1þiÞx: (2.28)

In exponential form it looks like this:

yr þ iyi ¼ ð
ffiffiffi
2

p
xÞð1þiÞx

ei
p
4
ð1þiÞx ¼ ½ð

ffiffiffi
2

p
xÞxe�p

4
x�½ð

ffiffiffi
2

p
xÞixeip4x�: (2.29)

The module of this complex function of a real argument will be

R ¼ ð
ffiffiffi
2

p
xÞxe�p

4
x: (2.30)

And its polar angle will have the following form:

y ¼ x

�
lnð

ffiffiffi
2

p
xÞ þ p

4

�
: (2.31)
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It is easy to see that the zero value of the real argument is not included in the

function domain.

The behavior of the module of this function is more complicated than that of the

previous ones. For an argument close to zero the module will be close to one, then it

gets lower up to a certain value, after which it starts increasing again, but not

sharply as in the case of the previous function.

To determine the point where the module of complex function (2.30) takes its

minimum value, we should find its first derivative:

R0 ¼ ½ð
ffiffiffi
2

p
xÞx�0e�p

4
x þ ð

ffiffiffi
2

p
xÞxðe�p

4
xÞ0 ¼ ð

ffiffiffi
2

p
xÞx

�
1ffiffiffi
2

p þ lnð
ffiffiffi
2

p
xÞ
�
e�

p
4
x � p

4
ð

ffiffiffi
2

p
xÞxe�p

4
x;

which should be equal to zero. Then, solving the equation we find the point at which

the module is at its minimum:

x ¼ e
p�2

3
2

4ffiffiffi
2

p :

The polar angle also varies nonlinearly – it decreases from values close but not

equal to zero (the points are in the fourth quadrant of the complex value) and then

grows. To determine the minimum value of the polar angle, let us find its first

derivative of the real argument:

dy
dx

¼ ðxÞ0
�
lnð

ffiffiffi
2

p
xÞ þ p

4

�
þ x

�
lnð

ffiffiffi
2

p
xÞ þ p

4

�0
¼ lnð

ffiffiffi
2

p
xÞ þ pþ 2

3
2

4
:

After setting it equal to zero and solving the equation we find the value of the real

argument for which the polar angle reaches its minimum value:

x ¼ e�
pþ2

3
2

4ffiffiffi
2

p

With an increase in the argument, the conformal mapping of the function under

consideration in a complex plane takes place in a spiral moving in a clockwise

direction, as shown in Fig. 2.12.

With the further growth of the argument, the function module increases sharply,

as does the polar angle, the function itself continuing its spiral movement in the

clockwise direction.

The elementary complex exponential-power function with complex base and

complex exponent (2.28) can be represented in a form more applicable to practical

purposes, namely:

yr þ iyi ¼ ðxða0 þ ia1ÞÞðb0þib1Þx: (2.32)
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Its exponential form will have the form

yr þ iyi ¼ ½ðAxÞb0xe�b1xa�½ðAxÞib1xeib0xa�: (2.33)

Hence, for the module of this complex function of a real argument

R ¼ ðAxÞb0xe�b1xa (2.34)

and for the polar angle

y ¼ x½b1 lnðAxÞ þ b0a�: (2.35)

The function domain lies in the area of positive arguments, which clearly follows

from (2.35).

Changing the values of function coefficients (2.32) we can obtain a great

diversity of conformal mappings and variations of the real and imaginary parts of

this function that have an oscillatory character.

As we see from (2.35), the polar angle of this complex function of a real

argument depends largely on the constant b1. The higher the values of this constant,
the more rapid is the increase in the polar angle with the increase of the argument,

and the faster is the turnover of the function values in the complex plane. This

coefficient also influences the change in the module of the function under consider-

ation, but for a low value of a1 and high value of a0 this influence decreases.
The coefficient b0 is responsible for the growth in the function module. At its

positive values the module increases sharply.

For various coefficient values the function behaves in a different way – it

converges to zero and diverges, changes values around some circumference,

changes chaotically, etc.
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It is interesting that the function can also model the process of reaction of some

system to an external influence with further stabilization at the previous level. This

function behaves in this way, for example, for the following coefficients:

yr þ iyi ¼ ðxð1� iÞÞð�1;5þi6Þx: (2.36)

Subsequent change in the real and imaginary parts of this function with the

growth of the argument within 0 < x � 10 subject to the argument is shown in

Figs. 2.13 and 2.14.

According to the results of this section we can draw the conclusion that complex

functions of a real argument model a great diversity of cyclical dynamics.

Numerous functions of complex arguments are not limited at all to only the

aforementioned types. However, it is not possible to consider all functions within
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the framework of this study; this would be at odds with the purpose of the present

study, where we state only the basics of the application of the TFCV to solutions of

economic problems.

The superposition of elementary complex functions provides vast possibilities

for the generation of new functions. A simple example is the case where the

complex power function of a real argument

zr þ izi ¼ ðc0 þ ic1Þxd0þid1

is added to by a complex function of a real argument (2.32)

zr þ izi ¼ ðc0 þ ic1Þxd0þid1 þ ðxða0 þ ia1ÞÞðb0þib1Þx: (2.37)

If, for example, for the second term of this function we use coefficients like those

proposed in (2.36), the resulting model will describe the dynamics of some nonlin-

ear process, which may chaotically deviate from its previous trajectory on a certain

segment under a certain external influence, but due to the stability of the object it

returns to its former trajectory. It is evident that instead of the power function, the

first term may be represented by other forms, for example, by a step function. With

the proper selection of parameters, with the assistance of such a superposition, we

model the transition from one stationary state to another.

The real argument itself can be presented in complex functions as a real function

of a real argument, for example, sinx or cosx.
It is evident that the variety of complex functions of a real argument is enor-

mous, and it is impossible to cover them in one section or chapter.

2.3 Functions of a Complex Argument: Linear Function

Since it is possible to transform a real argument to a complex plane using particular

functions, a reverse transformation procedure is also possible – from the field of

complex variables to the numerical axis of real variables. The relationship between

a complex argument and a real result will represent a function of a complex

argument:

y ¼ f ðxr þ ixiÞ ¼ frðxr; xiÞ þ ifiðxr; xiÞ: (2.38)

Since there is a complex number in the right-hand side of this equality and a real

one in the left-hand side, the function of the complex argument may be written as

follows:

yþ i0 ¼ frðxr; xiÞ þ ifiðxr; xiÞ: (2.39)
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Hence we have a system of two real equations:

y ¼ frðxr; xiÞ;
0 ¼ fiðxr; xiÞ:

(
(2.40)

The first equality of the system represents an equation of some surface in a three-

dimensional space, the second one a line in the argument’s plane. Since the problem

is considered in a three-dimensional coordinate system, for the second equation of

system (2.40) the equality is valid for any y value. This means a surface in three-

dimensional space that is not crossed by the y-axis, i.e., the y-axis is parallel to this
surface, the surface itself being perpendicular to the complex plane of the argument.

Since these two equations are combined in a system, they are simultaneously

satisfied. Geometrically this means that system (2.40) and the initial function (2.38)

represent an intersection of two planes in three-dimensional space – the first and

second equations of system (2.40). The perpendicular nature of the second equation

of system (2.40) means that the aggregate of the points lying on the surface of the

first equation of system (2.40.) must be projected onto the plane of the complex

argument as a line described by the second equation of system (2.41).

Let us sequentially consider the main functions of a complex argument and their

graphical interpretation in order of increasing complexity, bringing each of them to

the form (2.40).

The first such model to be used in economics is a linear function of a complex

argument with a zero free term:

y ¼ ðb0 þ ib1Þðxr þ ixiÞ: (2.41)

If we single out the real and imaginary parts of this function and group them, we

have

y ¼ b0xr � b1xi;

0 ¼ b1xr þ b0xi:

(
(2.42)

The first Eq. (2.42) is that of a plane in space passing through a zero point. The

slope angle and position of the plane in space is fully determined by the signs and

values of the coefficients of the complex proportionality coefficient.

The second equation of the system under consideration represents an equation of

a line in the plane of the argument:

xr ¼ � b0
b1

xi: (2.43)

This straight line originates from the zero point, and its location in the particular

quadrant of the complex plane is determined by the values of the real and imaginary
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parts of the complex proportionality coefficient. Since the second equation of

system (2.42) should be considered in space, it represents a plane parallel to the

y-axis and perpendicular to the complex plane.

The two crossing planes form a line, meaning that the linear function of complex

argument (2.41) represents a line in three-dimensional space (0y;0xr;0xi) passing
through the zero point.

If we now consider a linear function of a complex argument with a free complex

coefficient:

y ¼ ða0 þ ia1Þ þ ðb0 þ ib1Þðxr þ ixiÞ: (2.44)

then singling out the real and imaginary parts of this function and grouping them as

in the previous case, we have

y ¼ a0 þ b0xr � b1xi;

0 ¼ a1 þ b1xr þ b0xi:

(
(2.45)

It is clear that the nature of the function has not changed – both the first and the

second equations are planar equations – only the location of the planes in space has

changed, as has the location of the line resulting from the planes’ intersecting. It

follows from the first equation that the plane does not pass in space through the zero

point and crosses the y-axis at the point y ¼ a0. The second equation shows that the
line in space of the complex argument does not pass through the zero point either

since

xr ¼ � a1
b1

� b0
b1

xi: (2.46)

And on the axis of real values of the complex argument this line passes through

the point xr ¼ � a1
b1
:

Thus, the linear function of a complex argument with free complex coefficient

(2.44) represents the equation of a line in three-dimensional space “a complex plane

of an argument – an axis of a real number.” Or put another way, any line in three-

dimensional space may be described by a linear function of complex argument

(2.44).

It is appropriate to recall that in the Cartesian coordinate system the equation of a

line is also determined by the intersection of two planes and may be written as

follows:

a1yþ b1xr þ c1xi þ d1 ¼ 0;

a2yþ b2xr þ c2xi þ d2 ¼ 0:

(
(2.47)
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As follows from (2.47), a line in a Cartesian coordinate system is defined by

eight coefficients; the same line in the form of a linear function of a complex

argument, as follows from (2.44), is defined by only four coefficients and is

represented in the form of a linear equation. We can again see that to actions with

complex numbers correspond actions with real numbers, and functions of complex

variables often represent a more convenient form of notation than those of real

numbers.

It should be noted that in the Cartesian coordinate system the equation of a line

passing through two different points P1(y1,xr1,xi1) and P2(y2,xr2,xi2) will be written
as follows:

y� y1
y2 � y1

¼ xr � xr1
xr2 � xr1

¼ xi � xi1
xi2 � xi1

: (2.48)

With reference to the line described by the function of the complex argument

(2.44), the equation of the line for these two points will be written as follows:

y� y1
y2 � y1

¼ ðxr þ ixiÞ � ðxr1 þ ixi1Þ
ðxr2 þ ixi2Þ � ðxr1 þ ixi1Þ : (2.49)

The specifics of a linear function of a complex argument with reference to some

economic problems will be considered in other chapters of this book.

2.4 Power Function of a Complex Argument

with a Real Exponent

The linear function of a complex argument can be applied in many cases of

economic modeling since in accordance with the general scientific principle

“from the simple to the complex,” to study some complex object, first simple

models including linear ones are used, after which models become increasingly

complex as the object’s properties become clearer for a more adequate description

of complex processes.

The power function of a complex argument is more complex than a linear one,

its general form being

y ¼ ða0 þ ia1Þðxr þ ixiÞðb0þib1Þ: (2.50)

It is easy to see that if the exponent of the model is equal to one, it is turned into

an elementary linear model of the complex argument (2.41).

Let us consider function (2.50) sequentially in order of increasing complexity

depending on the exponent – real, imaginary, or complex.
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The first of the possible models determined by the equality (2.50) is one with a

real exponent:

y ¼ ða0 þ ia1Þðxr þ ixiÞb0 : (2.51)

To understand the properties of this function, let us represent the complex

proportionality coefficient and complex resource variable in exponential form.

Then we have

y ¼ aeiaðrei’Þb0 ¼ arb0eiðaþb0’Þ; (2.52)

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 þ a21

q
; a ¼ arctg

a1
a0

; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2x þ x2i

q
; ’ ¼ arctg

xi
xr
:

Hence we have a system of equations for the real and imaginary parts of the

function under consideration:

y ¼ arb0 cosðaþ b0’Þ;
0 ¼ arb0 sinðaþ b0’Þ:

(
(2.53)

It follows from the last equality that it holds for the following conditions:

sinðaþ b0’Þ ¼ 0 ! aþ b0’ ¼ �pk; (2.54)

where k is a whole number.

It should be noted that for values of the polar angle of the function determined by

these conditions, its cosine takes the following values:

cosðaþ b0’Þ ¼ 1; 8 k ¼ 0;�2;�4; . . .

cosðaþ b0’Þ ¼ �1; 8 k ¼ �1;�3;�5; . . .

(
(2.55)

If, for example, we consider the polar angle in the complex plane of the

argument from 0 to 2p, at б ¼ 0 and b0 ¼ 1, we have that y is positive for ’ ¼ 0

and ’ ¼ 2p and negative for ’ ¼ p. For any a and for b0 6¼ 0 (with exponent

b0 ¼ 0, the function is turned into the point y ¼ acosa ¼ a0) function (2.51),

subject to the values of coefficients a and b0 and polar angle ’, takes both positive

and negative values.

Since it follows from the second equation of system (2.53) that the relationship

between the real and imaginary parts of the complex argument in this function is a

constant value regardless of the values of y, in three-dimensional space this

equation is represented by a plane parallel to the axis of the real variable 0y and

perpendicular to the plane of the complex argument.
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The first Eq. (2.53) determines the change in the y depending on the change in

the two factors xr and xi, which may be represented in three-dimensional space in

the form of some surface.

The complex proportionality coefficient changes the surface scale and slopes,

which is why its influence on the result is negligible and we may consider this

coefficient to be equal to one. For this reason let us consider a simplified analog of

function (2.51):

y ¼ ðxr þ ixiÞb0 : (2.56)

Then the real and imaginary parts of this function will have the form

y ¼ rb0 cos b0’;

0 ¼ rb0 sin b0’:

(
(2.57)

Let us consider the influence on the real part of model (2.56) of exponent b0, i.e.,
equation of the first function of system (2.57), since the second equation describes

the linear relationship between the real and imaginary parts of the complex argu-

ment, as

0 ¼ rb0 sin b0’ ! sin b0’ ¼ pk ! ’ ¼ arctg
xi
xr

¼ const:

Here three variants of the function’s behavior are possible:

1. When the exponent is negative, b0 < 0;

2. When the exponent lies within the range: 0 < b0 < 1.;
3. When the exponent is higher than 1, b0 > 1.

Let us consider the first case where the exponent of the power function of

complex argument b0 is less than zero. For convenience, let us give the full form

of the first equation of the system:

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q� �b0

cos

�
b0arctg

xi
xr

�
: (2.58)

Since the second equation of system (2.57) states that the function under

consideration is projected in the complex plane of the argument to a line passing

through the zero point and having a constant value of the polar angle, let us consider

first what values the factor containing this constant polar angle can take. Cosine is a

periodic function, but the argument of this function does not change; it is always

constant due to the constant nature of the polar angle. The surface described in

three-dimensional space by the first equation of system (2.57) is nonlinear and its

character is determined by coefficient b0, since it characterizes the frequency of
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oscillations – the higher it is by module, the more uneven (“corrugated”) is the

surface.

Since subsequently we will not need the type of this surface, we will consider

only the nature of the lines in the space made by system (2.57).

Let us first consider the situation where the polar angle of the argument in the

complex plane is equal to zero. This is possible when xr > 0, xi ¼ 0. Since the

cosine of zero is one, (2.58) will look as follows:

y ¼ xb0r : (2.59)

In the (y,xr) plane, this function will represent a hyperbola that decreases from

plus infinity to zero with the growth of the module of the argument.

Now let us suppose that the polar angle of the complex argument is p/4, i.e., have
the following form:

y ¼ ðxr
ffiffiffi
2

p
Þb0 cos

�
b0

p
4

�
: (2.60)

The function is positive for �2 < b0 < 0, equal to zero for b0 ¼ �2, negative

for �6 < b0 < �2, etc. Absolute values of the function for this case also decrease

with the growth of the module of the complex argument, as previously, but in the

case of negative values of the function, it decreases from minus infinity to zero.

Let us consider another case where the real part of the complex argument is

equal to zero: xr ¼ 0, and its imaginary part is positive: xi > 0. The polar angle of

the complex argument is equal to p/2 and the function looks like this:

y ¼ xb0i cos b0
p
2

� �
: (2.61)

If the coefficient b0 lies within the range �1 < b0 < 0, then the cosine of

function (2.61) will be positive, which means the function has a positive character.

If the exponent is equal to b0 ¼ �1, then cosine becomes zero and the function

also becomes equal to zero. If the values of this coefficient are within the range

�3 < b0 < �1, then the cosine of the function becomes negative like the function

itself. Since the cosine is a periodical function, then with the subsequent increase of

the module of the values of the exponent b0, the function becomes both positive and

negative. With the growth in the values of the function argument (2.61), the

absolute values of the function also decrease with the hyperbola.

Continuing on, it is clear that the power function of a complex argument with

negative real exponent decreases in its absolute values according to the hyperbolic

law with an increase in the argument’s module. With this, the sign of the function is

determined by the result of multiplying the exponent by the polar angle. In some

cases the function is equal to zero.

In the second case, where the exponent of the function of the complex argument

lies within the range 0 < b0 < 1, the function behaves slightly differently:

y ¼ xb0r : (2.62)
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However, since the exponent is positive and not greater than one, with the

growth of the module, the function increases nonlinearly from zero to plus infinity

according to the exponential law with a negative second derivative.

If the polar angle of the complex argument is p/4, then when the variables are in
the first quadrant of the complex plane and xr ¼ xi, then function (2.58) takes the

following value:

y ¼ ðxr
ffiffiffi
2

p
Þb0 cos

�
b0

p
4

�
: (2.63)

The function will be positive for an exponent lying within 0 < b0 < 2 and equal

to zero at b0 ¼ 2. It will be negative for 2 < b0 < 6, etc. With the growth of the

module of the complex argument, absolute values will behave similarly to (2.62).

It makes no sense to examine this case further since it is clear that the function

will behave just like this – its absolute values will increase nonlinearly from zero,

and the function sign will be determined by the exponent of the function.

In the third case of the power function with a real exponent, the exponent b0 > 1,

function (2.58) will take negative or positive values, as well as values equal to zero,

depending on the result of multiplying the exponent by the polar angle since the

cosine of an angle may be both positive and negative and be equal to zero.

However, by its absolute value, with the growth of the complex argument, the

function will tend from zero to infinity according to the exponential law with

positive second derivative.

We can now go back to the model with a complex proportionality coefficient

under consideration (2.51):

y ¼ ða0 þ ia1Þðxr þ ixiÞb0

and pay more attention to the influence of this coefficient on the function behavior.

Values of this complex proportionality coefficient influence both the module of

the function and the polar angle.

For various values of the proportionality coefficient, the module of the function

of the complex argument equal to R ¼ arb0 is presented on various scales.

When the values of this proportionality coefficient vary, the polar angle also

turns in the plane of the complex argument:

’ ¼ �pk
b0

� a:

This is why variations in the proportionality coefficient move the power function

curve in various parts of space symmetrically to the y-axis and change the row curve

scale.
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2.5 Exponential Function of Complex Argument

with Imaginary Exponent

Having considered the case where the power function of complex argument (2.50)

is represented by a real exponent and the function represents a line of the power

function in three-dimensional space, let us move on to a more complicated case

where the real part of this function is equal to zero and the exponent is imaginary:

y ¼ ða0 þ ia1Þðxr þ ixiÞib1 : (2.64)

In this case another relationship besides the power one will be modeled, though

the complex argument is subject to involution.

Since the influence of the proportionality coefficient on the result in this case

will remain the same, let us consider it to be equal to one:

a0 þ ia1 ¼ 1:

Then the function in exponential form will look like this:

y ¼ ðrei’Þib1 ¼ e�’b1eib1 ln r; (2.65)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2x þ x2i

p
; ’ ¼ arctg xi

xr
:

From this follows a system of equations for the real and imaginary parts of the

function under consideration:

y ¼ e�b1arctg
xi
xr cos b1 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q� �
;

0 ¼ e�b1arctg
xi
xr sin b1 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q� �
:

8>>><
>>>:

(2.66)

The first equation of this system represents a description of some nonlinear

function in three-dimensional space, to be discussed later.

The second equation of this system represents a nonlinear surface perpendicular

to the plane of a complex argument, where all the lines lying in that plane are

parallel to the 0y-axis.
The intersection of these two surfaces is simply a graphical interpretation of

function (2.64) in the space.

Let us consider what the second equation looks like in the plane of a complex

argument:

0 ¼ e�b1arctg
xi
xr sin b1 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q� �
: (2.67)
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The first factor can be equal to zero only if its exponent is equal to infinity.

Variants when b1 is equal to infinity are not considered here because they are

meaningless. The arctangent is known to lie within a range of –p/2 to + p/2.
Therefore, the first factor (2.67) will never be equal to zero and the equality holds

when the second factor is equal to zero:

sin b1 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q� �
¼ 0: (2.68)

This equality holds when

b1 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
¼ pk: (2.69)

Hence,

x2r þ x2i ¼ e
2pkb1 : (2.70)

This means that the imaginary part (2.64) is equal to zero when the values of the

complex argument in the complex plane lie on a circumference with radius e
2pkb1 . In

particular, if k ¼ 0, then the equality holds when

x2r þ x2i ¼ 1; (2.71)

i.e., when the points in the complex plane lie on a one-unit circumference.

k may take any whole values, which means a family of circumferences in a

complex plane of arguments. In the three-dimensional space it is a cylindrical

surface perpendicular to the plane of the complex argument.

Now, let us consider the first equation of system (2.66) referring to the real part

of the function:

y ¼ e�b1arctg
xi
xr cos b1 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q� �
: (2.72)

This equation describes a nonlinear surface in space, but since the type of this

surface will not be used subsequently, we should consider what line on this surface

is cut off by the cylinder, since the function of complex argument (2.64) is an

intersection of two nonlinear surfaces one of which is a cylinder (2.70). Thus, let us

consider the behavior of (2.72) in the case where the variables xr and xi lie on some

circumference.

In this case the logarithm argument is a constant, which is why the nature of this

curve is completely determined by the first factor (2.72), which represents the

exponent.

Since a complex argument changes its values in a circumference, in the initial

point where the minimal component is equal to zero, the first factor is equal to one
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since any number to the zero power equals one. Then, for a polar angle equal to

zero, the function will take the following values:

yð0Þ ¼ cosðb1 ln rÞ: (2.73)

With the growth of the values of the imaginary component xi on the circumfer-

ence and the respective decrease in the real component xr (increasing polar angle),

the polar angle of the complex argument tends from zero to p/2. In the extreme

point, when the real component of the complex argument is equal to zero, the

function will have the following form:

y

�
p
2

�
¼ e�b1

p
2 cosðb1 ln rÞ: (2.74)

In the interval between these two points the function will vary exponentially

from points with coordinates determined by (2.73) to points determined by (2.74).

Further movement of the complex argument on the circumference corresponds

to a variation in the polar angle from p/2 to p. In the extreme point, when the polar

angle is equal to p, which means that the imaginary component is equal to zero and

the real constituent xr ¼ �r, the function will take the following values:

yðpÞ ¼ e�b1p cosðb1 ln rÞ: (2.75)

Continuing along the circumference and arriving at the point where the real part

is equal to zero and the imaginary xi ¼ �r, we obtain a function value equal to

y

�
3

2
p
�

¼ e�b1
3p
2 cosðb1 ln rÞ: (2.76)

Completing the movement along the circumference in the point where the

imaginary part is equal to zero and the real one is equal to the radius, the function

takes the following value:

yð2pÞ ¼ e�b12p cosðb1 ln rÞ: (2.77)

Now it is clear what the power function of a complex argument represents if the

exponent is an imaginary number – this exponent is located on the cylinder surface.

Completing the full circle equal to 2p we see that the function differs from its initial

point by e�b12p times.

If the coefficient b1 is positive, then the function tends to zero; if the exponent is
negative, then the function tends to infinity, making turn after turn on the cylinder

surface, if the complex argument makes rotational movements in the complex

plane. However, since in economics we do not observe such rotational movements,

meaning variations in the polar angle of the complex argument within a range

0 � ’ � 2p, function (2.64) should be considered an exponent on the cylinder

surface making one complete turn thereon.
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2.6 Power Function of Complex Argument

with Complex Exponent

When a complex argument of a power function is raised to a real power, in three-

dimensional space this represents a curve described by an exponential function and

lying in space in a plane perpendicular to the plane of the complex argument.

If the exponent of this function is an imaginary number, then it represents an

exponent varying with the increase in the polar angle of the complex variable and

lying in the space on the cylinder surface perpendicular to the complex argument

plane.

Now let us consider the nature of a power function of a complex argument where

the exponent is complex:

y ¼ ða0 þ ia1Þðxr þ ixiÞðb0þib1Þ: (2.78)

This function, taking into account previously introduced designations and the

assumption that the complex proportionality coefficient is equal to one, may be

written in exponential form as follows:

y ¼ rb0eib0’e�’b1eib1 ln r ¼ rb0e�’b1eiðb0’þb1 ln rÞ: (2.79)

The real and imaginary parts of this function may be written as a system of

equations:

y ¼ rb0e�b1’ cosðb0’þ b1 ln rÞ;
0 ¼ rb0e�b1’ sinðb0’þ b1 ln rÞ:

(
(2.80)

Again, we have equations of complex nonlinear surfaces in the space, the second

equation describing the surface perpendicular to the complex argument plane. As in

the previous cases, let us examine the properties of function (2.78) with the

condition that the imaginary part of the complex argument function is equal to zero.

The second equation will be equal to zero when the argument is equal to zero and

when the sine is equal to zero:

sinðb0’þ b1 ln rÞ ¼ 0: (2.81)

In the zero point the function itself is equal to zero, which is why (2.81) is of

interest and may be written as follows:

b0’þ b1r ¼ pk: (2.82)
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Here, as in the previous case, k is a whole number.

Let us take k ¼ 0. Then (2.82) can be written as follows:

r ¼ �b0
b1

’: (2.83)

It is evident that we have obtained Archimedes’ spiral, where with the change in

the polar angle within the range 0 � ’ � 2p the coefficient before the polar angle

should always be positive since the module of the complex argument cannot be

negative. This means that the signs of the real and imaginary parts of the complex

exponent should be different.

We do not consider rotational processes that practically do not exist in econom-

ics, which is why in the space under consideration the second equation of system

(2.80) indicates one turn of Archimedes’ spiral, that is, a nonlinear surface in

Archimedes’ spiral perpendicular to the complex argument plane. This surface

“cuts off” a nonlinear curve on the other surface represented by the first equation

of system (2.80).

We are not interested in the type of the surface described in the space by the first

equation of system (2.80), but in the line on this surface that is cut off by

Archimedes’ spiral.

To understand this, we substitute (2.83) into the first equation of system (2.80)

and get

y ¼
��b0

b1
’

�b0

e�b1’ cos b0’þ b1 ln

��b0
b1

’

�� �
: (2.84)

Since it was shown previously that b0 and b1 have different signs, let us first take
b0 > 0 and b1 > 0. For this case with a growing polar angle:

– The first factor ð�b0
b1

’Þb0 increases according to the power law;

– The second factor e�b1’ increases according to the exponential law;

– The third factor cosðb0’þ b1 lnð�b0
b1

’ÞÞ varies nonlinearly depending on the

modules of the values of coefficients b0 and b1. If the module of the complex

cosine argument increases with the growth of the polar angle, this factor

decreases up to zero, after which it becomes negative.

Thus, on the whole, (2.84) describes a function increasing up to a certain limit

with its subsequent decrease to zero and further to the negative range. This line is

located in the space on the nonlinear surface of Archimedes’ spiral.

If we now change signs of the coefficients to the opposite ones and set b0 < 0,

b1 > 0, then the picture will look as follows:

– The first factor ð�b0
b1

’Þb0 decreases according to the power law;

– The second factor e�b1’ decreases according to the exponential law;
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– The third factor cosðb0’þ b1 lnð�b0
b1

’ÞÞ behaves in the same way as in the first

case as the cosine is a symmetrical function.

On the whole, with such signs of the coefficients, the function decreases with the

growth of the argument and becomes negative as it travels along Archimedes’

spiral.

Various combinations of coefficients give various forms of a curve in space. If

the imaginary part of a complex exponent is equal to zero, then the function

represents points lying on a line of the exponential function in space in a plane

perpendicular to the plane of the complex argument. When the real part is close to

zero, then the curve represents an exponent lying on the cylinder surface. If the

exponent is equal to one, then we have a linear function of a complex argument.

To conclude our study of the properties of this function, it should be noted that

the coefficients of a function may be easily estimated by two points.

Let there be two points (xr1,xi1,y1) and (xr2,xi2,y2) available to an economist

disposaltwo , and she thinks that there is a relationship between these variables that

may be described by a model in the form of a power function of complex argument

(2.78). Substituting these values into the function and dividing the left- and right-

hand sides by each other we obtain the following equation:

y1
y2

¼ xr1 þ ixi1
xr2 þ ixi2

ðb0þib1Þ
: (2.85)

Here we can derive the exponent

b0 þ ib1 ¼
ln y1

y2

ln xr1þixi1
xr2þixi2

: (2.86)

Knowing this value we can easily find the value of the proportionality coefficient

(a0 + ia1).
Thus, for example, if an economist wants to build a model in the form of a power

function of a complex argument and she has two points at her disposal in three-

dimensional space – (2; 3; 5) and (2.5; 4.7; 15), then she can easily do this using

(2.85) and (2.86), and model (2.78) passing through these two points in three-

dimensional space will have the following form:

y ¼ ð�0; 014� i0; 082Þðxr þ ixiÞð2;648�i0;674Þ:

2.7 Exponential Function of a Complex Argument

It is clear from the aforementioned properties of the power function of a complex

argument that it can be used for modeling various complex nonlinear relationships

in three-dimensional space. But this model hardly covers the entire possible variety
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of functions of a complex argument. One of the simple nonlinear functions of a

complex argument that differ in their properties from the power function is the

exponential function

y ¼ ða0 þ ia1Þeðb0þib1ÞðxrþixiÞ: (2.87)

To study its properties let us first consider a situation where the proportionality

coefficient is represented as a real coefficient, then when it is the imaginary part, we

can consider the whole function (2.87).

The exponential function of a real argument with a real exponent coefficient will

look as follows:

y ¼ ða0 þ ia1Þeb0ðxrþixiÞ: (2.88)

In exponential form it will be written as follows:

y ¼ aeb0xr eiðaþb0xiÞ; (2.89)

where the following equalities hold for the real and imaginary parts:

y ¼ aeb0xr cosðaþ b0xiÞ;
0 ¼ aeb0xr sinðaþ b0xiÞ:

(
(2.90)

The imaginary part can be equal to zero in two cases –with a positive exponent

coefficient xr ! -1 and when

aþ b0xi ¼ pk: (2.91)

Situations where one or all of the factors tend to infinity do not exist in

economics, so we will concentrate on equality (2.91).

The last condition represents a combination of equations of a line in a complex

plane of the argument parallel to the axis of real values of the complex argument

since it follows from (2.91):

xi ¼ pk � a
b0

: (2.92)

In a simple case where k ¼ 0 there is a line

xi ¼ � a
b0

(2.93)

in the complex plane.
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Since we are looking at the problem of presenting a function in three-

dimensional space, (2.93) represents a plane perpendicular to the plane of a

complex argument and parallel to the axes of the real part of the complex argument

xr and function y.
The first Eq. (2.90) describes a nonlinear surface in three-dimensional space. Let

us consider it.

If the real part of a complex argument is a constant value xr ¼ d ¼ const, then
the function varies by the cosine law:

y ¼ aeb0d cosðaþ b0xiÞ: (2.94)

If the imaginary part of the complex argument is constant xi ¼ g ¼ const, then
the function varies according to the exponential law:

y ¼ aeb0xr cosðaþ b0gÞ: (2.95)

Since the last condition is a restriction (2.93) that follows from the fact that the

imaginary part of the function under consideration is equal to zero, then in three-

dimensional space, the exponential function of a complex argument with a real

exponent coefficient represents an exponent:

y ¼ aeb0xr cos aþ b0
pk � a
b0

� �
¼ aeb0xr : (2.96)

Let the exponential function of a real argument have an imaginary coefficient of

the exponent:

y ¼ ða0 þ ia1Þeib1ðxrþixiÞ: (2.97)

In exponential form this will look like

y ¼ ae�b1xieiðaþb1xrÞ; (2.98)

where for the real and imaginary parts of the function

y ¼ ae�b1xi cosðaþ b1xrÞ;
0 ¼ ae�b1xi sinðaþ b1xrÞ:

(
(2.99)

If the imaginary part of the function under consideration equals zero, then

aþ b1xr ¼ pk (2.100)
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or

xr ¼ pk � a
b1

: (2.101)

This means we have again obtained an equation of lines that, in a plane of a

complex argument, are parallel to the imaginary axis. We can limit ourselves to the

case where k ¼ 0. In the space under consideration this equation means a plane

perpendicular to the plane of a complex argument and passing through line (2.101).

This means that on a complex nonlinear surface described by the first equality

(2.99) there is a curve with a constant value of xr. It is clear from the first equation of

system (2.99) that this curve is described by the exponent

y ¼ Ce�b1xi ; C ¼ a cosðaþ b1xrÞ; xr ¼ const:

Now it is clear what will represent the full exponential function of a complex

argument. Let us present again the complex values of the model – the

proportionality coefficient and the complex argument – in exponential form.

Grouping the constituents of the module and the polar angle we get

y ¼ aeb0xr�b1xieiðaþb1xrþb0xiÞ: (2.102)

Let us represent this model as an equality system of real and imaginary parts:

y ¼ aeb0xr�b1xi cosðaþ b1xr þ b0xiÞ;
0 ¼ aeb0xr�b1xi sinðaþ b1xr þ b0xiÞ:

(
(2.103)

From the last equality we can easily get

xi ¼ 1

b0
ðpk � a� b1xrÞ: (2.104)

This equation describes a family of parallel lines in a complex plane of the

argument. In the simple case, where k ¼ 0, it is a line in the plane and surface

perpendicular to the complex plane of the argument in the space. Both the line and

the plane are defined in the whole range of the problem.

This plane cuts off some line on the surface defined by the first equation of

system (2.103):

y ¼ aeb0xr�b1xi cosðaþ b1xr þ b0xiÞ: (2.105)

Substituting (2.104) into this equation we get

y ¼ ae
b0xr�b1

b0
ðpk�a�b1xrÞ cosðaþ b1xr þ ðpk � a� b1xrÞÞ ¼ ae

b1
b0
ða�pkÞþb2

0
þb2

1
b0

xr :

(2.106)
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This means that we have an exponent in the space located in a plane perpendic-

ular to the complex plane of the argument.

2.8 Logarithmic Function of a Complex Argument

Let us now examine the properties of the logarithmic function of a complex

argument. The logarithm of a complex variable is known as a periodical function,

which is why when we study it we should specify what part of the function is being

studied. It was determined in the first chapter of this book that from the entire

combination of logarithmic values we will consider only the main values.

The logarithmic function of a complex argument may be presented in its general

form as follows:

y ¼ ða0 þ ia1Þ þ ðb0 þ ib1Þ lnðxr þ ixiÞ: (2.107)

If we apply the formula of a logarithm of a complex argument to the model under

consideration, we get

y ¼ ða0 þ ia1Þ þ ðb0 þ ib1Þ
�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
þ iarctg

xi
xr

�
: (2.108)

Let us consider the variant where the imaginary part of the complex

proportionality coefficient is equal to zero:

y ¼ ða0 þ ia1Þ þ b0

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
þ iarctg

xi
xr

�
: (2.109)

Opening the brackets and grouping the real and imaginary parts of this equation

we get

y ¼ a0 þ b0 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
þ i

�
a1 þ b0arctg

xi
xr

�
: (2.110)

Two equalities for the real and imaginary parts follow from the preceding

equation:

y ¼ a0 þ b0 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
;

0 ¼ a1 þ b0arctg
xi
xr
:

8><
>: (2.111)
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The second equation requires a constant polar angle in the plane of the complex

argument:

arctg
xi
xr

¼ � a1
b0

: (2.112)

This indicates an equation of the line passing through the neighborhood of the

zero point but not including it. The zero point does not exist for the first equation as

well since a logarithm of zero does not exist.

The first equation of system (2.111) describes a nonlinear surface in three-

dimensional space. We are interested in the location of the line on this surface

that satisfies condition (2.112). Thus, let us consider the equation

y ¼ a0 þ b0 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q

for xi ¼ dxr:
If we substitute this into the equation, we get

y ¼ a0 þ b0 ln xr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
: (2.113)

Therefore, the logarithmic function of a complex argument with a real

proportionality coefficient represents in three-dimensional space a logarithmic

function passing through the zero point and lying in a plane perpendicular to the

complex plane of the argument.

Now let us consider the second extreme version, when the real part of the

complex proportionality coefficient is equal to zero:

y ¼ ða0 þ ia1Þ þ ib1

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
þ iarctg

xi
xr

�
: (2.114)

Grouping the real and imaginary parts of this function we get the following

system:

y ¼ a0 � b1arctg
xi
xr
;

0 ¼ a1 þ b1 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

p
:

(
(2.115)

The fact that the imaginary part equals zero means that in the complex plane of

the argument the function is determined on a circumference since this equality can

easily be made as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
¼ e

�a1
b1 ¼ const ¼ d: (2.116)
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The zero point does not serve to define the function because a logarithm of zero

does not exist. In the space under consideration the second equation of system

(2.115) represents a cylinder surface. This cylinder surface cuts off a curve in the

plane of the first equation, which we are interested in.

Since the polar angle in the plane of a complex argument varies on a circle, on

the surface described by the first equation of system (2.115) a curve is defined that

represents an arctangent function lying on the surface of the cylinder perpendicular

to the complex plane of the argument.

The general logarithmic function of complex argument (2.107) represents a

complex superposition of these two functions. After opening the brackets in the

right-hand side of equality (2.107) and grouping the real and imaginary parts we get

y ¼ a0 þ b0 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
� b1arctg

xi
xr

þ i

�
a1 þ b1 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
þ b0arctg

xi
xr

�
:

(2.117)

This equality holds only when the real and imaginary parts are equal to each

other:

y ¼ a0 þ b0 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
� b1arctg

xi
xr

0 ¼ a1 þ b1 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
þ b0arctg

xi
xr

8>><
>>: : (2.118)

The second equation of the system describes a curve in the plane of the complex

argument that does not include the zero point:

0 ¼ a1 þ b1 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
þ b0arctg

xi
xr
: (2.119)

The approximate form of the function can be imagined from the location of a

function with these coefficients in the plane:

0 ¼ �3 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

q
þ 0; 2arctg

xi
xr
: (2.120)

This function is given in Fig. 2.15.

The first equation of system (2.118) represents a complex surface. Its general

form may look like this: in space there are a great number of lines like those shown

in Fig. 2.15 that are parallel to each other and increase on the S-axis or decrease
with the growth of the argument, depending on the function coefficient. This

surface intersects with another one perpendicular to that of the complex argument

and passing in the plane of the complex argument through the points determined by
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line (2.119). Intersection of these two planes gives a line in space that has the form

of the line in Fig. 2.15.

The functions of a complex argument studied here do not exhaust their full

range, but of those that can be used in economic practice, the previously mentioned

function are fundamental.

Reference

1. Kasana HS (2005) Complex variables: theory and applications. PHI Learning, New Delhi

-3

-2

-1

0

1

2

3

4

5

6

-20 -10 0 10 20 30

xr

xi

Fig. 2.15 Line (2.120) in plane of complex argument
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