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  Abstract   Chronic obstructive pulmonary disease (COPD) is defi ned as a preventable 
and treatable disease with signifi cant extrapulmonary effects. Many of the extra-
pulmonary effects of COPD are thought to be mediated by systemic infl ammation. 
Local infl ammation has always been appreciated as part of the COPD  disease 
 process; however, it is becoming clear that the infl ammatory response is also 
 systemic. There are multiple theories about the mechanisms driving the systemic 
infl ammation associated with COPD. However, there is no consensus on which 
theory is correct. The systemic infl ammation likely contributes to systemic mani-
festations of COPD, including cardiovascular disease, lung cancer, weight loss, 
osteoporosis and diabetes.  
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   Introduction 

 Chronic obstructive pulmonary disease (COPD) is defi ned as a preventable and 
treatable disease with signifi cant extrapulmonary effects that may contribute to dis-
ease severity in individual patients  [  1  ] . Many of the extrapulmonary effects of 
COPD are believed to be mediated by systemic infl ammation. Local infl ammation 
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of the airways and lung parenchyma has always been acknowledged as part of the 
COPD disease process; however, it is becoming clear that the infl ammatory response 
is systemic  [  2  ] . 

 Many studies demonstrate that there is an increase in infl ammatory cytokines not 
only in the lung, but systemically. There is an increase in tumor necrosis factor 
alpha (TNF- a )  [  3  ]  interleukin (IL)-6, and IL-8  [  4  ] . Infl ammatory markers such as 
C-reactive protein (CRP) are also elevated  [  5  ] . This chapter will review the origins, 
clinical consequences, pathogenesis, and the treatment of systemic infl ammation in 
COPD.  

   Origins of Systemic Infl ammation 

 There are multiple theories about the mechanisms driving the systemic infl amma-
tion associated with COPD. There is no consensus on which theory is correct, 
although it is likely that several mechanisms may contribute. 

 One proposed mechanism suggests that the infl ammatory process originates in 
the airways and lung parenchyma, then “spills over” into the systemic circulation 
 [  6  ] . One may then assume that the systemic infl ammation should directly correlate 
with pulmonary infl ammation. This, however, has not been demonstrated. 
Specifi cally, there is no consistent relationship between sputum neutrophil numbers 
and systemic neutrophil numbers or systemic biomarkers of infl ammation such as 
CRP  [  7,   8  ] . Likewise, pulmonary infl ammatory cytokine concentrations such as 
TNF- a  and IL-8 do not show a correlation with systemic concentrations  [  9,   10  ] . 

 Another proposed mechanism is that systemic infl ammation is caused by tobacco 
smoke. This is an attractive theory because tobacco smoke has been implicated as a 
cause of other systemic infl ammatory diseases such as atherosclerosis and coronary 
artery disease  [  11  ] . Indeed, in passive smoke exposure, there is increased systemic 
oxidative stress and peripheral vascular endothelial dysfunction  [  12  ] . However, 
multiple studies demonstrate that ex-smokers have evidence of persistent infl amma-
tion  [  9  ] . This implies that tobacco smoking may initiate infl ammation, but does not 
explain the sustained infl ammation seen in COPD. 

 It is also possible that the pathophysiologic changes that occur in the lung with 
COPD may lead to systemic infl ammation. Processes that have been implicated 
include hypoxia and hyperinfl ation. Hypoxia is a common problem in COPD. In 
patients with mild COPD who undergo hypoxic challenge, there is an increase in 
serum IL-6 levels  [  13  ] . There is also a correlation between serum TNF- a  levels and 
degree of hypoxemia in COPD patients  [  14  ] . Likewise, in animal experiments, 
hypoxia leads to increased TNF- a , macrophage infl ammatory protein (MIP)-1 b , 
and monocyte chemoattractant protein (MCP)-1 MrnA  [  15  ] . Hyperinfl ation is also 
a common fi nding in COPD that results from chronic airway obstruction. Dynamic 
hyperinfl ation can lead to increases in systemic TNF- a  and IL-8  [  16  ] , IL-6, and 
IL-1 b   [  17  ] . The presence of dynamic hyperinfl ation predicts a higher mortality for 
COPD patients  [  18  ] . 
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 It has been suggested that the increases in systemic infl ammation observed in 
conjunction with COPD are at least in part due to the normal aging process. COPD 
is a chronic disease, which progresses very slowly, and the majority of patients are 
older. Normal aging is associated with increases in low-grade systemic infl amma-
tion, including production of cytokines such as IL-6 and TNF- a   [  19  ] . There is also 
an increase in nitric oxide and reactive oxygen species  [  20  ] . Aging cannot account 
for all COPD-related systemic infl ammation, as most studies examining COPD 
include age-matched controls and the systemic infl ammation in COPD patients is 
still greater. 

 It has been suggested that COPD may trigger the production of systemic infl am-
matory mediators in other parts of the body such as skeletal muscle and the bone 
marrow. For instance, compared to healthy controls, patients with COPD have 
increases in systemic infl ammation, including TNF- a  production, after exercise 
 [  21  ] . It was initially thought that the source of this infl ammation might be the skel-
etal muscle itself  [  22  ] . However, in a well-controlled study, it was shown that the 
muscular TNF- a  in COPD subjects was actually less than that of control subjects 
 [  23  ] . Another possibility is that the bone marrow may be involved in the initiation 
of systemic infl ammation. This is an attractive theory because the bone marrow is 
the site of production of infl ammatory cells. Smoking or air pollution may indirectly 
stimulate the bone marrow, which results in an accelerated release of mature and 
immature cells  [  24  ] . 

 In summary, there are many theories regarding the origin of systemic infl amma-
tion in COPD. The true origin of systemic infl ammation is likely to be multifactorial 
and more research is necessary to identify the different contributory factors and 
their relative importance.  

   Consequences of Systemic Infl ammation 

 The systemic infl ammation associated with COPD can contribute to the develop-
ment of other disease states. The systemic manifestations of COPD are widespread 
and can affect nearly every system in the body. Disease states that are commonly 
related to the systemic infl ammation seen in COPD include: cardiovascular disease, 
lung cancer, weight loss, osteoporosis, and diabetes. 

   Cardiovascular Disease 

 Cardiovascular disease has long been associated with COPD. Smoking is a major 
risk factor for both diseases, so it is not surprising that many patients with COPD also 
have cardiovascular disease. In fact, the majority of patients with COPD die from 
cardiovascular disorders  [  25,   26  ] . Although COPD and cardiovascular disease share 
smoking as a risk factor, there is an increased risk of fatal myocardial infarction, 
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independent of smoking status, in COPD patients  [  27  ] . There is also an increased risk 
of cardiovascular disease in smokers who develop COPD than in smokers that do not 
develop COPD  [  27  ] . Likewise, those with more severe COPD are also more likely to 
have cardiovascular disease  [  28  ]  even when corrected for smoking. These studies 
suggest that it is not smoking alone that leads to the increased risk of cardiovascular 
disease. Importantly, having both COPD and cardiovascular disease increases mor-
tality and hospitalizations over either condition separately  [  29  ] . 

 The mechanisms for the synergistic interaction between COPD and cardiovascu-
lar disease are not well defi ned. It has been suggested that the chronic low-grade 
systemic infl ammation seen with both diseases may drive both processes.  

   Lung Cancer 

 Lung cancer is a common cause of death in patients with COPD. Patients with 
COPD are four times more likely to develop lung cancer than smokers who have not 
developed COPD  [  30  ] . Smoking cessation does not diminish the risk of developing 
lung cancer  [  31  ] . Even in individuals who have never smoked, there is an increased 
risk of lung cancer with decreasing lung function and COPD  [  32  ] . 

 The mechanism(s) of how COPD increases the risk for lung cancer is not well 
defi ned. However, there is emerging evidence that chronic infl ammation may play a 
signifi cant role in the pathogenesis of lung cancer as a tumor promoter. Infl ammatory 
mechanisms have been shown to induce a tumor-promoting effect in lung cancer in 
mice. In this model, tobacco smoke promotes lung tumorigenesis by triggering IKK b - 
and JNK1-dependent infl ammation  [  33  ] . There are also links between NF- k B and lung 
cancer, including resistance to chemotherapy and induction of pro-metastatic, pro-
angiogenic, and anti-apoptotic genes  [  34  ] . Likewise, epidermal growth factor, which 
promotes epithelial proliferation, is present in higher levels in COPD patients  [  35  ] .  

   Weight Loss/Muscle Wasting 

 Many studies have shown nutritional abnormalities in patients with COPD. These 
include changes in caloric intake, basal metabolic rate, and body composition  [  36, 
  37  ] . Unexplained weight loss occurs in about 50% of patients with severe COPD, 
but it also occurs in 10–15% of those with mild to moderate disease  [  38  ] . Unexplained 
weight loss is a poor prognostic indicator in COPD, and is independent of FEV1 or 
hypoxia  [  39  ] . Likewise, malnutrition predicts longer hospitalization and more read-
missions after acute exacerbation of COPD  [  40  ] . 

 The weight loss seen in COPD is not due to decreased caloric intake. In fact, 
caloric intake in patients with COPD is often normal or increased  [  41  ] . This increase 
in caloric intake is often not enough to offset the increased basal metabolic rate in 
COPD  [  42  ] . The weight loss seen in COPD, which is likely due to cachexia, does 
not respond as well to nutritional supplementation as simple malnutrition  [  43  ] . 
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However, if body weight is regained, the overall prognosis is improved, despite lack 
of change in lung function  [  39  ] . 

 Skeletal muscle atrophy is the major cause of weight loss in COPD, with fat 
mass contributing only a small part of the total weight loss  [  38  ] . The remaining 
muscle is often weak  [  44  ] , contributing to the limited exercise capacity in COPD. 

 The mechanisms of weight loss and skeletal muscle atrophy are also likely linked 
to systemic infl ammation. There is a correlation between metabolic derangement 
and increased levels of infl ammatory mediators in COPD  [  45  ] . TNF- a  production 
is increased in COPD patients with weight loss  [  46  ] , TNF- a , as well as other infl am-
matory cytokines, activates NF k B, which can upregulate inducible nitric oxide syn-
thase (iNOS) and lead to degradation of myosin  [  47  ] , ultimately resulting in 
decreased skeletal muscle mass.  

   Osteoporosis 

 The prevalence of osteoporosis is very high in patients with COPD. Over half of the 
patients recruited for the large TORCH (Towards a Revolution in COPD Health) 
trial had osteopenia or osteoporosis  [  48  ] . In patients with severe COPD, the preva-
lence of osteoporosis goes up to 75%. In this study the use of steroids alone could 
not explain the high prevalence of osteoporosis in patients with COPD  [  49  ] . 

 Osteoporosis adds signifi cant morbidity to COPD. With progressive loss of bone 
mass, the patient is at high risk for vertebral or hip fractures. Vertebral compression 
fractures can cause kyphosis, which can result in worsened pulmonary function. 
Hip fractures cause signifi cant morbidity such as pain, decreased mobility, and even 
mortality  [  50  ] . 

 Osteoporosis associated with COPD is multifactorial in its etiology. It is most 
commonly seen in individuals who are elderly, are on steroids, have a history of 
smoking, or have chronic illness  [  51  ] . Patients who have moderate-to-severe COPD 
have nearly all of these clinical features that predispose them to osteoporosis. 
However, COPD itself may be a risk factor for osteoporosis and this may be related 
to systemic infl ammation. The mechanism through which systemic infl ammation 
leads to increased osteoporosis is very poorly understood. It is known that increased 
production of pro-infl ammatory cytokines such as IL-1, TNF- a , and IL-6 is associ-
ated with osteoclastic bone resorption in a number of infl ammatory disease states 
including rheumatoid arthritis  [  52  ] . In addition, the infl ammatory mediator, circu-
lating MMP-9, has also been related to the presence of osteoporosis in patients with 
COPD and not to lung function  [  53  ] .  

   Diabetes 

 Type II diabetes is also frequently seen in conjunction with COPD. There is nearly a 
twofold increase in prevalence of type II diabetes in patients with COPD, even in 
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those with mild disease  [  54  ] . In the Women’s Health Study, asthma and COPD were 
independently associated with an increased risk of type II diabetes  [  55  ] . This indi-
cates that chronic airway infl ammation may contribute to diabetes pathogenesis. The 
reason for this association is not yet fully understood, but it likely involves systemic 
infl ammation. It does appear that there is an increase in insulin resistance in patients 
with COPD compared with healthy subjects. In this study, insulin resistance was 
related to higher serum IL-6, and TNF- a  soluble receptor, suggesting that insulin 
resistance is related to systemic infl ammation  [  56  ] . In patients with Type II diabetes, 
more severe systemic infl ammation (elevated levels of TNF- a , fi brinogen, ferritin, 
and CRP) may be associated with both inadequate glucose control and worsening 
lung function  [  57  ] . Another possible cause of Type II diabetes in patients with COPD 
could be the use of inhaled steroids. Inhaled corticosteroid use was associated with 
a 34% increase in the rate of diabetes. The risk was greatest with the highest inhaled 
corticosteroid doses, equivalent to fl uticasone 1,000  m g per day or more  [  58  ] .   

   Pathophysiology of Systemic Infl ammation 

 The systemic infl ammation associated with COPD has many different mediators. 
They include circulating infl ammatory cells, infl ammatory mediators such as 
cytokines, oxidative stress, and growth factors. 

   Circulating Infl ammatory Cells 

 An integral part of systemic infl ammatory response is the activation of bone mar-
row, which results in the release of leukocytes into the circulation  [  6  ] , including 
neutrophils, monocytes/macrophages, and lymphocytes. Patients with COPD have 
various abnormalities in these circulating leukocytes. The abnormalities seen may 
have effects on organs other than the lung and therefore contribute to the systemic 
infl ammation observed in COPD patients. 

   Neutrophils 

 Circulating neutrophils are an important component of host defense in the lung. In 
patients with COPD, circulating neutrophils do not function normally, which con-
tributes to the systemic infl ammatory response. In COPD, neutrophils have an 
increased chemotactic response, increased ability to digest connective tissue, and 
increased expression of cell surface adhesion molecules  [  59  ] . 

 Although increased numbers of neutrophils are seen in the airway of patients with 
COPD, this does not necessarily translate to increased numbers of circulating neutro-
phils compared to healthy nonsmokers. There is, however, an inverse correlation 
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between FEV 
1
  and neutrophil numbers in circulation  [  60  ] . An infl ammatory stimulus 

can trigger increased production of neutrophils from the bone marrow but also result 
in increased numbers of neutrophils in the lung parenchyma  [  61  ] . 

 One important pathogenic mechanism responsible for abnormal neutrophil func-
tion in patients with COPD is that their neutrophils produce more reactive oxygen 
species (ROS) than smokers with normal lung function, and healthy nonsmokers  [  59, 
  62  ] . Systemic oxidative stress can upregulate the expression of adhesion molecules, 
facilitating recruitment into the lung  [  63  ] . 

 We have a clear understanding that neutrophils play an integral part in the infl am-
matory response generated in COPD. The lack of differences in neutrophil activation 
and function among smokers with COPD and nonsmoker healthy subjects suggests 
that smoke itself is not responsible for this effect. Rather, these abnormalities are 
characteristic of COPD itself.  

   Lymphocytes 

 Lymphocytes play a prominent role in the systemic infl ammation seen in patients 
with COPD. Nonsmoking COPD patients had higher number of CD 8+  lymphocytes 
than nonsmoking healthy controls  [  64  ] . Studies also demonstrate that a higher CD 8+  
lymphocyte count is associated with both low CD 4 /CD 8  ratio and a higher degree of 
airfl ow obstruction and lower FEV 

1
   [  64–  67  ]  

.
  Whether this abnormality is mirrored 

in the systemic circulation is unclear. Changes in the circulating lymphocytes are 
diffi cult to interpret because they may refl ect a recruitment of circulating lympho-
cytes into the lung. 

 Current thinking suggests that abnormal lymphocyte regulation has a role in the 
pathogenesis of COPD. Proposed mechanisms include abnormalities in the apopto-
sis of T-cells. There is an increase in apoptosis along with an increase in T-cell 
migration/recruitment and a decrease in airways clearance by defective macrophages 
 [  68  ] . Apoptosis is under the control of Fas proteins, tissue growth factor (TGF b ), 
and tumor necrosis factor (TNF a )  [  66,   67,   69  ] . Fas protein belongs to the TNF fam-
ily and is upregulated upon T-cell activation. The Fas/FasL (ligand) system induces 
apoptosis and regulates elimination of activated lymphocytes  [  70  ] . Higher numbers 
of CD 8+  T-cells exhibiting Fas expression have been reported in COPD smokers as 
compared to healthy smokers and nonsmokers  [  67  ] . Similarly, TNF a  and TGF b  
have been shown to induce apoptosis in CD 8+  T-cells in COPD patients  [  71  ] . 
Combined, these studies shed light on possible dysregulation in mechanisms that 
control apoptosis and may bear some responsibility in the pathogenesis of COPD.  

   Monocytes/Macrophages 

 Macrophages play an important role in the infl ammatory response responsible for 
the pathophysiology of COPD. Monocytes circulating in the peripheral blood are 
recruited into the lungs, where they mature into macrophages. This recruitment is 
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upregulated in COPD. Monocyte-selective chemokines produced in the lungs are 
the signal for the migration of monocytes. In particular, macrophage chemotactic 
protein (MCP-1), a monocyte selective chemokine belonging to the CC chemokine 
family, is increased in the sputum and BAL of patients with COPD  [  72  ] . MCP-1 
binds to the chemokine receptor (CCR-2) on the monocytes and mediates recruit-
ment into the airway epithelium and the lung parenchyma. Chemokines from the 
CXC subfamily have also been shown to act as monocyte chemoattractants via the 
CXC receptor (CXCR-2). Similar to MCP-1, the CXC chemokine, GRO- a , exists 
in higher concentration in the sputum and BAL of smokers with COPD compared 
to healthy smokers and nonsmokers  [  73  ] . Interestingly, CXCR-2 expression is not 
present on all monocytes. Traves et al .  postulates that there is upregulation of the 
recycling of the CXCR-2 receptor only in the COPD population compared to non-
smokers and healthy smokers, which could be the reason for increased migration of 
monocytes in COPD  [  73  ] . 

 Under normal circumstances, macrophages have a tissue lifespan of many 
months. In former smokers, cigarette particulates persist in the alveolar macrophages 
over 2 years after smoking cessation, indicating that macrophages in smokers persist 
for abnormally long durations  [  74  ] . Expression of anti-apoptotic protein Bcl-X 

L
  and 

p21 CIP/WAF1  in smokers could be one mechanism for this prolonged survival  [  56,   75  ] . 
Impaired mucocilliary clearance or inadequate lymphatic drainage may also impair 
the ability to clear macrophages from the airways in COPD patients.   

   Infl ammatory Mediators 

 Patients with COPD have elevated levels of circulating cytokines, chemokines, and 
growth factors in their peripheral circulation. The components of this systemic 
infl ammation may account for the systemic manifestations of COPD and may 
worsen comorbid conditions. 

   Cytokines 

   IL-6 

 IL-6 is increased in the systemic circulation of COPD patients. This is particularly 
true during acute exacerbations. The downstream effects of elevated levels of IL-6 
are not yet clearly defi ned because of its pleiotrophic effects. It is clear that IL-6 
levels track with markers of systemic infl ammation. For instance, increased circulat-
ing IL-6 has been shown to induce the acute phase reactant CRP production from the 
liver  [  76  ] . Increased IL-6 levels have also been shown to be associated with many of 
the systemic comorbidities of COPD. Elevated IL-6 may play a role in the develop-
ment of pulmonary hypertension  [  77  ]  insulin resistance  [  56  ] , and osteoporosis  [  78  ] .  
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   TNF- a  

 Elevated levels of TNF- a  are seen in the sputum of patients with COPD, especially 
during exacerbations. Many cells make TNF- a , including epithelial cells, T-cells, 
and mast cells, but the major source is macrophages. Macrophages from patients 
with COPD produce more TNF- a  in vitro than macrophages from normal controls 
 [  79  ] . Elevated TNF- a  levels are associated with systemic effects of COPD such as 
weight loss. Because of this association, TNF- a  blocking antibodies, such as infl ix-
imab, have been studied as a treatment for COPD. Unfortunately, they have not been 
able to show any differences in infl ammatory markers  [  80  ] , Chronic Respiratory 
Questionnaire score, FEV1, or 6-min walk  [  81  ] . There is evidence, however, that 
etanercept, another TNF- a  antagonist, decreases COPD hospitalizations  [  82  ] .  

   IL-1 b  

 IL-1 b  is also elevated in the sputum of patients with COPD  [  83  ] . IL-1 b  activates 
macrophages to secrete infl ammatory cytokines. IL-1 b  correlates with disease 
severity and FEV 

1
   [  83  ]  

.
  It has also been linked to cachexia.   

   Chemokines 

 The fi rst chemokine to be discovered in COPD is CXCL-8. Elevated levels of 
CXCL-8 are found in the sputum, BAL fl uid, and the circulation of patients with 
COPD versus normal smokers and nonsmoking controls. CXCL8 activates CSCL1 
(GRO- a ) and CXCR2. CXCL-8 and CXCR2 play an important role in neutrophil 
and monocyte recruitment in COPD.  

   Growth Factors 

   Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) 

 GM-CSF is secreted predominantly by macrophages in response to infl ammatory 
stimuli and plays a role in the differentiation and survival of neutrophils. There are 
increased levels of GM-CSF in the BAL fl uid of patients with COPD particularly 
during exacerbations  [  84  ] .  

   Transforming Growth Factor- b  (TGF- b ) 

 TGF- b  expression is increased in the airway epithelial cells and macrophages of the 
small airways of patients with COPD  [  85  ] . It can induce proliferation of fi broblasts 
and airway smooth muscle cells. It also can lead to suppression of the regulatory 
T cells such as Th1, Th2, and Th17 cells  [  86  ] .     
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   Treatment 

 Because systemic infl ammation can lead to many of the comorbidities associated 
with COPD, it is important to consider how to best treat systemic infl ammation. 
Although research into how best to treat the systemic infl ammation associated with 
COPD is in its infancy, we do have some information. Some of the therapies we 
have traditionally used to treat COPD may also have an effect on systemic infl am-
mation. In addition, drugs used to treat the comorbidities of COPD may also may 
have unexpected positive effects on systemic infl ammation. 

   Inhaled Steroids 

 A small study of inhaled steroids shows a reduction in CRP levels in COPD patients 
 [  87  ] . However, a much larger controlled trial of high-dose inhaled steroids in COPD 
patients (TORCH trial) shows no reduction in IL-6 and CRP levels and no reduction 
in mortality, although these results may have been affected by withdrawal bias  [  88  ] . 
One of the advantages of inhaled corticosteroids is that they are delivered locally to 
the lung to avoid the systemic side effects of oral steroids. Perhaps it is not surprising 
then that inhaled steroids have little or no effect on systemic infl ammation. Despite 
this fact, they still have positive effects on the overall care of COPD patients, such as 
reduced exacerbation frequency, improved health status, and spirometric values  [  89  ] .  

   Anticholinergics 

 It has been suggested that anticholinergics such as tiotroprium may have a role in 
decreasing systemic infl ammation. This is because airway epithelial cells and mac-
rophages can release acetycholine, and this may activate neutrophils and mac-
rophages. Theoretically, by antagonizing this pathway, there is a potential to decrease 
infl ammation. However, in practice, tiotroprium has no effect on serum IL-6 and 
CRP in COPD patients, although it does decrease the number of exacerbations  [  90  ] .  

   Exercise/Pulmonary Rehabilitation 

 Pulmonary rehabilitation improves functional capacity, perception of dyspnea, 
BODE index, and health care utilization  [  91  ] . Because pulmonary rehabilitation has 
a positive effect on the overall health of COPD patients, one would think it may do 
so through decreasing systemic infl ammation. However, to date, this has not been 
shown. There is no difference in systemic infl ammatory markers such as CRP and 
IL-6  [  92  ]  after pulmonary rehabilitation. In fact, in one study, there was an increase 
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in production of IL-6 and TNF- a  in muscle cells after exercise training  [  93  ] . Although 
there have not been differences in systemic infl ammatory markers with pulmonary 
rehabilitation alone, there may be benefi ts when combined with nutritional therapy 
 [  94  ] . In this study there was a decrease in CRP, IL-6, IL-8, and TNF a  after 12 weeks 
of low intensity exercise and nutritional supplementation of 400 kcal/day.  

   Smoking Cessation 

 Smoking cessation is always recommended for patients with COPD. It not only 
helps slow the progression of COPD, but also has benefi cial effects on comorbidi-
ties such as cardiovascular disease and lung cancer. Smoking cessation also leads to 
decreases in systemic infl ammation as measured by CRP  [  95  ] .  

   Statins 

 3-Hydroxy-3-methylglutaryl-coenzyme A ( HMG - CoA )  reductase  inhibitors, also known 
as statins, were developed to reduce cholesterol. However, statins are now known to 
have pleiotropic effects, including anti-infl ammatory and immunomodulatory 
effects that may be important in the treatment of systemic infl ammation from 
COPD. 

 Statins have been shown to decrease mortality after COPD exacerbation, even in 
the absence of ischemic heart disease in retrospective studies  [  96  ] . This is especially 
relevant, given the number of COPD patients who also have ischemic heart disease. 
Statins also decrease the number of COPD exacerbations in retrospective studies 
 [  97  ] . The mechanism(s) through which statins impart their benefi cial effects are not 
completely understood. However, it is likely that at least part of their action is 
through decreasing systemic infl ammation. Statins decrease markers of systemic 
infl ammation such as CRP  [  98  ]  and chemokines, such as CCL2 and CXCL8  [  99  ] . 

 Statins also may have benefi cial effects on the comorbidities of COPD that are 
mediated by systemic infl ammation. Statins are associated with a decreased risk of 
developing lung cancer in COPD patients  [  100  ] . They may also have a benefi cial 
effect on diabetes and osteoporosis  [  101  ] . 

 Prospective, randomized, controlled studies are needed to evaluate whether sta-
tins have a benefi cial effect on the systemic infl ammation related to COPD.   

   Summary 

 In summary, COPD can no longer be considered a disease only of the lungs. It is 
associated with systemic effects that are related to systemic infl ammation. A better 
understanding of the origins of systemic infl ammation in COPD will allow for better 
therapy for COPD and improved outcomes.      
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