Chapter 2
The Role of Systemic Inflammation in COPD

Kristina L. Bailey, Jadvinder Goraya, and Stephen L. Rennard

Abstract Chronic obstructive pulmonary disease (COPD) is defined as a preventable
and treatable disease with significant extrapulmonary effects. Many of the extra-
pulmonary effects of COPD are thought to be mediated by systemic inflammation.
Local inflammation has always been appreciated as part of the COPD disease
process; however, it is becoming clear that the inflammatory response is also
systemic. There are multiple theories about the mechanisms driving the systemic
inflammation associated with COPD. However, there is no consensus on which
theory is correct. The systemic inflammation likely contributes to systemic mani-
festations of COPD, including cardiovascular disease, lung cancer, weight loss,
osteoporosis and diabetes.
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Introduction

Chronic obstructive pulmonary disease (COPD) is defined as a preventable and
treatable disease with significant extrapulmonary effects that may contribute to dis-
ease severity in individual patients [1]. Many of the extrapulmonary effects of
COPD are believed to be mediated by systemic inflammation. Local inflammation
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of the airways and lung parenchyma has always been acknowledged as part of the
COPD disease process; however, it is becoming clear that the inflammatory response
is systemic [2].

Many studies demonstrate that there is an increase in inflammatory cytokines not
only in the lung, but systemically. There is an increase in tumor necrosis factor
alpha (TNF-a) [3] interleukin (IL)-6, and IL-8 [4]. Inflammatory markers such as
C-reactive protein (CRP) are also elevated [5]. This chapter will review the origins,
clinical consequences, pathogenesis, and the treatment of systemic inflammation in
COPD.

Origins of Systemic Inflammation

There are multiple theories about the mechanisms driving the systemic inflamma-
tion associated with COPD. There is no consensus on which theory is correct,
although it is likely that several mechanisms may contribute.

One proposed mechanism suggests that the inflammatory process originates in
the airways and lung parenchyma, then “spills over” into the systemic circulation
[6]. One may then assume that the systemic inflammation should directly correlate
with pulmonary inflammation. This, however, has not been demonstrated.
Specifically, there is no consistent relationship between sputum neutrophil numbers
and systemic neutrophil numbers or systemic biomarkers of inflammation such as
CRP [7, 8]. Likewise, pulmonary inflammatory cytokine concentrations such as
TNF-a and IL-8 do not show a correlation with systemic concentrations [9, 10].

Another proposed mechanism is that systemic inflammation is caused by tobacco
smoke. This is an attractive theory because tobacco smoke has been implicated as a
cause of other systemic inflammatory diseases such as atherosclerosis and coronary
artery disease [11]. Indeed, in passive smoke exposure, there is increased systemic
oxidative stress and peripheral vascular endothelial dysfunction [12]. However,
multiple studies demonstrate that ex-smokers have evidence of persistent inflamma-
tion [9]. This implies that tobacco smoking may initiate inflammation, but does not
explain the sustained inflammation seen in COPD.

It is also possible that the pathophysiologic changes that occur in the lung with
COPD may lead to systemic inflammation. Processes that have been implicated
include hypoxia and hyperinflation. Hypoxia is a common problem in COPD. In
patients with mild COPD who undergo hypoxic challenge, there is an increase in
serum IL-6 levels [13]. There is also a correlation between serum TNF-a levels and
degree of hypoxemia in COPD patients [14]. Likewise, in animal experiments,
hypoxia leads to increased TNF-o, macrophage inflammatory protein (MIP)-1p,
and monocyte chemoattractant protein (MCP)-1 MrnA [15]. Hyperinflation is also
a common finding in COPD that results from chronic airway obstruction. Dynamic
hyperinflation can lead to increases in systemic TNF-o and IL-8 [16], IL-6, and
IL-1B [17]. The presence of dynamic hyperinflation predicts a higher mortality for
COPD patients [18].
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It has been suggested that the increases in systemic inflammation observed in
conjunction with COPD are at least in part due to the normal aging process. COPD
is a chronic disease, which progresses very slowly, and the majority of patients are
older. Normal aging is associated with increases in low-grade systemic inflamma-
tion, including production of cytokines such as IL-6 and TNF-a [19]. There is also
an increase in nitric oxide and reactive oxygen species [20]. Aging cannot account
for all COPD-related systemic inflammation, as most studies examining COPD
include age-matched controls and the systemic inflammation in COPD patients is
still greater.

It has been suggested that COPD may trigger the production of systemic inflam-
matory mediators in other parts of the body such as skeletal muscle and the bone
marrow. For instance, compared to healthy controls, patients with COPD have
increases in systemic inflammation, including TNF-a production, after exercise
[21]. It was initially thought that the source of this inflammation might be the skel-
etal muscle itself [22]. However, in a well-controlled study, it was shown that the
muscular TNF-a in COPD subjects was actually less than that of control subjects
[23]. Another possibility is that the bone marrow may be involved in the initiation
of systemic inflammation. This is an attractive theory because the bone marrow is
the site of production of inflammatory cells. Smoking or air pollution may indirectly
stimulate the bone marrow, which results in an accelerated release of mature and
immature cells [24].

In summary, there are many theories regarding the origin of systemic inflamma-
tion in COPD. The true origin of systemic inflammation is likely to be multifactorial
and more research is necessary to identify the different contributory factors and
their relative importance.

Consequences of Systemic Inflammation

The systemic inflammation associated with COPD can contribute to the develop-
ment of other disease states. The systemic manifestations of COPD are widespread
and can affect nearly every system in the body. Disease states that are commonly
related to the systemic inflammation seen in COPD include: cardiovascular disease,
lung cancer, weight loss, osteoporosis, and diabetes.

Cardiovascular Disease

Cardiovascular disease has long been associated with COPD. Smoking is a major
risk factor for both diseases, so it is not surprising that many patients with COPD also
have cardiovascular disease. In fact, the majority of patients with COPD die from
cardiovascular disorders [25, 26]. Although COPD and cardiovascular disease share
smoking as a risk factor, there is an increased risk of fatal myocardial infarction,
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independent of smoking status, in COPD patients [27]. There is also an increased risk
of cardiovascular disease in smokers who develop COPD than in smokers that do not
develop COPD [27]. Likewise, those with more severe COPD are also more likely to
have cardiovascular disease [28] even when corrected for smoking. These studies
suggest that it is not smoking alone that leads to the increased risk of cardiovascular
disease. Importantly, having both COPD and cardiovascular disease increases mor-
tality and hospitalizations over either condition separately [29].

The mechanisms for the synergistic interaction between COPD and cardiovascu-
lar disease are not well defined. It has been suggested that the chronic low-grade
systemic inflammation seen with both diseases may drive both processes.

Lung Cancer

Lung cancer is a common cause of death in patients with COPD. Patients with
COPD are four times more likely to develop lung cancer than smokers who have not
developed COPD [30]. Smoking cessation does not diminish the risk of developing
lung cancer [31]. Even in individuals who have never smoked, there is an increased
risk of lung cancer with decreasing lung function and COPD [32].

The mechanism(s) of how COPD increases the risk for lung cancer is not well
defined. However, there is emerging evidence that chronic inflammation may play a
significant role in the pathogenesis of lung cancer as a tumor promoter. Inflammatory
mechanisms have been shown to induce a tumor-promoting effect in lung cancer in
mice. In this model, tobacco smoke promotes lung tumorigenesis by triggering IKK[3-
and JNK1-dependent inflammation [33]. There are also links between NF-xB and lung
cancer, including resistance to chemotherapy and induction of pro-metastatic, pro-
angiogenic, and anti-apoptotic genes [34]. Likewise, epidermal growth factor, which
promotes epithelial proliferation, is present in higher levels in COPD patients [35].

Weight Loss/Muscle Wasting

Many studies have shown nutritional abnormalities in patients with COPD. These
include changes in caloric intake, basal metabolic rate, and body composition [36,
37]. Unexplained weight loss occurs in about 50% of patients with severe COPD,
butitalso occurs in 10—15% of those with mild to moderate disease [38]. Unexplained
weight loss is a poor prognostic indicator in COPD, and is independent of FEV1 or
hypoxia [39]. Likewise, malnutrition predicts longer hospitalization and more read-
missions after acute exacerbation of COPD [40].

The weight loss seen in COPD is not due to decreased caloric intake. In fact,
caloric intake in patients with COPD is often normal or increased [41]. This increase
in caloric intake is often not enough to offset the increased basal metabolic rate in
COPD [42]. The weight loss seen in COPD, which is likely due to cachexia, does
not respond as well to nutritional supplementation as simple malnutrition [43].
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However, if body weight is regained, the overall prognosis is improved, despite lack
of change in lung function [39].

Skeletal muscle atrophy is the major cause of weight loss in COPD, with fat
mass contributing only a small part of the total weight loss [38]. The remaining
muscle is often weak [44], contributing to the limited exercise capacity in COPD.

The mechanisms of weight loss and skeletal muscle atrophy are also likely linked
to systemic inflammation. There is a correlation between metabolic derangement
and increased levels of inflammatory mediators in COPD [45]. TNF-a production
is increased in COPD patients with weight loss [46], TNF-a., as well as other inflam-
matory cytokines, activates NFxB, which can upregulate inducible nitric oxide syn-
thase (iNOS) and lead to degradation of myosin [47], ultimately resulting in
decreased skeletal muscle mass.

Osteoporosis

The prevalence of osteoporosis is very high in patients with COPD. Over half of the
patients recruited for the large TORCH (Towards a Revolution in COPD Health)
trial had osteopenia or osteoporosis [48]. In patients with severe COPD, the preva-
lence of osteoporosis goes up to 75%. In this study the use of steroids alone could
not explain the high prevalence of osteoporosis in patients with COPD [49].

Osteoporosis adds significant morbidity to COPD. With progressive loss of bone
mass, the patient is at high risk for vertebral or hip fractures. Vertebral compression
fractures can cause kyphosis, which can result in worsened pulmonary function.
Hip fractures cause significant morbidity such as pain, decreased mobility, and even
mortality [50].

Osteoporosis associated with COPD is multifactorial in its etiology. It is most
commonly seen in individuals who are elderly, are on steroids, have a history of
smoking, or have chronic illness [51]. Patients who have moderate-to-severe COPD
have nearly all of these clinical features that predispose them to osteoporosis.
However, COPD itself may be a risk factor for osteoporosis and this may be related
to systemic inflammation. The mechanism through which systemic inflammation
leads to increased osteoporosis is very poorly understood. It is known that increased
production of pro-inflammatory cytokines such as IL-1, TNF-c., and IL-6 is associ-
ated with osteoclastic bone resorption in a number of inflammatory disease states
including rheumatoid arthritis [52]. In addition, the inflammatory mediator, circu-
lating MMP-9, has also been related to the presence of osteoporosis in patients with
COPD and not to lung function [53].

Diabetes

Type II diabetes is also frequently seen in conjunction with COPD. There is nearly a
twofold increase in prevalence of type II diabetes in patients with COPD, even in
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those with mild disease [54]. In the Women’s Health Study, asthma and COPD were
independently associated with an increased risk of type II diabetes [55]. This indi-
cates that chronic airway inflammation may contribute to diabetes pathogenesis. The
reason for this association is not yet fully understood, but it likely involves systemic
inflammation. It does appear that there is an increase in insulin resistance in patients
with COPD compared with healthy subjects. In this study, insulin resistance was
related to higher serum IL-6, and TNF-a soluble receptor, suggesting that insulin
resistance is related to systemic inflammation [56]. In patients with Type II diabetes,
more severe systemic inflammation (elevated levels of TNF-a, fibrinogen, ferritin,
and CRP) may be associated with both inadequate glucose control and worsening
lung function [57]. Another possible cause of Type II diabetes in patients with COPD
could be the use of inhaled steroids. Inhaled corticosteroid use was associated with
a 34% increase in the rate of diabetes. The risk was greatest with the highest inhaled
corticosteroid doses, equivalent to fluticasone 1,000 pg per day or more [58].

Pathophysiology of Systemic Inflammation

The systemic inflammation associated with COPD has many different mediators.
They include circulating inflammatory cells, inflammatory mediators such as
cytokines, oxidative stress, and growth factors.

Circulating Inflammatory Cells

An integral part of systemic inflammatory response is the activation of bone mar-
row, which results in the release of leukocytes into the circulation [6], including
neutrophils, monocytes/macrophages, and lymphocytes. Patients with COPD have
various abnormalities in these circulating leukocytes. The abnormalities seen may
have effects on organs other than the lung and therefore contribute to the systemic
inflammation observed in COPD patients.

Neutrophils

Circulating neutrophils are an important component of host defense in the lung. In
patients with COPD, circulating neutrophils do not function normally, which con-
tributes to the systemic inflammatory response. In COPD, neutrophils have an
increased chemotactic response, increased ability to digest connective tissue, and
increased expression of cell surface adhesion molecules [59].

Although increased numbers of neutrophils are seen in the airway of patients with
COPD, this does not necessarily translate to increased numbers of circulating neutro-
phils compared to healthy nonsmokers. There is, however, an inverse correlation
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between FEV  and neutrophil numbers in circulation [60]. An inflammatory stimulus
can trigger increased production of neutrophils from the bone marrow but also result
in increased numbers of neutrophils in the lung parenchyma [61].

One important pathogenic mechanism responsible for abnormal neutrophil func-
tion in patients with COPD is that their neutrophils produce more reactive oxygen
species (ROS) than smokers with normal lung function, and healthy nonsmokers [59,
62]. Systemic oxidative stress can upregulate the expression of adhesion molecules,
facilitating recruitment into the lung [63].

We have a clear understanding that neutrophils play an integral part in the inflam-
matory response generated in COPD. The lack of differences in neutrophil activation
and function among smokers with COPD and nonsmoker healthy subjects suggests
that smoke itself is not responsible for this effect. Rather, these abnormalities are
characteristic of COPD itself.

Lymphocytes

Lymphocytes play a prominent role in the systemic inflammation seen in patients
with COPD. Nonsmoking COPD patients had higher number of CD?* lymphocytes
than nonsmoking healthy controls [64]. Studies also demonstrate that a higher CD*
lymphocyte count is associated with both low CD*/CD?8 ratio and a higher degree of
airflow obstruction and lower FEV  [64-67] Whether this abnormality is mirrored
in the systemic circulation is unclear. Changes in the circulating lymphocytes are
difficult to interpret because they may reflect a recruitment of circulating lympho-
cytes into the lung.

Current thinking suggests that abnormal lymphocyte regulation has a role in the
pathogenesis of COPD. Proposed mechanisms include abnormalities in the apopto-
sis of T-cells. There is an increase in apoptosis along with an increase in T-cell
migration/recruitment and a decrease in airways clearance by defective macrophages
[68]. Apoptosis is under the control of Fas proteins, tissue growth factor (TGFp),
and tumor necrosis factor (TNFa) [66, 67, 69]. Fas protein belongs to the TNF fam-
ily and is upregulated upon T-cell activation. The Fas/FasL (ligand) system induces
apoptosis and regulates elimination of activated lymphocytes [70]. Higher numbers
of CD# T-cells exhibiting Fas expression have been reported in COPD smokers as
compared to healthy smokers and nonsmokers [67]. Similarly, TNFoa and TGFf
have been shown to induce apoptosis in CD* T-cells in COPD patients [71].
Combined, these studies shed light on possible dysregulation in mechanisms that
control apoptosis and may bear some responsibility in the pathogenesis of COPD.

Monocytes/Macrophages
Macrophages play an important role in the inflammatory response responsible for

the pathophysiology of COPD. Monocytes circulating in the peripheral blood are
recruited into the lungs, where they mature into macrophages. This recruitment is
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upregulated in COPD. Monocyte-selective chemokines produced in the lungs are
the signal for the migration of monocytes. In particular, macrophage chemotactic
protein (MCP-1), a monocyte selective chemokine belonging to the CC chemokine
family, is increased in the sputum and BAL of patients with COPD [72]. MCP-1
binds to the chemokine receptor (CCR-2) on the monocytes and mediates recruit-
ment into the airway epithelium and the lung parenchyma. Chemokines from the
CXC subfamily have also been shown to act as monocyte chemoattractants via the
CXC receptor (CXCR-2). Similar to MCP-1, the CXC chemokine, GRO-a., exists
in higher concentration in the sputum and BAL of smokers with COPD compared
to healthy smokers and nonsmokers [73]. Interestingly, CXCR-2 expression is not
present on all monocytes. Traves et al. postulates that there is upregulation of the
recycling of the CXCR-2 receptor only in the COPD population compared to non-
smokers and healthy smokers, which could be the reason for increased migration of
monocytes in COPD [73].

Under normal circumstances, macrophages have a tissue lifespan of many
months. In former smokers, cigarette particulates persist in the alveolar macrophages
over 2 years after smoking cessation, indicating that macrophages in smokers persist
for abnormally long durations [74]. Expression of anti-apoptotic protein Bcl-X| and
p21CPWAFL in smokers could be one mechanism for this prolonged survival [56, 75].
Impaired mucocilliary clearance or inadequate lymphatic drainage may also impair
the ability to clear macrophages from the airways in COPD patients.

Inflammatory Mediators

Patients with COPD have elevated levels of circulating cytokines, chemokines, and
growth factors in their peripheral circulation. The components of this systemic
inflammation may account for the systemic manifestations of COPD and may
worsen comorbid conditions.

Cytokines
IL-6

IL-6 is increased in the systemic circulation of COPD patients. This is particularly
true during acute exacerbations. The downstream effects of elevated levels of IL-6
are not yet clearly defined because of its pleiotrophic effects. It is clear that IL-6
levels track with markers of systemic inflammation. For instance, increased circulat-
ing IL-6 has been shown to induce the acute phase reactant CRP production from the
liver [76]. Increased IL-6 levels have also been shown to be associated with many of
the systemic comorbidities of COPD. Elevated IL-6 may play a role in the develop-
ment of pulmonary hypertension [77] insulin resistance [56], and osteoporosis [78].
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TNF-a

Elevated levels of TNF-a are seen in the sputum of patients with COPD, especially
during exacerbations. Many cells make TNF-a, including epithelial cells, T-cells,
and mast cells, but the major source is macrophages. Macrophages from patients
with COPD produce more TNF-a in vitro than macrophages from normal controls
[79]. Elevated TNF-a levels are associated with systemic effects of COPD such as
weight loss. Because of this association, TNF-a blocking antibodies, such as inflix-
imab, have been studied as a treatment for COPD. Unfortunately, they have not been
able to show any differences in inflammatory markers [80], Chronic Respiratory
Questionnaire score, FEV1, or 6-min walk [81]. There is evidence, however, that
etanercept, another TNF-o antagonist, decreases COPD hospitalizations [82].

IL-1B

IL-1B is also elevated in the sputum of patients with COPD [83]. IL-1f activates
macrophages to secrete inflammatory cytokines. IL-1f correlates with disease
severity and FEV | [83] It has also been linked to cachexia.

Chemokines

The first chemokine to be discovered in COPD is CXCL-8. Elevated levels of
CXCL-8 are found in the sputum, BAL fluid, and the circulation of patients with
COPD versus normal smokers and nonsmoking controls. CXCLS8 activates CSCL1
(GRO-0) and CXCR2. CXCL-8 and CXCR?2 play an important role in neutrophil
and monocyte recruitment in COPD.

Growth Factors
Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)

GM-CSF is secreted predominantly by macrophages in response to inflammatory
stimuli and plays a role in the differentiation and survival of neutrophils. There are
increased levels of GM-CSF in the BAL fluid of patients with COPD particularly
during exacerbations [84].

Transforming Growth Factor-f§ (TGF-f3)

TGF-B expression is increased in the airway epithelial cells and macrophages of the
small airways of patients with COPD [85]. It can induce proliferation of fibroblasts
and airway smooth muscle cells. It also can lead to suppression of the regulatory
T cells such as Th1, Th2, and Th17 cells [86].
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Treatment

Because systemic inflammation can lead to many of the comorbidities associated
with COPD, it is important to consider how to best treat systemic inflammation.
Although research into how best to treat the systemic inflammation associated with
COPD is in its infancy, we do have some information. Some of the therapies we
have traditionally used to treat COPD may also have an effect on systemic inflam-
mation. In addition, drugs used to treat the comorbidities of COPD may also may
have unexpected positive effects on systemic inflammation.

Inhaled Steroids

A small study of inhaled steroids shows a reduction in CRP levels in COPD patients
[87]. However, a much larger controlled trial of high-dose inhaled steroids in COPD
patients (TORCH trial) shows no reduction in IL-6 and CRP levels and no reduction
in mortality, although these results may have been affected by withdrawal bias [88].
One of the advantages of inhaled corticosteroids is that they are delivered locally to
the lung to avoid the systemic side effects of oral steroids. Perhaps it is not surprising
then that inhaled steroids have little or no effect on systemic inflammation. Despite
this fact, they still have positive effects on the overall care of COPD patients, such as
reduced exacerbation frequency, improved health status, and spirometric values [89].

Anticholinergics

It has been suggested that anticholinergics such as tiotroprium may have a role in
decreasing systemic inflammation. This is because airway epithelial cells and mac-
rophages can release acetycholine, and this may activate neutrophils and mac-
rophages. Theoretically, by antagonizing this pathway, there is a potential to decrease
inflammation. However, in practice, tiotroprium has no effect on serum IL-6 and
CRP in COPD patients, although it does decrease the number of exacerbations [90].

Exercise/Pulmonary Rehabilitation

Pulmonary rehabilitation improves functional capacity, perception of dyspnea,
BODE index, and health care utilization [91]. Because pulmonary rehabilitation has
a positive effect on the overall health of COPD patients, one would think it may do
so through decreasing systemic inflammation. However, to date, this has not been
shown. There is no difference in systemic inflammatory markers such as CRP and
IL-6 [92] after pulmonary rehabilitation. In fact, in one study, there was an increase
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in production of IL-6 and TNF-a in muscle cells after exercise training [93]. Although
there have not been differences in systemic inflammatory markers with pulmonary
rehabilitation alone, there may be benefits when combined with nutritional therapy
[94]. In this study there was a decrease in CRP, IL-6, IL-8, and TNFa after 12 weeks
of low intensity exercise and nutritional supplementation of 400 kcal/day.

Smoking Cessation

Smoking cessation is always recommended for patients with COPD. It not only
helps slow the progression of COPD, but also has beneficial effects on comorbidi-
ties such as cardiovascular disease and lung cancer. Smoking cessation also leads to
decreases in systemic inflammation as measured by CRP [95].

Statins

3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known
as statins, were developed to reduce cholesterol. However, statins are now known to
have pleiotropic effects, including anti-inflammatory and immunomodulatory
effects that may be important in the treatment of systemic inflammation from
COPD.

Statins have been shown to decrease mortality after COPD exacerbation, even in
the absence of ischemic heart disease in retrospective studies [96]. This is especially
relevant, given the number of COPD patients who also have ischemic heart disease.
Statins also decrease the number of COPD exacerbations in retrospective studies
[97]. The mechanism(s) through which statins impart their beneficial effects are not
completely understood. However, it is likely that at least part of their action is
through decreasing systemic inflammation. Statins decrease markers of systemic
inflammation such as CRP [98] and chemokines, such as CCL2 and CXCLS8 [99].

Statins also may have beneficial effects on the comorbidities of COPD that are
mediated by systemic inflammation. Statins are associated with a decreased risk of
developing lung cancer in COPD patients [100]. They may also have a beneficial
effect on diabetes and osteoporosis [101].

Prospective, randomized, controlled studies are needed to evaluate whether sta-
tins have a beneficial effect on the systemic inflammation related to COPD.

Summary

In summary, COPD can no longer be considered a disease only of the lungs. It is
associated with systemic effects that are related to systemic inflammation. A better
understanding of the origins of systemic inflammation in COPD will allow for better
therapy for COPD and improved outcomes.
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