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    Chapter 2   

 OligoTag: A Program for Designing Sets of Tags 
for Next-Generation Sequencing of Multiplexed Samples       

         Eric   Coissac         

  Abstract 

 Next-generation sequencing systems allow high-throughput production of DNA sequence data. But this 
technology is more adapted for analyzing a small number of samples needing a huge amount of sequences 
rather than a large number of samples needing a small number of sequences. One solution to this problem 
is sample multiplexing. To achieve this, one can add a small tag at the extremities of the sequenced DNA 
molecules. These tags will be identi fi ed using bioinformatics tools after the sequencing step to sort 
sequences among samples. The rules to apply for selecting a good set of tags adapted to each situation are 
described in this chapter. Depending on the number of samples to tag and on the required quality of assig-
nation, different solutions are possible. The software  oligoTag , a part of OBITools that computes these 
sets of tags, is presented with some example sets of tags.  

  Key words:   Next-generation sequencing ,  Multiplexing ,  Sample ,  Tags    

   1. Introduction 

 High-throughput sequencers allow for easily and quickly generating 
a huge number of sequences. Currently, two systems are mainly 
used: the 454 GS FLX from Roche ® ; and the Solexa system from 
Illumina ® ; . In their current versions, the 454 GS FLX produces 1 
million sequence reads per run and the Solexa machine produces 
1 billion reads. The characteristics of these machines and of the 
sequences produced make these two technologies more comple-
mentary than concurrent. Many molecular ecological studies can 
take advantage of these new systems allowing the elaboration of 
large-scale experimental protocols. Many useful techniques for 
these studies rely on PCR (Polymerase Chain Reaction) amplicon 
sequencing. Before high-throughput sequencing technologies, 
these PCR-based techniques required a cloning step for building a 
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DNA library where each clone contained one DNA molecule syn-
thesized during the PCR ampli fi cation. A subset of clones from the 
library could then be sequenced to estimate the global diversity 
included in the PCR amplicon. Such an approach limited the 
number of sequences that could be produced. Actually, in most of 
the studies, a few thousands of clones were typically analyzed 
(e.g.,  (  1       – 5  ) ). Now the new sequencing techniques allow direct 
sequencing of individual DNA molecules composing a PCR ampli-
con without any cloning step. This has many advantages, including 
protocol simpli fi cation, as cloning PCR amplicons is not so easy 
even with commercialized kits. The cloning was also a potential 
source of bias for library representativity. But the main advantage 
is certainly that these new machines allow parallel sequencing of a 
very large number of individual sequences. It is thus possible to 
reach a higher sequence depth leading to a better coverage of the 
sample (e.g.,  (  6  ) ). Depending on the machine used, one can physi-
cally divide one run into up to eight or sixteen areas, each of them 
receiving a sample. Per sequencing area we might obtain 75,000 
and 50,000,000 sequence reads for a 454 GS FLS or a Solexa 
system, respectively. Such high coverages are excessive for speci fi c 
experiments where a higher sample number and a smaller sequenc-
ing depth are required. The strategy used to reach this aim is then 
to mix several samples in one sequencing area. For allowing indi-
vidual analysis of each sample, a short sample-speci fi c oligonucle-
otide (i.e., a tag) is added at the extremity of each molecule of each 
sample before sequencing (e.g.,  (  7  ) ). This tag will allow sorting 
sequences corresponding to each sample after the sequencing step 
using appropriate bioinformatic tools.  

 

  We can imagine several strategies for adding such tags at the end of 
the DNA molecules constituting a sample. They can rely on a ligation 
step adding some adaptors including the sequence tag or the tags 
can be directly added to the PCR primers during their synthesis. 
This last strategy requires to order sets of primer pairs differing 
only by their tags. Whatever the strategy selected, the most impor-
tant decision to make is to de fi ne which sequences should be used 
as tag. In a wonderful world, one could address this question only 
by taking into account the number of samples that need to be 
identi fi ed. The number of different DNA words of length  n  can be 
calculated from the formula 4  n  . For tagging N samples, you have 
just to select the smallest n as 4  n   >  N . As example, to tag  N  = 300 
samples, you will need to use tags of length 5 (4 4  = 256 and 

 2. Theoretical 
Background

 2.1. The Simplest 
System
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4 5  = 1, 024). Then, by enumerating the 300  fi rst words of length 5 
( AAAAA ,  AAAAC ,  AAAAG , etc.), you can obtain your tag list.  

  Unfortunately, we are not in a wonderful world, and sequencers 
produce sequences with errors. Thus, the tag attached to each 
molecule can be sometimes read correctly and sometimes read 
erroneously. We are faced with a piece of information transmitted 
through a noisy channel. The emitter, e.g., the experimentalist, 
designs or emits a correct tag. The transmitter device is composed 
of a chained set of complex operations: primer synthesis, PCR 
ampli fi cation, sequencing process. Finally, the receiver is once again 
the scientist. This metaphor allows for linking our problem to the 
transmission information theory, a well-known problem in com-
puter science. If we build our tag set (i.e., a code in the informa-
tion transmission theory) following the simplest model and if an 
error occurs during the message transmission, we will read a wrong 
code after reception. Without the possibility to detect this error, 
we will assign the attached sequence to the wrong sample (see 
Fig.  1 ). Such a code is called a “no-error tolerant code”.  

 For detecting reading errors, we must use a subset of all the 
possible words. Once we choose one word as a tag, i.e.,  acggt , if we 
preclude all words differing by only one letter (e.g.,  aGggt ,  acTgt , 
 Gcggt , etc.), we guarantee that reading a tag with one error gives 
an erroneous tag corresponding to no sample. Given the Hamming 
distance ( d  H ) equal to the number of differences between two 
words, we can de fi ne a code as a set of DNA words where for all 
possible word pairs ( w   i  ,  w   j  ),   d  H ( w   i  ,  w   j  )  ³  2. This new code is called a 
“one-error tolerant code” (see Fig.  2a ).  

 Similarly we can build a “two-error tolerant code” by selecting a 
subset of words in such a way that for all possible word pairs 
( w   i  ,  w   j  ),   d  H ( w   i  ,  w   j  )  ³  3. This new code will lead to a sample misassigna-
tion only if more than two bases of the tag are erroneously read. This 
new code has a second property. If we consider that we can produce 
no more than one error during the transmission process, such a code 
not only detects the error but also allows correcting it. This is possible 
because only one of the used tags is present at a Hamming distance 
of one from the tag read (see Fig.  2b ). Thus, a two-error tolerant 
code can be considered as a “one-error autocorrective code.”  

 2.2. Dealing with 
Sequencing Errors

acggt aGggt

a particular tag transmission chain an erroneously received tag

  Fig. 1.    Reading a tag of  fi ve nucleotides with one error can lead to sample missassigna-
tion. If all possible DNA tags composed of  fi ve nucleotides are assigned to a sample, we 
are not able to detect reading errors. We produce a no-error tolerant code. The capital 
letter corresponds to the reading error.       
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  The choice of an adequate tag system depends mainly on two 
parameters: the number of samples to tag and the number of 
expected errors that is a combination of the probability to misread 
a base of the tag and the total number of sequences produced by 
the sequencer. To objectively decide, we can develop a simple 
probabilistic model. If we consider a homogeneous misreading 
probability  P  mis  and tags of length  l  tag  then the probability  P  l,e  to 
read a tag with  e  errors can be expressed as a binomial distribution 
(see Eq.  1 ). 
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 Using Eq.  1 , it is easy to estimate how many tags would be 

read with 1, 2, 3, or 4 errors, when running a full GS-FLX 454 run 
or Solexa lane with one or 50 millions of reads, respectively (see 
Table  1 ). Even with a low error rate, the large number of reads 
leads to an expected large number of tags with up to three reading 
errors. This demonstrates the importance of taking into account 
errors when designing a set of tags. Table  1  shows that for a 

 2.3. Choosing a Set 
of Tags

2 errors

ac C

1 error1 error

gt acCgA

acg gt

3 errors

2 errors

1 error

ac C

1 error

gt ac C

1 error

gA TcCgA

Sample A No sample Sample B

Sample A No sample No sample Sample B

a

b

  Fig. 2.    Reading a tag of  fi ve nucleotides ( a ) If tag  acggt  is assigned to sample A and tag 
 accga  to sample B, when the tag  accgt  is read we can deduce that it is an error and dis-
card the associated sequence. This corresponds to a one-error tolerant code. ( b ) If sample 
B is associated to tag  tccga  instead of  accga . When the tag  accga  is read, we conclude to 
an error. This error can be explained as one reading error of sample B tag or as two read-
ing errors of the sample A tag. This corresponds to a two-error tolerant code. If we assume 
that no more than one error is possible, only the  fi rst hypothesis is acceptable. We can 
keep the sequence and assign it to the sample B. Thus, we use the code as a“one-error 
autocorrective code”.       
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GS-FLX 454 run with  P  mis  = 0. 0025, a tagging system of 6 nucle-
otides with a Hamming distance greater or equal to three will lead 
to misassign on average one sequence to a wrong sample every 
three runs while requiring discarding 14, 905 reads (approxima-
tively, 1. 5 %  of the sequences). Considering the same tagging sys-
tem as a one-error autocorrective code, we correctly reassign 
14, 813 of these reads to their respective samples but 92 reads with 
two errors are misassigned. Depending on the effect of such a level 
of misassignation, an autocorrective code can be considered as a 
good or a bad solution.   

  When sequencing a short enough PCR amplicon to be fully 
sequenced in a single read, it is possible to tag it at both ends 
(i.e., tagging the forward and the reverse primers). This double tag-
ging reduces the sample misassignation probability. By checking the 
tags at each extremity, the only cause for misassignation is to observe 
the same errors on both tags. Let’s consider that a reading error can 
change a nucleotide equiprobably into any of the three others, then 
we deduce Eqs.  3  and  4  from Eq.  1  to estimate the probability 2l,e

P  
of observing the same  e  errors on both extremities of a read. This 
probability function is used for estimating frequencies of sample 
misassignation with a double-tag system (see Table  2 ):  
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 When tags are added to both ends, even with only two differ-
ences between tags, almost no misassignation is possible (Table  2 ). 
By comparison, with a single-end tagging system, even with four 
differences between tags we cannot achieve the same level of 

 2.4. Tagging Both Ends 
of the PCR Amplicon

   Table 1 
  Estimated numbers of misread tags: count computation is done for a tag 
length  l  tag  = 6, the three used error rates correspond to values usually observed 
from 454 or Solexa runs. (e) is the number of errors in the tag     
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 con fi dence (Table  1 ). But as the two copies of the tag can be 
 misread independently, the frequency of discarded sequences is 
twice higher with a double-tag system than with a single-tag one 
(see Tables  1  and  2 ) 

 Like for a single-tag system, a double-tag system with a 
Hamming distance greater or equal to three can also be used as a 
one error autocorrective code. In such a system, a sequence with 
one or two erroneously read tags is reassigned to the good sample 
if when corrected, both tags match the same sample.  

  A tag is a DNA word. To limit misreading, once the tag length is 
 fi xed, lexical rules can be set to restrict the usable words. For exam-
ple, knowing the dif fi culties to read unambiguously homopolymers 
with the GS-FLX 454, we should exclude tags with more than  h  
consecutive identical letters. According to the same principle, if a 
set of tags is designed to be linked to a PCR primer with a nucle-
otide  X  ( i.e. ,  A ,  C ,  G , or  T ) at its 5  ¢   end we should avoid this nucle-
otide at the 3  ¢   end of the tag. Also, if a tag is linked to the primers 
during their synthesis, we can use only tags with a precise  G  +  C  
content to reduce the effect of the heterogeneity of the primer 
melting temperatures ( Tm ).  

  While some approximations were used to build ef fi ciently a set of 
tags  (  8  ) , the exact way for de fi ning a set of tags relies on graph 
theory. In mathematics, a graph G(V, R)      is de fi ned by a set of nodes 
or vertices  V  and a relation  R  describing a set of edges  E  linking 
some node pairs. In our particular case,  V  is the set of all words 
matching our lexical constraints (length,  G  +  C  content, maximum 
homopolymer length, etc.). 

 2.5. Lexical 
Constraints on Tag 
Design

 2.6. Building a Set 
of Tags

   Table 2 
  Estimated numbers of sample misassignations with a double-tag system: 
computation is done for a double-tag system of length  l  tag  = 6 without autocor-
rection. The three used error rates correspond to values usually observed from 
454 or Solexa runs.(e) is the number of errors in the tag     
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   = { | i s a DNA words of length m atching lexical constraints}.V w w l        (5)   

  R  the set of edges is composed of DNA word pairs with a 
Hamming distance ( d  H ) greater or equal to  e  (i.e., the minimum 
number of differences between two tags). 

      ∈ × ≥= H{( , ) |  ( }. , )i j i jV VR w w w ew d    (6)   

 In such a graph (see   Fig.  3 ), a usable set of tags  T  is de fi ned as 
a subset of  V  forming a complete subgraph (see Eq.  7 ). In the 
graph theory,  T  de fi nes a clique. Identifying the best set of tags is 
equivalent to looking for the largest clique in the graph G      . 
Unfortunately, this requires a computational time that increases 
exponentially with the size of the graph. So only approximate solu-
tions are computable.  

      ∀⊂ ∈⇒⊂ in such a way that { , } ( , ) .   V i j i jw w w wT RT    (7)     

 

  OligoTag  is part of OBITools (  http://www.grenoble.prabi.fr/
trac/OBITools    ), a set of UNIX command line programs dedicated 
to the analysis of the output from high-throughput sequencers. 

  To install OBITools, you need access to a Unix computer with 
Python language installed and a C compiler. It can be a PC with 
Linux or a Macintosh computer or any other Unix system. All the 

 3. The  oligoTag  
Program

 3.1. Installing OBITools

TT
GG

AC

TA

AG

GT

GC

TG

AT

TC

AA

GA

  Fig. 3.    Hamming graph for DNA words of length 2: This graph is built with all words of size 
two that do not begin by a  C  so  V  = {  AA ,  AC ,  AG ,  AT ,  GA ,  GC ,  GG ,  GT ,  TA ,  TC ,  TG ,  TT   }. The 
relation  R  is de fi ned for a Hamming distance between two words  d  H   ³  2.       

 

http://www.grenoble.prabi.fr/trac/OBITools
http://www.grenoble.prabi.fr/trac/OBITools
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following commands must be entered in a unix terminal window. 
Usually, on a linux machine, you can start such a windows from the 
application/utilities menu. On Macintosh, a similar application is 
available in the Applications/Utilities folder. 

  To check if a C compiler is installed on your system, follow the 
instructions presented in Listing 1. If a gcc C compiler is installed 
on your computer, just by running the gcc command without 
argument you will have an error message “no input  fi le” indicating 
that you have not speci fi ed a c  fi le to compile. 

 unix–shell > gcc
i686–apple–darwin10–gcc –4.2.1: no input  fi les 

 Listing 2 shows the result obtained if no C compiler is installed 
on your system: if a command is not installed on a system an error 
message “Command not found” is generated, then you must install 
a C compiler. If you are a Linux user, you must install the corre-
sponding package from your package manager. If you are a 
Macintosh user, you need to install the “Developer tools” package 
available on the system DVD or on the Apple web site. 

 unix–shell > gcc
gcc: Command not found 

 You need Python 2.6 or 2.7, which should be available on all 
modern Unix system. To check your python version, follow the 
instruction presented in Listing 3. From a unix shell, you can run 
the python interpreter in interactive mode by typing the command 
 python . This displays the python version, in our case python version 
2.7. To quit python, just press keys  Ctrl-D . 

 unix–shell > python
Python 2.7 (r27:82500, Jul 6 2010, 10:43:34)
[GCC 4.2.1 (Apple Inc. build 5659)] on darwin
Type “ help”, “copyright”, “credits” or “license “for more 
information.
>>> 

 MacOSX users are invited to install a version of python down-
loadable from the python web site (  http://www.python.org    ) even 
if a version of python is included by default in the system. Be care-
ful, python 2.x and 3.x versions are almost incompatible, so don’t 
use python 3.x with OBITools. 

 Finally, the SetupTool python package must be installed. First, 
you have to check the presence of the  easy_install  command as you 
did for  gcc . If this command is absent, you can download it from 
the python package index web site (  http://www.pypi.org    ) and follow 
the corresponding installation instructions.  

 3.1.1. Checking 
Prerequisite

http://www.python.org
http://www.pypi.org
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  OBITools can now be easily installed using the  easy_install  com-
mand (Listing 4). It can be necessary to begin this command line 
by the word  sudo  to access the administrator privilege. 

 unix–shell > easyinstall obitools
. . .
unix–shell >   

  Several options are available for specifying characteristics of the 
generated tag set. As in many unix programs, most of them exist in 
two forms. The short form corresponds to one letter preceded by 
a dash (e.g.,  -s ). The long one is a full word preceded by a double 
dash (e.g.,  --oligo-size ). Both forms of the same option are listed 
together. When an option requires a parameter like  --oligo-size  or 
 -s , in the short form the parameter must follow directly the option 
( -s 5 ), whereas in the long form the option name and the parameter 
value must be separated by an equal sign ( --oligo-size=5 ). 

  The length of the oligonucleotide is strongly related to the maxi-
mum size of the potentially identi fi able tag set (see Subheading  2 ). 
The length must be an integer value greater or equal to 1. Values 
larger than 8 lead to huge memory usage and very long computa-
tion time (see option Subheading  3.2.9 ). 

  -s <###>, --oligo-size=<###>  

    <###>  is an integer value corresponding to the generated length of 
the tags.    

  This is the minimum number of tags required in the generated set 
of tags. These values must be set in relation with the option 
Subheading  3.2.1 . Looking for a too large set with a too small size 
of tags leads either to no solution or to a very long computation 
time. To limit this effect, see also option Subheading  3.2.9 . 

  -f <###>, --family-size=<###>  

    <###>  is an integer value corresponding to the size of tag set to 
generate.    

  This is the minimum Hamming distance  d  H  between two tags of 
the solution set. This distance is associated with the chance of mis-
assigning a sequence to a sample (see the parts Subheadings  2.3  
and  2.4 ). Increasing the distance reduces the probability of assig-
nation errors but reduces the size of the tag set (see options 
Subheadings  3.2.1  and  3.2.2 ). 

  -d <###>, --distance=<###>  

    <###>  is an integer value corresponding to the minimum distance 
between two tags.    

 Installing OBITools Package

 3.2. OligoTag Options

 Length of the Tags

 Size of the Set of Tags

 Minimum Hamming 
Distance Between Two 
Tags
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  This option lexically constraints a tag to be acceptable in a set by 
limiting the sum of G and C nucleotides. This can be used to limit 
the nonequivalent impact of GC rich and AT rich tags on the 
primer melting temperature. This constraint reduces the maximum 
size of the set of potentially identi fi able tags. 

  -g <###>, --gc-max=<###>  

    <###>  is an integer value corresponding the maximum number of 
G or C nucleotides acceptable in a tag    

  Using the IUPAC code (Table  3 ), you can specify exactly the pat-
tern of the tags to generate. The pattern must have the same length 
than the oligonucleotide size (see options Subheading  3.2.1 ) and 
must be constituted of a series of one of the IUPAC codes. If you 
set the oligonucleotide size to 6 using the option  -s 6  and specify a 
pattern  GNNBNR  using the option  -a gnnbnr , you will only accept 

 Maximum Number of G or 
C Nucleotides per Tag

 Acceptable Tag Pattern

   Table 3 
  Nucleic IUPAC code used to represent 
nucleotides   

  Code    Nucleotide  

 A  Adenine 

 C  Cytosine 

 G  Guanine 

 T  Thymine 

 U  Uracil 

 R  Purine (A or G) 

 Y  Pyrimidine (C, T, or U) 

 M  C or A 

 K  T, U, or G 

 W  T, U, or A 

 S  C or G 

 B  C, T, U, or G (not A) 

 D  A, T, U, or G (not C) 

 H  A, T, U, or C (not G) 

 V  A, C, or G (not T, not U) 

 N  Any base (A, C, G, T, or U) 
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tags starting on their 5  ¢   end with  G , with no  A  at their fourth position 
and a purine (A or G) at their 3  ¢   extremity. A too restrictive pattern 
can drastically reduce the maximum size of the potentially 
identi fi able tag set.  

  -a <IUPAC pattern>, --accepted=<IUPAC pattern>  
    <IUPAC pattern>  a string describing the IUPAC pattern of accept-
able tags.    

  Reciprocally to the Subheading  3.2.5  option described above, 
you can specify a pattern indicating the tag that must not be 
include in a set using the IUPAC code (Table  3 ). Using this 
option can drastically reduce the maximum size of the potentially 
identi fi able tag set. 

  -r <IUPAC pattern>, --rejected=<IUPAC pattern>  
    <IUPAC pattern>  a string describing the IUPAC pattern of unac-
ceptable tags.    

  Homopolymers may cause many PCR and sequencing errors, espe-
cially when using the GS-FLX technology. To limit sample missas-
signation, it is reasonable to limit the length of homopolymers in 
tags to two. Only tags with no homopolymer longer than the 
speci fi ed limit will be retained in the tag set. 

  -p <###>, --homopolymer=<###>  
    <###>  is an integer value corresponding the maximum length of 
an homopolymer.    

  This reciprocal option of the previous one is normally less useful. 
Only tags with at least one homopolymer longer or equal to the 
speci fi ed limit can be retained in a tag set. 

  -P <###>, --homopolymer-min=<###>  
    <###>  is an integer value corresponding the minimum length of an 
homopolymer.    

  Computation of a tag set is divided into two steps. During the  fi rst 
one, the Hamming distance graph is built according to all the 
options speci fi ed. Then a maximum clique algorithm looks for the 
cliques larger than the family size limit. If you ask for a too large 
tag set, this second part can be in fi nitely long. So it is useful to 
specify a time out limit (in seconds) for this search. In practice, it is 
really rare to  fi nd an interesting solution in more than ten minutes, 
so 600 s is a good compromise. 

  -T <###>, --timeout=<###>  

 Non acceptable Tag Pattern

 Maximum Homopolymer 
Length

 Minimum Homopolymer 
Length

 Computation Time Out
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    <###>  is an integer value expressed in seconds indicating the maxi-
mum time that the program can spend to look for a set of the 
required size. If this time is over, then the largest set of tags found 
is returned instead.     

  OligoTag is a unix command line program and must be used from a 
unix terminal windows. From a unix shell, by typing the following 
command line (Listing 5), we look for a solution corresponding to 
the graph presented in Fig.  3 . The option −  s  2 indicates the size of the 
word (i.e., tag length). The option −  f  1 indicates the minimum size 
of the desired set of tags. The option −  d  2 indicates the minimum 
Hamming distance  d  H . Finally, the −  r   CN  rejects all words matching 
a given pattern (here  CN  with  N  meaning  A ,  C ,  G , { or } T ). 

 unix–shell > oligoTag –s 2 –f 1 –d 2 –r CN
Build good words graph . . .
Initial graph size : 12 edge count : 36
aa
gc
tg
unix–shell >     

 The proposed solution is reported in Fig.  4 . As the exact solu-
tion of the problem de fi ned in part Subheading  2.6  cannot be 
computed in a reasonable time, oligoTag cannot guaranty to  fi nd 

 3.3. Running  oligoTag 

TT
GG

AC

TA

AG

GT

GC

TG

AT

TC

AA

GA

  Fig. 4.    Solution proposed by oligoTag for DNA word of length 2: Solution proposed by olig-
oTag is reported on this graph with the  fi lled edges. This clique is maximum, you cannot 
add another vertex without rejection of the formula  2.7 . In this particular case, this solution 
also corresponds to one of the largest cliques in this graph.       
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the largest tag set. OligoTag will just try to identify a clique that 
cannot be extended with a cardinality greater than a threshold 
de fi ned via the option −  f .  

 OligoTag is a standard unix command, so by using the  >  redi-
rection character you specify to save the output of the oligoTag 
program to the  mytag.txt  text  fi le. You are free to choose the out-
put  fi le name. The cat command allows you to read the content of 
the newly created  fi le (Listing 6). 

 unix–shell > oligoTag –s 2 –f 1 –d 2 –r CN > mytag . txt
Build good words graph . . .
Initial graph size : 12 edge count : 36
unix–shell > cat mytag . txt
aa
gc
tg
unix–shell >       

 

 All these tag lists were computed with oligoTag specifying a mini-
mum Hamming distance of 3 and no homopolymer longer than 2 
(see Table 4).  

 

 The OBITools are also useful for analyzing tagged raw sequences. 
They allow identifying and trimming the ampli fi cation primers and 
tags. They allow assigning sequences to a sample according to its 
tag and distributing these annotated sequences according to their 
associated sample and experiment in several  fi les. These tasks can 
be achieved using three OBITools programs:  ngs fi lter ,  obianno-
tate , and  obisplit . Several other OBITools exist and are not pre-
sented here despite their potential utility. Like  oligoTag , all other 
OBITools programs are unix command line tools. This allows 
chaining them using simple unix scripts and then automatizing the 
treatment by de fi ning more or less complex pipelines. 

  Based on the description of the PCR primers used and of the tag 
associated to each multiplexed sample,  ngs fi lter  looks for the for-
ward and reverse primers, matches the  fl anked tag, and annotates 
the sequence with its experiment and sample names. At the same 

 4. Examples 
of Precomputed 
Tag Lists

 5. Analyzing 
Tagged Sequences

 5.1. The  ngs fi lter  
Program
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   Table 4 
  Example of tag lists computed with oligoTag: Each part of the table corresponds to 
a different tag (4 to 7) length and family size options. The oligoTag unix command 
and the associated options used to generate each of these sets are indicated   

 Tag size : 4  Tag count : 11 

 unix command :  oligoTag -d 3 -p 2 -s 4 -f 10  

  aaca    acac    ctcc    gctt    tatc    aggt    tccg    tgaa    gtga  

  attg    caag  

 Tag size : 5  Tag count : 33 

 unix command :  oligoTag -d 3 -p 2 -s 5 -f 24  

  aacaa    aagcc    gactt    gtaat    cgagg    aatgg    cgcat    acaac    tctaa  

  gtcca    ggtta    attct    accgt    gtggc    caatc    gccag    acgta    tgatt  

  taacg    gcgct    agaca    catca    tacgc    ctgtt    tgtcc    agctc    aggag  

  ttaga    cttag    tagat    gatac    cctgc    atatg  

 Tag size : 6  Tag count : 108 

 unix command :  oligoTag -d 3 -p 2 -s 6 -f 96  

  aacaac    aaccga    ccggaa    agtgtt    ccgctg    aacgcg    ggctac    ttctcg    ttctcg  

  tcactc    gaacta    ccgtcc    aagaca    cgtgcg    ggtaag    ataatt    cgtcac    cgtcac  

  ttgagt    aagcag    ttgcaa    cacgta    taacat    tgcgtg    ggtcga    cactct    cactct  

  cttggt    tccagc    acttca    gcgaga    tggaac    gtacac    aagtgt    tcttgg    tcttgg  

  aaggtc    ggcgca    tcgacg    cctgtc    agaaga    aatagg    ggttct    taatga    taatga  

  gtaaca    aatcct    agaccg    tggcgg    ctataa    aatgaa    cgaatc    agagac    agagac  

  ttcgga    cgacgt    ctcatg    tgtata    acaacc    tcagag    gtagtg    agcact    agcact  

  gcggtt    acacaa    gctccg    tacttc    gttgcc    gtatgt    gtcaat    agcctc    agcctc  

  tcgtta    tgtggc    ctctgc    atggat    acaggt    tccgct    gtccgg    cattag    cattag  

  gaagct    gatatt    agctgg    cgcgat    acattg    ccaagg    accata    aggatg    aggatg  

  gtctta    tatacc    acctat    aggtaa    attcta    gtgatc    gacggc    gtgcct    gtgcct  

  tatctg    cggcca    cctaat    acgcgc    gtgtag    ttcctt    cagagc    tgatcc    tgatcc  

 Tag size : 7  Tag count : 316 

 unix command :  oligoTag -d 3 -p 2 -s 7 -f 300  

  aacaaca    aacacac    tccgact    tgcctgc    cgtcgca    ggtcagt    ccgctag    acgcggc    acgcggc  

  gaagctg    aacaggt    gccggcc    ggtcgag    taagcct    aacattg    aaccaag    agtgaag    agtgaag  

  ccggatc    ggtctcc    aaccgcc    ccggcct    ttcggcg    agtgcca    taagtgg    acggcga    acggcga  

  tcctaag    aacctga    ggtgatc    acggtac    aacgagc    tggcacc    taatagt    ccgtaat    ccgtaat  

(continued)
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 Tag size : 7  Tag count : 316 

 unix command :  oligoTag -d 3 -p 2 -s 7 -f 300  

  gaatgat    aacgccg    caagtat    acgtacc    ggtccta    aacggaa    tcctgca    ggtgtga    ggtgtga  

  taattaa    ggttaca    tccttgt    aagagta    ccgttca    aactatt    tccgcgc    agttggc    agttggc  

  cctaacg    ggttcgg    gacataa    ataacgc    actaagt    gcgatcc    tcgagcg    tacagtc    tacagtc  

  ggttgtt    gtaacag    ctcacct    ataagtg    cctagga    aagaagg    gcctctg    tgtatag    tgtatag  

  aagacct    gtaagct    tggccgt    tcgcagg    gcgcctt    taccgat    tcgccac    gtaatga    gtaatga  

  gaccttc    cctcata    gtacaat    cctccgc    cacgctt    gacgcga    tcgctct    aagcatc    aagcatc  

  gtacctc    aagccaa    cgtgact    actctaa    taaggta    gacgtct    gtactcg    gcttgaa    gcttgaa  

  cctgcaa    aagctcg    gtagacc    tgtgctg    aaggaat    tactacc    tcggttg    cacttac    cacttac  

  gtagcgt    cctggtg    gtaggaa    tatactt    actggct    tactcta    ctagtta    cctgtgt    cctgtgt  

  atatact    gcgtgtc    gagaatt    gtatagg    gaatata    acttcag    taagaac    gtatcca    gtatcca  

  aagtcgc    caatgtc    gctactc    aagtgag    cgctcgt    cgaacat    ctattgt    agaaccg    agaaccg  

  gtattac    ctcaata    tagatac    gtcaacg    agaagga    aatacga    agaatac    cgaattg    cgaattg  

  tctacca    aatagcg    gtcagac    cagctgt    ggtgcat    aatatat    ttaccga    agacagg    agacagg  

  aatcact    ctccgaa    agacgat    atcctat    tagctta    aatcctg    taggaga    agactca    agactca  

  tctcgcc    gtccgtg    acaagcc    cagtatg    taggctc    agagatt    ctcgcgg    cgaggcc    cgaggcc  

  gtcgatt    gcttagc    tagtccg    gcttcct    gtcgtag    tcttatt    aatgtcc    gagttga    gagttga  

  agtaacc    atctctc    tagtgtt    aattaac    ttatctg    cagaggc    gtccaga    cgatgaa    cgatgaa  

  ttatgcc    agatcta    tataagc    gtctcat    ctctggc    ggaagtc    catattc    ctcttcg    ctcttcg  

  tatagaa    cgcaagg    ttcacaa    catcagg    acaacaa    tacgatg    tgtggac    ctgacac    ctgacac  

  tgaatct    agcactt    catcgac    gtgaagc    agcagag    ttcatcc    gtgacta    acaatgg    acaatgg  

  ttccaac    acacaac    atgcagt    tgacgcg    agccata    gtgatat    acaccgt    cgagaga    cgagaga  

  acacgta    gtgccgg    ctgcgtt    gatggca    gactgcg    acagaca    atggcag    ctggacg    ctggacg  

  cggttgc    cattcat    cgcggat    agcggtc    acagctc    atggtct    acaggag    cgcgtca    cgcgtca  

  ttcgtga    agcgtgg    tcgaata    agctacg    tgatcac    cgctatc    ctgtaga    gtggttc    gtggttc  

  acatatg    agcttaa    atgttgg    cgtctat    cggaaca    ggcagca    acattat    tacacgg    tacacgg  

  tcaagtt    gtgtggt    accaatc    ttgagga    cttagat    ctacatg    aatgata    aggatgt    aggatgt  

  accatct    cttatca    gcactgc    accgcat    cggcctc    gttattg    ttgcgag    cttccag    cttccag  

  aggcgtg    attcttc    accgtta    gttcggc    acctaga    gtgcgca    ccatcga    tcagtcc    tcagtcc  

  aggtcat    ttggcca    cttgagc    attgctt    ccatgcg    aggtgca    acctgac    gttgccg    gttgccg  

  ttgtatc    ctgctcc    tgtaggt    caaccta    tgctgtg    acgactg    caacgct    gccacgt    gccacgt  

  taacaca    acgagat    ttgaact    taaccag    agtatta    taacggc    agtccac    gccgagg    gccgagg  

  caagcgc  

Table 4
(continued)
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time, the primers and tag copies are trimmed out and only the 
ampli fi ed part of the sequence is kept in the output. 

 The input  fi le can be a raw sequence  fi le in fastq or fasta for-
mat. It can also be a pair of fasta and quality  fi les as provided by 
GS-FLX sequencers. Depending on the input format, the output 
can be formatted in fasta or fastq. Fastq is an extension of fasta 
format including  per base quality values  (see Fig.  5 )  (  9  ) .  

  For simplicity reasons, only the most useful options of ngs fi lter will 
be listed below.  

  Like all OBITools, ngs fi lter usually automatically recognizes the 
input read  fi le format. However, you can specify the encoding 
quality schema of the fastq  fi les: 

    --sanger : input  fi le is in sanger fastq nucleic format (standard  ●

and default fastq format)  
   --solexa : input  fi le is in fastq nucleic format produced by a  ●

Solexa sequencer (Illumina 1.3+)  
   --illumina : input  fi le is in fastq nucleic format produced by an  ●

old Solexa sequencer (Solexa/Illumina 1.0 format)    

 For the fasta format, the  --fna  and the  --qual=< fi lename>  
options allows specifying that the fasta  fi le was produced by a 
GS-FLX sequencer and what the associated quality  fi le ( fi le with 
the  .qual  extension) is.  

  If the input  fi le contains quality data, then the default output for-
mat is fastq, otherwise fasta format will be used. Fastq outputs are 
always encoded following the Sanger rules. You can force the out-
put to fasta or fastq format using the following options, respec-
tively :  --fastq-output  or  --fasta-output . If the output if forced to 
fastq without providing quality data in the input, a default quality 
of 40 will be associated with each base.  

 The Main ngs fi lter Options

 Specifying the Input 
Format

 Specifying the Output 
Format

  Fig. 5.    The  fi rst two sequences of a Solexa run in fastq format: each sequence is described by four lines. The  fi rst line start-
ing with the  @  character is the equivalent of a fasta title line. The next line gives the sequence. The third line starting with 
a  +  character repeats the title line, and the fourth line corresponds to the encoded quality line.       
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  The  fi le describing all the samples multiplexed in one sequencer 
lane must follow the format presented in Fig.  6 . Its name is speci fi ed 
to ngs fi lter using either the short  -t < fi lename>  option or its long 
version  --tag-list=< fi lename> .   

  In this example,  ngs fi lter  is used to analyze a fastq  fi le named 
 myrun.fastq  produced by a Solexa sequencer. By using the  >  redi-
rection character, the output is saved to the  good.fastq  text  fi le. 
During the execution of  ngs fi lter , a progress bar with an estimation 
of the remaining computation time is displayed 

 unix–shell > ngs fi lter –t samples . tag ––solexa myrun . fastq > good . fastq
myrun . fastq 100.0 % | ###########################–] remain : 00:00:00
unix–shell >       

  ngs fi lter like other OBITools annotates the sequences in fasta or 
fastq format using a tag/value system. These tag/value pairs are 
included in the title line of each sequence (see Fig.  7 ).  obiannotate  
is used to change the annotation associated to each sequence.  

  After  ngs fi lter , you can clean the  fi le for keeping only the experi-
ment and sample annotations. The option  -k  allows specifying 
which annotation must be kept (see Listing 8). Then sequences 
will look like those presented in Fig.  8 . Cleaning the annotated 
sequences to keep only the  experiment  and  sample  annotations can 
be done following Listing 8.  

 unix–shell > obiannotate –k exper iment –k sample good. fastq > clean . fastq
good. fastq 100.0% | ###########################–] remain : 00:00:00
unix–shell >       

   Obisplit  allows distributing sequences from the  fi le annotated and 
cleaned by ngs fi lter and  obiannotate  into different  fi les according to 

 Speci fi ying the Sample 
Description File

 Running ngs fi lter

 5.2. The  obiannotate  
Program

 Running  obiannotate 

 5.3. The  obisplit  
Program

  Fig. 6.    Sample description  fi le: The full set of multiplexed samples must be described in a tabular text  fi le containing six 
columns. The  fi rst two describe, respectively, the experiment, and the sample, the third one the tag associated with this 
sample. The fourth and  fi fth columns indicate the forward and reverse PCR primers. The sixth column indicates if partial 
sequences (i.e., incomplete amplicons) are expected with  T  (True) or  F  (False).       

 



30 E. Coissac

  Fig. 7.    Output ngs fi lter  fi le formatted in fastq format: The  fi rst two sequences analyzed are provided. In contrary to the clas-
sical fastq format, the long title line is not repeated twice. Several  fi elds were added to the title line.  complemented=True  in 
the second sequence indicates that the reverse complement of the sequence has been used to  fi nd the primers.  head_qual-
ity  is the average quality of the  fi rst 10 bases of the sequence.  mid_quality  is the average quality of the central part of the 
sequence.  tail_quality  is the average quality of the last 10 bases of the sequence.  avg_quality  is the average quality of the 
whole sequence.  direct_primer  is the true sequence of the identi fi ed forward primer.  direct_score  is the alignment score of 
sequence with the forward primer.  direct_match  is the real sequence of the forward primer identi fi ed on the sequence. 
 reverse_primer  is the true sequence of the identi fi ed reverse primer.  reverse_score  is the alignment score with the reverse 
primer.  reverse_match  is the real sequence of the reverse primer identi fi ed on the sequence.  cut  indicates where the original 
sequence was truncated.  tag_length  is the length of the tag found.  direct_tag  is the sequence of the tag found on the 5  ¢   side 
of the forward primer.  reverse_tag  is the sequence of the tag found on the 5  ¢   side of the reverse primer.  sample  is the sample 
id associated with the sequence.  experiment  is the experiment id associated with the sequence.       

  Fig. 8.    Two sequences cleaned by  obiannotate.        

the value of one of their annotations. This can be seen as a demul-
tiplexing of the sequences. A  fi rst level of demultiplexing must be 
done on the base of the experiment: in Listing 9, the  clean.fastq   fi le 
is splitted in as many  fi les as necessary, each  fi le storing the subset of 
sequences with the same  experiment  value. All  fi le names will begin 
by the pre fi x  myrun_  and  fi nish with the  experiment  value. 

 unix–shell > obisplit –t exper iment –p myrun clean . fastq

 

 



312 Designing Tags for Multiplexed Samples

good . fastq 100.0% | ###########################–] remain : 00:00:00

unix–shell >     

 A second split of each of the created  fi le can then be done 
according to the sample tag.          
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