Chapter 2

OligoTag: A Program for Designing Sets of Tags
for Next-Generation Sequencing of Multiplexed Samples

Eric Coissac

Abstract

Next-generation sequencing systems allow high-throughput production of DNA sequence data. But this
technology is more adapted for analyzing a small number of samples needing a huge amount of sequences
rather than a large number of samples needing a small number of sequences. One solution to this problem
is sample multiplexing. To achieve this, one can add a small tag at the extremities of the sequenced DNA
molecules. These tags will be identified using bioinformatics tools after the sequencing step to sort
sequences among samples. The rules to apply for selecting a good set of tags adapted to each situation are
described in this chapter. Depending on the number of samples to tag and on the required quality of assig-
nation, different solutions are possible. The software oligoTag, a part of OBITools that computes these
sets of tags, is presented with some example sets of tags.

Key words: Next-generation sequencing, Multiplexing, Sample, Tags

1. Introduction

High-throughput sequencers allow for easily and quickly generating
a huge number of sequences. Currently, two systems are mainly
used: the 454 GS FLX from Roche® and the Solexa system from
Illumina®;. In their current versions, the 454 GS FLX produces 1
million sequence reads per run and the Solexa machine produces
1 billion reads. The characteristics of these machines and of the
sequences produced make these two technologies more comple-
mentary than concurrent. Many molecular ecological studies can
take advantage of these new systems allowing the elaboration of
large-scale experimental protocols. Many useful techniques for
these studies rely on PCR (Polymerase Chain Reaction) amplicon
sequencing. Before high-throughput sequencing technologies,
these PCR-based techniques required a cloning step for building a

Frangois Pompanon and Aurélie Bonin (eds.), Data Production and Analysis in Population Genomics: Methods and Protocols,
Methods in Molecular Biology, vol. 888, DOI 10.1007/978-1-61779-870-2_2, © Springer Science+Business Media New York 2012

13

14 E. Coissac

DNA library where each clone contained one DNA molecule syn-
thesized during the PCR amplification. A subset of clones from the
library could then be sequenced to estimate the global diversity
included in the PCR amplicon. Such an approach limited the
number of sequences that could be produced. Actually, in most of
the studies, a few thousands of clones were typically analyzed
(e.g., (1-5)). Now the new sequencing techniques allow direct
sequencing of individual DNA molecules composing a PCR ampli-
con without any cloning step. This has many advantages, including
protocol simplification, as cloning PCR amplicons is not so easy
even with commercialized kits. The cloning was also a potential
source of bias for library representativity. But the main advantage
is certainly that these new machines allow parallel sequencing of a
very large number of individual sequences. It is thus possible to
reach a higher sequence depth leading to a better coverage of the
sample (e.g., (6)). Depending on the machine used, one can physi-
cally divide one run into up to eight or sixteen areas, each of them
receiving a sample. Per sequencing area we might obtain 75,000
and 50,000,000 sequence reads for a 454 GS FLS or a Solexa
system, respectively. Such high coverages are excessive for specific
experiments where a higher sample number and a smaller sequenc-
ing depth are required. The strategy used to reach this aim is then
to mix several samples in one sequencing area. For allowing indi-
vidual analysis of each sample, a short sample-specific oligonucle-
otide (i.e., a tag) is added at the extremity of each molecule of each
sample before sequencing (e.g., (7)). This tag will allow sorting
sequences corresponding to each sample after the sequencing step
using appropriate bioinformatic tools.

2. Theoretical
Background

2.1. The Simplest
System

We can imagine several strategies for adding such tags at the end of
the DNA molecules constituting a sample. They can rely on a ligation
step adding some adaptors including the sequence tag or the tags
can be directly added to the PCR primers during their synthesis.
This last strategy requires to order sets of primer pairs differing
only by their tags. Whatever the strategy selected, the most impor-
tant decision to make is to define which sequences should be used
as tag. In a wonderful world, one could address this question only
by taking into account the number of samples that need to be
identified. The number of different DNA words of length » can be
calculated from the formula 4”. For tagging N samples, you have
just to select the smallest n as 4> N. As example, to tag N=300
samples, you will need to use tags of length 5 (4*=256 and

2.2. Dealing with
Sequencing Errors

2 Designing Tags for Multiplexed Samples 15

45=1,024). Then, by enumerating the 300 first words of length 5
(AAAAA, AAAAC, AAAAG, etc.), you can obtain your tag list.

Unfortunately, we are not in a wonderful world, and sequencers
produce sequences with errors. Thus, the tag attached to each
molecule can be sometimes read correctly and sometimes read
erroneously. We are faced with a piece of information transmitted
through a noisy channel. The emitter, e.g., the experimentalist,
designs or emits a correct tag. The transmitter device is composed
of a chained set of complex operations: primer synthesis, PCR
amplification, sequencing process. Finally, the receiver is once again
the scientist. This metaphor allows for linking our problem to the
transmission information theory, a well-known problem in com-
puter science. If we build our tag set (i.e., a code in the informa-
tion transmission theory) following the simplest model and if an
error occurs during the message transmission, we will read a wrong
code after reception. Without the possibility to detect this error,
we will assign the attached sequence to the wrong sample (see
Fig.1). Such a code is called a “no-error tolerant code”.

For detecting reading errors, we must use a subset of all the
possible words. Once we choose one word as a tag, i.e., agggt, if we
preclude all words differing by only one letter (e.g., aGgyt, aclyt,
Gegt, etc.), we guarantee that reading a tag with one error gives
an erroneous tag corresponding to no sample. Given the Hamming
distance (4,;) equal to the number of differences between two
words, we can define a code as a set of DNA words where for all
possible word pairs (w,,w)), dy,(w,w)>2. This new code is called a
“one-error tolerant code” (see Fig.2a).

Similarly we can build a “two-error tolerant code” by selecting a
subset of words in such a way that for all possible word pairs
(w,w), dy\(w,w)=3. This new code will lead to a sample misassigna-
tion only if more than two bases of the tag are erroneously read. This
new code has a second property. If we consider that we can produce
no more than one error during the transmission process, such a code
not only detects the error but also allows correcting it. This is possible
because only one of the used tags is present at a Hamming distance
of one from the tag read (see Fig.2b). Thus, a two-error tolerant
code can be considered as a “one-error autocorrective code.”

acggt = aGggt

a particular tag transmission chain an erroneously received tag

Fig. 1. Reading a tag of five nucleotides with one error can lead to sample missassigna-
tion. If all possible DNA tags composed of five nucleotides are assigned to a sample, we
are not able to detect reading errors. We produce a no-error tolerant code. The capital
letter corresponds to the reading error.

16 E. Coissac

2.3. Choosing a Set
of Tags

a 2 errors

1 error 1 error

— acC gt — acCgA

Sample A No sample Sample B
b 3 errors
2 errors
1 error 1 error 1 error
acg gt — acC g¢ — acC gA — TeCgA

Sample A No sample No sample Sample B

Fig. 2. Reading a tag of five nucleotides (a) If tag acggt is assigned to sample A and tag
accga to sample B, when the tag accgt is read we can deduce that it is an error and dis-
card the associated sequence. This corresponds to a one-error tolerant code. (b) If sample
B is associated to tag fccgainstead of accga. When the tag accga is read, we conclude to
an error. This error can be explained as one reading error of sample B tag or as two read-
ing errors of the sample A tag. This corresponds to a two-error tolerant code. If we assume
that no more than one error is possible, only the first hypothesis is acceptable. We can
keep the sequence and assign it to the sample B. Thus, we use the code as a“one-error
autocorrective code”.

The choice of an adequate tag system depends mainly on two
parameters: the number of samples to tag and the number of
expected errors that is a combination of the probability to misread
a base of the tag and the total number of sequences produced by
the sequencer. To objectively decide, we can develop a simple
probabilistic model. If we consider a homogeneous misreading
probability P and tags of length / then the probability P, to
read a tag with ¢ errors can be expressed as a binomial dlstnbutlon
(see Eq. 1).

lta ¢ . €
I)],e - (6g] I)mis (1 _I)mis)UV’E) (1)

l
tag
The binomial part (¢ J estimates all the possible ways to posi-
tion ¢ errors in a tag of length /_and is computed using Eq. 2:

|
ltag — ltag :) (2)
e el (l, —e)!

Using Eq. 1, it is easy to estimate how many tags would be
read with 1,2, 3, or 4 errors, when running a full GS-FLX 454 run
or Solexa lane with one or 50 millions of reads, respectively (see
Table 1). Even with a low error rate, the large number of reads
leads to an expected large number of tags with up to three reading
errors. This demonstrates the importance of taking into account
errors when designing a set of tags. Table 1 shows that for a

Table 1

2 Designing Tags for Multiplexed Samples 17

Estimated numbers of misread tags: count computation is done for a tag
length Itag =6, the three used error rates correspond to values usually observed
from 454 or Solexa runs. (e) is the number of errors in the tag

for a full 454 run for a Solexa lane
106 reads 50.108 reads
errors Error rate (Ppis) errors Error rate (Prus)

(e) 0.20% 0.25% 0.30% (e) 0.20% 0.25% 0.30%
1 11880 14813 17731 1 594023 740671 886580
2 59 92 27 2 2976 4640 6669

3 0.16 0.31 0.54 3 7 15 26

4 24107%* 5810°%* 12103 4 1.21072 291072 61072

2.4. Tagging Both Ends
of the PCR Amplicon

GS-FLX 454 run with P_ =0.0025, a tagging system of 6 nucle-
otides with a Hamming distance greater or equal to three will lead
to misassign on average one sequence to a wrong sample every
three runs while requiring discarding 14,905 reads (approxima-
tively, 1.5% of the sequences). Considering the same tagging sys-
tem as a one-error autocorrective code, we correctly reassign
14,813 of these reads to their respective samples but 92 reads with
two errors are misassigned. Depending on the effect of such a level
of misassignation, an autocorrective code can be considered as a
good or a bad solution.

When sequencing a short enough PCR amplicon to be fully
sequenced in a single read, it is possible to tag it at both ends
(i.e., tagging the forward and the reverse primers). This double tag-
ging reduces the sample misassignation probability. By checking the
tags at ecach extremity, the only cause for misassignation is to observe
the same errors on both tags. Let’s consider that a reading error can
change a nucleotide equiprobably into any of the three others, then
we deduce Eqs. 3 and 4 from Eq. 1 to estimate the probability F .

of observing the same ¢ errors on both extremities of a read. This
probability function is used for estimating frequencies of sample
misassignation with a double-tag system (see Table 2):

¢ (gg =)
P : — 1)] . 1)mis 1 _ l)mis (3)
be “\'3 3
I ir.
) (eg] A _5>(’) ®)

When tags are added to both ends, even with only two difter-
ences between tags, almost no misassignation is possible (Table 2).
By comparison, with a single-end tagging system, even with four
differences between tags we cannot achieve the same level of

18 E. Coissac

Table 2

Estimated numbers of sample misassignations with a double-tag system:
computation is done for a double-tag system of length l,,=6 without autocor-
rection. The three used error rates correspond to values usually observed from
454 or Solexa runs.(e) is the number of errors in the tag

for a full 454 run for a Solexa lane
109 reads 50.108 reads
erTors Error rate (Ps) erTors Error rate (Pps)

(e) 0.20% 0.25% 0.30% (e) 0.20% 0.25% 0.30%

1 7 12 17 1 394 614 882

2 2.6 1075 6.4107° 1.310~* 2 1.31073 321072 6.610°3
3 4.710711 1810719 5310°10 3 241077 9107°? 2.710°8
4 4710717 2810716 1.210°!® 4 241071 14107 6107 ™

2.5. Lexical
Constraints on Tag
Design

2.6. Building a Set
of Tags

confidence (Table 1). But as the two copies of the tag can be
misread independently, the frequency of discarded sequences is
twice higher with a double-tag system than with a single-tag one
(see Tables 1 and 2)

Like for a single-tag system, a double-tag system with a
Hamming distance greater or equal to three can also be used as a
one error autocorrective code. In such a system, a sequence with
one or two erroneously read tags is reassigned to the good sample
if when corrected, both tags match the same sample.

A tag is a DNA word. To limit misreading, once the tag length is
fixed, lexical rules can be set to restrict the usable words. For exam-
ple, knowing the difficulties to read unambiguously homopolymers
with the GS-FLX 454, we should exclude tags with more than 4
consecutive identical letters. According to the same principle, if a
set of tags is designed to be linked to a PCR primer with a nucle-
otide X (z.e., A, C, G,or T) atits 5" end we should avoid this nucle-
otide at the 3’ end of the tag. Also, if a tag is linked to the primers
during their synthesis, we can use only tags with a precise G+ C
content to reduce the effect of the heterogeneity of the primer
melting temperatures (1m).

While some approximations were used to build efficiently a set of
tags (8), the exact way for defining a set of tags relies on graph
theory. In mathematics, a graph G(V, R) is defined by a set of nodes
or vertices V and a relation R describing a set of edges E linking
some node pairs. In our particular case, V is the set of all words
matching our lexical constraints (length, G+ C content, maximum
homopolymer length, etc.).

2 Designing Tags for Multiplexed Samples 19

Fig. 3. Hamming graph for DNA words of length 2: This graph is built with all words of size
two that do not begin by a C so V={ AA AC,AG,AT, GA GC,GG,GT,TA TC, TG, TT}. The
relation Ris defined for a Hamming distance between two words d,>2.

V'={w|wis a DNA words of length / matching lexical constraints}. (5)

R the set of edges is composed of DNA word pairs with a
Hamming distance () greater or equal to ¢ (i.e., the minimum
number of differences between two tags).

R={<Wi’wj> eVXVldH(WnWj) 2 e}. (6)

In such a graph (see Fig. 3), a usable set of tags T'is defined as
a subset of V forming a complete subgraph (see Eq. 7). In the
graph theory, T defines a clique. Identifying the best set of tags is
equivalent to looking for the largest clique in the graph G.
Unfortunately, this requires a computational time that increases
exponentially with the size of the graph. So only approximate solu-
tions are computable.

T <V insuchawaythat V{w,w;} cT = (w,w,) eR. (7)

3. The oligoTag
Program

3.1. Installing OBITools

OligoTay is part of OBITools (http://www.grenoble.prabi.fr/
trac/OBITools), a set of UNIX command line programs dedicated
to the analysis of the output from high-throughput sequencers.

To install OBITools, you need access to a Unix computer with
Python language installed and a C compiler. It can be a PC with
Linux or a Macintosh computer or any other Unix system. All the

http://www.grenoble.prabi.fr/trac/OBITools
http://www.grenoble.prabi.fr/trac/OBITools

20 E. Coissac

3.1.1. Checking
Prerequisite

following commands must be entered in a unix terminal window.
Usually, on a linux machine, you can start such a windows from the
application /utilities menu. On Macintosh, a similar application is
available in the Applications/Utilities folder.

To check if'a C compiler is installed on your system, follow the
instructions presented in Listing 1. If a gcc C compiler is installed
on your computer, just by running the gcc command without
argument you will have an error message “no input file” indicating
that you have not specified a ¢ file to compile.

unix—shell > gcc

1686—-apple—darwinl0—gcc —4.2.1: no input files

Listing 2 shows the result obtained if no C compiler is installed
on your system: if a command is not installed on a system an error
message “Command not found” is generated, then you must install
a C compiler. If you are a Linux user, you must install the corre-
sponding package from your package manager. If you are a
Macintosh user, you need to install the “Developer tools” package
available on the system DVD or on the Apple web site.

unix—shell > gcc

gce: Command not found

You need Python 2.6 or 2.7, which should be available on all
modern Unix system. To check your python version, follow the
instruction presented in Listing 3. From a unix shell, you can run
the python interpreter in interactive mode by typing the command
python. This displays the python version, in our case python version
2.7. To quit python, just press keys Ctrl-D.

unix—shell > python
Python 2.7 (r27:82500, Jul 6 2010, 10:43:34)
[GCC 4.2.1 (Apple Inc. build 5659)] on darwin

Type “ help”, “copyright”, “credits” or “license “for more
information.

>>>

MacOSX users are invited to install a version of python down-
loadable from the python web site (http://www.python.org) even
if'a version of python is included by default in the system. Be care-
tul, python 2.x and 3.x versions are almost incompatible, so don’t
use python 3.x with OBITools.

Finally, the SetupTool python package must be installed. First,
you have to check the presence of the easy_install command as you
did for gcc. If this command is absent, you can download it from
the python package index web site (http: //www.pypi.org) and follow
the corresponding installation instructions.

http://www.python.org
http://www.pypi.org

Installing OBITools Package

3.2. OligoTag Options

Length of the Tags

Size of the Set of Tags

Minimum Hamming
Distance Between Two
Tags

2 Designing Tags for Multiplexed Samples 21

OBITools can now be easily installed using the easy_install com-
mand (Listing 4). It can be necessary to begin this command line
by the word sudo to access the administrator privilege.

unix—shell > easyinstall obitools

unix—shell >

Several options are available for specifying characteristics of the
generated tag set. As in many unix programs, most of them exist in
two forms. The short form corresponds to one letter preceded by
a dash (e.g., -s). The long one is a full word preceded by a double
dash (e.g., --oligo-size). Both forms of the same option are listed
together. When an option requires a parameter like --oligo-size or
-s, in the short form the parameter must follow directly the option
(-s 5), whereas in the long form the option name and the parameter
value must be separated by an equal sign (--oligo-size=5).

The length of the oligonucleotide is strongly related to the maxi-
mum size of the potentially identifiable tag set (see Subheading 2).
The length must be an integer value greater or equal to 1. Values
larger than 8 lead to huge memory usage and very long computa-
tion time (see option Subheading 3.2.9).

-s <###> --oligo-size=<###>

<###> is an integer value corresponding to the generated length of
the tags.

This is the minimum number of tags required in the generated set
of tags. These values must be set in relation with the option
Subheading 3.2.1. Looking for a too large set with a too small size
of tags leads either to no solution or to a very long computation
time. To limit this effect, see also option Subheading 3.2.9.

-f <###> --family-size=<###>

<###> is an integer value corresponding to the size of tag set to
generate.

This is the minimum Hamming distance 4, between two tags of
the solution set. This distance is associated with the chance of mis-
assigning a sequence to a sample (see the parts Subheadings 2.3
and 2.4). Increasing the distance reduces the probability of assig-
nation errors but reduces the size of the tag set (see options
Subheadings 3.2.1 and 3.2.2).

-d <###>, --distance=<###>

<###> is an integer value corresponding to the minimum distance
between two tags.

22 E. Coissac

Maximum Number of G or
C Nucleotides per Tag

Acceptable Tag Pattern

This option lexically constraints a tag to be acceptable in a set by
limiting the sum of G and C nucleotides. This can be used to limit
the nonequivalent impact of GC rich and AT rich tags on the
primer melting temperature. This constraint reduces the maximum
size of the set of potentially identifiable tags.

-g <###>, --gc-max=<###>

<###> is an integer value corresponding the maximum number of
G or C nucleotides acceptable in a tag

Using the ITUPAC code (Table 3), you can specify exactly the pat-
tern of the tags to generate. The pattern must have the same length
than the oligonucleotide size (see options Subheading 3.2.1) and
must be constituted of a series of one of the ITUPAC codes. If you
set the oligonucleotide size to 6 using the option -s 6 and specify a
pattern GNNBNR using the option -a gnnbnr, you will only accept

Table 3

Nucleic IUPAC code used to represent
nucleotides

Code Nucleotide

A Adenine

C Cytosine

G Guanine

T Thymine

8] Uracil

R Purine (A or G)

Y Pyrimidine (C, T, or U)

M CorA

K T, U,or G

\\% T, U,or A

S CorG

B C, T, U, or G (not A)

D A, T, U, or G (not C)

H A, T, U, or C (not G)

Vv A, C, or G (not T, not U)
N Any base (A, C, G, T, or U)

Non acceptable Tag Pattern

Maximum Homopolymer
Length

Minimum Homopolymer
Length

Computation Time Out

2 Designing Tags for Multiplexed Samples 23

tags starting on their 5’ end with G, with no A at their fourth position
and a purine (A or G) at their 3’ extremity. A too restrictive pattern
can drastically reduce the maximum size of the potentially
identifiable tag set.

-a <IUPAC pattern>, --accepted=<IUPAC pattern>

<IUPAC pattern> a string describing the ITUPAC pattern of accept-
able tags.

Reciprocally to the Subheading 3.2.5 option described above,
you can specify a pattern indicating the tag that must not be
include in a set using the IUPAC code (Table 3). Using this
option can drastically reduce the maximum size of the potentially
identifiable tag set.

-r <IUPAC pattern>, --rejected=<IUPAC pattern>

<IUPAC pattern> a string describing the ITUPAC pattern of unac-
ceptable tags.

Homopolymers may cause many PCR and sequencing errors, espe-
cially when using the GS-FLX technology. To limit sample missas-
signation, it is reasonable to limit the length of homopolymers in
tags to two. Only tags with no homopolymer longer than the
specified limit will be retained in the tag set.

-p <###>, --homopolymer=<###>

<###> is an integer value corresponding the maximum length of
an homopolymer.

This reciprocal option of the previous one is normally less useful.
Only tags with at least one homopolymer longer or equal to the
specified limit can be retained in a tag set.

-P <###>, --homopolymer-min=<###>

<###> is an integer value corresponding the minimum length of an
homopolymer.

Computation of a tag set is divided into two steps. During the first
one, the Hamming distance graph is built according to all the
options specified. Then a maximum clique algorithm looks for the
cliques larger than the family size limit. If you ask for a too large
tag set, this second part can be infinitely long. So it is useful to
specify a time out limit (in seconds) for this search. In practice, it is
really rare to find an interesting solution in more than ten minutes,
so 600s is a good compromise.

ST <###>, --timeout=<###>

24 E. Coissac

3.3. Running oligoTag

<###> is an integer value expressed in seconds indicating the maxi-
mum time that the program can spend to look for a set of the
required size. If this time is over, then the largest set of tags found
is returned instead.

OligoTag is a unix command line program and must be used from a
unix terminal windows. From a unix shell, by typing the following
command line (Listing 5), we look for a solution corresponding to
the graph presented in Fig. 3. The option - s 2 indicates the size of the
word (i.e., tag length). The option-f1 indicates the minimum size
of the desired set of tags. The option—4 2 indicates the minimum
Hamming distance 4. Finally, the -7 CN rejects all words matching
a given pattern (here CN with N meaning A, C, G, { or }T).

unix—shell > oligoTag —s 2 -1 —-d 2 -r CN
Build good words graph . . .
Initial graph size : 12 edge count : 36
aa
gc
tg
unix—shell >
The proposed solution is reported in Fig.4. As the exact solu-

tion of the problem defined in part Subheading 2.6 cannot be
computed in a reasonable time, oligoTag cannot guaranty to find

Fig. 4. Solution proposed by oligoTag for DNA word of length 2: Solution proposed by olig-
oTag is reported on this graph with the filled edges. This clique is maximum, you cannot
add another vertex without rejection of the formula 2.7. In this particular case, this solution
also corresponds to one of the largest cliques in this graph.

2 Designing Tags for Multiplexed Samples 25

the largest tag set. OligoTag will just try to identify a clique that
cannot be extended with a cardinality greater than a threshold
defined via the option - f.

OligoTag is a standard unix command, so by using the > redi-
rection character you specify to save the output of the oligoTag
program to the mytag.txt text file. You are free to choose the out-
put file name. The cat command allows you to read the content of
the newly created file (Listing 6).
unix—shell > oligoTag —s 2 -f 1 —d 2 -r CN > mytag . txt
Build good words graph . . .

Initial graph size : 12 edge count : 36
unix—shell > cat mytag . txt

aa

gc

tg

unix—shell >

4. Examples
of Precomputed
Tag Lists

All these tag lists were computed with oligoTag specitying a mini-
mum Hamming distance of 3 and no homopolymer longer than 2
(see Table 4).

5. Analyzing
Tagged Sequences

5.1. The ngsfilter
Program

The OBITools are also useful for analyzing tagged raw sequences.
They allow identifying and trimming the amplification primers and
tags. They allow assigning sequences to a sample according to its
tag and distributing these annotated sequences according to their
associated sample and experiment in several files. These tasks can
be achieved using three OBITools programs: ngsfilter, obianno-
tate, and obisplit. Several other OBITools exist and are not pre-
sented here despite their potential utility. Like oligoTag, all other
OBITools programs are unix command line tools. This allows
chaining them using simple unix scripts and then automatizing the
treatment by defining more or less complex pipelines.

Based on the description of the PCR primers used and of the tag
associated to each multiplexed sample, ngsfilter looks for the for-
ward and reverse primers, matches the flanked tag, and annotates
the sequence with its experiment and sample names. At the same

26 E. Coissac

Table 4

Example of tag lists computed with oligoTag: Each part of the table corresponds to
a different tag (4 to 7) length and family size options. The oligoTag unix command
and the associated options used to generate each of these sets are indicated

Tag size : 4 Tag count : 11

unix command : oligoTag -d 3-p2-s4-f10

aaca acac ctee gctt tatc aggt tccg tgaa gtga
attg caag

Tag size : 5 Tag count : 33

unix command : oligoTag -d 3-p2 -s 5 -f24

aacaa aagcc gactt gtaat cgagg aatgg cgcat acaac tctaa
gtcca ggtta attct accgt gtgec caatc gccag acgta tgatt
taacg gegcet agaca catca tacgc ctgtt tgtce agctc aggag
ttaga cttag tagat gatac cctge atatg

Tag size : 6 Tag count : 108

unix command : oligoTag -d 3 -p 2 -s 6 -f 96

aacaac aaccga ccggaa agtgtt ccgetg aacgcg ggctac ttctcg ttctcg
tcactc gaacta ccgtec aagaca cgtgeg ggtaag ataatt cgtcac cgtcac
ttgagt aagcag ttgcaa cacgta taacat tgegtg ggtcga cactct cactct
cttggt tccage acttca gcgaga tggaac gtacac aagtgt tcttgg tcttgg
aaggtc ggcgea tcgacg cctgte agaaga aatagg ggttct taatga taatga
gtaaca aatcct agaccg tggege ctataa aatgaa cgaatc agagac agagac
ttcgga cgacgt ctcatg tgtata acaacc tcagag gtagtg agcact agcact
gegett acacaa gctecg tacttc gttgcc gratgt gtcaat agcctc agcctc
tcgtta tgtggc ctctge atggat acaggt tceget gtcegg cattag cattag
gaagct gatatt agctgg cgegat acattg ccaagg accata aggatg aggatg
gtctta tatacc acctat aggtaa attcta gtgatc gacggc gtgcct gtgcct
tatctg cggeca cctaat acgegce gtgtag ttectt cagagc tgatcc tgatcc
Tag size : 7 Tag count : 316

unix command : oligoTag -d 3 -p 2 -s 7 -f 300

aacaaca aacacac tccgact tgectge cgtcgea ggtcagt ccgetag acgeggc acgeggc
gaagctg aacaggt geegegcc ggtcgag taagcct aacattg aaccaag agtgaag agtgaag
ccggatc ggtctee aaccgcec ccggect ttcggcg agtgcca taagtgg acggega acggcega
tcctaag aacctga ggtgatc acggtac aacgagc tggcacc taatagt ccgtaat ccgtaat

(continued)

2 Designing Tags for Multiplexed Samples 27

Table 4
(continued)

Tag size : 7 Tag count : 316

unix command : oligoTag -d 3 -p 2 -s 7 -f 300

gaatgat aacgccg caagtat acgtacc ggtecta aacggaa tcctgea ggtgtga ggtgtga
taattaa ggttaca tecttgt aagagta cegttca aactatt tecgege agttgge agttggc
cctaacg ggttcgg gacataa ataacgc actaagt gegatce tcgagcg — tacagtc tacagtc
ggttgtt gtaacag ctcacct ataagtg cctagga aagaagg gcctctg tgtatag tgtatag

aagacct gtaagct tggcegt tcgcagg gcgectt taccgat tcgecac gtaatga gtaatga
gaccttc cctcata gtacaat ccteege cacgctt gacgcga tcgetct aagcatc aagcatc
gtacctc aagccaa cgtgact actctaa taaggta gacgtct gtactcg gcttgaa gcttgaa

cctgcaa aagctcg gtagace tgtgetg aaggaat tactacc tcggttg cacttac cacttac

gtagcgt cctggtg gtaggaa tatactt actggct tactcta ctagtta cctgtgt cctgtgt
atatact gcgtgtc gagaatt gtatagg gaatata acttcag taagaac gtatcca gtatcca
aagtcgc caatgtc gctactc aagtgag cgctegt cgaacat ctattgt agaaccg agaaccg
gtattac ctcaata tagatac gtcaacg agaagga aatacga agaatac cgaattg cgaattg
tctacca aatagcg gtcagac cagctgt ggtgcat aatatat ttaccga agacagg agacagg
aatcact ctccgaa agacgat atcctat tagctta aatcctg taggaga agactca agactca

tctcgec gtcegtg acaagec cagtatg taggctc agagatt ctcgegg cgaggec cgaggec

gtcgatt gcttage tagtccg gcttect gtcgtag tettatt aatgtcc gagttga gagttga
agtaacc atctctc tagtgtt aattaac ttatctg cagaggc gtccaga cgatgaa cgatgaa
ttatgec agatcta tataagc gtcteat ctctgge ggaagtc catattc ctcttcg ctetteg
tatagaa cgcaagg ttcacaa catcagg acaacaa tacgatg tgtggac ctgacac ctgacac
tgaatct agcactt catcgac gtgaagc agcagag ttcatcc gtgacta acaatgg acaatgg
ttccaac acacaac atgcagt tgacgeg agccata gtgatat acaccgt cgagaga cgagaga

acacgta gtgecgg ctgegtt gatggca gactgcg acagaca atggcag ctggacg ctggacg
cggttge cattcat cgeggat agceggte acagctc atggtct acaggag cgcgtca cgegtea

ttcgtga agegtgg tcgaata agctacg tgatcac cgctatc ctgtaga gtggttc gtggttc

acatatg agcttaa atgttgg cgtctat cggaaca ggcagca acattat tacacgg tacacgg
tcaagtt gtgtggt accaatc ttgagga cttagat ctacatg aatgata aggatgt aggatgt
accatct cttatca gcactge accgceat cggecte gttattg ttgcgag cttccag cttccag
aggcgtg attcttc accgtta gttcgge acctaga gtgcgca ccatcga tcagtcc tcagtcc
aggtcat ttggcca cttgagc attgctt ccatgcg aggtgca acctgac gttgccg gttgecg
ttgtatc ctgctee tgtaggt caaccta tgetgtg acgactg caacgct gccacgt gecacgt
taacaca acgagat ttgaact taaccag agtatta taacggc agtccac gccgagg gecgagg

caagcge

28 E. Coissac

Q@HWUSI-EAS1510_0005:1:1:12765:8937#0/1_SUB_CONS
ccagctcagtggggcaagectcagecgetateecgtgtctttgtaatctcatgggagaa
+HWUSI-EAS1510_0005:1:1:12765:8937#0/1_SUB_CONS
H:555999<9DAD33=\BGcK2EYDS==4"HET?TFOAJQLA473T:B:@B7B"V‘7:
Q@HWUSI-EAS1510_0005:1:1:12866:6509#0/1_SUB_CONS
ccctetgetcagggecaatcctcagecaccaatcctttttttagtattcgaatgatgaac
+HWUSI-EAS1510_0005:1:1:12866:6509#0/1_SUB_CONS
I>;;>DAADD_L@aF : XBGSI?B~@=Q27 ‘UCN=F1T [; B_QBOFDB@B520@40G441

Fig. 5. The first two sequences of a Solexa run in fastq format: each sequence is described by four lines. The first line start-
ing with the @ character is the equivalent of a fasta title line. The next line gives the sequence. The third line starting with
a + character repeats the title line, and the fourth line corresponds to the encoded quality line.

The Main ngsfilter Options

Specifying the Input
Format

Specifying the Output
Format

time, the primers and tag copies are trimmed out and only the
amplified part of the sequence is kept in the output.

The input file can be a raw sequence file in fastq or fasta for-
mat. It can also be a pair of fasta and quality files as provided by
GS-FLX sequencers. Depending on the input format, the output
can be formatted in fasta or fastq. Fastq is an extension of fasta
format including per base quality values (see Fig.5) (9).

For simplicity reasons, only the most useful options of ngsfilter will
be listed below.

Like all OBITools, ngsfilter usually automatically recognizes the
input read file format. However, you can specify the encoding
quality schema of the fastq files:

e --sanger: input file is in sanger fastq nucleic format (standard
and default fastq format)

e --solexa: input file is in fastq nucleic format produced by a
Solexa sequencer (Illumina 1.3+)

e --illumina: input file is in fastq nucleic format produced by an
old Solexa sequencer (Solexa/Illumina 1.0 format)

For the fasta format, the --fna and the --qual=<filename>
options allows specifying that the fasta file was produced by a
GS-FLX sequencer and what the associated quality file (file with
the .qual extension) is.

If the input file contains quality data, then the default output for-
mat is fastq, otherwise fasta format will be used. Fastq outputs are
always encoded following the Sanger rules. You can force the out-
put to fasta or fastq format using the following options, respec-
tively : --fastq-output or --fasta-output. If the output if forced to
fastq without providing quality data in the input, a default quality
of 40 will be associated with each base.

Sol3-gh R EH1087
Sol3-gh.R EHO380B
Sol3-gh.R EHO379B
Sol3-ITSA EH1087
So0l3-ITSA EHO380B

2 Designing Tags for Multiplexed Samples 29

acacgctct GGGCAATCCTGAGCCAA CCATTGAGTCTCTGCACCTATC
acacgtcgt GGGCAATCCTGAGCCAA CCATTGAGTCTCTGCACCTATC
acactctgc GGGCAATCCTGAGCCAA CCATTGAGTCTCTGCACCTATC

cagctgatg GATATCCGTTGCCGAGAGTC GCACGGCATGTGCCAAGG
cagctgtga GATATCCGTTGCCGAGAGTC GCACGGCATGTGCCAAGG

bea Bes Be My B |

Fig. 6. Sample description file: The full set of multiplexed samples must be described in a tabular text file containing six
columns. The first two describe, respectively, the experiment, and the sample, the third one the tag associated with this
sample. The fourth and fifth columns indicate the forward and reverse PCR primers. The sixth column indicates if partial
sequences (i.e., incomplete amplicons) are expected with T (True) or F (False).

Specifiying the Sample
Description File

Running ngsfilter

The file describing all the samples multiplexed in one sequencer
lane must follow the format presented in Fig. 6. Its name is specified
to ngsfilter using either the short -t <filename> option or its long
version --tag-list=<filename>.

In this example, ngsfilter is used to analyze a fastq file named
myrun.fastq produced by a Solexa sequencer. By using the > redi-
rection character, the output is saved to the good.fastq text file.
During the execution of ngsfilter, a progress bar with an estimation
of the remaining computation time is displayed

unix—shell > ngsfilter —t samples . tag —solexa myrun . fastq > good . fastq
myrun . fastq 100.0 % | ########## - | remain @ 00:00:00

unix—shell >

5.2. The obiannotate
Program

Running obiannotate

ngsfilter like other OBITools annotates the sequences in fasta or
fastq format using a tag/value system. These tag/value pairs are
included in the title line of each sequence (see Fig. 7). obiannotate
is used to change the annotation associated to each sequence.

After ngsfilter, you can clean the file for keeping only the experi-
ment and sample annotations. The option -k allows specifying
which annotation must be kept (see Listing 8). Then sequences
will look like those presented in Fig.8. Cleaning the annotated
sequences to keep only the experiment and sample annotations can
be done following Listing 8.

unix—shell > obiannotate —k exper iment —k sample good. fastq > clean . fastq
good. fastq 100.0% | ###############H###H#######H— | remain : 00:00:00

unix—shell >

5.3. The obisplit
Program

Obisplit allows distributing sequences from the file annotated and
cleaned by ngsfilter and obiannotate into different files according to

30 E. Coissac

QHWUSI-EAS1510_0005:1:2:13183:12244#0/1_CONS_SUB reverse_score=88.0; tag_length=9;
tail_quality=28.2; reverse_match=ccattgagtctctgcacctatc; direct_tag=acacgctct;
sample=EH1087; reverse_tag=acacgctct; reverse_primer=ccattgagtctctgcacctatc;
direct_score=68.0; cut=[28,42,1]; direct_match=gggcaatcctgagccaa;
direct_primer=gggcaatcctgagccaa; experiment=Sol3-gh_R; mid_quality=32.3703703704;
head_quality=40.4; avg_quality=32.8918918919;

tggctcagetgtgg

+

LLG4BGC@>BB5:C

Q@HWUSI-EAS1510_0005:1:2:14001:3874#0/1_CONS_SUB_CMP reverse_score=88.0; tag_length=9;
complemented=True; tail_quality=24.8; reverse_match=ccattgagtctctgcacctatc;
direct_tag=acactctgc; sample=EHO0379B; reverse_tag=acactctgc;
reverse_primer=ccattgagtctctgcacctatc; direct_score=68.0; cut=[33,50,1];
direct_match=gggcaatcctgagccaa; direct_primer=gggcaatcctgagccaa; experiment=Sol3-gh_R;
mid_quality=40.3103448276; head_quality=43.7; avg_quality=38.7564102564;
atcttattctaaaatga

+

HOE71A?>QN5_\QUO]

Fig. 7. Output ngsfilter file formatted in fastq format: The first two sequences analyzed are provided. In contrary to the clas-
sical fastq format, the long title line is not repeated twice. Several fields were added to the title line. complemented=True in
the second sequence indicates that the reverse complement of the sequence has been used to find the primers. head_qual-
ity is the average quality of the first 10 bases of the sequence. mid_quality is the average quality of the central part of the
sequence. tail_quality is the average quality of the last 10 bases of the sequence. avg_quality is the average quality of the
whole sequence. direct_primer is the true sequence of the identified forward primer. direct_score is the alignment score of
sequence with the forward primer. direct_match is the real sequence of the forward primer identified on the sequence.
reverse_primer is the true sequence of the identified reverse primer. reverse_score is the alignment score with the reverse
primer. reverse_match is the real sequence of the reverse primer identified on the sequence. cut indicates where the original
sequence was truncated. tag_length is the length of the tag found. direct_tag is the sequence of the tag found on the 5’ side
of the forward primer. reverse_tag is the sequence of the tag found on the 5’ side of the reverse primer. sample is the sample
id associated with the sequence. experiment is the experiment id associated with the sequence.

Q@HWUSI-EAS1510_0005:1:2:13183:12244#0/1_CONS_SUB sample=EH1087; experiment=Sol3-gh_R;

tggctcagetgtgg
+

LLG4BGC@>BB5:C

QHWUSI-EAS1510_0005:1:2:14001:3874#0/1_CONS_SUB_CMP sample=EH0379B; experiment=Sol3-gh_R;
atcttattctaaaatga

+

HOE71A7>QN5_\QUO]

Fig. 8. Two sequences cleaned by obiannotate.

the value of one of their annotations. This can be seen as a demul-
tiplexing of the sequences. A first level of demultiplexing must be
done on the base of the experiment: in Listing 9, the clean.fastq file
is splitted in as many files as necessary, each file storing the subset of
sequences with the same experiment value. All file names will begin
by the prefix myrun_ and finish with the experiment value.

unix—shell > obisplit —t exper iment —p myrun clean . fastq

2 Designing Tags for Multiplexed Samples 31

good . fastq 100.0% | ##############H###H####H- | remain : 00:00:00

unix-shell >

A second split of each of the created file can then be done
according to the sample tag.

References

1.

O’Brien HE, Parrent JL, Jackson JA et al
(2005) Fungal community analysis by large-
scale sequencing of environmental samples.
Appl Environ Microbiol 7:5544-5550

. Briée C, Moreira D, Lopez-Garcia P (2007)

Archaeal and bacterial community composition
of sediment and plankton from a suboxic fresh-
water pond. Res Microbiol 158:213-227

. Fierer N, Morse JL, Berthrong ST et al (2007)

Environmental controls on the landscape-scale
biogeography of stream bacterial communities.
Ecology 88:2162-2173

. Nicol GW, Leininger S, Schleper C, Prosser JI

(2008) The influence of soil ph on the diver-
sity, abundance and transcriptional activity of
ammonia oxidizing archaca and bacteria.
Environ Microbiol 10:2966-2978

. Zinger L, Coissac E, Choler P, Geremia RA

(2009) Assessment of microbial communities

by graph partitioning in a study of soil fungi in
two alpine meadows. Appl Environ Microbiol
75:5863-5870

. Teixeira LCRS, Peixoto RS, Cury JC et al

(2010) Bacterial diversity in rhizosphere soil
from antarctic vascular plants of admiralty bay,
maritime antarctica. ISME] 4:989-1001

. Cronn R, Liston A, Parks M et al (2008)

Multiplex sequencing of plant chloroplast
genomes using solexa sequencing-by-synthesis
technology. Nucleic Acids Res 36:¢122

. Hamady M, Walker JJ, Harris JK et al (2008)

Error-correcting barcoded primers for pyrose-
quencing hundreds of samples in multiplex.
Nat Methods 5:235-237

. Cock PJA, Fields CJ, Goto N et al (2009) The

sanger fastq file format for sequences with quality
scores, and the solexa/illumina fastq variants.
Nucleic Acids Res 38:1767-1771

2 Springer
http://www.springer.com/978-1-61779-869-6

Data Production and Analysis in Population Genomics
Methods and Protocols

Pompanon, F.; Bonin, A, (Eds.)

2012, X, 337 p., Hardcover

ISBMN: @78-1-61779-B69-6

A product of Humana Press

	Chapter 2: OligoTag: A Program for Designing Sets of Tags for Next-Generation Sequencing of Multiplexed Samples
	1. Introduction
	2. Theoretical Background
	2.1. The Simplest System
	2.2. Dealing with Sequencing Errors
	2.3. Choosing a Set of Tags
	2.4. Tagging Both Ends of the PCR Amplicon
	2.5. Lexical Constraints on Tag Design
	2.6. Building a Set of Tags

	3. The oligoTag Program
	3.1. Installing OBITools
	3.1.1. Checking Prerequisite
	Installing OBITools Package

	3.2. OligoTag Options
	Length of the Tags
	Size of the Set of Tags
	Minimum Hamming Distance Between Two Tags
	Maximum Number of G or C Nucleotides per Tag
	Acceptable Tag Pattern
	Non acceptable Tag Pattern
	Maximum Homopolymer Length
	Minimum Homopolymer Length
	Computation Time Out

	3.3. Running oligoTag

	4. Examples of Precomputed Tag Lists
	5. Analyzing Tagged Sequences
	5.1. The ngsfilter Program

	The Main ngsfilter Options

	Specifying the Input Format
	Specifying the Output Format
	Specifiying the Sample Description File

	Running ngsfilter

	5.2. The obiannotate Program
	Running obiannotate

	5.3. The obisplit Program

	References

