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Abstract

Carotenoids are among the most widely distributed pigments in nature, and they are exclusively synthesized
by plants and microorganisms. These compounds may serve a protective role against many chronic diseases
such as cancers, age-related macular degeneration, and cardiovascular diseases and also act as an excellent
antioxidant system within cells. Recent advances in the microbial genome sequences and increased under-
standing about the genes involved in the carotenoid biosynthetic pathways will assist industrial microbiologists
in their exploration of novel microbial carotenoid production strategies. Here we present an overview of
microbial carotenogenesis from biochemical, proteomic, and biotechnological points of view.
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1. Introduction

Carotenoids are naturally occurring terpenoid pigments, consisting
of isoprene residues and a polyene chain of conjugated double
bonds. These pigments are responsible for the wide variety of
orange-red colors seen in nature that absorb light in the wave-
length range of 300-600 nm. The absorbance is directly related to
the number of conjugated double bonds and functional groups
present in the structure. Structurally and functionally, carotenoids
can be broadly classified into hydrocarbons (HC, carotenes) and
oxygenated derivatives (xanthophylls). These molecules are formed
by the head to head condensation of two geranylgeranyl diphos-
phate molecules (GGDP) (C20 HC), which results in a basic sym-
metrical acyclic C40 HC structure called phytoene (C, H,,) (1).
The remainder of the natural carotenoids is derived from this basic
molecule by a variety of biochemical reactions, mainly mediated
by enzymes in plants and microorganisms. Animals are usually
the dietary recipients at the other end of the food chain and
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Fig. 1. Structures of important carotenoids produced by microorganisms. (1) B-Carotene, (2) o-Carotene, (3) 3-Cryptoxanthin,
(4) Lutein, (5) Zeaxanthin, (6) Astaxanthin, (7) Canthaxanthin, (8) Neoxanthin, (9) Violaxanthin, (10) Antheraxanthin, and (11)
Fucoxanthin.

have limited ability to metabolically transform carotenoids (2, 3).
Figure 1 shows the chemical structures of important carotenoids.

Carotenoid biosynthesis likely originated in ancient anoxygenic
photosynthetic microorganisms. As these microbes evolved,
carotenoid biosynthetic pathways have also branched out, resulting
in structurally different carotenoids. The earliest record of oxygenic
microbial carotenoid biosynthesis is attributed to cyanobacteria,
which can be traced back 3.5 billion years based on fossil and
molecular evidences (4). Prochlorophytes, another group of oxygenic
photosynthetic bacteria, are reported to have carotenoid pigments
similar to algae and eukaryotic plants, suggesting evolutionary
relations with these groups (3). Single or multiple endosymbiotic
associations with cyanobacteria or purple photosynthetic bacteria
might be responsible for the chloroplast and pigment diversity in
higher organisms (5). The change in the earth’s atmosphere from
anaerobic to aerobic condition is a major environmental factor
responsible for the biosynthesis of structurally diverse carotenoids
by oxygen-dependent enzymes (3).
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Carotenoids are molecules of great interest in many scientific
disciplines because of their unique properties, wide distribution
and diverse functions (6). In photosynthetic organisms, carote-
noids serve as light harvesting pigments. In many organisms, their
major role is to act as an antioxidant by neutralizing free radicals
and thereby preventing potential oxidative damage to the cells
(3, 4, 7-15). Liu et al. demonstrated that a Staphylococcus anreuns
mutant with disrupted carotenoid biosynthesis is more susceptible
to oxidant killing, indicating that carotenoids could act as a
virulence factor (16). Carotenoids could reduce the penetration of
singlet oxygen by decreasing membrane fluidity (17). Recent reports
by Kamila et al. showed that polar carotenoids such as zeaxanthin
could mediate transmembrane proton transfer in vivo (18).

The health benefits of carotenoids are becoming increasingly
evident. Carotenoids play an important role as pro-vitamin A
compounds. Of the more than 600 carotenoids that have been
identified, approximately 30-50 are believed to have vitamin A activ-
ity. The most well-known compounds of this group are f3-carotene
and a-carotene. Beyond their pro-vitamin A role, epidemiological
evidence and experimental results suggest antioxidant functions of
dietary carotenoids that can prevent onset of many diseases such as
arteriosclerosis, cataracts, age-related macular degeneration, multiple
sclerosis, bone abnormalities, and most importantly, cancers, each
of which may be initiated by free radical damage (19-24). Currently,
a majority of the carotenoids available on the global market is
produced by multi-step chemical synthesis or by solvent-based chem-
ical extraction from their nonmicrobial natural sources (25-27).

There are very few carotenoid-based products on the market
that originate from microbial sources. The two most prominent
microalgal sources of carotenoids which have sustained competi-
tion from synthetic manufactures are B-carotene from Dunalielln
salinag and astaxanthin from Haematococcus pluvialis (28-32).
There has been escalating interest in the microbial sources of other
carotenoids with significant health benefits, which could be attrib-
uted to consumer preferences for natural additives over synthetic
sources and also to the potential cost effectiveness of production
by industrial microbial biotechnology (2, 6, 14, 33-35).

2. Microbial
Carotenogenesis

Microbial carotenoid biosynthesis is a well-regulated mechanism
which is dependent on the biochemical makeup of the microor-
ganism’s environmental conditions and cultural stress incurred
during growth (6, 36). Several microbial biosynthetic pathways
have been proposed and experimentally confirmed in the last five
decades by well-known carotenoid researchers (36—46).
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The evolution of carotenoid biosynthetic pathways is a
continuous process and extends beyond designated carotenoid
biosynthetic pathways (47). Generally, carotenoid biosynthesis
starts with the bioprecursor called isopentenyl pyrophosphate
(IPP) (48-50). The biosynthetic pathway to IPP known as the
mevalonic acid (MVA) pathway starts from the key precursor
acetyl-CoA. The first step in the MVA pathway involves the
conversion of acetyl-CoA to 3-hydroxy-3-methyl glutaryl CoA
(HMG-CoA) catalyzed by HMG-CoA synthase. HMG-CoA gets
converted into a C6 compound MVA. MVA is then converted into
a C5 IPP by a succession of reactions involving phosphorylation
by MVA kinase followed by decarboxylation (51, 52).

The condensation of one molecule of dimethylallyl diphos-
phate (DMADP) and three molecules of IPP by pyrenyltransterase
produces a C20 diterpene GGDP compound. Two molecules of
GGDP condense head to head to form the first colorless carote-
noid, phytoene (15-cis-7, 8, 11, 12, 7', 8', 11’ 12’-octahydro-y,
y-carotene). Subsequent desaturation of phytoene results in the
formation of C40 acyclic carotenoids such as neurosporene or
lycopene. The desaturation process is a multistep process which
varies between microbes. The most common of all is the four
step desaturation process which leads to the formation of lycopene
via intermediate steps of phytofluene and 3,4-didehydrolycopene.
However, in some purple photosynthetic bacteria such as the
Rbodobacter species, neurosporene, spheroidene, and hydroxy-
spheroidene are produced as final products of the desaturation
process (53).

All trans-lycopene acts as the precursor for many commercially
important acyclic and cyclic carotenoids and oxygenated carotenoids,
which are also called xanthophylls. The formation of carotene(s)
such as B-carotene is considered to be the most common step in
microbial carotenogenesis. Desaturated lycopene gets cyclized at
both ends and forms a B-carotene or a-carotene molecule. These
reactions are catalyzed by a B- or g-cyclase in some of the green
alga (54). The formation of xanthophylls involves sequential
oxidations of post-carotene molecules yielding -hydroxy, -epoxy,
and -oxo groups. The introduction of hydroxyl (-OH) groups at
the positions of C3 and C3' of the ionone rings leads to the formation
of zeaxanthin and lutein, which are C3, C3’-dihydroxy derivatives
of B,B-carotene and B,e-carotene, respectively (55). A monohy-
droxy carotenoid, B-cryptoxanthin, acts as an intermediate in the
biosynthesis of the dihydroxy carotenoids such as zeaxanthin. The
carotenoids with keto (C=0) functional groups such as canthaxan-
thin and astaxanthin are formed by the introduction of keto groups
at C4 and C4' with or without hydroxylation at C3 and C3'. The
formation of keto carotenoids from B-carotene has been well
studied in algae, yeast, and nonphotosynthetic bacteria (55, 56).
Violaxanthin, neoxanthin, and fucoxanthin were formed by
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Fig. 2. Carotenoid biochemical pathway compiled from several reports on microbial production (1, 2, 6, 36, 38, 39, 50, 61,
65,101, 104).

epoxidation at the 5, 6 and 5', 6’ positions (55). Antia et al. and
Yamamoto et al. studied the interconversion of violaxanthin,
antheraxanthin, and zeaxanthin in green algae through epoxidation
(2, 57, 58). Figure 2 represents the schematics of microbial
carotenogenesis.

3. Proteomics
of Microbial

Carotenogenesis . .
Most of the enzymes involved in the MVA pathway are soluble

proteins, whereas the enzymes involved in the later steps of
the carotenogenic pathway are mostly membrane-bound proteins. The
lipophilic products of carotenoid pathways partition to cytoplasmic
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or organelle membranes (59). Bacteria and yeast contain many
isoprenoid compounds such as dolichols, quinones, and ergosterols
(60, 61). However, farnesyl pyrophosphate (FPP) was identified as
the first substrate encoded by the cr# genes cluster, which is a
common precursor for many carotenoid biosynthetic pathways
(62, 63). Misawa et al. suggested that by incorporating caroteno-
genic genes into these systems, it might be possible to partially
direct the carbon flux for the biosynthesis of these isoprenoid
compounds to the pathway for carotenoid production (63). They
also proposed that elucidation of ¢7t gene structure and function
would help carotenoid researchers to explore the biosynthesis of
the main carotenoids. This could be achieved by the appropriate
combinations of the Erwinia crt genes using FPP as the precursor
in microbial systems (63).

Much later, Markus et al. 2002 (64) cloned and characterized
the genes coding for all the enzymes involved in the conversion of
acetyl-CoA to farnesyl diphosphate (FPP) in the zeaxanthin-
producing bacterium Paracoccus zeaxanthinifaciens. They identified
two genes encoding enzymes catalyzing the condensation of two
acetyl-CoA molecules to acetoacetyl-CoA. The gene cluster named
the mevanolate operon regulates the six enzymes involved in the
conversion of acetyl-CoA and acetoacetyl-CoA to isopentenyl
diphosphate (IPP) and DMAPP. The genes encoding the enzymes
catalyzing two consecutive condensations, IPP and DMAPP to
geranyl diphosphate (GPP) and IPP and GPP to EPP, were also
identified. It was reported that these genes were not clustered with
any other genes encoding an enzyme of the isoprenoid pathway.

In the carotenoid biosynthetic pathway, phytoene synthase
(crtB), phytoene desaturase (crzl), and lycopene cyclase (¢crtY) are
the three essential enzymes responsible for the biosynthesis of both
acyclic and cyclic carotenoids. In the early 1990s, Sandmann’s
group identified and mapped the major Erwinia herbicola genes
responsible for the cyclization and hydroxylation of carotenoids (30).
Much later, Phadwal reviewed the molecular phylogenies of the
crt genes involved early in the carotenoid pathway (65). The work
summarized the phylogenetic evolution of phytoene synthase
(crtB), phytoene desaturase (crtl), and lycopene cyclase (crtY)
among bacteria and their functional significance in microbial
carotenogenesis. Acyclic hydroxyl carotenoids from the carotene
hydratase (¢7¢2C) and carotene 3,4-desaturase (crtD) genes of
Rbodobacter were also summarized by Steiger et al. (66). Several
enzymes, such as carotene hydroxylases (¢72Z), carotene oxygenase
(crtW), carotene isomerase (c7tH), and so on, have been linked
with bacterial carotenogenesis. However, recent work shows that
carotene hydroxylases (¢72Z) and its cDNA sequence were also
isolated from green alga such as H. pluvialis. The carotene hydrox-
ylase isolated from flavobacterim was pursued for the biosynthesis
of unique hydroxyl carotenoids (67). The hydroxylation reaction
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among carotenoid producing microbes is considered common
phenomena, but ketolation is quite limited, and is characteristic of
selected microbes. B-Carotene ketolase enzymes (crtW and ¢7tO)
have been identified from methylotrophic bacterium such as
Methylomans. The incorporation of the genes encoding these
enzymes has resulted in a higher percentage of canthaxanthin in
these strains (68). Recombinant DNA technology has enabled
biotechnologists to make new carotenoids for a variety of uses (69).

4. Biotechnology
of Microbial
Carotenoids

4.1. Astaxanthin
(38,38’ -Dihydroxy-
B,B-carotene-4,4 -
dione)

Several studies have been conducted highlighting the importance
of carotenoids in healthcare as well as the nutraceutical and food
industries (2, 8, 34, 70-72). The market demand for carotenoids
continue to rise as more and more clinical research studies surface,
revealing the various health benefits of carotenoids (33, 34, 73-70).
Of the 600 naturally occurring carotenoids, only a few have proven
useful in human- and animal-based industries, and these have primarily
received focus on their abilities to act as antioxidants and light-
screening ingredients.

The carotenoid market is expected to increase to $919 million
by 2015 with an annual growth rate of 2.3% (77). Most of these
carotenoids are available from synthetic sources; however, synthetic
pigments have been perceived to cause hazardous effects to human
health at high dose ranges and have been subsequently warned by
the Food and Drug Administration (78). This resulted in the hunt for
a process of pigment production by alternative natural sources (79).
There is a growing demand for microbial sources of pigments as an
alternative.

Currently, B-carotene and astaxanthin are industrially produced
from microbial sources and are widely used in food and feed
industries (2, 80, 81). The major limitation on the use of microbial
systems for commercial production is the low yield, slow growth,
and high production cost compared with chemical synthesis.
However, strain improvement strategies such as optimization of
growth conditions and preparation of mutants in conjunction with
metabolic engineering techniques could improve carotenoid
productivity. In the following section, we discuss the major utilities
and available microbial sources of some commercially important
carotenoids.

Astaxanthin is the most commonly occurring red carotenoid in
marine and aquatic animals (82). It is responsible for the pink color
of salmon flesh and also gives coloration to crustacean shells. It is
known to scavenge free radicals and quench singlet oxygen (83, 84).
It can enhance the immune system (85) protect skin from radiation
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4.2. B-Carotene
(B, B-Carotene)

injury, cancer (86, 87) and block reactions induced by other chem-
icals and toxins. It is widely used in the pharmaceutical, cosmetic,
and nutraceutical industries (88). Two major microorganisms,
which have been commercially exploited for astaxanthin produc-
tion, are microalga H. pluvialis, and heterobasidiomycetous yeast
Xanthophyllomyces dendrovbous (2, 89-91).

Recently, de la Fuente et al. reported an improved semi-
industrial process for astaxanthin production by the fermentation
of X. dendrorbous. A volumetric yield of 350 mg/L astaxanthin
was reported with 800-L scale (92). Although X. dendrorbous has
been studied by various researchers for the past three decades, it still
attracts interest in various biotechnological industries (89, 92, 93).

Alternately, the freshwater unicellular alga, H. pluvialis,
accumulates astaxanthin in its aplanospores under stressful conduc-
tions and is considered to be one of the richest sources of this
carotenoid. Ranjbar et al. reported photoautotrophic conditions in
a bubble column with the fed-batch addition of nutrients for the
production of astaxanthin by H. pluvialis. A combination of the fed-
batch addition of nutrients and dilution of broth for nutrient
deficiency was proposed as the most promising method for attainment
of high cell and astaxanthin concentrations in a bubble column
photo-bioreactor. The final concentration of astaxanthin was
reported to be 390 mg/L which was several times higher than
anything ever previously reported (94). Sandesh Kamath et al.
reported a 23-59% increase in the total carotenoid and astaxanthin
contents by implementing a strain improvement strategy for
H. pluvialis with chemical and UV mutation (35).

Apart from these two major carotenoid producing microorgan-
isms, Brevibacterium linens (95) and Agrobacterium aunvantincum
(96), the marine bacterium Paracoccus haeundaensis (97) and
Mycobacterium lacticola (98) are also reported to produce astaxan-
thin, but are not considered commercially significant sources.

B-Carotene is an important compound because of its role as an
antioxidant, and as precursor of vitamin A in food and feed prod-
ucts (99, 100). In 2004, the worldwide market value of -carotene
was US $242 million and was proposed to reach US $253 million
by 2009 (77, 101). Currently, more than 90% of commercialized
B-carotene is produced through chemical synthesis (102).

B-Carotene is produced primarily by microalgae, fungi and yeasts,
aswellassome species of bacteriaand lichens (103,104 ). Commercially
available B-carotene is produced mainly from the genus Dunaliclia
(101, 105). Since 1980, Dunalielln powder and extracts (yielding
dried biomass and natural B-carotene) have been available in Israel,
China, the USA, Australia, and Mexico (3, 101, 106).

Beside Dunalielin, the greatest yields have been obtained by
the mating of (+) and (-) strains of Blakeslea trispora (103) resulting
in yields that are comparable to those of chemical processing (107).



4.3. B-Cryptoxanthin
(3R-pB, B-Caroten-3-ol)

4.4. Canthaxanthin
(4,4' Diketo-3-
carotene)
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The US Department of Agriculture’s process reported a yield of
17 mg of B-carotene per gram of mycelium and recently improved
to about 30 mg of B-carotene per gram of mycelium and about
3 g/L (107). Phycomyces is used as a model system by many
researchers to study the regulation of the biosynthesis of the pigment
B-carotene in fungi as it accumulates B-carotene, at a lower extent
than B. trispora, in the lipid globules of their mycelia (108). Sang-
Hwal Yoon et al. reported a novel approach by the combinatorial
expression of the whole bacterial mevalonate pathway for the
production of B-carotene in Escherichia coli. The recombinant
E. coli DH5a harboring the whole MVA pathway and B-carotene
synthesis genes produced a -carotene yield of 465 mg,/L at a glycerol
concentration of 2% (w/v) (102). However, the regulatory con-
cern surrounding the use of recombinant strains is still a major
roadblock for the success of microbial biotechnology.

B-Cryptoxanthin is a xanthophyll carotenoid with the potential
to act as provitamin A and has been reported to improve bone
health. A study conducted in experimental rats demonstrated that
B-cryptoxanthin also stimulates unique anabolic bone calcification
(109). Yamaguchi et al. (75) claimed that B-cryptoxanthin, which
may promote osteogenesis, could be of value as an active ingredi-
ent in the treatment of bone diseases. Recent studies also indicate
that B-cryptoxanthin is highly preventative against prostate cancer
(76, 110), lung cancer (111-113), colon cancer (114), and rheu-
matoid arthritis (115).

While there is currently little to no commercial demand for
microbial B-cryptoxanthin, it holds great potential for future inves-
tigation, production, and use. Information on microbial production
of B-cryptoxanthin is very limited, mainly due to the lack of proper
microbial sources and feasible culture conditions (2, 116). B. linens,
which is traditionally known for its cheese ripening process, accu-
mulates B-cryptoxanthin in low amounts (117). Flavobacterium
lutescens and Flavobacterium multivorum are reported to produce
B-cryptoxanthin under optimized media conditions (116, 118).
However, these microbial sources are not yet competitive in
comparison to the naturally occurring citrus and capsicum based
sources of B-cryptoxanthin (119).

Canthaxanthin is a diketo-carotenoid, which was first isolated from
edible mushrooms (3). It is widely used as a colorant in food, feed
additives for egg yolk, fish, and crustacean farms and also in the
cosmetic industry as a tanning agent for human skin (2, 120).
Canthaxanthin is reported to prevent UV-induced immune
suppression in mice, protect against skin cancer in experimental
animals and also to be useful in the treatment of skin diseases such
as photodermatosis (2). In vitro studies demonstrated that canthax-
anthin has greater antioxidant activity than its non-oxygenated
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4.5. Fucoxanthin
(3'-(Acetyloxy)-6',

7' -didehydro-5,
6-epoxy-5,5',6,6',7,
8-hexahydro-3,
5'-dihydroxy-8-oxo-p,
B-carotene)

4.6. Lutein
[(3R,3'R,6'R)-3,
e-Carotene-3,3' -diol]

analog such as B-carotene due to the presence of keto groups at the
4 and 4’ positions in the B-ionone ring (121). Only a few microbial
sources of canthaxanthin have been reported. Askar et al. (122)
identified an extremely halophilic bacteria, Haloferax alexandri-
nus, with a 0.69 mg/g cellular accumulation of canthaxanthin.
Otherbacterial producers of canthaxanthininclude Corynebacterium
michiganense, Micrococcus voseus, Brevibactevium sp. strain KY
4313, Gordonia jacobaea, and Dietzin natronolimnaea HS-1
(123). It was also discovered that various green microalgae such as
Chlorelln pyremoidosa, Chlovella zofingiensis, Chlovella emersonii,
and Dictyococcus cinnabarinus produce canthaxanthin under vari-
ous growth conditions (123). Recently, it was reported that under
submerged fermentation, a mutant strain of Aspergillus carbonar-
tus produces canthaxanthin with a yield of 32 mg/g (124). The
current market demand for canthaxanthin is fulfilled by chemical
synthesis (125). However, much attention is being devoted by
researchers to discovering a microbial source for canthaxanthin
and developing novel production strategies for promising micro-
bial strains (123, 126, 127).

Fucoxanthin is a naturally occurring xanthophyll carotenoid found
in brown algae and edible brown seaweeds that has fascinated the
nutraceutical and food industries recently due to its unique health
benefits such as antiobesity, antidiabetes, etc., which have not been
reported with other carotenoids (74 ). Fucoxanthin intake has been
shown to promote fat metabolism, particularly around the abdominal
area (33, 128, 129). An antidiabetic effect of fucoxanthin was also
reported; a 0.2% fucoxanthin supplementation decreased the blood
glucose and plasma insulin concentrations in experimental mice
(130). A study conducted in KKAy mice, a model for obese /type
IT diabetes, showed that fucoxanthin could enhance the amount of
DHA in the liver of mice fed with soybean oil without direct fish
oil supplementation (131). Fucoxanthin is shown to have anticancer
properties (132, 133). Fucoxanthin isolated from brown algae has
also been found to act as an anticoagulant (71), anti-inflammatory
(34), antioxidant (73), and antimicrobial (134).

Undaria pinnatifida and Lamaria sp. are the most popular
edible seaweeds in Japan and many other Southeast Asian countries,
and fucoxanthin accounts for >10% of the total carotenoids in these
seaweeds (74). Other brown sea weeds that have been reported to
produce fucoxanthin include Hijikia fusiformis, Ecklonia stolo-
nifera, and Sargassum siliguastrum (135-137).

Lutein is one of the fastest growing carotenoids on the market
(77). Currently, the natural commercial source of lutein is the
solvent extract of marigold (Tagetes erecta) petals (125, 138).
However, the lutein content of marigold petals is low, 0.03% dry
wt., and it contains several esters with similar polarity, making them
difficult to separate from each other (139).
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In recent years, several microalgae have been studied as potential
lutein sources, such as Chlamydomonas reinbhardtii (140),
Muriellopsis sp. (141), Chlorelln  protothecoides (142), and
Scenedesmus almeriensis (139); however, microbial sources still lack
commercial potential mainly due to lack of studies involving strain
improvement and high-volume bioreactors.

Zeaxanthin is an isomer of lutein, and its commercial demand exists
in parallel to lutein mainly in the ocular health market. Zeaxanthin
coexists with its several optical isomers in natural sources such as
corn, alfalfa; yellow peppers, egg yolks, and marigold flowers
(143, 144). Among the microbial sources, marine bacterium
Flavobacterium species are well documented for their zeaxanthin
production (107, 145-148). Unlike lutein, which is typically present
in photosynthetic microorganisms, zeaxanthin occurs in cyanobac-
teria (149) and also in some non-photosynthetic bacteria (143). In
the non-photosynthetic bacteria, zeaxanthin sometimes presents in
the form of glycoside esters (143, 150). Other microbial sources
include Dunaliella sp., which produces zeaxanthin under various
stress and gene manipulation conditions (151, 152) and Microcystis
aeruginosa (153).

Lutein and zeaxanthin together have many potential uses in
the pharmaceutical and nutraceutical industries. Various studies
suggest that they play an important role in the prevention of cancer
(154), age-related macular degeneration (AMD) (70, 155), and
enhancement of immunity. They are also used as colorants in food
and in the cosmetic industry (156).

Table 1 summarizes the major microbial producers of carote-
noids vs. natural sources. In general, the microbial yield is quite
low compared with other nonmicrobial sources such as plants or
animals. Microbial biosynthesis has an economic niche for those
carotenoids which have complex structures that make them difficult
to synthesize chemically. With proper strain improvement strate-
gies and fermentation technologies, it is possible to produce higher
levels of pure and isomer-free carotenoids from microbial sources.

5. Gonclusions

Microbial carotenogenesis is a well-studied phenomenon that has
been, and will continue to be, researched for years for its regulation
and functionality using several biochemical approaches. Over the
years, numerous groups of microorganisms have been characterized
by their specific compositions of carotenoids. The characterization
of genes and proteins involved in the biochemical pathways coupled
with the use of genetic and metabolic engineering tools to improve
the selective pathways has directed the biotechnologist toward the



P. Vachali et al.

52

33/31 0g0°‘1 UO[OULIdIBAA
8/81 061°1 u10)y
3/31 0¥ saSueIQ
3y/91 0%0'F onuen)
(o11) S/ 0sT'e efedeg
(611) 3y/3w // SUIISITN] MNLAFIIVGOAV],] 3y/381 005 ST oSuey
(0) /38 ¢ SUITUL] WMNIAITIVGIAILT 3y/381 050‘ze s1oddad [joq poy  urnpuexoidAin-g
S/ 91 adnorerue)
3/ 9¢ s10oudy
1/Sw sz TE 1uvinm siuInls vini010p06 ¥y 3/ 69 unydwng
(F01) ON  Suaisaquy] “dsqus snargakantogsaea saalut01da.gg 3/ g6 ojelod 3oomg
(e¥1) T/3w g¢'01 wusws vlfarund 3y/3 1e1 oguepy
(9) S/91 0% vi0qs143 vajsayvIg 3/3 ¢81 sj011R)) Judore)-g
3/38w £'CT
/3w 06¢ /3w 00S-00¢ enuue sopy
1/Sw gc¢ syw1an]d snaz0303wmavEy N/B 1 duyg onory
(/3w (g¥F) 1omew [
(¥6 ‘T69)  Aip 8/Sw £ 8/ 080T snogiospuap sakuopikedoqruyx By/3w 07T Ty UTqIuexeIsy
$99U319)9Y BIBIA $99.N0S [BIGOJOIIN JUdU09 .S99.N0S [eIMeN splouajolen

SpiouajoJed Jo S324N0S |e1qo.dIwWw pue jeinjeN

I 3iqeL



53

2 Microbial Carotenoids

pa110dai se pappe d1e BIep JLNIWN[OA PUE UOHR[NWNIIE TB[N[[dD),
(6S1) 8661°dsequeae(q woy pardepy,

UdAIS JOU HN
(es1) /3w 7960 YSOULINAIY SISKIOLILPAT S/3 o1¢e mer yoeurdg
(8¢1) Tw,/31 6901 WMNAOALIINUL WANLAIIIVGOAY]] 3y/31 088y 9souede( uowrwsIdJ
(F¥1) Sw/3w ¢'¢ WHSOULIMB] MIIPLULAOY ] 8y/381 099°C pIe[joD
(2) 8/3w 9 vuws vjjauun( 3y/31 08T°s uI10)) UIYIUEXed7,
By/81 L0911 yoeurdg
(6€1) /820 sisuatiaumgy snusapauasg  3/3M 06T 98T ey
(8€1) Tw/3 g¢ ds sisdofparanyy - 3%/311 0ST8L pIe[I0D
(L2) Tw/3 ¢z [#-SD $9p10330(103044 v]]240740) /8 €0 Tomofy ploSuey
(T) Tuw/31 1 swsuariuyfoz vj1a10140 8y/81 ozLTT uio)y Uy
(85T) 8/3 1zt vnuodul vty
(£s1) /3 g6/ a0 f1snf mnssvlawg
(diox1) 91qe3aon
(£s1) /8 0¢ vpyrvunad viwpun /S ge  eag umoIg IqIpy urguexodn |



54 P. Vachali et al.
hyperproduction of carotenoids from microbial processes. Although
the developed processes for microbial production of selected car-
otenoids appears to be very promising, gaining a deeper under-
standing and further development of the fermentation process in
future years will be necessary before microbial sources become a
realistic alternative to synthetic carotenoids.
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