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    Chapter 2   

 Microbial Carotenoids       

         Preejith   Vachali   ,    Prakash   Bhosale   , and    Paul   S.   Bernstein         

  Abstract 

 Carotenoids are among the most widely distributed pigments in nature, and they are exclusively synthesized 
by plants and microorganisms. These compounds may serve a protective role against many chronic diseases 
such as cancers, age-related macular degeneration, and cardiovascular diseases and also act as an excellent 
antioxidant system within cells. Recent advances in the microbial genome sequences and increased under-
standing about the genes involved in the carotenoid biosynthetic pathways will assist industrial microbiologists 
in their exploration of novel microbial carotenoid production strategies. Here we present an overview of 
microbial carotenogenesis from biochemical, proteomic, and biotechnological points of view.  
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 Carotenoids are naturally occurring terpenoid pigments, consisting 
of isoprene residues and a polyene chain of conjugated double 
bonds. These pigments are responsible for the wide variety of 
orange-red colors seen in nature that absorb light in the wave-
length range of 300–600 nm. The absorbance is directly related to 
the number of conjugated double bonds and functional groups 
present in the structure. Structurally and functionally, carotenoids 
can be broadly classi fi ed into hydrocarbons (HC, carotenes) and 
oxygenated derivatives (xanthophylls). These molecules are formed 
by the head to head condensation of two geranylgeranyl diphos-
phate molecules (GGDP) (C20 HC), which results in a basic sym-
metrical acyclic C40 HC structure called phytoene (C 40 H 56 )  (  1  ) . 
The remainder of the natural carotenoids is derived from this basic 
molecule by a variety of biochemical reactions, mainly mediated 
by enzymes in plants and microorganisms. Animals are usually 
the dietary recipients at the other end of the food chain and 

  1.  Introduction
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have limited ability to metabolically transform carotenoids  (  2,   3  ) . 
Figure  1  shows the chemical structures of important carotenoids.  

 Carotenoid biosynthesis likely originated in ancient anoxygenic 
photosynthetic microorganisms. As these microbes evolved, 
carotenoid biosynthetic pathways have also branched out, resulting 
in structurally different carotenoids. The earliest record of oxygenic 
microbial carotenoid biosynthesis is attributed to cyanobacteria, 
which can be traced back 3.5 billion years based on fossil and 
molecular evidences  (  4  ) . Prochlorophytes, another group of oxygenic 
photosynthetic bacteria, are reported to have carotenoid pigments 
similar to algae and eukaryotic plants, suggesting evolutionary 
relations with these groups  (  3  ) . Single or multiple endosymbiotic 
associations with cyanobacteria or purple photosynthetic bacteria 
might be responsible for the chloroplast and pigment diversity in 
higher organisms  (  5  ) . The change in the earth’s atmosphere from 
anaerobic to aerobic condition is a major environmental factor 
responsible for the biosynthesis of structurally diverse carotenoids 
by oxygen-dependent enzymes  (  3  ) . 
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  Fig. 1.    Structures of important carotenoids produced by microorganisms. (1)  b -Carotene, (2)  a -Carotene, (3)  b -Cryptoxanthin, 
(4) Lutein, (5) Zeaxanthin, (6) Astaxanthin, (7) Canthaxanthin, (8) Neoxanthin, (9) Violaxanthin, (10) Antheraxanthin, and (11) 
Fucoxanthin.       
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 Carotenoids are molecules of great interest in many scienti fi c 
disciplines because of their unique properties, wide distribution 
and diverse functions  (  6  ) . In photosynthetic organisms, carote-
noids serve as light harvesting pigments. In many organisms, their 
major role is to act as an antioxidant by neutralizing free radicals 
and thereby preventing potential oxidative damage to the cells 
 (  3,   4,   7–  15  ) . Liu et al. demonstrated that a  Staphylococcus aureus  
mutant with disrupted carotenoid biosynthesis is more susceptible 
to oxidant killing, indicating that carotenoids could act as a 
virulence factor  (  16  ) . Carotenoids could reduce the penetration of 
singlet oxygen by decreasing membrane  fl uidity  (  17  ) . Recent reports 
by Kamila et al. showed that polar carotenoids such as zeaxanthin 
could mediate transmembrane proton transfer in vivo  (  18  ) . 

 The health bene fi ts of carotenoids are becoming increasingly 
evident. Carotenoids play an important role as pro-vitamin A 
compounds. Of the more than 600 carotenoids that have been 
identi fi ed, approximately 30–50 are believed to have vitamin A activ-
ity. The most well-known compounds of this group are  b -carotene 
and  a -carotene. Beyond their pro-vitamin A role, epidemiological 
evidence and experimental results suggest antioxidant functions of 
dietary carotenoids that can prevent onset of many diseases such as 
arteriosclerosis, cataracts, age-related macular degeneration, multiple 
sclerosis, bone abnormalities, and most importantly, cancers, each 
of which may be initiated by free radical damage  (  19–  24  ) . Currently, 
a majority of the carotenoids available on the global market is 
produced by multi-step chemical synthesis or by solvent-based chem-
ical extraction from their nonmicrobial natural sources  (  25–  27  ) . 

 There are very few carotenoid-based products on the market 
that originate from microbial sources. The two most prominent 
microalgal sources of carotenoids which have sustained competi-
tion from synthetic manufactures are  b -carotene from  Dunaliella 
salina  and astaxanthin from  Haematococcus pluvialis   (  28–  32  ) . 
There has been escalating interest in the microbial sources of other 
carotenoids with signi fi cant health bene fi ts, which could be attrib-
uted to consumer preferences for natural additives over synthetic 
sources and also to the potential cost effectiveness of production 
by industrial microbial biotechnology  (  2,   6,   14,   33–  35  ) .  

 

 Microbial carotenoid biosynthesis is a well-regulated mechanism 
which is dependent on the biochemical makeup of the microor-
ganism’s environmental conditions and cultural stress incurred 
during growth  (  6,   36  ) . Several microbial biosynthetic pathways 
have been proposed and experimentally con fi rmed in the last  fi ve 
decades by well-known carotenoid researchers  (  36–  46  ) . 

  2.  Microbial 
Carotenogenesis
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 The evolution of carotenoid biosynthetic pathways is a 
continuous process and extends beyond designated carotenoid 
biosynthetic pathways  (  47  ) . Generally, carotenoid biosynthesis 
starts with the bioprecursor called isopentenyl pyrophosphate 
(IPP)  (  48–  50  ) . The biosynthetic pathway to IPP known as the 
mevalonic acid (MVA) pathway starts from the key precursor 
acetyl-CoA. The  fi rst step in the MVA pathway involves the 
conversion of acetyl-CoA to 3-hydroxy-3-methyl glutaryl CoA 
(HMG-CoA) catalyzed by HMG-CoA synthase. HMG-CoA gets 
converted into a C6 compound MVA. MVA is then converted into 
a C5 IPP by a succession of reactions involving phosphorylation 
by MVA kinase followed by decarboxylation  (  51,   52  ) . 

 The condensation of one molecule of dimethylallyl diphos-
phate (DMADP) and three molecules of IPP by pyrenyltransferase 
produces a C20 diterpene GGDP compound. Two molecules of 
GGDP condense head to head to form the  fi rst colorless carote-
noid, phytoene (15- cis -7, 8, 11, 12, 7 ¢ , 8 ¢ , 11 ¢ , 12 ¢ -octahydro- y ,
 y -carotene). Subsequent desaturation of phytoene results in the 
formation of C40 acyclic carotenoids such as neurosporene or 
lycopene. The desaturation process is a multistep process which 
varies between microbes. The most common of all is the four 
step desaturation process which leads to the formation of lycopene 
via intermediate steps of phyto fl uene and 3,4-didehydrolycopene. 
However, in some purple photosynthetic bacteria such as the 
 Rhodobacter  species, neurosporene, spheroidene, and hydroxy-
spheroidene are produced as  fi nal products of the desaturation 
process  (  53  ) . 

 All  trans -lycopene acts as the precursor for many commercially 
important acyclic and cyclic carotenoids and oxygenated carotenoids, 
which are also called xanthophylls. The formation of carotene(s) 
such as  b -carotene is considered to be the most common step in 
microbial carotenogenesis. Desaturated lycopene gets cyclized at 
both ends and forms a  b -carotene or  a -carotene molecule. These 
reactions are catalyzed by a  b - or  e -cyclase in some of the green 
alga  (  54  ) . The formation of xanthophylls involves sequential 
oxidations of post-carotene molecules yielding -hydroxy, -epoxy, 
and -oxo groups. The introduction of hydroxyl (–OH) groups at 
the positions of C3 and C3 ¢  of the ionone rings leads to the formation 
of zeaxanthin and lutein, which are C3, C3 ¢ -dihydroxy derivatives 
of  b , b -carotene and  b , e -carotene, respectively  (  55  ) . A monohy-
droxy carotenoid,  b -cryptoxanthin, acts as an intermediate in the 
biosynthesis of the dihydroxy carotenoids such as zeaxanthin. The 
carotenoids with keto (C=O) functional groups such as canthaxan-
thin and astaxanthin are formed by the introduction of keto groups 
at C4 and C4 ¢  with or without hydroxylation at C3 and C3 ¢ . The 
formation of keto carotenoids from  b -carotene has been well 
studied in algae, yeast, and nonphotosynthetic bacteria  (  55,   56  ) . 
Violaxanthin, neoxanthin, and fucoxanthin were formed by 
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epoxidation at the 5, 6 and 5 ¢ , 6 ¢  positions  (  55  ) . Antia et al. and 
Yamamoto et al. studied the interconversion of violaxanthin, 
antheraxanthin, and zeaxanthin in green algae through epoxidation 
 (  2,   57,   58  ) . Figure  2  represents the schematics of microbial 
carotenogenesis.   

 

 Most of the enzymes involved in the MVA pathway are soluble 
proteins, whereas the enzymes involved in the later steps of 
the carotenogenic pathway are mostly membrane-bound proteins. The 
lipophilic products of carotenoid pathways partition to cytoplasmic 

  3.  Proteomics 
of Microbial 
Carotenogenesis
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  Fig. 2.    Carotenoid biochemical pathway compiled from several reports on microbial production  (  1,   2,   6,   36,   38,   39,   50,   61, 
  65,   101,   104  ).        

 



46 P. Vachali et al.

or organelle membranes  (  59  ) . Bacteria and yeast contain many 
isoprenoid compounds such as dolichols, quinones, and ergosterols 
 (  60,   61  ) . However, farnesyl pyrophosphate (FPP) was identi fi ed as 
the  fi rst substrate encoded by the  crt  genes cluster, which is a 
common precursor for many carotenoid biosynthetic pathways 
 (  62,   63  ) . Misawa et al. suggested that by incorporating caroteno-
genic genes into these systems, it might be possible to partially 
direct the carbon  fl ux for the biosynthesis of these isoprenoid 
compounds to the pathway for carotenoid production  (  63  ) . They 
also proposed that elucidation of  crt  gene structure and function 
would help carotenoid researchers to explore the biosynthesis of 
the main carotenoids. This could be achieved by the appropriate 
combinations of the  Erwinia crt  genes using FPP as the precursor 
in microbial systems  (  63  ) . 

 Much later, Markus et al. 2002  (  64  )  cloned and characterized 
the genes coding for all the enzymes involved in the conversion of 
acetyl-CoA to farnesyl diphosphate (FPP) in the zeaxanthin-
producing bacterium  Paracoccus zeaxanthinifaciens . They identi fi ed 
two genes encoding enzymes catalyzing the condensation of two 
acetyl-CoA molecules to acetoacetyl-CoA. The gene cluster named 
the mevanolate operon regulates the six enzymes involved in the 
conversion of acetyl-CoA and acetoacetyl-CoA to isopentenyl 
diphosphate (IPP) and DMAPP. The genes encoding the enzymes 
catalyzing two consecutive condensations, IPP and DMAPP to 
geranyl diphosphate (GPP) and IPP and GPP to FPP, were also 
identi fi ed. It was reported that these genes were not clustered with 
any other genes encoding an enzyme of the isoprenoid pathway. 

 In the carotenoid biosynthetic pathway, phytoene synthase 
( crtB ), phytoene desaturase ( crtI ), and lycopene cyclase ( crtY ) are 
the three essential enzymes responsible for the biosynthesis of both 
acyclic and cyclic carotenoids. In the early 1990s, Sandmann’s 
group identi fi ed and mapped the major  Erwinia herbicola  genes 
responsible for the cyclization and hydroxylation of carotenoids  (  36  ) . 
Much later, Phadwal reviewed the molecular phylogenies of the 
 crt  genes involved early in the carotenoid pathway  (  65  ) . The work 
summarized the phylogenetic evolution of phytoene synthase 
( crtB ), phytoene desaturase ( crtI ), and lycopene cyclase ( crtY ) 
among bacteria and their functional signi fi cance in microbial 
carotenogenesis. Acyclic hydroxyl carotenoids from the carotene 
hydratase ( crtC ) and carotene 3,4-desaturase ( crtD ) genes of 
 Rhodobacter  were also summarized by Steiger et al.  (  66  ) . Several 
enzymes, such as carotene hydroxylases ( crtZ ), carotene oxygenase 
( crtW ), carotene isomerase ( crtH ), and so on, have been linked 
with bacterial carotenogenesis. However, recent work shows that 
carotene hydroxylases ( crtZ ) and its cDNA sequence were also 
isolated from green alga such as  H. pluvialis . The carotene hydrox-
ylase isolated from  fl avobacterim was pursued for the biosynthesis 
of unique hydroxyl carotenoids  (  67  ) . The hydroxylation reaction 
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among carotenoid producing microbes is considered common 
phenomena, but ketolation is quite limited, and is characteristic of 
selected microbes.  b -Carotene ketolase enzymes ( crtW  and  crtO ) 
have been identi fi ed from methylotrophic bacterium such as 
 Methylomans . The incorporation of the genes encoding these 
enzymes has resulted in a higher percentage of canthaxanthin in 
these strains  (  68  ) . Recombinant DNA technology has enabled 
biotechnologists to make new carotenoids for a variety of uses  (  69  ) .  

 

 Several studies have been conducted highlighting the importance 
of carotenoids in healthcare as well as the nutraceutical and food 
industries  (  2,   8,   34,   70–  72  ) . The market demand for carotenoids 
continue to rise as more and more clinical research studies surface, 
revealing the various health bene fi ts of carotenoids  (  33,   34,   73–  76  ) . 
Of the 600 naturally occurring carotenoids, only a few have proven 
useful in human- and animal-based industries, and these have primarily 
received focus on their abilities to act as antioxidants and light-
screening ingredients. 

 The carotenoid market is expected to increase to $919 million 
by 2015 with an annual growth rate of 2.3%  (  77  ) . Most of these 
carotenoids are available from synthetic sources; however, synthetic 
pigments have been perceived to cause hazardous effects to human 
health at high dose ranges and have been subsequently warned by 
the Food and Drug Administration  (  78  ) . This resulted in the hunt for 
a process of pigment production by alternative natural sources  (  79  ) . 
There is a growing demand for microbial sources of pigments as an 
alternative. 

 Currently,  b -carotene and astaxanthin are industrially produced 
from microbial sources and are widely used in food and feed 
industries  (  2,   80,   81  ) . The major limitation on the use of microbial 
systems for commercial production is the low yield, slow growth, 
and high production cost compared with chemical synthesis. 
However, strain improvement strategies such as optimization of 
growth conditions and preparation of mutants in conjunction with 
metabolic engineering techniques could improve carotenoid 
productivity. In the following section, we discuss the major utilities 
and available microbial sources of some commercially important 
carotenoids. 

  Astaxanthin is the most commonly occurring red carotenoid in 
marine and aquatic animals  (  82  ) . It is responsible for the pink color 
of salmon  fl esh and also gives coloration to crustacean shells. It is 
known to scavenge free radicals and quench singlet oxygen  (  83,   84  ) . 
It can enhance the immune system  (  85  )  protect skin from radiation 

  4.  Biotechnology 
of Microbial 
Carotenoids

  4.1.  Astaxanthin 
(3 S ,3 S   ¢ -Dihydroxy-
 b , b -carotene-4,4 ¢ -
dione)
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injury, cancer  (  86,   87  )  and block reactions induced by other chem-
icals and toxins. It is widely used in the pharmaceutical, cosmetic, 
and nutraceutical industries  (  88  ) . Two major microorganisms, 
which have been commercially exploited for astaxanthin produc-
tion, are microalga  H. pluvialis , and heterobasidiomycetous yeast 
 Xanthophyllomyces dendrorhous   (  2,   89–  91  ) . 

 Recently, de la Fuente et al. reported an improved semi-
industrial process for astaxanthin production by the fermentation 
of  X. dendrorhous . A volumetric yield of 350 mg/L astaxanthin 
was reported with 800-L scale  (  92  ) . Although  X. dendrorhous  has 
been studied by various researchers for the past three decades, it still 
attracts interest in various biotechnological industries  (  89,   92,   93  ) . 

 Alternately, the freshwater unicellular alga,  H. pluvialis , 
accumulates astaxanthin in its aplanospores under stressful conduc-
tions and is considered to be one of the richest sources of this 
carotenoid. Ranjbar et al. reported photoautotrophic conditions in 
a bubble column with the fed-batch addition of nutrients for the 
production of astaxanthin by  H. pluvialis . A combination of the fed-
batch addition of nutrients and dilution of broth for nutrient 
de fi ciency was proposed as the most promising method for attainment 
of high cell and astaxanthin concentrations in a bubble column 
photo-bioreactor. The  fi nal concentration of astaxanthin was 
reported to be 390 mg/L which was several times higher than 
anything ever previously reported  (  94  ) . Sandesh Kamath et al. 
reported a 23–59% increase in the total carotenoid and astaxanthin 
contents by implementing a strain improvement strategy for 
 H. pluvialis  with chemical and UV mutation  (  35  ) . 

 Apart from these two major carotenoid producing microorgan-
isms,  Brevibacterium linens   (  95  )  and  Agrobacterium aurantiacum  
 (  96  ) , the marine bacterium  Paracoccus haeundaensis   (  97  )  and 
 Mycobacterium lacticola   (  98  )  are also reported to produce astaxan-
thin, but are not considered commercially signi fi cant sources.  

   b -Carotene is an important compound because of its role as an 
antioxidant, and as precursor of vitamin A in food and feed prod-
ucts  (  99,   100  ) . In 2004, the worldwide market value of  b -carotene 
was US $242 million and was proposed to reach US $253 million 
by 2009  (  77,   101  ) . Currently, more than 90% of commercialized 
 b -carotene is produced through chemical synthesis  (  102  ) . 

  b -Carotene is produced primarily by microalgae, fungi and yeasts, 
as well as some species of bacteria and lichens  (  103,   104  ) . Commercially 
available  b -carotene is produced mainly from the genus  Dunaliella  
 (  101,   105  ) . Since 1980,  Dunaliella  powder and extracts (yielding 
dried biomass and natural  b -carotene) have been available in Israel, 
China, the USA, Australia, and Mexico  (  3,   101,   106  ) . 

 Beside  Dunaliella , the greatest yields have been obtained by 
the mating of (+) and (−) strains of  Blakeslea trispora   (  103  )  resulting 
in yields that are comparable to those of chemical processing  (  107  ) . 

  4.2.   b -Carotene 
( b ,  b -Carotene)
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The US Department of Agriculture’s process reported a yield of 
17 mg of  b -carotene per gram of mycelium and recently improved 
to about 30 mg of  b -carotene per gram of mycelium and about 
3 g/L  (  107  ) .  Phycomyces  is used as a model system by many 
researchers to study the regulation of the biosynthesis of the pigment 
 b -carotene in fungi as it accumulates  b -carotene, at a lower extent 
than  B. trispora , in the lipid globules of their mycelia  (  108  ) . Sang-
Hwal Yoon et al. reported a novel approach by the combinatorial 
expression of the whole bacterial mevalonate pathway for the 
production of  b -carotene in  Escherichia coli . The recombinant 
 E. coli  DH5 a  harboring the whole MVA pathway and  b -carotene 
synthesis genes produced a  b -carotene yield of 465 mg/L at a glycerol 
concentration of 2% (w/v)  (  102  ) . However, the regulatory con-
cern surrounding the use of recombinant strains is still a major 
roadblock for the success of microbial biotechnology.  

   b -Cryptoxanthin is a xanthophyll carotenoid with the potential 
to act as provitamin A and has been reported to improve bone 
health. A study conducted in experimental rats demonstrated that 
 b -cryptoxanthin also stimulates unique anabolic bone calci fi cation 
 (  109  ) . Yamaguchi et al.  (  75  )  claimed that  b -cryptoxanthin, which 
may promote osteogenesis, could be of value as an active ingredi-
ent in the treatment of bone diseases. Recent studies also indicate 
that  b -cryptoxanthin is highly preventative against prostate cancer 
 (  76,   110  ) , lung cancer  (  111–  113  ) , colon cancer  (  114  ) , and rheu-
matoid arthritis  (  115  ) . 

 While there is currently little to no commercial demand for 
microbial  b -cryptoxanthin, it holds great potential for future inves-
tigation, production, and use. Information on microbial production 
of  b -cryptoxanthin is very limited, mainly due to the lack of proper 
microbial sources and feasible culture conditions  (  2,   116  ) .  B. linens , 
which is traditionally known for its cheese ripening process, accu-
mulates  b -cryptoxanthin in low amounts  (  117  ) .  Flavobacterium 
lutescens  and  Flavobacterium multivorum  are reported to produce 
 b -cryptoxanthin under optimized media conditions  (  116,   118  ) . 
However, these microbial sources are not yet competitive in 
comparison to the naturally occurring citrus and capsicum based 
sources of  b -cryptoxanthin  (  119  ) .  

  Canthaxanthin is a diketo-carotenoid, which was  fi rst isolated from 
edible mushrooms  (  3  ) . It is widely used as a colorant in food, feed 
additives for egg yolk,  fi sh, and crustacean farms and also in the 
cosmetic industry as a tanning agent for human skin  (  2,   120  ) . 
Canthaxanthin is reported to prevent UV-induced immune 
suppression in mice, protect against skin cancer in experimental 
animals and also to be useful in the treatment of skin diseases such 
as photodermatosis  (  2  ) . In vitro studies demonstrated that canthax-
anthin has greater antioxidant activity than its non-oxygenated 

  4.3.   b -Cryptoxanthin 
(3 R - b ,  b -Caroten-3-ol)

  4.4.  Canthaxanthin 
(4,4  ¢ Diketo- b -
carotene)
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analog such as  b -carotene due to the presence of keto groups at the 
4 and 4 ¢  positions in the  b -ionone ring  (  121  ) . Only a few microbial 
sources of canthaxanthin have been reported. Askar et al.  (  122  )  
identi fi ed an extremely halophilic bacteria,  Haloferax alexandri-
nus , with a 0.69 mg/g cellular accumulation of canthaxanthin. 
Other bacterial producers of canthaxanthin include  Corynebacterium 
michiganense ,  Micrococcus roseus ,  Brevibacterium  sp. strain KY 
4313,  Gordonia jacobaea , and  Dietzia natronolimnaea  HS-1 
 (  123  ) . It was also discovered that various green microalgae such as 
 Chlorella pyrenoidosa ,  Chlorella zo fi ngiensis ,  Chlorella emersonii , 
and  Dictyococcus cinnabarinus  produce canthaxanthin under vari-
ous growth conditions  (  123  ) . Recently, it was reported that under 
submerged fermentation, a mutant strain of  Aspergillus carbonar-
ius  produces canthaxanthin with a yield of 32 mg/g  (  124  ) . The 
current market demand for canthaxanthin is ful fi lled by chemical 
synthesis  (  125  ) . However, much attention is being devoted by 
researchers to discovering a microbial source for canthaxanthin 
and developing novel production strategies for promising micro-
bial strains  (  123,   126,   127  ) .  

  Fucoxanthin is a naturally occurring xanthophyll carotenoid found 
in brown algae and edible brown seaweeds that has fascinated the 
nutraceutical and food industries recently due to its unique health 
bene fi ts such as antiobesity, antidiabetes, etc., which have not been 
reported with other carotenoids  (  74  ) . Fucoxanthin intake has been 
shown to promote fat metabolism, particularly around the abdominal 
area  (  33,   128,   129  ) . An antidiabetic effect of fucoxanthin was also 
reported; a 0.2% fucoxanthin supplementation decreased the blood 
glucose and plasma insulin concentrations in experimental mice 
 (  130  ) . A study conducted in KKAy mice, a model for obese/type 
II diabetes, showed that fucoxanthin could enhance the amount of 
DHA in the liver of mice fed with soybean oil without direct  fi sh 
oil supplementation  (  131  ) . Fucoxanthin is shown to have anticancer 
properties  (  132,   133  ) . Fucoxanthin isolated from brown algae has 
also been found to act as an anticoagulant  (  71  ) , anti-in fl ammatory 
 (  34  ) , antioxidant  (  73  ) , and antimicrobial  (  134  ) . 

  Undaria pinnati fi da  and  Lamaria  sp. are the most popular 
edible seaweeds in Japan and many other Southeast Asian countries, 
and fucoxanthin accounts for >10% of the total carotenoids in these 
seaweeds  (  74  ) . Other brown sea weeds that have been reported to 
produce fucoxanthin include  Hijikia fusiformis ,  Ecklonia stolo-
nifera , and  Sargassum siliquastrum   (  135–  137  ) .  

  Lutein is one of the fastest growing carotenoids on the market 
 (  77  ) . Currently, the natural commercial source of lutein is the 
solvent extract of marigold ( Tagetes erecta ) petals  (  125,   138  ) . 
However, the lutein content of marigold petals is low, 0.03% dry 
wt., and it contains several esters with similar polarity, making them 
dif fi cult to separate from each other  (  139  ) . 

  4.5.  Fucoxanthin 
(3  ¢ -(Acetyloxy)-6  ¢ ,
7  ¢ -didehydro-5,
6-epoxy-5,5  ¢ ,6,6  ¢ ,7,
8-hexahydro-3,
5  ¢ -dihydroxy-8-oxo- b , 
 b -carotene)

  4.6.  Lutein 
[(3 R ,3  ¢  R ,6  ¢  R )- b ,
 e -Carotene-3,3  ¢ -diol]
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 In recent years, several microalgae have been studied as potential 
lutein sources, such as  Chlamydomonas reinhardtii   (  140  ) , 
 Muriellopsis  sp .   (  141  ) ,  Chlorella protothecoides   (  142  ) , and 
 Scenedesmus almeriensis   (  139  ) ; however, microbial sources still lack 
commercial potential mainly due to lack of studies involving strain 
improvement and high-volume bioreactors.  

  Zeaxanthin is an isomer of lutein, and its commercial demand exists 
in parallel to lutein mainly in the ocular health market. Zeaxanthin 
coexists with its several optical isomers in natural sources such as 
corn, alfalfa, yellow peppers, egg yolks, and marigold  fl owers 
 (  143,   144  ) . Among the microbial sources, marine bacterium 
 Flavobacterium  species are well documented for their zeaxanthin 
production  (  107,   145–  148  ) . Unlike lutein, which is typically present 
in photosynthetic microorganisms, zeaxanthin occurs in cyanobac-
teria  (  149  )  and also in some non-photosynthetic bacteria  (  143  ) . In 
the non-photosynthetic bacteria, zeaxanthin sometimes presents in 
the form of glycoside esters  (  143,   150  ) . Other microbial sources 
include  Dunaliella  sp . , which produces zeaxanthin under various 
stress and gene manipulation conditions  (  151,   152  )  and  Microcystis 
aeruginosa   (  153  ) . 

 Lutein and zeaxanthin together have many potential uses in 
the pharmaceutical and nutraceutical industries. Various studies 
suggest that they play an important role in the prevention of cancer 
 (  154  ) , age-related macular degeneration (AMD)  (  70,   155  ) , and 
enhancement of immunity. They are also used as colorants in food 
and in the cosmetic industry  (  156  ) . 

 Table  1  summarizes the major microbial producers of carote-
noids vs. natural sources. In general, the microbial yield is quite 
low compared with other nonmicrobial sources such as plants or 
animals. Microbial biosynthesis has an economic niche for those 
carotenoids which have complex structures that make them dif fi cult 
to synthesize chemically. With proper strain improvement strate-
gies and fermentation technologies, it is possible to produce higher 
levels of pure and isomer-free carotenoids from microbial sources.    

 

 Microbial carotenogenesis is a well-studied phenomenon that has 
been, and will continue to be, researched for years for its regulation 
and functionality using several biochemical approaches. Over the 
years, numerous groups of microorganisms have been characterized 
by their speci fi c compositions of carotenoids. The characterization 
of genes and proteins involved in the biochemical pathways coupled 
with the use of genetic and metabolic engineering tools to improve 
the selective pathways has directed the biotechnologist toward the 

  4.7.  Zeaxanthin 
[(3 R ,3  ¢  R )- b ,  b -
Carotene-3,3 ¢ -diol]

  5.  Conclusions
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hyperproduction of carotenoids from microbial processes. Although 
the developed processes for microbial production of selected car-
otenoids appears to be very promising, gaining a deeper under-
standing and further development of the fermentation process in 
future years will be necessary before microbial sources become a 
realistic alternative to synthetic carotenoids.      
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