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Abstract

So far the major focus of Transient Receptor Potential (TRP) channels in the context of pathophysiological
disorders was centered exclusively on the ionic conductivity mediated by these channels. However, recently
the importance of non-ionic functions of TRP channels in different pathophysiological disorders has
emerged. Recently several physical and functional interactions of TRP channels with cytoskeletal compo-
nents have been characterized. These interactions play important roles in executing the non-ionic func-
tions and regulations of TRP channels per se. In the membranous environment, TRP channels form
dynamic signaling complexes that include components like microtubule and actin cytoskeleton, other scaf-
folding and key regulatory components. TRP channels can also regulate the integrity and dynamics of
different cytoskeletal systems in complex manner. In many cases, these regulations seem to be independent
of Ca** influx mediated by these channels and thus have immense significance in the context of pathophysi-
ological disorders. In this review, I highlight the importance of TRP channel interactions and multi-
directional regulations with cytoskeletal components in detail. This aspect opens up new avenues to target
TRP signaling complexes by pharmacological manners. The strategies to target TRP complexes rather
than targeting TRP channel solely might be useful for several clinical purposes.
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Transient receptor potential canonical
Transient receptor potential mucolipin
Microtubule-associated proteins
Maltose-binding protein
Neurofilament heavy chain 200 KDa
1-oleoyl-2-acetyl-sn-glycerol

Protein kinase C

Polycystic kidney disease

Protein kinase Ce sub type
Resiniferatoxin

1. Introduction

Though the importance of cytoskeleton in different signaling
events and cellular functions are well established, the entire arrays
of cytoskeletal organization at the sub-membranous region and
complexity of the cytoskeleton at the lipid environment have not
yet been understood (1, 2). While the presence and function of
cortical actin cytoskeleton just beneath the plasma membrane are
well established, the events and mechanisms by which membrane
proteins and sub-membranous microtubule cytoskeleton regulate
each other and execute multiple cellular functions are just emerg-
ing (3). In that context, it is important to mention that so far
several proteomic studies indicate that components from microtu-
bule cytoskeleton physically interact with several transmembrane
proteins such as ion channels, pumps, and receptors (4-7). These
reports are also in full agreement with the fact that tubulin, actin,
and other cytoskeletal proteins are selectively enriched in several
biochemical preparations which represent different membrane
fractions (8—11). Even the presence of tubulin and actin is observed
in very specialized subset of total membrane fraction, namely in the
lipid rafts and /or in the post-synaptic density fraction of the synap-
tic membranes (9, 12-14). Taken together, both membrane-
associated actin and tubulin represent membrane cytoskeleton
which is highly relevant for several signaling and provide important
platform on which the functions of the membrane proteins are
dependent. Surprisingly, the dynamics, biochemical characteristics,
regulations, and functions of the sub-membranous microtubule
cytoskeleton are still poorly understood (15, 16). However, for
simplicity it can be said that a small portion of the microtubule
cytoskeletal components are selectively present in the membrane
fraction. These components constitute different dynamic complexes
that are primarily formed by the transmembrane proteins. Within
these complexes, the cytoskeletal components can interact directly
or indirectly with the membrane proteins.
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Transient Receptor Potential (TRP) channels are a group of
newly discovered non-selective cation channels that can be activated
by several physical and chemical stimuli and are involved in several
physiological functions (17-20). Dysfunction and mis-regulation
of TRP channels have been linked with several pathophysiological
and genetic disorders (21). So far, research with TRPs has focused
mainly on the ionic conductivity mediated by these channels.
In spite of several reports demonstrating that TRP channels share
co-localization with several cytoskeletal proteins at highly specific
sub-cellular locations, the importance of TRP-cytoskeleton cross-
talk in the context of structure—function and regulation has been
neglected for a long time. Only in recent time, the importance of
cytoskeletal proteins in the multi-dimensional regulation of TRP
channels has come to light. So far, a handful of reports suggest that
cytoskeletal proteins play an important role in the context of
structure—function and regulation of TRP channels. In the same
context, a number of studies have indicated that TRP channels
physically interact with actin and microtubule cytoskeleton as well
as with many other proteins at the plasma membrane. Therefore
the significance of these interactions is manifested by the functional
aspects of TRP channels. All these studies also indicate that
cytoskeletal, vesicular and other membrane regulatory proteins
interact with TRP channels and form scaffolds at the plasma mem-
brane which can be described as dynamic functional complexes
central to many physiological functions. Improper structure—
function and regulation of these complexes seem to be intimately
associated with the development of diseases and pathophysiologi-
cal conditions. Therefore these complexes represent potential,
specific and novel pharmacological targets.

It is noteworthy to mention that so far crosstalk between TRP
channels with cytoskeleton has not been investigated properly
though the indication of such crosstalk was reported long back.
For example, it has been demonstrated that capsaicin-responsive
DRG neurons are devoid of neurofilament 200 kDa protein
(Capsaicin-responsive dorsal root ganglion (DRG) neurons cannot
be labeled with a monoclonal antibody (RT97) that detects NF200
kDa) though the reason for such specific regulation is still not
known (22, 23). Nevertheless, understanding of such fine regula-
tions between TRP channels and cytoskeleton has tremendous
importance in the case of several pathophysiological disorders and
diseases. In this review I highlight the interaction of different
cytoskeletal proteins with TRP channels at several levels and also
how these complexes are regulated.
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2. Cross-Talk
Between TRP
Channels and
Cytoskeleton:
Co-localization
and Genetic
Interactions

The importance of cytoskeleton in the context of function and
regulation of TRP channels came from the common observation
that these channels and specific cytoskeletal proteins are co-
expressed in some specialized cells. Often these two groups of
proteins are located at distinct subcellular structures also, a topic
that has been discussed in detail by us recently (24). As these sub-
cellular structures are characterized by the presence of these
specialized proteins and /or by intricate cytoskeletal organization,
specific localization strongly suggests that TRP channels either
interact with some of the cytoskeletal proteins and /or are involved
with the development as well as function of these structures. For
example, polycystine channel sub type 2 (PC2) co-localizes with
polyglutamylated tubulin at the basal bodies/cilia of ciliated epi-
thelial cells present in mouse trachea (25). This co-localization is
also in agreement with the involvement of PC2 channel in ciliary
function. PC2 forms a complex with pericentrin and this interaction
is also required for primary cilia assembly (25). In the same context,
both PC1 and PC2 are present in the primary cilium of kidney cells
(26). PC2 channel is also localized at the primary cilia of renal
epithelial cells (27). Xenopus TRPN1 (NOMPC) localizes to the
tip of the microtubule-based cilia in epithelial cells (kinocilial bulb)
and tip of the inner-ear hair cells (28). There TRPN co-localizes
with cytoskeletal components like actin, tubulin, and Cdh23. In
Drosophila melanogaster, NOMPC (a member of the TRP channel
family) localizes to the tubular body and distal cilium of
Campaniform and Chordotonal receptor cells and is involved in
these ciliary functions (29). In Drosophila, TRPN (=NOMPCQC)
localizes at the distal end of mechanosensory cilia also and co-
localizes with EYS (an extracellular protein that marks the proximal
end of the sensory cilia) (30). TRPC6 localizes in podocytes where
it interacts with podocin and nephrin, components that belong to
actin cytoskeleton (31). These examples suggest that TRP channels
localize at the specific cytoskeleton-enriched structures and share
a special relation with the cytoskeletal components.

Like PC, TRPN and TRPC channels, recent results suggest
that TRPV channels share physical and functional interactions with
cytoskeletal components. TRPV1 and TRPV4 are reported to be
localized at the tip of filopodia in both neuronal and non-neuronal
cells when expressed ectopically (24, 32, 33). This is also in agree-
ment with the endogenous localization of TRPV1, TRPV4 and
other TRP channels at the spines (33-35). Interestingly, expres-
sion of TRPV1 induces filopodia that possess a characteristic bul-
bous head which contains negligible amount of F-actin but
accumulates TRPV1 there (24, 32). This phenotype resembles well
with the expression of the non-conventional myosin II, III, V, X
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and XV (24, 36—47). These similarities suggest that overexpression
of TRPV1 may alter the function of these myosin motors and exe-
cute similar dominant-negative effects. Indeed, changes in the
expression pattern as well as distribution of certain cytoskeletal
proteins including non-conventional myosin motors after the ecto-
pic expression and/or activation of TRP channels have been
reported (32, 48, 49). Ectopic expression of TRPV1 in F11 cells
results in altered expression as well as reorganization of non-con-
ventional myosins, namely endogenous myosinlla and myosinlIIa
(32). In agreement with this, observation another study has also
confirmed that overexpression of TRPC6 in transgenic mice
resulted in an increased expression of beta-myosin heavy chain in
cardiac tissues (50).

In many cases, the development and the function of these
specialized cells/structures are regulated by both TRP channels
and these cytoskeletal proteins. In agreement with this, mutations
in either TRP channels or specific cytoskeletal proteins often lead
to similar, if not same, phenotype as well as pathophysiological
disorders and/or syndromes. Taken together, involvements of
these two groups of proteins in common functions and occurrence
in same cell (even in the same sub-cellular regions) are highly
indicative of physical, functional, and genetic interactions (51).
As the examples are too many, it is impossible to cover all these in
this review. However, some key examples, like multi-dimensional
relation of TRP channels with different motor proteins are
described here.

For example, as is the case in many ciliary proteins, mutations
either in PCI and PC2 are also involved in polycystic kidney disease
(PKD) and result in defective localization, cilia formation and/or
loss of flow-induced Ca** signaling (26, 52). This agrees with the
fact that PC channels are regulated by microtubule-based motor
proteins such as KIF3a and KIF3b (53). In a similar context, muta-
tions in either kinesin (Kiflb) or TRPV4 result in similar
pathophysiology and development of Charcot—Marie-Tooth disease
type 2 (CMT2) disease suggesting a strong genetic link between
these two (21, 54-57). Mutations in TRP channels as well as in
different non-conventional myosin motors are also reported to
develop similar pathophysiological disorders and other syndromes
like deafness and blindness. For example, both the development
and proper function of the stereocilia of hair cells are important for
hearing. In normal conditions, the ciliary tips of hair cells contain
enriched amounts of endogenous TRP channels as well as several
nonconventional myosin motor proteins, indicating that the function
of these cells are dependent on these two groups of proteins at the
ciliary tips. Indeed, several reports suggest that in the case of deaf-
ness, several nonconventional myosin motors (myosin I, ITA, ITIA,
VI, VIIA and XV) are important for either development of the
stereocilia of hair cells in the inner ear or proper localization of
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TRP channels at the tips of these stereocilia (58—60). Reciprocally,
mutations and abnormal expression—functions of several TRP
channels, namely NompC, TRPML1, TRPML2, TRPML3,
TRPV4, TRPV5, and TRPV6 also lead to deafness (30, 61-68).

Like auditory defects, development, polarization of retinal cells
and proper trafficking of pigments in the retinal cells are involved
in the proper light-sensing mechanisms. In case of blindness, both
TRP channels and non-conventional myosins are involved (60).
Retrospectively, TRP channel was first discovered by Minke et al.
in Drosophila melanogaster as the mutant was defective in light-
sensing mechanism (69). Indeed, so far several TRP channels have
been reported to express in retinal cells. Some of these TRP chan-
nels are involved in photo-response and essential for the light sen-
sation as mutation in these TRP channels causes different forms of
blindness (70). For example, mutation in TRPM1 is responsible
for blindness as it is involved in retinal ON bipolar function
(71, 72). In agreement with the involvement in common func-
tions, mutations in myosin motors are also involved in blindness.
Mutation in myosin VIIa is involved in the development of “Usher
syndrome type 1B” (60). In Drosophila, Ca**-activated myosin V is
involved with the closure of the pupil and thus with the light sensa-
tion procedure (73). Apart from the genetic interaction, recent
reports clearly indicate physical as well as functional interactions
between these two groups of proteins. Recently it has been reported
that translocation of eGFP-tagged TRP-like channels to the rhab-
domeral membrane in Drosophiln photoreceptors is myosin 111
dependent (74). A recent proteomic screen has also identified
myosin as an interacting protein for TRPC5 and TRPC6 (75).
Another study showed that myosin Ila is directly phosphorylated
by TRPM7, a cation channel fused to an alpha-kinase (76). In the
same notion, a recent proteomic screen has identified the heavy
chain of myosin X and cytosolic dynein heavy chain as an interacting
protein of TRPC3 (77). All these results suggest that TRP channels
and some of the specific cytoskeletal proteins like kinesins and
nonconventional myosins are involved in same functions.
However, detailed studies are needed to understand these genetic
interactions.

3. Physical
Interaction of TRP
Channels with
Microtubule
Cytoskeleton

In the last few years, major progress has been made to elucidate
and further characterize the physical interaction of TRP channels
with components from microtubule cytoskeleton like tubulin,
microtubule associated proteins (MAPs) and different motor pro-
teins (3, 6, 78). So far, direct physical interaction of tubulin has
been reported for members belonging to TRPV, TRPC, and TRPP
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Fig. 1. TRPV1 interacts directly with microtubule cytoskeleton and induces cellular changes upon expression as well as
activation. (@) MAP-enriched tubulin (lane 1, input) was added to the MBP-TRPV1-Ct coupled with amylase resin (lane 2).
A significant fraction of the tubulin interacts with the MBP-TRPV1-Ct. (b) The MBP-TRPV1-Ct directly interacts with polym-
erized microtubules. Purified tubulin dimers were incubated with GTP to form microtubules either in the presence of MBP
only (lane 1-2) or in the presence of MBP-TRPV1-Ct (lane 3—4) or in the presence of buffer only (lane 6—7). Polymerized
microtubules and bound proteins were subsequently separated from unpolymerized tubulin dimers or unbound proteins by
centrifugal separation of pellet (P) fraction from supernatant fraction (S). Silver-stained gel (/eft side) and anti-MBP western
blot analysis reveal specific interaction of MBP-TRPV1-Ct (blue arrow head) with polymerized microtubules. MBP alone
does not interact with polymerized microtubules and thus do not appear in the pellet fraction. (¢) Tubulin co-immunopre-
cipitates with TRPV1. Anti-GFP antibody was used for immunoprecipitation from F11 cells transiently expressing GFP only
(lane 1) or GFP-TRPV1 (lane 2). Immunocomplexes were probed for TRPV1 (/eft side) and tubulin (right side). Presence of
tubulin is detected only in lane 2, but not in lane 1. (d) Ectopic expression of TRPV1 (green) alters cellular morphology and
induces multiple filopodial structure. TRPV1 co-localizes with neuron-specific B-tubulin subtype Il (yellow) in such
filopodial structures. Scale bar 20 mm and 10 mm respectively.

channels (3, 6, 7, 75, 79). Here 1 discuss the details of these
interactions.

Probably the best characterization for the interaction of TRP
channels with tubulin has been illustrated by TRPV1, alternatively
known as capsaicin receptor (Fig. 1). By proteomic analysis, we
identified tubulin as a component present in the complex formed
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with the C-terminal cytoplasmic domain of TRPV1 (80). The
interaction was subsequently confirmed by several biochemical
approaches including co-immunoprecipitation, microtubule co-sed-
imentation, direct pull-down assay and cross-linking experiments
(49, 80). This interaction is direct as both purified tubulin and the
C-terminal cytoplamic domain of TRPV1 tagged with maltose-
binding protein (MBP-TRPV1-Ct) can form a stable complex. We
identified two short regions located within the C-terminus of
TRPVI1, namely amino acids 710-730 and 770-797 that can retain
tubulininteractionindependently (49). In contrast, MBP-TRPV1-Nt
failed to interact with tubulin in a direct pull-down assay (80). Based
on these observations, it was proposed that the tubulin interaction
was restricted within the C-terminal cytoplasmic region of TRPV1
only (49, 80). However, recently it has been shown that the
N-terminal cytoplasmic region of TRPVI1 can also interact with
tubulin (81). This difference might be due to the experimental sys-
tems and the procedures used. Taken together, this suggests that
there might be more than one region located in TRPV1 that can
be involved in tubulin interaction. It might also suggest that
TRPVI1-tubulin interaction is dynamic and might be involved in
the conformational changes.

The C-terminal cytoplasmic region of TRPV1 preferably inter-
acts with the B-tubulin and to a lesser extent also with the o-tubulin
(49). The cross-linking experiment revealed that MBP-TRPV1-Ct
interacts with B-tubulin quickly and the entire amount of B-tubulin
forms a high-molecular weight complex with MBP-TRPV1-Ct
within a minute. In contrast, the MBP-TRPV1-Ct interacts with
o-tubulin slowly and almost half of the B-tubulin fails to form
high-molecular weight complex with MBP-TRPV1-Ct even after
an hour. This also suggests a stronger binding of TRPV1 to the
plus end rather than the minus end of microtubules as the plus
ends of microtubule proto-filaments are decorated with B-tubulin.
It is therefore tempting to speculate that TRPV1 may act as a
microtubule plus-end-tracking protein (+TIP)(6). However,
whether TRPV1 can indeed serve as a plus-end-tracking protein
remains to be explored.

A significant understanding about the TRPV1 interaction with
tubulin has been derived from sequence analysis of the binding
regions. Interestingly, there are two short tubulin-binding stretch
sequences that reveal tubulin-binding ability. These two sequence
stretches contain highly basic amino acids and contain very high
isoelectric points, 11.17 and 12.6 (49). In the context of microtu-
bule interaction, these two regions can act as polycationic stretch
sequences that can favor microtubule formation and stabilize them
(82-84). Indeed, these two short stretch sequences can also interact
with soluble tubulin as well as with polymerized microtubules (49).
Interestingly, if assumed to form o-helical conformation, then all the
basic amino acids present in these two regions are projected to one
side, suggesting potential interactions with negatively charged
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Fig. 2. Tubulin-binding motifs located at the C-terminus of TRPV1 are characterized by the
presence of multiple positive charged residues. (@) The basic amino acids (indicated in
blue) are located at one side of the putative helical wheel, where it can interact with the
acidic C-terminus of tubulin. (b) The extreme C-terminus of both o.- and B-tubulin contains
highly negatively charged amino acids (indicated in red) and is mostly unstructured.

surface. In this context, it is important to note that the C-terminal
over-hanging regions of tubulin contain a large number of negatively
charged glutamate (E) residues in a stretch characterized as an
unstructured region of the tubulin and thus referred to as “E-hook”.
Due to the presence of several negatively charged residues, the
E-hook can be important for the interaction with the TRPV1, espe-
cially to these positively charged regions (Fig. 2). In agreement with
this, previously we have demonstrated that o3 -tubulin (protease-
digested tubulin dimers that lack approximately 45 amino acids from
the C-terminal region including the E-hooks) does not bind to the
MBP-TRPV1-Ct (49). More interestingly, in many TRPV channels
the distribution of these basic amino acids composing the tubulin-
binding regions is conserved even though the overall amino acid
conservation is rather limited. This may suggest that tubulin interac-
tion is apparently under high evolutionary pressure and it might be
conserved in many TRP channels. Indeed, the C-terminal cytoplasmic
region of TRPV4 also reveals interaction with tubulin (33). Similarly,
the C-terminal region of the TRPV2 also interacts with purified
tubulin (Unpublished observation). However, the exact amino acids
of TRPV4 and TRPV2 that are involved in the tubulin interaction
have not been determined yet.

It is important to note that different post-translationally
modified tubulin, like tyrosinated tubulin (a marker for dynamic
microtubules), acetylated tubulin, polyglutamylated tubulin, dety-
rosinated tubulin, phospho (serine) tubulin and neuron-specific
B-III tubulin (all markers for stable microtubules) interact with
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MBP-TRPV1-Ct (49). The same phenomenon was also observed
with MBP-TRPV4-Ct (33). These results strongly suggest that
TRPV channels interact not only with soluble tubulin, but also
with assembled microtubules which represent various dynamic
states of the microtubules. Indeed, the purified cytoplasmic domain
of TRPV1-Ct, TRPV2-Ct, and TRPV4-Ct co-sediment with
polymerized microtubules also. In addition to sole binding, MBP-
TRPV1-Ct and MBP-TRPV4-Ct exert strong stabilization effect
on microtubules. This stabilization effect of the C-terminus of
TRPVI and/or TRPV4 becomes especially apparent under micro-
tubules depolymerizing conditions such as in the presence of
nocodazol or increased Ca?* concentrations (33, 80). These obser-
vations fit well with the fact that polycations favor microtubule
polymerization and stabilization (82).

As TRPV1 represents a non-selective cation channel, the role of
increased concentration of Ca?* on the properties of TRPV1-tubulin
and/or TRPV1-microtubule complex is of special interest. Tubulin
binding to MBP-TRPVI1-Ct is sensitive to the presence of Ca’*
(80). In contrast, the absence or presence of extra Ca?* has no eftect
on the interaction of tubulin with MBP-TRPV4-Ct (80).
Interestingly, the microtubules formed with MBP-TRPV1-Ct in
the presence of Ca** become “cold-stable’ as these microtubules do
not depolymerize further at low temperatures (80). The exact
mechanisms by which Ca?* modulates these physio-chemical prop-
erties in vitro are not clear. In this regard, it is important to mention
that tubulin has been shown to bind two Ca?* ions to its C-terminal
sequence (85-88) and thus Ca?*-dependent conformational changes
of tubulin may underlie the observed effects of Ca? (89).

In addition to the interaction with af-tubulin dimer with the
TRPV channels, there are several reports that suggest that other
components of the microtubule cytoskeleton also interact with the
TRPV channels. For example, a yeast two-hybrid screen has reported
interaction of kinesin 2 and kinesin family member 3B with the
TRPV1 (78). Similarly, MAP7 interaction with TRPV4 has been
demonstrated (90). This interaction is also mapped down to the
C-terminal cytoplasmic domain of TRPV4, especially within the
amino acid region 798 to 809. This MAP7 interaction is involved
in the surface expression of TRPV4. The biochemical data of direct
interaction as well as microtubule stabilization find their correlates
in cell biological studies. Ectopic expression of TRPVI in dorsal
root ganglia-derived F11 cells results in co-localization of TRPV1
and microtubules and accumulation of endogenous tyrosinated
tubulin (a marker for dynamic microtubules) in close vicinity to the
plasma membrane (80). As suggested by its preference to bind to
the plus-end-exposed [B-tubulin, TRPV1 apparently stabilizes
microtubules reaching the plasma membrane and thereby increases
the number of pioneering microtubules within the actin cortex.
Similarly, TRPV4 co-localizes with microtubules at the plasma
membrane (33). Therefore, the stabilization of microtubules in the
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plasma membrane induces cellular morphological changes. This
also explains at least in part why overexpression of TRPV1 induces
massive induction of filopodial structures in neuronal as well as in
non-neuronal cells. The mechanism for this is currently under inves-
tigation and apparently also includes alterations in the actin cytoskel-
eton. However, co-localization of TRPV1 with tubulin has been
observed all along the filopodial stalk and, of note, including the
filopodial tips (32, 91). Tubulin and components attributed to sta-
ble microtubules (like acetylated tubulin and MAP2a/b) were also
observed within these thin filopodial structures (32).

Apart from the TRPV members, few TRPC members have
been reported to interact with tubulin. TRPC5 and TRPC6 have
sown to form signaling complexes that contain tubulin (75). In a
similar manner, TRPCI also interacts with tubulin and this inter-
action is involved with the surface expression of the channel (79).
A proteomic study has also reported interaction of few microtu-
bule cytoskeletal proteins, namely microtubule-associated protein
2 (MAP2) and cytosolic dynein heavy chain with TRPC3 (77). In
addition, physical interaction of TRPC5 with stathmin, a factor
that causes disassembly of microtubule cytoskeleton has been
demonstrated (92). The interaction with stathmin is important for
the neurite extension, growth cone function and also for synapto-
genesis. Interestingly, TRPC5 interaction with stathmin plays an
important role in the regulation of neurite and filopodial length
also. In agreement with other TRP channels, PC1 and PC2 chan-
nels also interact with different tubulins (like a-tubulin, B-tubulin,
v-tubulin, acetylated o-tubulin) and the kinesin motor proteins
KIF3A and KIF3B (53, 93).

4. Regulation

of Microtubule
Cytoskeleton

by TRP Channels

In the last few years, significant progress has been made to eluci-
date the regulation of microtubule cytoskeleton by TRP channels.
This is not surprising as activation of TRP channels initiates Ca?*
signaling as well as many other signaling events. Indeed recent
reports suggest that activation of TRP channels is not an all-or-
none event and thus these channels can regulate the cytoskeleton
by both Ca?*-dependent as well as Ca**-independent mechanisms
(94). Recently we have demonstrated that TRPV channels regulate
cytoskeleton in many different manners. For example, activation of
TRPV1 by specific agonists like Resiniferatoxin (RTX) or Capsaicin
leads to rapid destabilization of microtubules (48, 95). Notably,
TRPV1 activation predominantly affects the dynamic microtubules
and not the stable microtubules. This conclusion has been drawn
mainly due to the observation that majority of the tyrosinated
tubulins (marker for dynamic microtubules) but not the acetylated
or polyglutamylated tubulins (markers for stable microtubule)
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appear as soluble tubulin after the activation (48). Similarly, activation
of TRPV4 also results in disassembly of microtubules (33). Though
the exact molecular factors and pathways involved in this microtu-
bule disassembly are not known, involvement of Cam-Ca?* complex
can be speculated (96-98). This is due to the fact that catalytic
amounts of Cam-Ca?* complex are known to cause severe micro-
tubule disassembly. However, this TRPV-induced microtubule
disassembly can be achieved even in a Ca’*-independent manner,
especially under certain conditions. For example, TRPV1 mediated
microtubule disassembly can also be achieved in the presence of
Ca?* chelators like EGTA and strong inhibitor of TRPV1, like 5°I-
RTX (49, 91). Even expression of the N-terminal fragment of
TRPV1 (ATRPVI-Nt) can cause microtubule disassembly in
response to some specific components like estrogen (91). These
results strongly suggest that Ca*-independent pathways are also
involved in the microtubule disassembly. However, further studies
are needed to dissect these different signaling events in detail.

5. Interaction of
TRP Channels with
Actin Cytoskeleton

Similar to microtubule cytoskeleton, a large number of studies
suggest that TRP channels interact with actin cytoskeleton, both
physically and functionally. Often TRP channels physically interact
with G-actin and other components associated with actin cytoskel-
eton. For example, members of TRPV, TRPC and PC channels are
reported to form molecular complexes that contain actin and/or
related components (33,53, 93). The interaction of TRP channels
with actin cytoskeleton is functionally important and relevant for
several reasons. First, actin cytoskeleton is located just beneath the
plasma membrane and thus has enough physical proximity to
interact with the TRP channels. Next, in many cases, TRP channels
are present in specialized subcellular structures like at the spines,
filipodial tips, etc., that are characterized by the presence of bundled
actin cytoskeleton (32-34). In addition, there are TRP channels
(like TRPV4) that are involved in mechanosensation, a complex
process and thus are supposed to bridge lipid bi-layer with
sub-membranous cytoskeleton (7, 99, 100).

So far TRPV4 represents the best characterized TRP channel
in terms of multi-dimensional interaction with actin cytoskeleton.
Based on the fluorescence resonance energy transfer (FRET) per-
formed in live cells, it was demonstrated that actin and TRPV4
share a close proximity, possibly a physical interaction between
these two (101). This physical interaction is logical as both TRPV4
and actin cytoskeletons are functionally involved in mechanosensa-
tion as well as in mechanical pain (102). In agreement with that,
recently we have demonstrated that the C-terminus of TRPV4
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interacts directly with soluble actin as well as with polymerized
actin filaments (33). In addition, presence of a2 integrin, an actin-
binding protein in the signaling complex formed by TRPV4 has
also been reported (103). These interactions are also in agreement
with the fact that TRPV4 is enriched in structures like cilia,
filopodia, focal adhesion points, dendritic spines and in lamellipo-
dia, where it can regulate the dynamics of actin cytoskeleton (33,
104-110). In the same notion, involvement of TRPV4 in the inter-
cellular junction formation in keratinocytes has been demonstrated
(111). In spite of these studies, the exact location on TRPV4 where
actin or other actin cytoskeletal proteins bind with it has not been
determined. However, we demonstrated that soluble tubulin com-
petes with soluble actin for binding on MBP-TRPV4-Ct suggest-
ing that both actin and tubulin may bind to the same site located
on TRPV4-Ct (33). This also suggests that TRPV4 may have a
complex regulatory mechanism that switches it from actin cytoskel-
eton to microtubule cytoskeleton or vice versa.

In contrast with TRPV4, interaction of other TRPV members
with soluble actin cytoskeleton is not well established. As TRPV1
localizes in the actin cytoskeleton-enriched structures like at the
filopodial structures and at the dendritic spine, it is expected that
TRPVI interacts with actin cytoskeleton (32, 112). However, so
far the direct physical interaction of TRPV1 with actin has not
been established. In contrary, it has been shown that the same
immune complex of TRPV1 that contains tubulin actually lacks
actin (80). Even purified MBP-TRPV1-Ct does not interact with
soluble actin in a condition where it interacts with tubulin (49).
These results apparently suggest that TRPV1 may not interact
directly with actin cytoskeleton. However, it might be possible that
TRPV1-actin complex is extremely dynamic in nature, needs full-
length TRPV1 (or even tetrameric structures) and difficult to
extract in soluble phase. Therefore, bio-chemical methods may not
be suitable to confirm the interaction and further live cell imaging
studies are needed.

Recently, few TRPC members have also been reported to
interact with actin cytoskeleton. In a proteomic screen it has been
shown that the signaling complex formed by TRPC5 and TRPC6
contains actin and other actin cytoskeletal associated proteins,
namely spectrin and myosins (75). Among all, spectrin seems to
be a conserved interacting protein for many TRP channels, espe-
cially for TRPC members. In agreement with that, a recent study
demonstrated that the C-terminal cytoplasmic part of hTRPC4,
specifically amino acid residues 686 to 977 interact with all- and
BV-spectrin in a yeast two-hybrid assay (113). Within this region,
the amino acids residues 730-758 of hTRPC4 are critical for the
interaction with spectrin (113). This interaction was further
confirmed by glutathione S-transferase pulldown and co-immu-
noprecipitation experiments. This interaction with spectrin is
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important for the surface expression of TRPC members. Further
deletion studies confirmed that amino acids 730-758 of " TRPC4
are critical for the interaction with spectrin. This region contains
a coiled-coil domain and is juxtaposed to the Ca?*/calmodulin-
and IP,R-binding region (CIRB-domain) suggesting that the
interaction with the cytoskeletal components can have influence
on other regulation as well. It is likely that spectrin interacts with
TRPC5 also as the same sequence which is important for interac-
tion is present in TRPC5. A recent proteomic study has also
reported the interaction of several actin cytoskeletal proteins,
namely, spectrin a-chain, spectrin B-chain as well as cofilin-1 as
interacting proteins of TRPC3 (77). In the same notion, it has
been demonstrated that TRPC4 also interacts with SESTDI, a
previously uncharacterized protein that contains a lipid-binding
SEC14-like domain and a spectrin-type cytoskeleton interaction
domain (114). TRPC4 also interacts with 4.1 protein indicating
that TRP channels and cytoskeletal proteins indeed form complex
membrane scaffolds. This interaction is also due to a small sequence
located at the C-terminus of the TRPC4 which is enriched with
positively charged residues. Due to this ionic interaction, associa-
tion of TRPC4 with membrane cytoskeleton is sensitive to high
salt (115). Interaction of PC channels with actin cytoskeleton and asso-
ciated components like monomeric actin, the actin-related com-
ponents oa-actinin and gelsolin have also been demonstrated
(53, 93). However, more studies are needed to identify the entire
spectrum of interacting proteins belonging to actin cytoskeleton.

6. Regulation of
Actin Cytoskeleton
by TRP Channels

Being permeable to Ca*, activation of TRP channels has the potential
to regulate actin cytoskeleton. Indeed several reports suggest that
TRP cannels regulate actin cytoskeleton by various manners.
Interestingly, the nature of regulation and exact effect of TRDs-
mediated regulation of actin cytoskeleton depend on few factors,
mainly on the identity of the TRP channels and the cellular system.
Best characterization of TRP-mediated regulation of actin
cytoskeleton has been demonstrated for TRPV channels, namely
for TRPV4. This also fits well with the involvement of TRPV4 in
several cellular functions that are also known to require active
participation of the actin cytoskeleton. It is noteworthy to mention
that TRPV4 is a key molecule involved in mechanical force
mediated biological processes. For example, TRPV4 activity is
central to cytoskeleton-dependent/mediated regulatory volume
decrease of cells, a process where actin-binding proteins contrib-
ute to cell volume regulatory ion channel activation (116-120).
In the same notion, a recent study demonstrated that disruption



2 TRP Channels Mediated Cytoskeletal Reorganization 27

of the actin cytoskeleton increases the intracellular mobility of
TRPV4-GFP and results in loss of co-localization of TRPV4 with
actin (121). Recently it has been reported that TRPV4 regulates
the morphology of human umbilical vein endothelial cell ( HUVEC)
(122). Activation of TRPV4 in this cell line causes rapid retraction
and condensation of cells. In a similar manner, a prolonged activa-
tion also causes detachment of cells from the plates. Interestingly,
these effects can be blocked by the ruthenium red, a TRP channel
blocker. This suggests that TRPV4 activation alters the cytoskeletal
integrity and dynamics and affects focal adhesion points as well as
microtubules (122). Indeed, recent reports also suggest that
TRPV4 activation regulates the morphology and migration of neu-
roendocrine (GN11) cells (123). These effects are in full agree-
ment with what has been seen in F11 cells that express TRPV4
(33). This cell retraction due to TRPV4 activation is partly due to
the loss of microtubules which disrupt the balance between antero-
grade force mediated by microtubule cytoskeleton and the retro-
grade force mediated by acto-myosin components.

In a similar manner, functional consequence of TRPV1 on the
actin cytoskeleton has been shown in some systems. However, the
effect of TRPV1 on actin cytoskeleton seems to be different
depending on the cellular systems. For example, TRPV1 activation
may enhance actin polymerization in some cellular systems whereas
other cellular systems may remain unaffected or reveal depolymer-
ization. Indeed it has been shown that capsaicin treatment increases
the actin cytoskeleton, and also increases the actin filament content
in neutrophils (124). Similarly, the effect of TRPV1 activation on
the actin cytoskeleton has been demonstrated in sperm cells also.
It has been shown that inhibition of TRPV1 by capsazepine during
capacitation leads to the inhibition of actin polymerization in the
acrosomal region (125, 126). Another study also demonstrated
that activation of TRPVI in premature spermatozoa promotes
actin cytoskeletal depolymerization and a loss of acrosome struc-
ture integrity (125, 126). In case of F11 cells, the dorsal root gan-
glion-derived cells, activation of TRPV1 results in rapid microtubule
disassembly but does not cause disassembly of actin or neurofilament
cytoskeleton (48).

Other TRP channels also reveal functional interactions with
actin cytoskeleton. For example, TRP1 in human platelets (h'TRP1)
couples with IP3 receptor and this coupling is controlled by actin
cytoskeleton as stabilization of the cortical actin cytoskeleton with
pharmacological means prevents this coupling (127). This result
suggests that the sub-membranous actin filaments act as negative
clamp which prevents constitutive coupling between TRP1 and
IP3. In the same manner, PC2 channels regulate the morphology
of BeWo cells that represent Human Trophoblast Choriocarcinoma
(128). In this cell line, PC2 co-localizes at the cytokinetic midbody
where the dynamics of actin cytoskeleton is important for the final
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step of the cell division. In the case of neurons, TRPCI regulates
growth cone dynamics by a fine balance of LIM kinase and sling-
shot phosphatase activity which in turn regulates ADF /cofilin
(129). This process is involved in growth cone attraction and repul-
sion. Taken together these results suggest that TRP-mediated sig-
naling events are involved in reorganization of actin cytoskeleton.
These reorganization effects in turn control many of the cellular
functions like acrosomal reaction, fertilization, and functional
aspects of neurons and immune cells.

7. Regulation

of TRP Channels
by Cytoskeletal
Components

Recently there are a handful of reports that suggest a feedback
regulation of TRP channels by the components of the cytoskele-
ton. Interestingly these feedback regulations by cytoskeleton can
occur at the cellular level as well as at the single molecular level. At
the cellular level, there were few studies which demonstrated that
the functions of certain TRP channels are dependent on the status
of the cellular cytoskeleton. Especially it has been shown that phar-
macological modulation of different cytoskeletons results in altered
influx of ions via these TRP channels. For example, a microtubule
stabilizer drug, namely Taxol, reduces TRPV4-dependent currents
while the microtubule-disrupting agents like Colchicine and
Vincristine as well as actin cytoskeleton regulating drugs like
Phalloidin (a stabilizer) or Cytochalasin B (a destabilizer) do not
alter the TRPV4-mediated current (90). In agreement with this,
recently we also have demonstrated that pharmacological stabiliza-
tion of microtubules by applying Taxol results in reduction in the
Ca?* influx in response to 4o-phorbol-didecanoate (4aPDD) (an
agonist of TRPV4) as measured by Ca** influx assay in whole cells
(33). Interestingly, the degree of reduction in Ca?* influx is much
robust in the case of second time application of 4aPDD. Notably,
this reduction is independent of the expression or availability of the
TRPV4 at the plasma membrane, suggesting that dynamics of the
microtubule cytoskeleton can regulate the ion channel function.
This hypothesis is also supported indirectly by the whole-cell
recordings measuring the TRPV4 activation conducted by heat
activation. This is due to the fact that activation of single TRPV4
ion channel in response to heat is possible in whole cell recordings
but not in a cell-free inside-out patch clamp experiments, sug-
gesting that in the latter some cellular factor is missing (108).
Therefore it can be speculated that components from microtubule
cytoskeleton like ot~ or B-tubulin as well as MAPs might be important
for the channel function at the single ion channel level. Similarly,
involvement of actin cytoskeleton in the regulation of TRPV4 at
the cellular level has been demonstrated. Pharmacological disruption
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of actin by latrunculin-A results in loss of sensing hypotonicity and
the onset of regulatory volume decrease (121). Tubulin interac-
tion seems to control the Ca?* homeostasis via TRPC members
present in the ER. It is important to mention that microtubule-
based motor proteins indirectly regulate the calcium-selective
store-operated currents, a function where TRPC channels are
involved (130). This is due to the fact that either stabilization or
destabilization of microtubules by pharmacological drugs like
Taxol or nocodazole results in altered distribution of cellular
organelles as well as availability of the TRPC channels by modulat-
ing the endoplasmic reticulum-to-plasma membrane coupling
events (130, 131). Ionic conductivity mediated by TRPC?7 is also
regulated by the status of the actin cytoskeleton as disruption of
actin cytoskeleton by Cytochalasin-B results in inhibition of OAG-
activated and TRPC7-mediated currents (132).

In agreement with all these reports, it has been demonstrated
that the activity of the mechanosensitive ion channels in cultured
sensory neurons appears to depend largely on the status of the
cytoskeleton. Thus, disruption of actin or microtubule cytoskele-
ton by pharmacological agents greatly reduces the activity of mech-
anosensitive channels (133). In this regard, it is important to
mention that most of these studies involve Ca** imaging and/or
whole cell patch clamp as the read out systems and thus analyzed
the effect of cytoskeletal alteration on a population of TRP chan-
nels in general. These studies give a partial mechanistic view of
cytoskeletal involvement only and do not address the multidirec-
tional regulation of cytoskeleton on the ion channels, especially at
the level of single molecules. This is simply due to the fact that
availability of the ion channels at the plasma membrane and normal
trafficking of these ion channels are limited if the cytoskeleton is
disrupted. Therefore it remains to be established whether the
modulation of TRP channels can occur through direct interaction
with the cytoskeleton.

As mentioned, recent reports suggest that cytoskeletal compo-
nents can regulate the properties, especially the ionic conductivity
and related behavior of TRP channels, at the single channel level
also. This is mainly due to the fact that interactions of cytoskeletal
components with TRP channels affect other interactions and thus
modulate the sensitization—desensitization properties as well as
channel opening probabilities. In most cases, sensitization—desen-
sitization of TRP channels can be modulated through phosphory-
lation—dephosphorylation events. For example, recently we have
demonstrated that phosphorylation of MBP-TRPV1-Ct in vitro at
S800 position by PKCe is significantly reduced due to the interac-
tion of tubulin to the MBP-TRPV1-Ct (91). This result strongly
suggests that microtubule dynamics is an important regulator for
the ionic conductivity mediated by TRPV1. In this respect, it is impor-
tant to mention that S800 is a key position that regulates the
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sensitization—desensitization of TRPV1 (134). The phosphorylation—
dephosphorylation of TRP channels can also be regulated by the
Ca?*-dependent and /or independent kinases as well as by the Ca?*
influx through the channel itself. Kinases like PKCe and other
PKCs are also involved in the sensitization—desensitization of TRP
channels. Physical interaction and involvement of Ca**-binding/
sensing proteins like calmodulin and CamKII in the desensitiza-
tion of TRP channels have been reported (33, 135-141). For
example, TRPV1 and TRPV4 interact with Calmodulin and are
regulated by CamKII and these interactions are involved in the
regulation of ion channels. So it is becoming prominent that TRP
channels are modulated by Ca*-dependent as well as Ca?*-
independent mechanisms and the Ca?*-independent regulation of
TRP channels is just emerging. An example of Ca?*-independent
regulation of TRP channel is the regulation of TRPC by Homer.
It has been shown that TRPC mutants lacking the homer-binding
site become constitutively active (142). Even, point mutations in
the ankyrin repeat region (supposed to be involved in protein—protein
interaction) of TRPV4 results in constitutively active or inactive
channel (21, 54-56). These examples strongly indicate that other
scaffolding proteins and cytoskeletal components can regulate TRP
channel though the experimental evidences are still limited.
However, in recent time, very few studies have addressed this
problem and attempted to establish a direct modulatory role of the
cytoskeleton. The best examples of such studies were performed
on TRPP channels (53, 93). Montalbetti and co-workers performed
single-channel electrophysiological experiments of polycystin
channel 2 (PC2) on reconstituted lipid bilayers. This system argu-
ably eliminates all factors except the channel-associated complex.
Interestingly, monomeric actin, the actin-related components
o-actinin and gelsolin, tubulin including acetylated o-tubulin, and
the kinesin motor proteins (KIF3A and KIF3B) are present in these
membranes, possibly due to the direct interaction with PC2 chan-
nels (53, 93). Disruption of actin filaments with cytochalasin D or
with the actin-severing protein gelsolin activates the channel. This
activation can be inhibited by the addition of soluble monomeric
G-actin with ATP, which induces actin polymerization. This indicates
that actin filaments, but not soluble actin, are an endogenous
negative regulator of PC2 channels. Also microtubules regulate
PC2 channel function only in opposing manner. Depolymerization
of microtubules with Colchicine rapidly inhibits the basal level of
PC2 channel activity, whereas polymerization and/or stabilization
of microtubules from soluble tubulin with GTP and Taxol stimu-
lates the PC2 channel activity (93). Involvement of the microtu-
bule cytoskeleton in the regulation of PC2 channel has also been
described in vivo in primary cilia of renal epithelial cells (27). In
that system, addition of microtubule destabilizer (Colchicine) rapidly
abolished channel activity, whereas the addition of microtubule
stabilizers (Taxol) increased channel activity (27). Similar results
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were obtained using reconstituted lipid bilayer system, which
reveals that both spontaneous activity and the opening probability
of TRPP3 ion channels are increased by the addition of a-actinin,
demonstrating that this channel can be indeed modulated by
cytoskeleton (27). Certainly more studies are needed to explore
such regulations at the single level.

8. Importance

of Cytoskeletal
Reorganization in
Pathophysiological
Disorders: New
Pharmacological
Challenges, Future
Prospects and
Concluding
Remarks

The direct importance of TRP channels in Ca?* signaling has been
the major focus for a long time and still being investigated by many.
However, in the last few years another aspect of TRP channels has
emerged: the importance of Ca**-independent signaling event via
TRP channels. In this context, the signaling complexes formed by
the TRP channels and the cytoskeletal components at the submem-
branous compartment are of high importance. Being trans-
membrane proteins, TRP channels play a central role as scaffolds at
the sub-membranous regions on which other components are
sequestered, interact among themselves and finally form the
functional signalplexes (Fig. 3). Interestingly, cytoskeletal compo-
nents are not only present in these signalplexes, but also play
significant roles to “fix” the entire signalplex in the context of cel-
lular space and time. Therefore, both TRP channels and cytoskel-
etal componentsare involved in the “scaffolding” of the signalplexes.
As the formation of these signalplexs needs TRP channels as trans-
membrane proteins only, the formation of the signalplexes is
dependent on the availability of the TRP channels at the membrane
butislargelyindependent of their Ca** channel activity. Interestingly,
these components also take part in the regulation of ion channel
opening—closure properties to a large extent.

The coordinated regulation of different cytoskeletons and
vesicular trafficking by TRP channels has immense implication in
the context of pharmacological treatment of pathophysiology and
several disorders. For example, TRPV1 plays an inhibitory role in
urothelial cancer cell invasion and metastasis by altering the micro-
tubule cytoskeleton (143). This type of understanding may allow
targeting the cytoskeleton of cancer cells via specific TRP channels
or vice versa. In that manner, sprouting of neuronal cells, function
of immune cells and sperm cells, etc., can be effectively modulated
by targeting TRP-cytoskeletal complex per se. This strategy can be
effective as expression, localization, function and regulation of
TRP channels are specific yet versatile in nature. For example, the
complex of TRP channel with B-tubulin III can be specifically
targeted in neurons and /or in some specific cancer cells where the
expression of B-tubulin III is reported. Thus, different properties
of the individual TRP-signalplexes can be used for the pharmaco-
logical and clinical purposes.
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Fig. 3. Ca**-independent signaling events mediated by TRP channels. As TRP channels are transmembrane in nature,
interaction of submembranous cytoskeleton and other scaffolding proteins with these channels initiate formation of
scaffolds at the plasma membrane on which several other regulatory factors can associate and get involved in complex
signaling events. As this scaffolding act of TRP channels is independent of their ion channel activity, such signaling events
are dependent on the presence of TRP channels but independent of the TRP channel-mediated Ca?* influx. These Ca?*-
independent signaling events can be described in several distinct steps like initiation (step b), scaffolding (step c), recruitment
(step d), organization (step e), dynamic regulation (step f) and signaling events (step g). Though several membrane-
associated factors (like A), microtubule-associated factors (like B) and other cytosolic factors (like C, D E and F) are present
in the cell, these components cannot form novel signaling complex as these components are either not available at the
submembranous region or not properly sequestered there (As indicated in step a). Interaction of TRP channels with
cytoskeleton initiates some conformational changes (step b) and results in the formation of novel scaffolds on which some
of these key components can sequester (step c). This sequestration of these key factors facilitates recruitment and seques-
tration of several other cytosolic and membrane-associated factors on the existing TRP complex (Step d). All these associ-
ated factors adjust and fine-tune their organization by further conformational changes (step €). The components sequestered
in this complex can regulate each other and the entire signaling complex becomes dynamic (f). These complexes can also
be further regulated by transient events like by kinase or phosphatase activity (such as by C) and result in some signaling
events (step g).

Understanding the molecular mechanism of both Ca?*-
dependent and Ca*-independent signaling events has importance
in basic research and also has pharmacological as well as clinical
interests. This is especially due to the fact that application of com-
mon microtubule-based chemotherapeutics like Taxol and Vinca
drugs in cancer patients is known to induce strong neuropathic pain
(144-152). Though certain signaling events are involved in these
chemotherapeutics-induced pain and hyperalgesia development,
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the molecular mechanisms behind these pathophysiological
symptoms are still largely unknown (102, 153). However, changes
in the microtubule orientation, structure and other changes have
been reported. In that context, physical and functional interactions
of TRP channels with microtubule cytoskeletal proteins is
significant. A better understanding of these physical and functional
interactions may allow targeting these pathophysiological disorders
in a more systemic manner. This may be more useful for the appli-
cation of microtubule-based chemotherapeutics also. In future
more studies must be conducted in these aspects.
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