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Abstract. Parabolic variational inequalities of Allen-Cahn and Cahn-Hilliard
type are solved using methods involving constrained optimization. Time dis-
crete variants are formulated with the help of Lagrange multipliers for local
and non-local equality and inequality constraints. Fully discrete problems re-
sulting from finite element discretizations in space are solved with the help of
a primal-dual active set approach. We show several numerical computations
also involving systems of parabolic variational inequalities.
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1. Introduction

Interface evolution can be described with the help of phase field approaches, see,
e.g., [12]. An interface, in which a phase field or order parameter rapidly changes its
value, is modelled to have a thickness of order &, where € > 0 is a small parameter.
The model is based on the non-convex Ginzburg-Landau energy E which has the
form

E(u) ::g ( 25|Vu|2 + zw(u)) dx , (1.1)

where Q C R? is a bounded domain, v > 0 is a parameter related to the interfacial
energy and u : 2 — R is the phase field variable, also called order parameter. The
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different phases correspond to the values u = +1. In interfacial regions solutions
rapidly change from values close to 1 to values close to —1 and the thickness of
this interfacial region is proportional to the parameter €. The potential function
) can be a smooth double well potential, e.g., ¥(u) = (1 — u?)? or an obstacle
potential, e.g.,

P(u) = o(u) + I1-1,1)(u) , (1.2)
where 1y = ;(1 — u?) or another smooth, non-convex function and I [~1,1] is the
indicator function, for the interval [—1,1]. The interface evolution is then given
by the gradient flow equation, i.e., the phase field tries to minimize the energy in
time with respect to an inner product corresponding to a vector space Z. More
specifically we obtain

Owu(t) = —gradz E(u(t)) . (1.3)
Considering a scaled L2-inner product and the obstacle potential we obtain the
Allen-Cahn variational inequality

(e0pu, x —u) +ve(Vu, V(x —u)) + L (¥g(u), x —u) >0, (1.4)

which has to hold for almost all ¢ and all y € H'(Q2) with |y| < 1. Here and
in the following (.,.) denotes the L2-inner product. The mass-conserving H ~!-
inner product yields in the obstacle case the fourth-order Cahn-Hilliard variational
inequality:
Ou = Aw ae., (1.5)
(w—Tp(u),€ —u) < 7e(Vu,V(E—u) VESH Q) <1,  (1.6)
together with |u] < 1 a.e. For these formulations it can be shown that under
Neumann boundary conditions for w and initial conditions for u a unique solution
(u,w) of (1.5)-(1.6) exists where u is H?-regular in space, see [8, 4].
Using the H2-regularity the formulation (1.4) and (1.5), (1.6) can be restated
in the complementary form, where the equalities and inequalities have to hold
almost everywhere:

edyu = velu — L(yp(u) + p) (1.7)

respectively
du=Aw, w=—yeAu+ (v)(u)+p), (1.8)
p=py —py gy >0, po >0, Jul <1, (1.9)
pp(u—1)=0, p_(u+1)=0, (1.10)
and homogeneous Neumann boundary conditions for » and w together with an
initial phase distribution u(0) = wug. Here, lu can be interpreted as a scaled

Lagrange multiplier for the pointwise box-constraints. The scaling of the Lagrange
multiplier p with respect to € is motivated by formal asymptotic expansions for
obstacle potentials, see Blowey and Elliott [10] and Barrett, Garcke and Niirnberg
[2]. Our scaling guarantees that y is of order one. If we replace !p by pin (1.7)
we would observe a severe e-dependence of u. In practice this often results in
oscillations in the primal-dual active set method for the discretized problem. In
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fact iterates would oscillate between the bounds £1 and no convergence takes
place.

For an arbitrary constant ¢ > 0 we introduce the primal-dual active sets
employing the primal variable » and the dual variable p

Ay(t)={z e Q| c(u—1)+p> 0}, A_(t)={z e Q| c(u+1)+p <0}
and the inactive set I := Q\ (A4 U A_). The restrictions (1.9)—(1.10) can now be
reformulated as

u(z) = £1 for almost all z € Ay, p(z) =0 for almost all z € I. (1.11)
A discrete version of (1.11) will lead later on to the primal-dual active set algorithm
(PDAS).

Another reformulation of (1.9)—(1.10) is given with the help of a non-smooth
equation as follows

H(u,p) :=p— (max(0, p + c¢(u — 1)) + min(0, u + ¢(u +1))) =0, (1.12)

which allows us to interpret the following PDAS-method for the discretized prob-
lem as a semi-smooth Newton method and provides then local convergence, see
[17], for a different context.

Given discrete times t,, = n1,n € Ny, where 7 > 0 is a given time step, and
denoting by u™ an approximation of u(t,, ), the backward Euler discretization of
the gradient flow equation (1.3) is given as

L™ —u ) = —gradz E(u(t)). (1.13)

This time discretization has a natural variational structure. In fact one can
compute a solution u™ as the solution of the minimization problem

min {B(u) + 5, flu—u""z} (1.14)

One hence tries to decrease the energy E whilst taking into account the fact that
deviations from the solution at the old time step costs, where the cost depends on
the norm on Z.

In particular for the Cahn-Hilliard formulation we obtain a non-standard
PDE-constraint optimization problem as follows

min {725f|Vu|2 + Zf?/}o(u) + §f|VU|2} (1.15)
Q Q Q
such that
Av="Tu—-u""") ae.,
lul <1ae., fu=m, (1.16)
Q
with

gz =0 a.e.on 092 and %Cv = 0.

This formulation has the form of an optimal control problem where u is the control
and v is the state. In particular one has the difficulty that L2-norms of gradients
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enter the cost functional. We also remark that the non-local mean value constraints
appear since the Cahn-Hilliard evolution variational inequality conserves mass. It
turns out that the Lagrange multiplier w for the PDE equality constraint (1.16)
equals v up to a constant, see also [16]. We hence obtain the reduced KKT-system
(1.17)—(1.19), see [4] for details:

Hu—u"") = AwinQ, aw =0 on 092, (1.17)
w+yeAu— Tgu) =ty = 0 inQ, gg =0 on 090, (1.18)
u(z) =41 ifxe AL, wa)=0 ifxzel, (1.19)

where all equalities and inequalities have to hold almost everywhere. This system
is a time discretization of the Cahn-Hilliard model (1.8), (1.11). We obtain a
corresponding system for the time discretized Allen-Cahn variational inequality.

2. Primal-dual active set method (PDAS method)

The idea is now to apply the PDAS-algorithm (see below) to (1.14). However as
is known for control problems with state constraint and for obstacle problems
this strategy is not applicable in functions space as the iterates for the Lagrange
multiplier i are in general only measures. Therefore we apply the method to the
fully discretized problems. Since we consider here evolution processes, where good
preinitialization is available from the previous time steps, we avoid additional
regularization or penalization techniques (see [19, 22, 23]) and still numerically
obtain mesh independence.

We now use a finite element approximation in space with piecewise linear,
continuous finite elements S; with nodes pi,...,ps, and nodal basis function
Xj € Sn,j € Jn == {1,...,Ji}, and introduce a mass lumped inner product
(., .)n- We can then formulate a discrete primal-dual active set method for iterates
(u® 1 *)) € S, x S), based on active nodes with indices A(f) and inactive nodes
with indices Z(F) as follows.

Primal-Dual Active Set Algom’thm (PDAS):

1. Set k = 0, initialize A" and deﬁne IO = 7, \ (AL AL G A9,

2. Set ulk)(p;) = £1 for j € Ai and p® (p;) =0 for jez®.

3. Solve the fully discretized version of the coupled system of PDEs (1.17)—
(1.18), respectively of the system (1.7) to obtain u®) (p;) for j € T u*) (p;)
for j € A(k) UA® and w® € S,,.

b Set A (7 € i | ou® (py) — 1)+ 4 ) > 0,
A € i e ) + 1) + u® ;) < 0 and
I(k+1) =T \ ( k+1) U A(k+1))

5. If A(k+1) A(k) stop, otherwise set k = k + 1 and goto 2.

In the above algorithm Step 3 can be split into two steps. The first is to solve
for v and w and the second is to determine p. We give the details only for the
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Cahn-Hilliard problem. For the Allen-Cahn formulation there is a corresponding
system.

3a. Solve for w® € S}, and u(k)(pj) with j € Z() | the system
L® — g oon + (Ve V) = 0 Vxesy, (21
(W™ n = 7e(Vul, V) = T(Wp(ui). X = 0 ¥xesH (22
with S® = span {y; | i e Z"}.

3b. Define u*) on the active sets such that for all j € A%

1% (p) (1, x5)n = (ew™ — g (up), x)n — ve*(Vu®), V). (2.3)

In the above we either consider an implicit or an explicit discretization of the term
Py(u), i.e., we choose ¢ (u)) where * € {n—1,n}. Figure 1 shows the structure of
the system. The discretized elliptic equation (2.1) for w® is defined on the whole
of Jp, whereas the discrete elliptic equation (2.2) is defined only on the inactive
set corresponding to Z(®) which is an approximation of the interface. The two
equations are coupled in a way which leads to an overall symmetric system which
will be used later when we propose numerical algorithms. For the Allen-Cahn
system we have to solve (1.7) only on the approximated interface.

ouk) _
on =0

Q
oulk) _
on 0

FIGURE 1. Structure of active and inactive sets.

3. Results for the Cahn-Hilliard variational inequality
It can be shown, see [4] for details, that the following results hold.

Lemma 3.1. For allu}~' € S), and Aﬁf’ there exists a unique solution (u*) w*)) €
Sh xS of (2.1)-(2.2) with * = (n— 1) provided that T*) = 7, \ (Af) U.A(,k)) #0.
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FI1GURE 2. The upper row shows the evolution of the concentration and
the lower row shows the corresponding meshes.

The assumption Z(F) £ () guarantees that the condition fu(k) = m can be
o

fulfilled. Otherwise (2.1) may not be solvable. Furthermore we have shown in [4]
using the equivalence of the PDAS-algorithm to a semi-smooth Newton method:

Theorem 3.2. The primal-dual active set algorithm (PDAS) converges locally.

Global convergence is not of large interest here, as we study a discrete time
evolution and hence we always have good starting values from the previous time-
step. However, the appropriate scaling of the Lagrange multiplier u by i, or re-
spectively the choice of the parameter c is essential to avoid oscillatory behaviour
due to bilateral constraints (see [4, 5]).

As far as we can compare the results with other methods the PDAS-method
outperformed previous approaches, see [4]. One of the bottle necks for a speed-up
is the linear algebra solver. The linear system to be solved is symmetric and has a
saddle point structure. Efficient preconditioning of the system is difficult and has
to be addressed in the future.

Finally let us mention further methods to solve Cahn-Hilliard variational
inequalities. It is also possible to use a projected block Gauss-Seidel type scheme
to solve the variational inequality directly and hence at each node a variational
inequality for a vector with two components has to be solved. Another approach
is a splitting method due to Lions and Mercier [21] (see [9], [4]) and Gréaser and
Kornhuber [16] use preconditioned Uzawa-type iterations coupled to a monotone
multigrid method. The latter approach is similar to our approach as it is also an
active set approach. Although, unlike our approach, Gréaser and Kornhuber [16]
have to solve a second-order variational inequality in each step in order to update
the active set. Finally, we also mention a recent multigrid method of Banas and
Nirnberg [1] and an approach based on regularization by Hintermiiller, Hinze and
Ther [18].
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F1GURE 3. 3d simulation with 4 spheres as initial data on an adaptive mesh.

180
150

120

90

60

Number of PDAS-Iterations
Number of changed vertices

......... O SO ST S £

o : : : IS A S ST N
(1] 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Time t x 1072

FIGURE 4. PDAS-iterations count per time step for the 2d simulation
in Figure 2.

4. Results for the Allen-Cahn variational inequality

4.1. Scalar Allen-Cahn problem without local constraints

If we consider interface evolution given by the Allen-Cahn variational inequality
(1.4) we obtain corresponding results to the Cahn-Hilliard problem. However, the
L?-inner product does not conserve the mass, and hence, e.g., given circles or
spheres as initial data they will vanish in finite time. For the example of a shrinking
circle we discuss the issue of mesh independence of the PDAS-method applied to
the fully discretized problem. The number of PDAS iterations might depend on the
mesh size h. There is still a lack of analytical results. However, we can investigate
this numerically comparing various uniform meshes of a maximal diameter h. We
choose the radius 0.45 of the circle at t = 0. The time where the circle disappears
is 0.10125. Table 1 shows the average number of PDAS iterations up to ¢ = 0.03
for fixed € = 16177. In the third column we list the results fixing also 7 = 5 - 1074,
Although the number of PDAS iterations increases for smaller mesh size, this
increase is only by a factor of approximately 1.3. However, in our applications
the time step 7 and the space discretization are in general coupled. Hence it is
more appropriate to look at the number of Newton iterations when both 7 and h
are driven to zero. We see in the last column that the iteration number is almost
constant. This is due to the time evolution, since good initial data on the current
time step are given from the solution of the previous time step. Hence our numerical
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investigations indicate that the proposed method is mesh independent for this
setting. We remark that Table 1 shows the average number of Newton iterations.
There might be situations, in particular if one starts with irregular initial data,
where a slight dependence of the number of Newton iterations on the time step
size is possible for certain time steps. In all our simulations we hardly observed a
mesh dependence of the number of Newton iterations even for irregular initial data
if time step and space step size were reduced simultaneously. An analytical result
showing mesh independence for arbitrary initializations is however not available.

h DOFs PDAS iter. ¢ T PDAS iter. ¢
forT=5-10"4 for varying 7
1/128 66049 2.57 1-1073 3.20
1/256 263169 3.10 5-1074 3.10
1/512 1050625 4.02 2.5-1074 3.30
1/1024 4198401 5.18 1.25-1074 3.37

TABLE 1. Average number of PDAS iterations.

4.2. Scalar Allen-Cahn problem with mass constraint

While the Cahn-Hilliard approach incorporates mass conservation by using the

H~l-norm, we can also use the L2-norm and enforce in addition the mass conserva-

tion as a non-local constraint during the gradient flow. This leads to the Allen-Cahn

variational inequality (1.4) with the additional constraint fudz := \Sl?l Judz =m
Q Q

where m € (—1,1) is the mean value of the initial data ug. We can introduce for
this constraint a Lagrange multiplier A and we can restate the problem as

e = velu — L (yp(u) + p— N ace., (4.1)
fudz =m for almost all t € [0,77], (4.2)
a

where also the complementarity conditions (1.9)—(1.10) hold.

Using a penalty approach for the inequality constraints and projecting the
mass constraint we have shown in [5] the existence, uniqueness and regularity of
the solution of the KKT-system which is non-standard due to the coupling of
non-local equality and local inequality constraints.

Theorem 4.1. Let T > 0 and 2 be a domain which is bounded and either convex or

has a CYt-boundary. Furthermore the initial data ug € HY(Q) fulfill |ug] < 1 a.e.

and fug = m for a given m € (—1,1). Then there ezists a unique solution (u, p, \)
o

of the KKT-system (4.1), (4.2), (1.9), (1.10) with u € L*(Qr), A € L*(0,T) and
u e L2(0, T; H2(Q2)) N L>®(0,T; H'(Q)) N H' Q).

Using the presented implicit time discretization (1.13) and the given finite
element approximation with mass lumping we apply, similar as above, a PDAS
algorithm. We define m; := (1, x;) and a;; = (Vx;j, Vi) and denote by ug-k) the
coefficients of u(*) = Zjejh ugk)xj. Then we obtain as Step 3:
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3a. Solve for ugk) for j € ZF) and \(%):

k k
(i - Z)mgU§ )+’Y€ Z aijug ) imj)\(k) (4.3)
€L (k)
= imju;-lil + ye( Z Qij — Z ai;) Vi GI(k),
icA® icAl
Z miul(.k) =m Z m; — Z m; + Z m,. (4.4)
i€Z(®) i€Tn ieAd icA®

3b. Define ug-k) for j € Aﬁf’ using:

T G ) [ AR ) D P SRS (4.5)
i€JTn
Hence the main effort when applying the PDAS algorithm is solving the system
(4.3)~(4.4) where the size [Z(F)| + 1 is given by the size of the approximated inter-
face.

Like in the Cahn-Hilliard case we can show local convergence of the method
by interpreting the algorithm as a Newton method. However using the presented
implicit time discretization we obtain analytically the following restriction on the
time step (see [5] Theorem 4.2):

7(1 - ez) << (4.6)

where ¢ > 0 is the Poincaré constant such that (v,v), < ¢} (Vv, Vo) for allv € S*
with [v =0 and v(p;) = 0 for active nodes p;,. In [5] the size of ¢}, is discussed in
Q

more detail. For example in one dimension given a good numerical approximation
of Z no restriction at all has to be enforced for the time step 7. We can also use
a semi-implicit discretization with a primal-dual active set algorithm. In this case
no time restrictions have to be enforced for the algorithm. However it turns out
that the fully implicit time discretization is much more accurate [5].

We give two numerical simulations. In Figure 5 we show interface evolution
in two dimensions where the initial phase distribution is random and no pure
phases are present. Already at time t = 0.002 grains start to form and grow
and at ¢t = 0.003 we have two phases separated by a diffuse interface. Now the
interface moves according to motion by mean curvature but preserving the volume
of both phases. That means that closed curves turn into circles and shapes with
less volume shrink and disappear while at the same time shapes with the highest
volume will grow. At the end (i.e., when the problem becomes stationary) there
are three different shapes we can obtain: a circle, a quarter of a circle in one of
the corners (see Figure 5) or a straight vertical or horizontal line dividing the
two phases. The computation in Figure 6 presents the evolution for a dumbbell.
Without the volume conservation the dumbbell would dissect and the two spheres
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t =0.000 t =0.003 t=0,010 t = 0.090 t = 3.000

FIGURE 5. Volume controlled Allen-Cahn equation (2d) with random
initial data (varying between —0.1 and 0.1).

t = 0.001 t = 0.010 t = 0.100 t = 0.500

FIGURE 6. Volume controlled Allen-Cahn equation with a dumbbell as
initial data.

would shrink and disappear. The volume conservation forces the dumbbell to turn
into an ellipsoid before turning into a sphere and finally becoming stationary.
Finally, we briefly would like to mention that our approach can be used to
solve problems in structural topology optimization. There the mean compliance
penalized with the Ginzburg-Landau energy E (1.1) has to be minimized. The
gradient approach can be seen as a pseudo time stepping approach and results in
a time discretized Allen-Cahn variational inequality coupled with elasticity and
mass constraints, which can be solved with the above method (see [5, 6, 3]).

4.3. Systems of Allen-Cahn variational inequalities

In many applications more than two phases or materials appear, see [11, 13] and the
references therein. For numerical approaches to systems of Allen-Cahn variational
inequalities we refer to [14, 15, 13] where explicit in time discretizations have been
used, and to the work of Kornhuber and Krause [20] who discuss Gauss-Seidel
and multigrid methods. In what follows we want to introduce a primal-dual active
set method for systems of Allen-Cahn variational inequalities which in contrast to
earlier approaches does not need an explicit handling of the geometry of the Gibbs
simplex.

Therefore we introduce a concentration vector u = (uy,...,un)? : Q@ — RY
with the property u; > 0, Zfil u; = 1, i.e., u(z,t) lies on the Gibbs simplex

G:={€cRY:£>0,¢6-1=1}.
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For the bulk potential ¢ : RY — RF U{oo} we consider the multi-obstacle potential

%) otherwise,

with A being a symmetric constant N x N matrix. We remark that different
phases which correspond to minima of ¢ only occur if A has at least one positive
eigenvalue. The total underlying non-convex energy is given similar to (1.1) by

E(u) := s{ (% Vul? + 79 (u)) dx.

We also consider systems in which the total spatial amount of the phases are
conserved. In this case one studies the steepest descent of E under the constraint
fudz = m = (m',...,m"™)T where m* € (0,1) for i € {1,...,N} is a fixed
iumber. We now define
N
G™ = {ve H(QRY): fv=m, Zvi =1,v>0}
Q

=1

N
and note that for u € G™ it follows fu—m € S := {v € RV : 3 v; = 0}. Then
Q i=1
the interface evolution with mass conservation can be formulated as the following
variational inequality: For given ug € g™ find u € L?(0,7;G™) N H' (0, T; L*(Q))
such that u(.,0) = up and such that for almost all ¢ € (0,7T) it holds

5(%‘;,)( —u) +ye(Vu,V(x —u)) — Z(Au,x —u)>0 Vxeg™m. (4.8)

Our numerical approach again depends on a reformulation of (4.8) with the help

of Lagrange multipliers. We introduce Lagrange multipliers o and A correspond-

ing to the constraints u > 0 and Zf;l u; = 1 respectively. Taking into account

the condition Zf\il u; = 1 we use for the mass constraints the projected version

Ps(fu—m) = 0, where Pg is a projection onto S and introduce for this condition
Q

a Lagrange multiplier A € S. In [6] we prove the following theorem in which L2((2),
H!(Q), etc. denote spaces of vector-valued functions.

Theorem 4.2. Let Q C R? be a bounded domain and assume that either Q is convex
or 00 € OCY1. Let ug € G™ such that fuo > 0. Then there exists a unique solution
Q

(u, g, A, A) with

uc L0, T; H'(Q)) n H*(0,T;L%(Q)) N L*(0, T; H*(Q)), (4.9)
pe L?(0,T; L*(92)), (4.10)

N
A e L?0,T) and Z Ai =0 for almost all t € (0,T), (4.11)

1=1

A€ L*0,T; L*(Q)) (4.12)
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such that on Qp = Q x (0,T) we have

satf*yaAuvauf uflAlfl)\ 0 a.e. in Qr, (4.13)
u(0) =up, 92 =0 a.e. on 00 x (0,T), (4.14)
N
ZWZL u>0, u>0 a.e in Qp, (4.15)
i=1
Ps(fu—m) =0, (u,u) =0 for almost all t. (4.16)
!

The proof is based on a penalty approach where the main difficulty is to show
that approximations of the Lagrange multipliers g, A and A can be bounded. This
issue is related to the question whether the constraints are in a suitable sense
independent of each other. In order to show that Lagrange multipliers are unique
one has to use some graph theory in order to show that the undirected graph with
vertices {1,..., N} and edges {{i,j} | there is an interface between i and j} is
connected.

Similar to the previous sections we now discretize (4.13)—(4.16) in time and
space and we use a PDAS algorithm. However, for each component u; we have to
consider its own active and inactive sets A; := {j € Ty | e(ui); + (pi); < 0} and
Z; := Jn \ A;. In the following we use the notation

N
u® =373 (W™ xge

=1 jETn

for the kth iterate u®) € (Sj,)Vin the vector-valued PDAS algorithm.
Primal-Dual Active Set Algorz'thm (PDAS-Vector):

1. Set k = 0, initialize A*) and define Z(” = 7, \ A for all i € {1,...,N}.
2. Set (u; (k )) —OforjeA( )and( (k ))»:0forj€Ii(k) forallie{1,...,N}.
3a. To obtain (A®); for all j € Jp, A E ) for all i € {1,...,N — 1} and (ul(.k))j

foralli=1,...,N and j EIi(k) we solve

") VZAzm S+ 00 au) = A+ (A9,
ler’“)
=W Y, i=1,...,Nje1®, (4.17)
k k i .

ST mi(); = @) = Y my(mt —mN),i=1,... N -1,

J€ETn JEIn
N
St =1, jen, (4.18)
=1

where we replace /\g\lf) by /\g\lf) = f)\gk)

k
A
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t = 0.001 t = 0.010 t = 0.040 ¢ = 0.070 t = 0.080

FIGURE 7. Vector-valued Allen-Cahn variational inequality with a
Voronoi partitioning as initial data (30 order parameters).

3b. Set )\E\If) = —)\gk) — = )\S\l?)_l and determine the values
1)y =% (™) = Z A () 4+ 75> (),
lEJh

AP A 2,

forizl,...,NandjE.Al(-k).
4. Set A%V = (e 7 c(wP); — (1), < 0} and
I(k+1) — 7 \Ak+1

5. If A(k+1) Al(. ) for all i € {1,..., N} stop, otherwise set k = k + 1 and
goto 2.

Remark 4.1. i) In each node p; for j € J, some components are active and the
others are inactive. The number of components which are active can vary from
point to point. Only for each individual component can we split the set of nodes
into nodes which are active (for this component) and its complement. The resulting
linear system is hence quite complex but can be solved efficiently with the help of
MINRES, see [7].

ii) There is a straightforward variant of (PDAS-Vector) without mass con-
straints. In this case we omit the first conditions in (4.18) and the Lagrange mul-
tipliers A € S.

In Figure 7 we use a Voronoi partitioning algorithm to randomly define ini-
tial data in a 2d computational domain. We use 30 order parameters for this
computation and show the time evolution in Figure 7. In Figure 8 we begin the
computation with a sphere that is divided into three equal spherical wedges. Each
of these wedges is represented by a different phase, i.e., we have three phases in
the sphere and one phase outside. The evolution converges for large times to a
triple bubble which is the least area way to separate three given volumes.
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t = 0.001 t = 0.020 t = 0.040 t = 0.500

F1GURE 8. Triple bubble; vector-valued Allen-Cahn with volume con-
straints, 4 order parameter.
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