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Abstract. Let D be a Cartan domain in C? and let G = Aut(D) be the group
of all biholomorphic automorphisms of GG. Consider the projective represen-
tation of G on spaces of holomorphic functions on D

U N(2) = {I(g )} ?fg (2), 9€G, z€D,
where p is the genus of D and v is in the Wallach set W (D).

We identify the minimal and the maximal U, (G)-invariant Banach
spaces of holomorphic functions on D in a very explicit way: The minimal
space I, is a Besov-1 space, and the maximal space M, is a weighted
H*-space. Moreover, with respect to the pairing under the (unique) U, (G)-
invariant inner product we have 9, = M,.

In the second part of the paper we consider invariant Banach spaces of
vector-valued holomorphic functions and obtain analogous descriptions of the
unique maximal and minimal space, in particular for the important special
case of “constant” partitions which arises naturally in connection with non-
tube type domains.
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1. Bounded symmetric domains and Jordan triples

Let D be a Cartan domain in C?, i.e., an irreducible bounded symmetric domain
in its Harish-Chandra realization. Then Z = C¢ is a hermitian Jordan triple. The
main example is the matriz ball

D=D(,,)={2¢€ M, (C), I, —zz* >0}, 1<r<n.
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with triple product
1
{z,y,2} =, (2y"z + 2y72).

In this paper we only sketch the necessary background on Cartan domains and
hermitian Jordan triples, for more details cf. [U2], [L2], [FK2]. Let G = Aut (D)
be the group of holomorphic automorphisms, and let

K ={g€G; g(0) =0}

be the maximal compact subgroup. Using Cartan’s linearity theorem, one proves
that K consists of linear maps. Then D = G/K via the evaluation map g — ¢(0).
The symmetries of D have the form sq(z) = —z and, more generally, s, = g sog~ !,
where g € G satisfies g(0) = z. For each a € D there exists a unique midpoint sym-
metry ¢, fixing the geodesic midpoint between 0 and a, and satisfying ¢, (0) = a.

Example 1.1. For D = D(I, ;) we have

G—SU(T,n)_{g_ (3?) € SL(C,r+n); ng*_J}

I. 0

where J = (0 I,

>. The action is given by Mobius transformations

g-z2=(az+pB)(yz+6)"*
and the midpoint symmetry is
ba(2) = (Iy —aa*) Y% (a — 2)(I — a*2) " (I — a*a)"/>.
In the 1-dimensional case, this reduces to
a—2z
$a(2) = 1—a*z’
The group
K =S8U(r)xU(n))
acts via k(z) = uzv, where u € U(r), v € U(n) and det (u) det (v) = 1.
In general, the domain D is characterized by the dimension d, the genus p,
and the rank r. Moreover we have characteristic multiplicities a,b defined via
d=r(r-1) ;—i—r—i—rb,
p=(r—1a+2+0b.
In the matrix case D = D (I,.,,) for 1 <r <n,wehaved=r-n,p=r+n, a =2,
b=n-—r.
For any hermitian Jordan triple Z and w,v € Z, the Bergman operator
B(u,v) acting on Z is defined by

B(u,v)z=2z—-2{uv*z} + QuQy 2
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where @, z = {vz*v}. It is known that det B(z,w) = h(z, w)P, where h(z,w) is a
K-invariant sesqui-holomorphic polynomial determined by

T

h(z,2) = [T (1= s3(2)),

Jj=1

where s;(z) are the singular values of z. For matrices, we have h(z,w) = det (I —
If z,w € Z and B(z,w) is invertible, we define the quasi-inverse [L1], [L2]

Y = B(z,w) ' (z — Q. w).

One can show [L2, p. 25, JP35] that B(z,w)~! = B(2%, —w). The “transvection”
g € G [L2, Proposition 9.8], defined by

ga(2) = a+ Bla,a)"? 27% = ¢ (—2)
for all a, 2z € D, satisfies g;* = g_, and
9,(2) = B(a,a)"/* B(z,—a)"" = B(a, )"/ B(z"",a).

2. Hilbert spaces of holomorphic functions

Let dm(z) be the Lebesgue measure. The unique (up to a constant multiple) G-
invariant measure on D has the form

h(z,z) P dm(z).
Given a parameter v > p — 1 we define a probability measure
dpy (2) = ¢y - h(z,2)""Pdm(z)
on D, which has the quasi-invariance property
din(9(2)) = 17(9,2) ¥ | dpu(2), Vg € G (2.1)
Here J(g, z) = det ¢’(z) is the Jacobian of g at z. (2.1) follows from
B(g(2),9(w)) = ¢'(2) B(z,w) g'(w)" VgeG, VzweD  (22)

which yields the quasi-invariance

1 1

h(g(z), g(w)) = J(g,2)» h(z,w) J(g,w)", VgeG (2.3)
of h.

Proposition 2.1. Fach g € D has a unique “polar decomposition” g = g, - k with
a=g(0), ke K.

Proof. Define a = ¢(0) and consider k = g;! o g. Then k € G and k(0) = 0.
Therefore k € K and g = g, 0 k. O
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Using Proposition 2.1, we define a cocycle J, : G x D — C by putting

JV (ga kv Z) = h(a7 a)V/2 h(k'z? 7a)—u7

using the sesqui-holomorphic branch of h(z,w)™"

h(0,0)" = 1. Then
. (9, 2)| = 1 (9,2)]"/".
The Jacobian of g, has the form

J(g7t,2) = h(a,a)?’? h(z,a)7".
Since g, ! = g_a, (2.4) implies

J (g7t 2) = ha,a)"? h(z,a)".

Now consider the so-called Wallach set
W(D) :={v; (z,w)— h(z,w)™" positive definite}

and, for v € W(D), define the reproducing kernel Hilbert space

H, =span{h(-,w)™"; w e D}
with inner product determined by

(h(w)™, h(-,2)7") = h(z,w)™"

for the reproducing kernel of #,. The corresponding group action

(U,,(g)f)(z) = Ju(gilwz) f((gil(z))

(2.4)

on D x D normalized by

(2.5)

(2.6)

on H, acts projectively: U,(g1 © g2) = ¢(91,92) Un(91) Up(g2) for a unimodular
cocycle. Then U, (g) : H, — H, acts isometrically, V g € G, because (2.3) implies

Ju(g,2) h(g(2), g(w))™" Ju(g,w) = h(z,w)™".

One can show that H, is irreducible for the action U, of G.

The primary examples are the weighted Bergman space H, = L2(D, p,) for
v > p—1, and the Hardy space Ha = H?(S,0), for v = ‘:. Here S is the Shilov

boundary of D and o is the unique K-invariant probability measure on S.

For a deeper analysis of H,, we need the fine structure of the polynomial
algebra P of Z. For 1 < j < r there exist Jordan theoretic minors N;(z) general-
izing the principal j X j-minors for matrices. In particular, N, = N is the Jordan

determinant. The conical polynomials, for any signature
m= (my,...,m,) € N

satisfying m1 > mgo > --- > m, > 0, are given by

Nm(z) = [[ Ni(z)™ ™01, z € Z,
j=1
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where m,1 := 0. For diagonal matrices (including the rectangular case), we have

t1 0
to

N . of = [ =
. =
0 tr

Denote by P, the span of {Nmok; k € K}. It is well known [S], [U1], [FK1] that
the {Pm}m>0 are K-irreducible and K-inequivalent, and there is a direct sum

decomposition
P=> %Pm (2.7)
m>0
It follows that the {Pm}m>0 are pairwise orthogonal in any K-invariant inner
product on P. Consider the Fischer inner product

/f ()= f( )0 28

z

on P, where F*(z) := F(z). Define K™ (z,w) as the reproducing kernel for Py, in
the Fischer inner product. Then

) = 3" K™ (z,w). (2.9)
m>0

For v € C and z,w € D there is a binomial expansion

h(z,w)™" = Z V)m K™(z,w), (2.10)

m2>0
where
Hlj_[(VJrff]fl ) H(V*]*1 2)
j=1 ¢=0 j=1 i

is the multi-variable “Pochhammer symbol”. As a consequence, one obtains a
determination of the Wallach set
! r—1
W(D)={veC; W)m>0 Vm}= { ;}H U ((7‘71) g oo)

as a union of a discrete and a continuous part [RV], [W], [LA], [FK1].
The multivariable hypergeometric functions are defined as
P

[1(a))m
) (z,w) = Z 2 K™(z,w).
m=0 l;[(ﬁ])m

For example, we have ¢ Fy (z,w) = exp (z,w) by (2.9), and (2.10) yields
1Fo (V)(Z,U)) = h(zaw)_y'

a1,.. o
F, ’ P
b (/817"'75(1
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Let ag, a1, ..., aq; Bi,...,B, > (r—1)5. Put

q q
v=2 0= b
0 1

By [FK1], the hypergeometric functions have the following asymptotic behaviour,
uniformly for z € D:

> (r—1) ; — o1 F, (g) (2,2) ~ h(z,2) (2.11)
v< —(r—1) ; = 11 Iy (g) (2,2) =~ 1. (2.12)

Remark 2.1. For the unit ball (r = 1) and v = 0, we have

w1y (g) (2,2) = log fM).

For the exact asymptotics if z is scalar, see [Y]. For r = 2, exact asymptotics are
given in [EZ].

In the following we consider Banach spaces of holomorphic functions on D
which are “invariant” under the group action (2.6), with the aim to characterize
the (unique) maximal and minimal invariant Banach spaces and describe them via
explicit formulas. In later sections this study is extended to the case of vector-
valued holomorphic functions associated with the holomorphic discrete series of
G. In this context our main result concerns symmetric domains which are “not of
tube type”.

In this paper we only consider parameters v belonging to the Wallach set
(2.5). In a separate paper [AU4] we consider the so-called “pole set” arising from
analytic continuation, and show that our results concerning the maximal and min-
imal invariant space can be generalized to this situation via suitable intertwining
operators.

3. Invariant Banach spaces of holomorphic functions

In this section we assume that v € W (D) is a Wallach parameter and consider the
weighted group action U, defined in (2.6). For the unweighted action (v = 0) and
the unit disk, the results of this section have been obtained in [AF], [AFP].

Definition 3.1. Let X be a non-trivial Banach space of holomorphic functions on
D. We say that X is U, (G)-invariant if

(i) feX, geG=U,(g)f € X and |U,(g) flx = f]x-
(ii) For any finite (complex) Borel measure p on K, the linear operator (convolu-
tion by )

(Tuf)(z) = /K F(k=) d(k)

maps X continuously into itself.
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(iii) For every z € D, the evaluation functional f — 0,(f) := f(2) is bounded on
X (it suffices to require the continuity of dy).

Note that condition (ii) holds if K acts on X strongly continuously via w(k)f =
fok™L.

Proposition 3.1. X contains the constant function 1 and, normalizing ||1||x = 1,

we have for f € X
SO < [Iflx/x = 1fllx-

Proof. Since D is circular, we have by (ii) and (iii) for all z € D
1 2m
Fon=_ /f(e”z)de. O
0

Corollary 3.1. For f € X and a € D, we have
(@) < h(a,a)™/?||fl|x-

Hence convergence in X implies uniform convergence on compact subsets of D.

Proof. Use the formula

((U(g. ") HO)] = h(a,a)""|f ()| < [Uu(g:") Fllx = I f]lx- O
Corollary 3.2. If f = Y. fm € X, then fm € X for all m, and the projections
m>0

f = fm are continuous.

Proof. In terms of the character x;, of K on Py,, we have

fm(2) = [ f(E7'2) xm(k) dk. O
/

Corollary 3.3. If v > (r — 1) 5, then P is dense in X in the topology of uniform
convergence on compact subsets. If v = 42‘1, 0<¢<r—1, the same holds for

Pr= E@Pm. (3.1)
myy1=0
m>0

Proof. From 1 € X (Proposition 3.1) it follows by (i) that
U,(ga)1 = consth(—,a)™" € X forallae D.

Applying Corollary 3.2, we obtain (v)m K™ (—,a) € X, hence either (v)ym = 0 or
else Py, = span {K™(—,a) :a € D} C X. O

Our main goal is to characterize the mazimal and minimal invariant spaces.
Definition 3.2. Let M, = {f € H(D); ||f|lm, < oo}, where

1flae, = sup (2, 2)"7% |f(2)| = sup [(U,(g) f)(0)].
zeD geG
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It is easy to see that M, satisfies (i), (ii) and (iii) of Definition 3.1. Hence
using the second expression for the norm, it follows that M, is U, (G)-invariant.
We remark that taking another base point a € D instead of 0 yields the same
space with a norm proportional to || - ||, -

Proposition 3.2. If X is U,(G)-invariant, then X C M, and || fllm, < |Ifllx,
vV feX.

Proof. In view of Proposition 3.1, we have |(U,(g9) f/)(0)| < || fllx, VfeX. O

Corollary 3.4. M, is the unique mazimal U,(G)-invariant space, and it is a
weighted H™ -space, with weight h(z, z)"/?.

We remark that there exist spaces of holomorphic functions on D satisfying
(i), (ii) of Definition 3.1, but not (iii). For instance, let f be any holomorphic
function on D (possibly not in M,,). Define 9, 4(f) to be the space of all functions
of the form

F) =Y i (Uulg) )2)

j=1

where g; € G and ) |¢;j| < co. For F € M, 4(f) we define
j=1

1P, ury = inf D> legl,
j=1

where the infimum is taken over all admissible representations of F. Then it is
easy to check that 9, 4(f) is the smallest Banach space of holomorphic functions
on D which contains f and satisfies (i) and (ii) of Definition 3.1.

Proposition 3.3. The Banach space M, 4(f) satisfies condition (iii) if and only if
f e M,. More generally, let X be a Banach space of holomorphic functions on D
satisfying (1) and (ii). Then X satisfies (iii) if and only if X C M, continuously.

Proof. If (iii) holds, then 9, 4(f) (resp., X) is a U, (G)-invariant Banach space
and Proposition 3.2 implies f € M, (resp., X C M, continuously). Conversely, if
f € M,, then

sup Uy (g) f(0)] < oo
geG

and hence Jy is continuous on M, ¢(f). Similarly, X C M, continuously implies
forall fe X

IFO < [1Fllm, < ellfllx-

Hence dg is continuous on X. By (i), the continuity of 4., z € D, follows. O

Definition 3.3. Let 901, consist of all f € H(D) such that

ﬂw=4mmmmmﬁ%w@ﬁ (3.2)
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for some finite (complex) Borel measure 1 on D. Define the norm

[ fllom, = inf {||u]|; p satisfies (3.2)}.
Proposition 3.4. We have f € M, if and only if
1) = [ante) V), vzeD (3.3)

G
for some finite Borel measure p on G. Moreover

|l = ik {ll; o satisfies (3.3)}.
Hence M, is U, (G)-invariant.

The straightforward proof is omitted. Also, the condition

[1jom, =1 (3.4)
is satisfied. Indeed, if

I:i/du@)MmaYﬂh@@YK VzeD
D
then for z = 0 we have
1:/JM@Mww”s/ﬂmwhwwms/dmmﬁww
D D D
and therefore

1 <||11|lon, = inf {||u|| : » representing measure}.

On the other hand, for u = §y we have
/ﬂwd@h@@yﬂh@@r":1
D

so || 1]lam, < ||do|| = 1. Hence (3.4) holds.

Proposition 3.5. There is a canonical duality M), = M, with respect to the pairing
<fa F>u of Hy.

Proof. Let F € M, and f € M, with representation (3.3). Since
(U,,(g) F)(O) = <UV(9) F, 1>V = <F7 UV(gil) 1>V>
it follows that

<f7 F>V = /dﬂ(g) <Uu(g) 17F>V

G
= /du(g) (L, U(g")F)y = /du(g) Uu(g~1) F(0).
G G
Hence

(s F)ul < /dlu\ @) [ (g™HE)O) < [l Fllrm,-
G
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This holds for every representing measure p for f, hence

[ Eul < Nl [ TTF N - (3.5)
Thus
sup  [(f, F)u| < [|F|[m,-

1 f1lo, <1

The converse inequality follows from

[Elpm, = sup [(F, U (9) o < sup [(f, F)u .
geG [l £1looz,, <1

This means that the operator V : M, — 97 defined by
(VE)f) =}, F)v

is an isometry. We claim that V is surjective. Indeed, let ® € M and define
F(z) = ®(h(-,2)7"). Then F is holomorphic and

h(z,2)"?|F(2)] = [@(h(z,2)"/? h(-,2)™)| = [@(Un (g ") D] < (|l
So I € M, and || F||am, < [|®[|onx. Also, if f € 9, is represented as in (3.2), then

MﬂzLWMM@MW@WwWUz/WMM@MWF@

D
= [ duta) b@. @) (hesa) 7 P = (1),
It follows that V(F) = ®, and so V is a surjective isometry. O

Definition 3.4. Let 901, 4 be the space of all f € 9, which are represented with
respect to a discrete measure, i.e.,

f(z) =i Ulg) V() (3.6)

with g; € G and ¢; € C such that > |¢;| < oo, with the norm
J

o0
1F lom,.. = inf Y leg]
j=1

over all representations (3.6).

Clearly, 9, 4 is a closed subspace of M, and || fllox, < |fllon, , for all
f € mu,d-

Proposition 3.6. The dual space of M, q is identified isometrically with M, , with
respect to the pairing (f, F),, f € Mya, F € M,. In particular, M, g = M, with
equal morms.
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Proof. The fact that 97 ; = M, isometrically is proved as in the proof of Propo-
sition 3.5. This also yields that || f|lax, = ||f|lan, , for all f € M, 4. To prove that
M, = M, 4 it suffices (by the Hahn-Banach theorem) to prove that if & € I}
vanishes on 9, ¢ then it is zero. But this follows from the identification of 9t}
with M,,. O

Proposition 3.7. If X # 0 is U,(G)-invariant, then M, C X and |f|lx <
| fllm,, V f € 9M,. Hence M, is the uniqgue minimal U, (G)-invariant Banach
space.

Proof. Since 1 € X and ||1||x = 1 we have ||[U,(g)1]|x = 1 for all ¢ € G. Let

fem, =M, 4, andlet f= > ¢;U,(gj)1 be an admissible representation. Then
j=1
the series converges absolutely

o0

D e Unlgi) Ulx = lej| < o0,

Jj=1 Jj=1

and the completeness of M, guarantees that the convergence is also in the norm
of X. Therefore f € X and

1£lx <D lles Unlgi) Ulx = lesl.
i =1

This holds for all discrete representations of f, hence || f||x < ||f]|om, - O

We remark that there exist functions f € M, for which the group action
g +— Uy,(g) f is not continuous in the norm of M,. This leads to the following

Definition 3.5. Let M ={feM,; g—U,(g)f is continuous in the M, norm}.

Proposition 3.8.
(i) M s the mazimal U, (G)-invariant space X for which g — U,(g) [ is
continuous in norm for all f € X;
(ii) MO =, with respect to {-,-),;
(iii) The canonical embedding of M in M = M, is the inclusion map.

These statements will not be proved here, since they are not needed for our
main problem: to identify 90, via concrete integral formulas (not as a quotient
space of the finite Borel measures on D or G).

Definition 3.6. The shift operator SY on P (“differentiation of order v — a”) is

defined by
SHONDED> E”’m fn

m>0 m>0
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In view of the Faraut-Kordnyi-formula (2.10), we have

(Sg f)(Z) = <f7 h(7 Z)_’Y>Oé7
and the reproducing kernel identity yields
Sa (h(-2)"%) = h(-2)77.

[e3

It follows that
Sa (Ha) =My

Remark 3.1. If « > (r—1) 7, then S7 is defined on all of P. If o = 42‘1, 0<it<r—1,
then SY is defined only on P, (cf. (3.1)).

Our first main result is

Theorem 3.1. Let v € W(D), v > (r—1)a. Choose 3 € R such that f+ 4 > p—1.
Then there is a continuous embedding

SyrP(EN,) C La(Ds ppry)-
Here L} denotes the subspace of holomorphic functions in L*.

Proof. Tt is enough to consider the “atoms”: f = h(a,a)"/?h(-,a)™" for a € D. We
have

(SZ+ﬁ f)(z) = h(a7 a)§ <h(> a’)_V> h('> Z)_(V+6)>V = h(a7 a)§ h(z7 a)—(V-‘rﬁ).
Using the asymptotic behaviour of oF}, following from the assumption
5 > (r—1) %, we obtain

v+p3

‘|53+Bf‘|lll(u5+xé) = CB+v/2 h(a7a)g/ ‘h(z7a)7 2 h(z7z)5+l//2*pdz
D

. v+B v+p Y Y
= h(a,a)29F; ( 2B+ 2 ) (a,a) ~ h(a,a)2 h(a,a)”2 = 1. O
2

Theorem 3.1 has the following converse

Theorem 3.2. Let v € W (D) be arbitrary. Choose 3 € R such that 34 5 > p— 1.
Let f be analytic on D such that S¥*8 f € Lé(D,u5+g). Then f € M, and

Cv+p
HfHS):ﬂ,, < CBV ) ||Sz+ﬁf||L1(Nﬁ+'2’)'

v

Proof. Consider the finite Borel measure

dyu(a) = (27 f)(a) h(a, @)’ /> 7 da.
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Using the self-adjointness of S¥# with respect to j, 45 and the reproducing prop-
erty, we obtain

/d,u(a) ha,a)"’? h(z,a)™" :/ da h(a,a)" PP (S¥*8 f)(a) h(a, 2)~7
D D

= /Dda h(a,a)’&ﬁ*p fla) Syth (h(-,2)7")(a)

1
:L/idah(aﬁn”+ﬁ*p11a>h(a,zy*v+ﬁ>:: f(2).
D Cv+pB
_ Cv v+
Hence f € M, and || fllan, < cvep 1l = 2 USSP Flliaguy, ) O

Corollary 3.5. If 5 > p —1 we can choose 3 = 0. Hence
M, = Ly(D,px).

Corollary 3.6. For each f € M, the map G 3 g — U,(g) f € M, is continuous
in the norm of M, .

Proof. This follows by realizing 9, as S}, 5(Ly(D, pgty)) with f+5 > p—1. O
Corollary 3.7. Let v > (r — 1) a and choose 3 € R such that 3+ % >p—1. Then
feM, < Syt fe Ll (D, upyy). (3.7)

Specializing to rank r = 1, we obtain

Corollary 3.8. Let D be the open unit ball of C. Let f be a holomorphic function
on D and choose (3 such that 3+ % > d. Then (3.7) holds.

4. Invariant Banach spaces of vector-valued holomorphic functions

We now turn to wvector-valued holomorphic function spaces related to the holo-
morphic discrete series. In this section we describe the unique maximal space, and
obtain a sufficient condition for membership in the unique minimal space.

For any fixed partition m = (my,...,m,) consider the m-th Peter-Weyl
component Py, (cf. (2.7)) and parameters v € R such that the integral

K™ (B
o= [ dan(aayr K ) (1.1)
’ D Km (67 6)
is finite. Here e € Z is a maximal tripotent. It is well known that
dm
K™ (e,e) =

(d/7)m
where dy, = dim Py,. For example, in the rank 1 case (unit ball) we have
zfw)™

K™ (z,w) = ( ml
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and (d)m = d(d+1) -+ (d+m—1) = “ImD! On the other hand, the space P,

(d—1)!
of homogeneous polynomials on Z = C? has dimension ("H'd_l), the number of

solutions of ky + - -+ 4+ kg = m in integers k; > 0. Thus, for e = (1,0,...,0) we
obtain

dm _(m+d_1)! 1 B 1 .
() ml(d—1)! (d)m_m!_K (e, e).

Since K acts irreducibly on Py, it follows that
i) = cuom [ da bla,0)"? (po Bla,)'? g0 Bla.a) /%) >
D

for all p,q € Pm. Here (p|q)r is the Fischer-Fock norm (2.8). Equivalently,

p(C) = Com /D dah(a,a)"? - p(B(a,a)() (4.2)

for all p € Pm and ¢ € Z. Let H, m denote the Hilbert space of all holomorphic
functions

®:D — Pm, 2+ P.(¢) =(z)
such that

17 = cvm /D dz h(z,2)" 7P| @5 0 B(z,2)"?|% < +oc.

Here we write
®.(¢) = @(z,0)

for z € D, ¢ € Z, noting that ®(z, —) is a polynomial of type m in the (-variable.
In this notation,

®. 0 B(z,2)?(¢) = ®(z, B(z,2)"2¢).

Moreover the scalar parameter v is chosen large enough so that ¢, m > 0, and so
H.,m contains all the “constant” functions

(1 ®p)(2,¢) = p(C)
for p € Pm. It is easily shown that

(Unim(g™1)®)(2,€) = Ju (g, 2) 2(g(2),9'()C),

with g € G, ® € Hym, 2 € D and ¢ € Z, defines a unitary (projective) repre-
sentation of G' on H, m belonging to the so-called holomorphic discrete series of
G [AU3|.

Proposition 4.1. For ® € H, m we have the reproducing property

?.(() =cum /D dah(a,a)’ P h(z,a)™" - &, (B(a,a) B(z,a)"' (). (4.3)
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Proof. The reproducing formula, for a suitable constant, is proved in [AU3]. Ap-
plying the formula to z = 0, we obtain

Do(¢) = cl,’m/ da h(a,a)’ P ®,(B(a,a)]) (4.4)
D
which reduces to (4.2) for & = 1 ® p, and thus specifies the constant. O

Definition 4.1. Let X C O(D,Pm) be a non-trivial Banach space of Pp,-valued
holomorphic functions on D. We say that X is U, m(G)-invariant if
(i) PeX, ge¢G=U,m(g)® € X and U, m(g9) ?||x = |®] x.
(ii) For any finite (complex) Borel measure p on K, the linear operator (convolu-
tion by p)

T2)(200) = [ du(h) 2k, k)
K
maps X continuously into itself.
(iii) For every z € D, the evaluation map ® +— (0, ® I)® € Py, defined by
(0, ®I)®(¢) := ®(2,(), is bounded on X.

As before, condition (ii) is satisfied if the unweighted representation of K on
X is strongly continuous.
Proposition 4.2. Let X # (0) be an invariant Banach space in O(D, Pp,). Then
(i) 1®Pm C X,
and there exists a constant cx such that for all ® € X
(i) [1®ollx < ex (12 x-

Proof. Put m :=mj +---+m,, and consider the finite Borel measure ™t dt /2.
Since the polynomials in Py, have total degree m, we have

27 27
dt . . . dt . ) )
/ 6zmt @(6717527 67175 C) :/ ezmtefwnt @(67“2’,4)
2w 2w
0 0
27
dt —it
™
0

Since the action U, m on X is isometric and dt/27 is a probability measure, it
follows that )
dt ,
1® ®y = / e U, m(e™) @ (4.5)
27
0
belongs to X, and ||1 ® ®g||x < ||®]x. Choosing ® # 0, there exists z € D such
that ®,(¢) = ®(z,{) # 0. Applying a suitable U, m(g)-transformation, we may
assume z = 0, i.e., ®o(¢) = ®(0,¢) # 0. Since K acts irreducibly on Pp, it follows
from (4.5) that 1®p € X for all p € P, i.e., 1@ Py, C X, and there exists cx > 0
such that [|p||lr < ex |1 @ p||x. O
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Definition 4.2. Let M, m C O(D, Pm) be the Banach space of all holomorphic
functions ® : D — Pp, such that ||®[| a4, ,, < +00, where

@[ My = sUP h(2,2)"2(| @2 0 B(2,2)"?|| 7 = sup [|[(Un.m(g) o]l #-
zeD geqG

The requirements (ii) and (iii) in Definition 4.1 are easily checked, and hence,
with the second expression for the norm, it follows that M, p, is Uy m(G)-invariant.
Changing the K-invariant inner product on Pm, or taking another “base point”
a € D instead of 0, changes the norm only by a proportionality constant.

Theorem 4.1. Let X C O(D, Pm) be a Uy m-invariant Banach space. Then X C
My m continuously, i.e., M, m is the unique mazimal invariant space.

Proof. Let ® € X. Then Proposition 4.2 implies
[(Uv.m(g) @)oll7 < ex - IUnm(g) ®llx = ex [ @] x

and hence
sup [[(Uv,m(g) ®)ollx < ex - [|®]|x.
geG

The assertion follows. O
For p € P and g € G, define

pg = Uu,m(g) (]- ®p) € O(D,Pm)
For g = g4, we put p® := p9» and obtain

(p2)(C) = hla,a)"”* h(z,a)™" p(B(a,a)"/? B(z,a)™" (). (4.6)
More generally,
PER(Q) = hla )" h(z,0) ™ p (k! Bla,a)/? B(z, )7 Q)

Lemma 4.1. For large enough parameters a, B,y we have the change of variables
formula

[ whw, ) hgu(@), ) hw,ga) " Fla @)
= h(a,a)* P~ h(z,a)? ha,y)’
~/de h(w, w)*"P h(z,w)"? h(w,y)™" hw,a)’~* h(a,w)? = f(w)

for all a,x,y € D and all f € L*(D, piq)-

Proof. Since dw h(w,w)™P is G-invariant, it follows that
/D dw h(w, w)* P h(ga(x), w)? h(w, ga(y))~" flgs (w))
- /D dw h(w,w)™ h(ga (w), ga (1))

h(ga(2), ga ()77 h(ga (W), ga ()77 f(w).
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Now the assertion follows from
h(ga (W), ga (w))* h(ga (2), ga (w))™7 h(ga (W), ga (4)) 7
= [h(a,a) h(w,a)™" h(w,w) h(a,w)™"]
- [h(a,a) h(z,a)™" h(z,w) h(a,w)" '] ?
- [h(a,a) h(w,a)™" h(w,y) ha,y)""] "
= h(a,a)* 777 h(z,a)" h(a,y)" h(w,w)* h(z,w)~"
“h(w,y)™Y h(w,a)’™ ha,w)?~2. O

Generalizing Definition 3.6, we define the shift operator S¥™# acting on
O(D, Pm) by
(577 8).(0) = vm | duwhlaw, )" hzvw) ) B (Blw,w) Blew) )
D
for all z € D and ¢ € Z. The normalization is chosen so that § = 0 yields the

identity. It is easily shown that S¥*# commutes with the (unweighted) action of
K on O(D,Pm).

Proposition 4.3. Let p € P and a,z € D. Then, using the notation (4.6), we
have
(Sy*0p")z = h(z,a)~" pt.

Proof. Using a T-rotation in the anti-holomorphic variable w yields

/de h(w, w)" ™" h(ga(z),w)" "+ h(a,w)" p(B(w,w) B(ga(2),w)”" go(2)¢)

d19
:/ dw h(w,w)"~ p/ Yw)~ V) h(a, Yw)?
D 2
T

p(B(w,w) Blgal2), )™ g(2)C)
= [ dwhw, ) hlgu(:), 07 ha,0)
p(Bw,w) B(ga(2),0)" 64()C)
= [ dwhw, ) p(Blw.w) 64(2)0) = i pla(2) ).
Applying Lemma 4.1 to & = g, (z), y = 0 we obtain
(827 p7).(C)

Com / dw h(w, w)" 7 h(z,w) pl, (Blw,w)~ ¢+ B(z,w)~' ()
D

= /dwhww" P hiz,w)” ) h(a,a)"’?

~h(w, a)™" p(ga(w) Bw,w) B(z,w)™" ¢)
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= Cym h(a,a)u/2/ dw h(w,w)"ip h(z’w)f(wﬁ/ﬁ)
D

“h(w,a)™" p(B(ga(w), ga(w)) B(ga(2), ga(w)) ™" g4(2) )
The general transformation formula (2.2) specializes to
B(ga(2), ga(w)) = ga(2) B(z,w) ga(w)*
= B(a,a)"? B(z,a)"! B(z,w) Bla,w)"" B(a,a)"/?.

As a consequence,

B(ga(w), ga(w)) B(ga(2), ga(w))™" g4 (2) = gi(w) B(w,w) B(z,w)™".

)

Hence

(S p*)=(C) = com hla,a)"/? h(a,a)” " h(gy(2),a)" P

’ /de h(w7w)y_p h(ga(z)7w)_(y+6) h(a’7w)6 p(B(w,w) B(ga(z)>w)_1 gfl(z) C)
= h(a,a)"® h(z,a)" ") p(g,(2) () = h(z,a)"? p({). O

Proposition 4.4. The operators S are symmetric with respect to (-, ), m, namely
(S) 2, ¥)ym = (2, S)¥)ym (4.7)

for all @,V € H, m for which S) ®,5)V € Hym.

Proof. For convenience we denote

doym(z) = cumdz h(z,z)"7P.

Then we have

(S)@,¥), /DdUum SW D)(z, B(z,z)l/Z-)7 U(z, B(z’z)l/Q.)>}_

/da,,m(z)</ oy m(w) h(z,w) ™7 ®(w, B(w,w) B(z,w)”" B(z,2)'/%),
qf(z,B(z,z)l/2-)>

F

— [ domli) (B, B0 Bevw) " Bz, )%,

/Ddamm(z)h(w,z)_”\ll(z, B(z,z)1/2~)> .

f
Using the fact that for all p,q € P, and T € K©

(poT,q)r =(p,qoT™)F
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we obtain (with T = B(w,w)"? B(z,w)~! B(z,2)'/?) that the last integral is
equal to

[ dom(w) {200, Bl 02,

/ do,m(2) h(w,2)? U(z, B(z,2) B(w,2)™! B(w,w)l/z-)>
b F

_/ dg”’m(w) <(I)(w’ B(waw)l/Q')v (SZ U)(w, B(w,w)l/Q.)>
b F

=(P, S)¥)ym. 0
The same arguments yield the following result.

Proposition 4.5. For v,y € R let ® € Hym NHym and ¥ € Hym with SV €
Hy.m-. Then

(@, ¥)ym = (2, S)¥)ym-
Proof.

(@, S} W)y = [ doym(2) (R B(,2)/2), (S)0)(z, Blz2)/2))

Il
S
Q
Q)
2
8
O
/\U

@(z’ B(Z’Z)l/Q')v

/ Aoy m(w) h(w, 2)™7 ¥ (w, B(w,w) B(z,w)™* B(z,z)l/Q.)>

’ F
= o w a. z z 2.z wz_l ww1/2. o w) Y

W, B(w,w>1/2->>F

:/ doy, m(w) <<I>(w, B(w,w)'2.), U(w, B(w,w)1/2~)> = (D, ¥),m
D F
where we have used the reproducing property. O
Corollary 4.1. Let ¥,® € Hym NHym satisfy SV, S)® € Hym. Then
<Sz’/y P, \I]>’Y,m = <@7\11>va = <@7 Sz’/y \I]>’Y,m'
Proof. The second equality follows from Proposition 4.5. For the first,
()@, )y m = (¥, S @)ym = (¥, ), 1, = (2, ¥)ym. O

Proposition 4.6. We have

o.(¢) = cy+57m/Dda h(a,a)"“ﬁ*p h(z,a)™" (Sl’j+5 ®), (B(a,a) B(z,a)"'¢).
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Proof. Let z € D and p € Py, be fixed. The reproducing formula (4.6) applied to
v+ [ yields

Cotpm M(z,2)"/? (@2 po B(z,2)/) 5

dah(a,a)’ PP h(z,a)~ P h(z,z)"/?

S—

(D, 0 B(a,a) B(z,a)™  |po B(z,2)"?)

dah(a,a)’ 7P h(z,a)” P h(z,2)"/?

Il
S—

(®q 0 Bla,a) |poB(z,2)Y? Bla,z) ") r

dah(a,a)" PP

Il
S—

(@, 0 Bla,a) | h(a,z)™? - h(a,2)™" h(z,2)"?po B(z,2)"? Bla,2) ™Y

dah(a,a)"*?77 (@, 0 B(a,a) | h(a,2) " - p})r

Il
S—

- / da h(a,0)" 57 (B4 0 Bla,a) | (5L p7)a) 7.
D
Using Proposition 4.4 for the parameter v + 3, we obtain
Cylpm h(z2)"% (@2 |po Blz,2)")
= / da h(a,a)"“ﬁ*p ((SZ+B ®), 0 B(a,a) ‘pZ)f
D

. ((Sz+ﬁ ®), 0 B(a,a) | h(a,z)"" h(z,2)"/*po B(z,2)"? Ba, z)fl)}_
)

h(z, 2 V/2/Dda h(a,a)" PP h(z,a)™"

(8279 9)0 0 Ba,a) [po B(z, )/ Bla,2)™")
= h(z,z)"/? /Ddah(a,a)”'w_p h(z,a)™"
: ((55+5 ®), 0 B(a,a) B(z,a)" | po B(z,z)l/Q)F

Since any polynomial in Py, has the form h(z,2)"/? po B(z,z)'/2, the assertion
follows. O

Remark 4.1. Proposition 4.6 can be written as

SiisSiPe =0
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for ® in a dense subspace of H, . Thus, formally,
ST Sy =1
for all v,y € R large enough.

Up to now, the polynomial p € Py, was arbitrary. We now specialize to
A(Q) = KM (¢) = K™ (G e)
where e € Z is a maximal tripotent. Then we have
A9F(¢) = h(a,a)"’? h(z,a)"V K™ (k™' B(a,a)"? B(z,a)"' ¢, €)
= h(a,a)"’? h(z,a)"" K™ (B(a,a)"? B(z,a) "' ¢, ke).
Definition 4.3.

(i) Let 9M, m denote the Banach space of all holomorphic functions ® : D — Ppy
which have a representation

©.(0) = [ dule) 42(0)
G
for some finite C-valued Borel measure on G. The norm is defined as the
infimum

(4.8)

[ loot,, e = nf 4]
m

taken over all such representations.
(ii) Define a vector-valued L'-space £ to consist of all ® € O(D, Py,) such that

1Dz := c%m/ dzh(z,2)77P||®, 0 B(z,2)"?||r < .
v D

Here || - ||+ is the Fischer norm on Ph,.
Our main theorem in this section is

Theorem 4.2. Let ® € O(D,Pw) and suppose that SL5 & ¢ £é+y/2. Then ® ¢
M, m and

C
1P|, o < (d/r)as> dr® ST Y
CB+V/2 v/

Proof. Define a complex measure p on G by
dp (gok) = dk da h(a,a)? /277 (S¥8 ®),(B(a,a)*/? ke).
For each k € K the Cauchy-Schwarz inequality yields
(27 @)a (Bla,a)'/? ke)| = [((Sy7 @)a 0 Bla,a)/? | Ki2) |
< ()7 @)a 0 Bla,a)'/?| 5 - K™(e,¢)'/?

q/2
= g 10527 ®)ao Blaa) I

= dy® (507 @)a 0 Bla,a)"?| 4y



40 J. Arazy and H. Upmeier

Hence

lull = / dk / dah(a,a)’/?77|(S5*P @), (B(a,a)/? ke)|
D
K

d1/2 /
< m dah(a,a)’ /277 ||(S5FP ®)4 0 B(a,a)/?||
(d/r)? Jp

1/2
T LAl
C+v/2 (d/T)m
Hence p is a finite measure on G. Moreover, (4.8) implies

/ du(g) AL(Q)

G
:/ dah(a,a)?/>7? h(a,a)"’? h(z,a)™"
D

N .
B+v/2

~/dl~c (848 ®), (B(a,a)?ke) K™ (B(a,a)'/?B(z,a) "¢, ke)
K

:/ dah(a,a)” 77" h(zva)iy/dk (S¥+P®), (B(a,a)/?ke)
P K
'Km(ke>B(a7a)1/2B(Z7a)_1C)

:/ dah(a,a)’ PP h(z,a)—v((SZ+B<I>)QOB(a,a)1/2|Kg‘(a @)1/2B( a)flc)d/r
b : :

:(d/r);l/jjdah(a,a)”"rﬁ_p h(z,a)™"
((Sy*P®), 0 B(a,a)"/? |K1r§1(a,a)1/23(z,a)—1g)f
:(d/r);‘l/ dah(a,a)’ PP h(z,a)_”(Sl’j+5<I>)a(B(a,a)1/2B(a,a)l/QB(z,a)_l()
D
:(d/r);‘l/jjdah(a,a)”"rﬁ_p h(z,a)"" (SLTP®), (B(a,a) B(z,a)" ')

-1 -1
= (d/r)m1 cy+ﬁ7m (I)Z(C)
using Proposition 4.4. Thus @ is represented by u, up to a constant. O
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5. Minimal spaces for non-tube type domains

In this section we obtain a “converse” of Theorem 4.2, and thus a complete char-
acterization of the minimal space, for the special partitions s = (s,...,s), where
s € N. These “constant” partitions arise naturally in the study of highest quo-
tients (Dirichlet spaces) for domains which are not of tube type (cf. [AU3]). The
integration formulas developed here may be of independent interest.

We consider the Peirce decomposition

Z1
7 =7 VA = 5.1
1D 212 (21/2) (5.1)
of Z for a maximal tripotent e, and write 2 € Z as z = 21 + 212, With 21 € Z;
and 21/2 S Zl/2~

Lemma 5.1. For u € Zy, v € Zy;3 the Bergman operator B(u,v) has a block-
matriz decomposition

I —2uOw ) (5.2)

B(u,v) = <0 Iz

with respect to (5.1). Here I,, denotes the identity operator on Z,.

Proof. For z € Z, we have {uv* 21} € Z3/ = (0) and Q,21 € Zy = (0), since e is
maximal. Moreover, Q, z1/2 € Z1/2 and hence Q. Qy 21/2 € Z3/5 = (0). Thus
Bu,v)z=2z—-2{uv*z} + QuQy 2
=21+ 2172 — 2{uv" (21 + 21/2)} + Qu Qv (21 + 21/2)
=21+ 2172 — 2{uv* 212},

with 21 —2{uv*z1 2} € Z;. The assertion follows. O

Corollary 5.1. For u € Z1, v € Zy;3, we have detz B(u,v) = 1. In particular,
B(u,v) is invertible, with inverse given by

- I 2u0Ov*
B(u,v)™' = B(u, —v) = <01 Iz )

Lemma 5.2. If B(z,w) is invertible and Q. w = Q. z = 0, then 2% = z.
Proof. By assumption, we have
B(z,w)z=2z—-2{2w"2}4+ Q. Quz=2-2Q.w+Q.Quz=2=2— Q. w=B(z,w)z".
Since B(z,w) is invertible, we conclude that z = z™. O
Proposition 5.1. Suppose v,u € D and
Quv = Quu =0. (5.3)
Then we have
B(u+ B(u, w)'? v, u+ B(u,u)'/? v)

= B(u,u)"? B(v,u) B(v,v) B(u,v) B(u,u)"? 54
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Proof. Since v™* = v by Lemma 5.2, we have gu( ) B(u,u)'/? v=v =

= u+
u + B(u,u)?v and ¢, (v) = B(u,u)l/2 B(v™",u) = B(u,u)'? B(v,u). Now
apply (2.2). O

For any tripotent, the Peirce spaces are hermitian Jordan subtriples of Z,
and Z; and Zy are always irreducible if Z is irreducible. One can show that in
our case of a maximal tripotent (i.e., Zo = (0)) the Peirce ;—space Zy1 /7 is also
irreducible. Let D1 = DN Z; and Dy, = D N Zy;5 denote the respective open
unit balls.

Corollary 5.2. Let u € Dy and v € Dy/o. Then (5.3) holds and, in addition, we
have

h(u+ B(u,u)?v, u+ B(u,u)’?v) = h(u,u) h(v,v). (5.5)
Proof. By Lemma 5.1 and Lemma 5.2, the assumption of Proposition 5.1 is sat-

isfied, showing that (5.4) holds. Moreover, h(u,v) = 1 = h(v,u) by Lemma 5.1.
Therefore (5.5) follows from (5.4) by taking determinants. O

Proposition 5.2. For u € Zy and v € Zy 5, we have u + B(u,u)'/?v € D if and
only if u € D1 and v € Dy 3.

Proof. As a consequence of the spectral theorem for Jordan triples, we have
h(z,z) > 0 for z € D and h(z,z) = 0 for all z € 9D. Hence D is a connected
component of

M:={z€Z: h(z,z) > 0}.
Define 7 : D — Z; 5 by

m(w) = B(w1,w1)_1/2 wi /2

for all w = w1 +wy /2 € D with w, € Z,. Since Peirce projections are contractive,
we have ||wi] < |Jw|| < 1. Therefore w; € Dy and B(wi,w;) is invertible. By
Corollary 5.2, we have
h(w17w1) h(ﬂ-(w)7 71'(11))) = h(waw) # 0.

It follows that h(m(w), m(w)) # 0 and therefore m(w) € Zy/,, N M. Since 7 is
continuous and D is connected, it follows that w(D) belongs to the 0-connected
component of M N Z; /5, which coincides with D; /5. This shows that w = u +
B(u,u)?v € D implies u € Dy and v = m(w) € Dy s.

Conversely, let v € Dy. Define F,, : Z, /5 — Z by

F,(v) :=u+ B(u,u)"?v.
Then Corollary 5.2 implies
h(F,(v), Fy(v)) = h(u,u)h(v,v).

If v € Dy s, then h(v,v) # 0 and hence F,(v) € M. Since F,(0) =u € D; C D,
F.(Dy/2) belongs to the u-connected component of M, which coincides with D.
Therefore w = F,(v) € D. O
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According to Proposition 5.2 the map
F(u,v) :== u+ B(u,u)?v
defines a real-analytic isomorphism from Dy x D; /5 onto D, with inverse
F~w + wy2) = wy + Blwy, wl)_l/2 w1 /.
Put B(u) := B(u,u)"/? € End(Z). Then F has the derivative
Fl(u,v)(@,y) = 2+ B(u)y + (B'(w) x) v

for x € Z1, y € Zy 5. Since 3(u) preserves both Peirce spaces, the same is true for
B'(u)z € End(Z). Thus we have a block-matrix decomposition

Filuv) = ( 0 By )

with respect to (5.1), where

Tz := (' (u)x)v= 0

iy ’tzoﬂ(u +tx)v.

It follows that
detz F'(u,v) = detz, ,, B(u,u)"? = h(u,u)"?.

Hence F’(u,u) has the “real” determinant

det F'(u,v) = |detzl/2 B(u,u)1/2’2 = h(u,u)®. (5.6)
Making the change of variables
w=u+ B(u,u)"?v (u€ Dy, v € Dy3) (5.7)
(5.6) yields
dw = h(u,u)’ du dv. (5.8)

Proposition 5.3. Let u € Z1, v € Zy/3 and a = a1 +ayy3 € Z with ay, € Z,,.
Suppose that B(ay,u) is invertible. Then

h(u+ B(u,u)/?v,a) = h(u,a1) - h(v, B(u,u)"? Blai,u)™" ay/2). (5.9)
Proof. Polarizing the identity (5.5) yields
h(u+ B(u,a1)? vy, ai 4 Blai,u)?va) = h(u,a1) h(vy, va) (5.10)
whenever vy, v2 € Z; /5. Putting
v1 = B(u,a1) "2 Blu,u)/?v and vy = B(ay,u)"Y/? a2,
the left-hand sides of (5.9) and (5.10) agree, whereas
h(vy,v2) = h(B(u,al)_1/2 B(u,u)?v, B(ay,u)"'/? ai/2)
= h(B(u,u)l/2 v, B(ay,u)™? a1/2)
= h(v, B(u,u)"? Blay,u)™" ay2). O
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Lemma 5.3. Let u € Dy and a = a1 + ayjp € D with a, € Z,. Then B(ay,u) is
inwvertible and

B(u,u)l/2 Blay,u)™* aisp € Dyjs.

Proof. Since a1 € Dy, it follows that B(a1,u) is invertible. Therefore the addition
formula [L2, p.26] yields

a* = (a1 +a1/2)" = af + B(ag,u) ™" agq;;) =a} + Bla1,u) " a1/

(ul)
1/2

g-u(a) = —u+ B(u,u)?a" = —u+ B(u,u)*? a¥ + B(u,u)? Blay,u)™? ai/z.

since u™ € Z; and hence a = ay/o by Lemma 5.2. It follows that

Since a € D, we have g_,(a) € D.
Therefore the Peirce ;—component B(u,u)'? B(ay,u)™? ai/p € Dyja. O

Let Py : Z — Z; denote the Peirce 1-projection.
Lemma 5.4. Foru € Zy and v € Zy /3, we have Py B(v,u) = Py.

Proof. Using Lemma 5.1 and B(v,u) = B(u,v)* we write

_ Il 0 Il 0 Il 0
PlB(”’“)_<o 0)(2v|:|u* 11/2> (o 0) Pr.

Here I, is the identity map on Z,. O

Lemma 5.5. Lets = (s,...,s) and w = wy +wi/p € D with w, € Z,. Then
ds
(d/7)s

Proof. Let N be the Jordan algebra determinant of Z;, normalized by N(e) = 1.
Then

K (B(w,w)e) = h(w,w)® h(wy,wr)®. (5.11)

K (z) = K®(e,e) N(P12)° = (d/s) N(P1z)*.

Writing w = u + B(u,u)"/?v with v € Dy and v € D, /5, Proposition 5.1 and
Lemma 5.4 imply

Py B(w,w)e = P, B(u,u)"/? B(v,u) B(v,v) B(u,v) B(u,u)"?e
= P, B(u,u)? P, B(v,u) B(v,v) B(u,v) Py B(u,u)"/?e
= Py B(u,u)"? P, B(v,v) P, B(u,u)'?e = ( u)'/? B(v,v) B(u,u)?e.

The invertible transformations P; B(u, u)l/ 2 Py and P, B(v,v) P, on Z; belong to
the “structure group” K¥ of Z;, and N has the semi-invariance property

N(yz) = N(ye) N(z) = (Det )"/ N(2)
for all v € KT and z € Z;.
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It follows that
N(Py B(w,w)e) = N((Py B(u,u)'/? P) (PiB(v,v) Py) (PiB(u,u)"?)e)
= N(B(u,u)"? €)?> N(B(v,v) €) = h(u,u)? h(v,v).
Since h(w,w) = h(u,u) h(v,v) by (5.5), the assertion follows. O
Let dy,71,a1,p1 and dy /2,71 /2, a1/2, p1/2 denote the respective invariants for
the (irreducible) Jordan triples Z; and Z 5.
Theorem 5.1. The integral defining c;; is finite (i.e., c,s > 0) if and only if
s+v>p—1. In this case we have
- Lo(2s+v) Ta,, (s+v—p+piy2)
w25 +v— 1) Ta,, (s+v—p+pis -

Cu,s di/o )

T1/2
Proof. Combining (5.11), (5.5) and (5.7) we see that
c;; = /dw h(w,w) ™ P h(wy,wy)® = /du h(u, )25t ro=p /dv h(v,v)*TV P,
D D, D2
Since p — b = p1 (the genus of Z), we have
d
/du h(u, w) TP = 7T (25 + v — ) /(25 + v)
r

D,
which is finite if and only if 2s+v > (r —1)a+ 1 = p; — 1. Also,

d
/ dvh(v,v)”"*p = /2 FQ1/2 (S+V—p+p1/2— leQ)/I’Ql/z(s—i—u—p—i—pl/Q)
1/2
D2

which is finite if and only if

d1/2 ay/2
S+v—p+pipo— > (ryp—1
V2T (ryz=1)
Since py /o — fijz =(ri2—1) a12/2 + 1, this is equivalent to s +v > p — 1. O

Proposition 5.4. Leta € D and ( € Z. Then

1 v a v/2— _
1557 (K2 :/dzh(/z,Z)ﬁ+ 2P |h(z, )7 K& (B(z,2) )
05+y/2 B+v/2
D
= /dz h(z,z)P+/27P  |h(z,a) 7P - | K™ o B(z,2)Y?|| 7 (5.12)
D

Proof. Proposition 4.3 and (4.8) imply
(SUFP(KE)™ ). 0 B(2,2)'? = h(z,0) 7 (K&)2 0 B(z,2)"/?

)

= h(a,a)"’? h(z,a)” PtV K&o B(a,a)Y? B(z,a)"! B(z,2)"/2.
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Since
<K§n ) B(a,a)l/2 B(z,a)™! B(z, z)l/2>2f
= K& (9"4(2) B(2,2) g"(2)*¢) = K& (B(g, ' (2), 9,1 (2))¢),
it follows that
1(Sy2 (K2))2 0 B(z,2)?||
= h(a,a)"? |h(z,a)" | K (B(g, " (2), g, " (2)) Q2.

Applying Lemma 4.1 to z = y = 0 yields

1 v+ m\a
v 1557 CEV ey,

B / dz h(z,2) P27 (S (KE)®). 0 B(z,2)'?||
D
= h(a,a)V/Q/ dzh(z, Z)ﬁ+V/27p ) ’h(z’ a)i(ﬁ*ﬂ’)’
D
KR (Bl (), g2 (2)) 2
= h(a7a)u/2 h(a,a)il//Q

/ dzh(z,z)ﬁJru/pr h(Zya)iﬁ/Z h(avz)iﬁ/2 K& (B(z,2) C)l/2
D
:/ dz h(z, z)P+v/2=p ’h(Zya)iﬁ’KZn (B(z,2)Q)"?
D
:/ dz h(z, z)P*v/2=p ’h(zya)fﬁ"||K2n°B(ZaZ)1/2||}'-
D

Our main result in this section is
Theorem 5.2. Let s € N and v satisfy
v oa
> —1
s+ 07 o (r )

and
v+4+s a1y (

2 > 2
Let 8 € R satisfy B+ 5° > p—1. Then we have for ® € O(D, Ps)

ri2 — 1) +p—pij2.

PeM, = STl ),

Proof. Let py /o be the genus of Z; /5, and put

+

4
9 P12 —P-

14
a=p+
Then
vV—+s a1/2
B—a=p—pip— 9 <- 2/ (ri2—1)
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by assumption. This implies

2 2
CU? = gup P/ (ﬂ/ B/ >(y’y)<+oo.
yED1 /2 o

By Lemma 5.3, B(u,u)/2B(a1,u)~! a1/ € Dy and hence

2 2
2F1(1/2) (6/ aﬂ/ ) (B(u,u)l/2 B(al,u)_1 ai /s, B(u,u)l/2 B(al,u)_1 ai/z)
< c(1/2)

forallu € Dy and a = a; +ay/; € D. Now consider ® = A9 = (K?)“. Specializing
Proposition 5.4 to the constant partition s = (s,..., s) and making the change of
variables w = u + B(u,u)'/?v as in (5.7), we obtain with Proposition 5.3 and
Lemma 5.5.

1 (dfr)d?

v+
CB+v/2 d;/2 152 (I)Hﬁ;ﬂu/z
d/rV2
= ( C/l:/); /D dw h(w7 w)ﬁ+l//27p ‘h(w7 a)iB’ K: (B(w7 w) 6)1/2
S

:/ dw h(w, w)P+v/2p ’h(w,a)_ﬁ‘ h(w, w)*'? h(wy,w)*/?
D
= / dw h(w,w)ﬁ"rygs_p h(wy, wy)*/? ’h(w,a)_ﬁ‘

D
= / du h(u,w)PtzFstb-p ‘h(u,al)fﬁ‘

D

. / dv h(v,v)ﬁJrV;rs_p |h(v, B(u,u)? B(ay,u)™} al/g)_5’
D2

1
[ a0 o] a0 (2 P12)
«

0&1/2) Dy
: (B(Uau)1/2 Blay,u)~" ays, B(u,u)"? B(ay,u)™" ay2)
c1/2) ot /o 3
Coy D+
cr (1)( B/2 B/2 )
= F (a1 al)
(1) (1/2) 271 ’
Chtst )2 Ca B+s+v/2
c/2) . o)
S (1/2)"

c,8+s+u/2 Ca

where

o o () o
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since our assumption on the parameters implies

g, B v _ v
2-1-2—(5-1-2+8)——s—2<—(r—1)

Every ® € MM, m has a representation

&= [ dutg) 4

G

a

2

for a finite complex measure 1 on G. Then

syt e [ dulg) sy
G
and the previous calculation shows

v+h . v+B8 A9
150" @l , < el sup 1S58 A% g

qL/2 c
s Btv/2 c/2 oW .

— 1/2 1 1/2
(d/r)" ), P

It follows that S¥+8 ® € E}ﬁ 42> as asserted. Thus we obtain the implication

deM,— Sy DLy, ),

The converse implication follows from Theorem 4.2, applied to the partition s =
(8y...,8). O
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