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Abstract We consider the Willmore boundary value problem for surfaces of rev-
olution over the interval [−1,1] where, as Dirichlet boundary conditions, any sym-
metric set of position α and angle arctanβ may be prescribed. Energy minimis-
ing solutions uα,β have been previously constructed and for fixed β ∈ R, the limit
limα↘0 uα,β(x) = √

1 − x2 has been proved locally uniformly in (−1,1), irrespec-
tive of the boundary angle. Subject of the present note is to study the asymptotic
behaviour for fixed β ∈ R and α ↘ 0 in a boundary layer of width kα, k > 0 fixed,
close to ±1. After rescaling x �→ 1

α
uα,β(α(x − 1) + 1) one has convergence to a

suitably chosen cosh on [1 − k,1].
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1 Introduction

Recently, the Willmore functional has attracted a lot of attention. For a smooth sur-
face � ⊂ R

3 we define it by

W(�) :=
∫

�

(
H 2 − K

)
dS = 1

4

∫
�

(κ1 − κ2)
2 dS,

where κ1, κ2 denote the principal curvatures, H = (κ1 + κ2)/2 the mean curvature
and K the Gaussian curvature of �. Apart from being of geometric interest [18, 19],
the functional W and its variants are models for the elastic energy of thin shells [13]
or biological membranes [8, 14]. Furthermore, they are used in image processing for
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problems of surface restoration and image inpainting [4]. In these applications one
is usually concerned with minima, or more generally with critical points of the Will-
more functional. It is well-known since Thomsen’s work [18] that the corresponding
surface � has to satisfy the Willmore equation

��H + 2H
(
H 2 − K

) = 0 on �, (1)

where �� denotes the Laplace–Beltrami operator on � with respect to the induced
metric. A solution of (1) is called a Willmore surface. Moreover, from the geomet-
ric point of view an essential property of the Willmore functional is its conformal
invariance. This means that W(�) = W(� ◦ �) for any Möbius transform � of R3

being regular on �. For an easily accessible derivation of these facts one may also
see [7].

A particular difficulty in the analytical investigation of (1) arises from the fact
that �� depends on the unknown surface so that the equation is highly nonlinear.
Moreover, it is of fourth order where many of the established techniques do not
apply. Existence of closed Willmore surfaces of prescribed genus has been proved
by Simon [17] and by Bauer and Kuwert [1]. Recently, Rivière [15] has developed
a different approach which seems to open opportunities to address many further
questions. For more detailed information and further references we refer to [6].

If one is interested in surfaces with boundaries, then appropriate boundary con-
ditions have to be added to (1). Since this equation is of fourth order one requires
two sets of conditions; a discussion of possible choices can be found in [13]. Of
particular interest is the Dirichlet problem where at its boundary, the position and
the direction of the unknown Willmore surface are prescribed. Existence results for
the Dirichlet problem, which are not subject to unnatural smallness conditions, can
be found e.g. in [5, 6, 16]. The result by Schätzle [16] is put into a very general
context and so does not provide very detailed information about the topological and
geometrical shape of the solutions. In [5, 6] the authors proceed just the other way
round: They confine themselves to symmetric surfaces of revolution but at the same
time they obtain rather precise information on the geometric shape of their energy
minimising solutions.

More precisely, they look at surfaces of revolution, which are obtained by rotating
a graph over the x = x1-axis in R

3 around the x1-axis. These are described by a
sufficiently smooth function

u : [−1,1] → (0,∞),

which is moreover restricted to be even about x = 0, and are parametrised as fol-
lows:

(x,ϕ) �→ (
x,u(x) cosϕ,u(x) sinϕ

)
, x ∈ [−1,1], ϕ ∈ [0,2π].

In the present chapter we consider the Willmore problem under Dirichlet bound-
ary conditions, where the height u(±1) = α > 0 and the slope u′(−1) = −u′(1) =
β ∈R are symmetrically prescribed at the boundary. The focus will be on the asymp-
totic behaviour of energy minimising solutions as α ↘ 0. However, in order to ex-
plain this one needs to recall first a bit of the underlying existence theory.
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1.1 Some Basics

We consider the Willmore energy of the surface of revolution �(u) generated by the
graph of the smooth positive function u : [−1,1] → (0,∞)

W(u) =
∫

�(u)

(
H 2 − K

)
dS

= π

2

∫ 1

−1

(
u′′(x)

(1 + u′(x)2)3/2
− 1

u(x)
√

1 + u′(x)2

)2

u(x)
√

1 + u′(x)2 dx

+ 2π

∫ 1

−1

u′′(x)

(1 + u′(x)2)3/2
dx.

Definition 1 For α > 0 and β ∈R we introduce the function space

Nα,β := {
u ∈ C1,1([−1,1], (0,∞)

) : u positive, symmetric,

u(1) = α and u′(−1) = β
}

as well as

Mα,β := inf
{
W(u) : u ∈ Nα,β

}
.

This notation here should not be mixed with that in [6]. We also need the follow-
ing number

α∗ = min

{
cosh(b)

b
: b > 0

}
= 1.5088795 . . . .

For α below α∗ there is no catenary satisfying this boundary condition, irrespective
of the prescribed slope at the boundary. In this regime—for β < 0—the existence
proof and also the qualitative properties of solutions are different.

We recall as a special case from [6] the following existence result: For each
α ∈ (0, α∗) and each β ∈R we find uα,β ∈ Nα,β satisfying

W(uα,β) = Mα,β.

The corresponding surface of revolution �(uα,β) ⊂ R
3 is smooth and solves the

Dirichlet problem for the Willmore equation
{

��H + 2H
(
H 2 − K

) = 0 in (−1,1),

uα,β(−1) = uα,β(+1) = α, u′
α,β(−1) = −u′

α,β(+1) = β.

In [5, 6] the authors took advantage of looking at the Willmore energy of surfaces
of revolution from a different point of view. It was observed by Bryant, Griffiths,
and Pinkall (see [2, 3, 9]) and intensively exploited among others by Langer and
Singer [11, 12] that the Willmore energy and the elastic energy of the profile curve
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considered in the hyperbolic half plane coincide up to a factor. The half-plane R2+ :=
{(x, y) ∈R

2 : y > 0} is equipped with the hyperbolic metric ds2
h := 1

y2 (dx2 +dy2).
As explained in detail in [6, Sect. 2.2] one finds for the hyperbolic curvature of the
curve x �→ (x,u(x))

κh(x) = −u(x)2

u′(x)

d

dx

(
1

u(x)
√

1 + u′(x)2

)
= u(x)u′′(x)

(1 + u′(x)2)3/2
+ 1√

1 + u′(x)2

= ±u(x)
(
κ1(x) − κ2(x)

)
.

The hyperbolic Willmore energy is defined in the following natural way and one
observes that κ2

h = 4u2(H 2 − K) and obtains so the following simple relation with
the original energy:

Wh(u) :=
∫

γ

κ2
h dsh :=

∫ 1

−1
κ2
h

√
1 + u′2

u
dx = 2

π
W(u). (2)

1.2 The Asymptotic Result

The previous work [6] also contains some asymptotic considerations. It should be
mentioned that the numerically calculated pictures displayed there give the clear
idea that for α ↘ 0, the central part of any Willmore minimiser uα,β looks pretty
much like a sphere while close to the boundary the graph resembles a catenary. Com-
binations of these prototype functions were not only employed as initial data for the
numerical flow method but were also used as comparison functions for precise esti-
mates of the optimal Willmore energy, see [6, Sect. 5.1, Theorem 5.4]. Moreover, in
[6, Theorem 5.8] it was proved for fixed β ∈ R and α ↘ 0 that uα,β(x) → √

1 − x2

in Cm([−1 + δ,1 − δ]) for any m ∈ N0 and δ > 0. A related result under so called
natural boundary conditions was proved by Jachalski [10].

It remains to study the asymptotic behaviour in boundary layers close to x =
±1. To this end it will be crucial to have the following comparison function which
generates a minimal surface of revolution:

vα,β(x) := α√
1 + β2

cosh

(√
1 + β2

α
(1 − x) + arsinh(β)

)
.

We prove the following result:

Theorem 1 Fix some β ∈ R and k > 0. For α > 0 small enough let uα,β ∈ Nα,β

minimise the Willmore energy in this class, i.e. W(uα,β) = Mα,β . Then we have
uniform smooth convergence

lim
α↘0

1

α
uα,β

(
α(x − 1) + 1

) = v1,β(x).

on [1 − k,1].
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This means that in this sense

uα,β(x) ≈ vα,β(x) for x ∈ [1 − kα,1]
for α ↘ 0 while a careful analysis of the proof in [6] indicates that for any ε > 0
one may expect that

uα,β(x) ≈
√

1 − x2 for |x| ∈ [
0,1 − α1−ε

]
.

2 Rescaled Convergence to a Suitable cosh for α ↘ 0

In this section, we choose any β ∈ R, keep it fixed and study the singular limit
α ↘ 0, where the “holes” {±1} × Bα(0) in the cylindrical surfaces of revolution
disappear.

2.1 Known Properties of Minimisers

We first recall for α small from [6, Sect. 5] the following properties of any minimiser
uα,β ∈ Nα,β of W , i.e. W(uα,β) = Mα,β .

Lemma 1 We assume that α < min{α∗,1/|β|}. Let u ∈ Nα,β be such that W(u) =
Mα,β . Then, u ∈ C∞([−1,1], (0,∞)) and u has the following additional proper-
ties:

1. If β ≥ 0, then u′ < 0 in (0,1) and

α ≤ u(x) ≤
√

1 + α2 − x2 in [−1,1], x + u(x)u′(x) > 0 in (0,1).

2. If β < 0, then u has at most one critical point in (0,1), i.e. there exists x0 ∈ [0,1)

such that u′ > 0 in (x0,1], u′(x0) = 0 and u′ < 0 in (0, x0). Moreover,

x + u(x)u′(x) > 0 in (0,1], u′(x) ≤ γ := max
{−β,α∗} in [x0,1]

and u(x) ≥ min

{
α

2
√

1+β2
,

γ

2(eC−1)

}
in [−1,1],

with C = 6γ
√

1 + γ 2 > 0. Moreover,

lim
α↘0

x0 = lim
α↘0

x0(α) = 1.

Lemma 2 Keep some β ∈ R fixed. For α > 0 small enough let δα > 0 be such that
−u′

α,β(1 − δα) is maximal. Then we know that

lim
α↘0

δα = 0, (3)
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lim
α↘0

(−u′
α,β(1 − δα)

) = ∞, (4)

lim
α↘0

Mα,β = lim
α↘0

W(uα,β) = 4π − 4π
β√

1 + β2
, (5)

lim
α↘0

∫ 1−δα

0
κh[uα,β ]2 dsh[uα,β ] = 0. (6)

Proof Statements (3) and (4) follow from [6, Lemma 5.3, Theorem 5.8]. For (6),
see the proof of [6, Corollary 5.5]. According to [6, Theorem 5.4] and (2) we finally
have for α ↘ 0

8 − 8β√
1 + β2

+ o(1) = Wh(uα,β) = 2

π
W(uα,β);

statement (5) follows. �

2.2 Further Comparison Results

In order to guarantee compactness in our limit process we need some further uni-
form bounds.

We study first the simpler case β ≥ 0.

Lemma 3 Fix some β ≥ 0. For 0 < α < min{α∗,1/|β|} we have for any Willmore
minimiser uα,β ∈ Nα,β that

uα,β(x) < vα,β(x) for x ∈ [0,1).

Proof Since both uα,β and vα,β are strictly decreasing on [0,1] they may be con-
sidered as graphs over the angular variable. This means that for each x ∈ [0,1] we
find uniquely determined ϕ,ψ ∈ [0,π/2] and r1(ϕ), r2(ψ) such that

(
x,uα,β(x)

) = r1(ϕ)(cosϕ, sinϕ),
(
x, vα,β(x)

) = r2(ψ)(cosψ, sinψ).

Considering the curves ϕ �→ rj (ϕ)(cosϕ, sinϕ) let Tj (ϕ) = (t1
j (ϕ), t2

j (ϕ)) denote

the corresponding unit tangent vectors with t2
j (ϕ) ≤ 0.

Let us assume by contradiction that uα,β > vα,β on some subinterval of [0,1].
The case where the graphs touch tangentially in some point is simpler and can be
treated similarly. Then we find 0 < ϕ1 < ϕ2 such that

0 >
t2
2 (ϕ1)

t1
2 (ϕ1)

>
t2
1 (ϕ1)

t1
1 (ϕ1)

and 0 >
t2
1 (ϕ2)

t1
1 (ϕ2)

>
t2
2 (ϕ2)

t1
2 (ϕ2)

.
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Fig. 1 Left: Assume that the minimiser is somewhere above the cosh. Right: Rescale minimiser
inside the wedge and fit it into the cosh. This results in a decrease of Willmore energy

By the intermediate value theorem there exists a ϕ0 ∈ (ϕ1, ϕ2) satisfying

t2
2 (ϕ0)

t1
2 (ϕ0)

= t2
1 (ϕ0)

t1
1 (ϕ0)

.

Hence T1(ϕ0) = T2(ϕ0), the tangents on the ray with angle ϕ0 from the x-axis coin-
cide.

We may now construct a new even function ûα,β ∈ Nα,β which coincides with
the catenary vα,β on [r2(ϕ0) cosϕ0,1] and with

x �→ r2(ϕ0)

r1(ϕ0)
uα,β

(
r1(ϕ0)

r2(ϕ0)
x

)

on [0, r2(ϕ0) cosϕ0]. We emphasise that the Willmore energy is scaling invariant.
Since uα,β is nowhere locally equal to a cosh, we would end up with W(ûα,β) <

W(uα,β), a contradiction.
See Fig. 1. �

Lemma 4 Fix some β ≥ 0, k ∈ N. For 0 < α < min{α∗,1/|β|,1/k} we have for
any Willmore minimiser uα,β ∈ Nα,β that

|u′
α,β(x)| ≤ sinh

(
k

√
1 + β2 + arsinh(β)

)
for x ∈ [1 − kα,1].

Proof We proceed similarly as in the proof of Lemma 3 and consider rays which
intersect [0,1] � x �→ (x,uα,β(x)) and [0,1] � x �→ (x, vα,β(x)). Using the same
argument as before—cf. Fig. 2—we see that on each ray, the slope of uα,β is less
negative than the slope of vα,β . Since vα,β(x) ≥ uα,β(x), we find that the rays, which
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Fig. 2 Left: Assume that the minimiser is on some ray steeper than the cosh. Right: Rescale
minimiser inside the wedge and fit it into the cosh. This results in a decrease of Willmore energy

cover (x,uα,β(x)) for x ∈ [1 − kα,1], cover (x, vα,β(x)) with x in a subinterval of
[1 − kα,1]:

max
x∈[1−kα,1]

∣∣u′
α,β(x)

∣∣ ≤ max
x∈[1−kα,1]

∣∣v′
α,β(x)

∣∣ ≤ sinh
(
k

√
1 + β2 + arsinh(β)

)
. �

Combining the previous results with the statements from Lemma 1 we can also
treat the case β < 0.

Lemma 5 Fix some β < 0, then there exists a constant C = C(β) > 0 such that for
all 0 < α < min{α∗,1/|β|} we have for any Willmore minimiser uα,β ∈ Nα,β that

α

C
≤ uα,β(x) < α cosh

(
C

α
(1 − x)

)
for x ∈ [0,1).

Proof Let x0 ∈ [0,1) be as mentioned in Lemma 1, i.e. uα,β(x0) = min{uα,β(x) :
x ∈ [−1,1]} =: umin,α . We take further from this lemma that there exists a constant
C = C(β) > 0 such that for all 0 < α < min{α∗,1/|β|}

umin,α ≥ α

C
.

Then, according to Lemma 3 we have for x ∈ [0, x0):

uα,β(x) < umin,α cosh

(
1

umin,α

(x0 − x)

)

≤ α cosh

(
1

umin,α

(1 − x)

)
≤ α cosh

(
C

α
(1 − x)

)
.

Since uα,β(x) < α ≤ α cosh(C
α
(1 − x)) on [x0,1), the proof is complete. �
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Lemma 6 Fix some β < 0, k ∈ N. There exists a bound C = C(k,β) such that for
all α > 0 small enough we have for any Willmore minimiser uα,β ∈ Nα,β that

∣∣u′
α,β(x)

∣∣ ≤ C for x ∈ [1 − kα,1].

Proof We proceed similarly as in the previous Lemma 5. Let x0, umin,α be as there
and let C1 = C1(β) > 0 be the constant used there. In particular we use that umin,α ≥
α
C1

From Lemma 4 we see that there exists a constant C2 = C2(k,β) > 0 such that
for α > 0 small enough

∣∣u′
α,β(x)

∣∣ ≤ C2 on [x0 − kC1umin,α, x0] ⊃ [x0 − kα, x0].
One should observe that limα↘0 x0(α) = 1. According to Lemma 1 we have that

0 ≤ u′
α,β(x) ≤ max

{−β,α∗} in [x0,1].
Putting all together proves the claim. �

Corollary 1 For any k ∈N we have that for α > 0 small enough

δα > kα.

2.3 Concentration of the Willmore Energy

According to Lemma 2, for α ↘ 0, the hyperbolic Willmore energy concentrates
close to ±1. The following lemma shows the reverse result for

∫
H 2 dS.

Lemma 7 Fix some β ∈ R, k ∈ N. Let uα,β ∈ Nα,β be any Willmore minimiser and
let Hα,β denote its mean curvature. Then

lim
α↘0

∫ 1

1−kα

H 2
α,βuα,β

√
1 + (

u′
α,β

)2
dx = 0.

Proof According to Lemma 2, we have for α ↘ 0:

4π + o(1) = W(uα,β) + 4π
β√

1 + β2

= W(uα,β) + 2π

∫ 1

−1
K[uα,β ]uα,β

√
1 + (

u′
α,β

)2
dx

= 4π

∫ 1

1−δα

H 2
α,βuα,β

√
1 + (

u′
α,β

)2
dx

+ 4π

∫ 1−δα

0
H 2

α,βuα,β

√
1 + (

u′
α,β

)2
dx
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= 4π

∫ 1

1−δα

H 2
α,βuα,β

√
1 + (

u′
α,β

)2
dx

+ π

∫ 1−δα

0
κh[uα,β ]2 dsh[uα,β ] + 4π

|u′
α,β(1 − δα)|√

1 + u′
α,β(1 − δα)2

= 4π

∫ 1

1−δα

H 2
α,βuα,β

√
1 + (

u′
α,β

)2
dx + o(1) + 4π + o(1).

This yields
∫ 1

1−δα

H 2
α,βuα,β

√
1 + (

u′
α,β

)2
dx = o(1)

which in view of Corollary 1 proves the claim. �

2.4 Limit of the Rescaled Solutions, Proof of Theorem 1

We introduce the rescaled solutions

ûα,β := 1

α
uα,β

(
α(x − 1) + 1

)

and keep some k ∈ N fixed in what follows. Lemmas 3–6 show that (ûα,β)α↘0 is
uniformly bounded in C1([1 − k,1]) and uniformly bounded from below on [1 −
k,1] while Lemma 7 proves that its mean curvature converges to 0 in L2([1−k,1]).
By standard arguments (cf. [6, Proof of Theorem 5.8]) we find a strong C1- and
weak H 2-limit u : [1 − k,1] → (0,∞) satisfying

u(1) = 1, u′(1) = −β, H [u](x) ≡ 0.

By direct integration this gives

u(x) = v1,β(x) = 1√
1 + β2

cosh
(√

1 + β2(1 − x) + arsinh(β)
)

and so, the proof of Theorem 1. As for convergence in higher order norms one may
see the proof of [6, Theorem 5.8].
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