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The Influence of the Tunnel Effect
on L°°-time Decay
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Abstract. We consider the Klein-Gordon equation on a star-shaped network
composed of n half-axes connected at their origins. We add a potential that is
constant but different on each branch. Exploiting a spectral theoretic solution
formula from a previous paper, we study the L°°-time decay via Hérmander’s
version of the stationary phase method. We analyze the coefficient ¢ of the
leading term c- t71/2 of the asymptotic expansion of the solution with respect
to time. For two branches we prove that for an initial condition in an energy
band above the threshold of tunnel effect, this coefficient tends to zero on the
branch with the higher potential, as the potential difference tends to infinity.
At the same time the incline to the t-axis and the aperture of the cone of
t~1/2_decay in the (t, z)-plane tend to zero.
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1. Introduction

In this paper we study the L°°-time decay of waves in a star shaped network of one-
dimensional semi-infinite media having different dispersion properties. Results in
experimental physics [10, 11], theoretical physics [9] and functional analysis [5, 8]
describe phenomena created in this situation by the dynamics of the tunnel effect:
the delayed reflection and advanced transmission near nodes issuing two branches.
Our purpose is to describe the influence of the height of a potential step on the
L*>-time decay of wave packets above the threshold of tunnel effect, which sheds
a new light on its dynamics.

Parts of this work were done, while the second author visited the University of Valenciennes. He
wishes to express his gratitude to F. Ali Mehmeti and the LAMAYV for their hospitality.



12 F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier

In this proceedings contribution we state results for a special choice of initial
conditions. The proofs in a more general context will be the core of another paper.
The dynamical problem can be described as follows:
Let Ni,...,N, be n disjoint copies of (0,+00) with n > 2. Consider numbers
ag, c satisfying 0 < ¢, for k =1,...,nand 0 < a; < ay < --- < a, < +o0.
Find a vector (uy,...,u,) of functions wuy : [0,+00) x N — C satisfying the
Klein-Gordon equations

[02 — k02 + aglup(t,z) =0, k=1,...,n,

on Ni,..., N, coupled at zero by usual Kirchhoff conditions and complemented
with initial conditions for the functions u; and their derivatives.

Reformulating this as an abstract Cauchy problem, one is confronted with
the self-adjoint operator A = (—cy - 02 + ag)k=1,...n in [T, L?(Ny), with a do-
main that incorporates the Kirchhoff transmission conditions at zero. For an exact
definition of A, we refer to Section 2.

Invoking functional calculus for this operator, the solution can be given in
terms of

ei“/Atuo and ei“/Atvo.

In a previous paper ([4], see also [3]) we construct explicitly a spectral represen-
tation of []_; L?(NNy) with respect to A involving n families of generalized eigen-
functions. The kth family is defined on [ag, 00) which reflects that o(A) = [a1, 00)
and that the multiplicity of the spectrum is j in [a;,a;41),7 = 1,...,n, where
an+1 = +00. In this band (a;, a;11) the generalized eigenfunctions exhibit expo-
nential decay on the branches N;i1,...,N,, a fact called “multiple tunnel effect”
in [4].

In Section 2 we recall the solution formula proved in [4]. In Section 3 we use
Hormander’s version of the stationary phase method to derive the leading term
of the asymptotic expansion of the solution on certain branches and for initial
conditions in a compact energy band included in (a;,a;41). We obtain c - t—1/2
in cones in the (¢, x)-space delimited by the group velocities of the limit energies
and the dependence of ¢ on the coefficients of the operator is indicated. One can
prove that outside these cones the L>-norm decays at least as t~!. The complete
analysis will be carried out in a more detailed paper.

For the case of two branches and wave packets having a compact energy
band included in (ag, 00), we show in Section 4 that ¢ tends to zero on the side of
the higher potential, if a; stays fixed and as tends to infinity. We observe further
that the exact t~/2-decay takes place in a cone in the (t, z)-plane whose aperture
and incline to the t-axis tend to zero as as tends to infinity. Physically the model
corresponds to a relativistic particle, more precisely a pion, in a one-dimensional
world with a potential step of amount as — a; in x = 0. Our result represents
thus a dynamical feature for phenomena close to tunnel effect, which might be
confirmed by physical experiments.
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Our results are designed to serve as tools in some pertinent applications as the
study of more general networks of wave guides (for example microwave networks
[17]) and the treatment of coupled transmission conditions [7].

For the Klein-Gordon equation in R™ with constant coefficients the L>°-time
decay ¢-t~'/2 has been proved in [15]. Adapting their method to a spectral theoretic
solution formula for two branches, it has been shown in [1, 2] that the L®-norm
decays at least as ¢ -t~ /4.

In [14] and several related articles, the author studies the L°°-time decay for
crystal optics using similar methods.

In [13], the authors consider general networks with semi-infinite ends. They
give a construction to compute some generalized eigenfunctions but no attempt
is made to construct explicit inversion formulas. In [6] the relation of the eigen-
values of the Laplacian in an L°°-setting on infinite, locally finite networks to the
adjacency operator of the network is studied.

2. A solution formula

The aim of this section is to recall the tools we used in [4] as well as the solution
formula of the same paper for a special initial condition and to adapt this formula
for the use of the stationary phase method in the next section.

Definition 2.1 (Functional analytic framework).
i) Let n > 2 and Ny,..., N, be n disjoint sets identified with (0,+0c0). Put
N :=J{_, Ny, identifying the endpoints 0.
For the notation of functions two viewpoints are useful:

e functions f on the object N and fj is the restriction of f to Nj.
e n-tuples of functions on the branches N; then sometimes we write f =

(fla"'?fn)-

ii) Two transmission conditions are introduced:

n

(To): (wk)k=1,..n € [ C(NVk) satisfies u;(0) = ux(0), i,k € {1,...,n}.
k=1

This condition in particular implies that (ug)k=1,.. » may be viewed as a
well-defined function on N.

(T1): (uk)k=1,....n € H C'(Ny,) satisfies ch - Opur(0h) = 0.
k=1 k=1

iii) Define the Hilbert space H = [[;_, L*(N)) with scalar product

(w,v)g = Z(ukavk)L2(Nk)

k=1
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and the operator A : D(A) — H by

D(A) = {(Uk)k 1,..n € l—IH2 Ni) : (ug)k=1,... n satisfies (To),(Tl)},
k=1

A((ur)k=1,...n) = (ApUk)k=1,..., = (—cx - OPup, + apur)k=1....n-

Note that, if ¢, = 1 and aj, = 0 for every k € {1,...,n}, A is the Laplacian in the
sense of the existing literature, cf. [6, 13].

Definition 2.2 (Fourier-type transform V).
i) For k€ {1,...,n} and X € C let

fk(/\) = \//\ K and . Zl;ék Clgl(/\).

Cl Sk T Ckgk(A)

Here, and in all what follows, the complex square root is chosen in such a
way that V7 - ei® = \/re’®/2 with r > 0 and ¢ € [—, 7).

ii) For A € C and j,k € {1,...,n}, we define generalized eigenfunctions Ff’j :
N = C of A by F{™/(z) == Fy/(x) with

{ kaj(x) = cos(§;(N)z) £ is;(A)sin(§;(N)z), for k=7,
kaj(x) = exp(+i&k(N)z), for k # j.

for x € Ng.
iii) Forl=1,...,nlet

‘JZ(A) = cr&i(N) if a; < A\

{o, if A < ay,
DTN NCVEE

iv) Considering for every k = 1,...,n the weighted space L?((ax,+00),qx), we
set L2 := [],_; L*((ak, +00), qx). The corresponding scalar product is

(F,G)q := z”:/ @A) Fr (NG (N) dA

k=1 " (ak,+o0)

and its associated norm |F|, := (F, F)l/2
v) For all f € L'(N,C) we define V f : []}_,[ak, +o0) = C by

/f (z)dz, k=1,.

In [4], we show that V diagonalizes A and we determine a metric setting in which
it is an isometry. Let us recall these useful properties of V' as well as the fact that
the property u € D(A’) can be characterized in terms of the decay rate of the
components of Vu.
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Theorem 2.3. Endow [[;_, C>°(Ny) with the norm of H = []}_; L*(Nk). Then
1) Vi [lioy C(Nyk) — L2 is isometric and can be extended to an isometry
V:H— Lg, which we shall again denote by V in the following.
i) V:H— Lg 1s a spectral representation of H with respect to A. In particular,
V' is surjective.
iii) The spectrum of the operator A is o(A) = a1, +00).
iv) Forl € N the following statements are equivalent:
(a) u € D(AY),
() A= A (Vu)(\) € Lﬁ,
(€) A A (Vau)i(A) € L?((ak, +00),qx), k=1,...,n.
Denoting Fy(z) := (Fy ' (z),...,Fy " ()T and P; = ( Id 8 ), where I; is the
j x j identity matrix, for A € (a;,a;j11) it holds: FY g(A\)Fx = (P;Fx\)Tq(\)(P; Fy)
and
(—l—, %,k e (Sl el
(4,4 %,y ke (Sale e lEnle
(*, *, 4, x e Gle ,67|§"|x)

PI= | (el oleale) @

0

0
Here * means e~ %) and + means cos(&,(N)x) —isg(N)sin(&x(\)z) in the kth
column for k = 1,...,7. This can be interpreted as a multiple tunnel effect (tunnel

effect in the last (n — j) branches with different exponential decay rates). For A
near a;1, the exponential decay of the function x — e~ 1&+117 i slow. The tunnel
effect is weaker on the other branches since the exponential decay is quicker.

We are now interested in the Abstract Cauchy Problem

(ACP) : ug(t) + Au(t) =0, t > 0, with w(0) = ug, u(0) =0.

Here, the zero initial condition for the velocity is just chosen for simplicity, as we
will not deal with the general case in this contribution.

By the surjectivity of V' (cf. Theorem 2.3 (ii)) for every j, k € {1,...,n} with
k < j there exists an initial condition ug € H satisfying

Condition (A, ): (Vug) =0, 1 #k, and (Vug)x € C2((aj,a;+1))-

Remark 2.4.

i) We use the convention a,41 = +00.
ii) For ug satistying (A, ) there exist a; < Amin < Amax < @;41 such that

supp(Vug)r C [Amin, Amax-



16 F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier

iii) If ug € H satisfies (A, ), then ug € D(A®) = mD(Al), due to Theo-
>0
rem 2.3 (iv), since A = A (V) (X) € L2((am, +0), gm), m = 1,...,n for
all [ € N by the compactness of supp(Vug)m.

Theorem 2.5 (Solution formula of (ACP) in a special case). Fiz j, k € {1,...,n}
with k < j. Suppose that ug satisfies Condition (A; ). Then there exists a unique
solution u of (ACP) with u € C'([0, +00), D(A™/?)) for all l,m € N. For z € N,
with v < j such that r # k and t > 0, we have the representation

u(t,z) = ; (ug(t, @) +u_(t, z))

with
Amax

u(t, ) == /A eEVM g (N e N (V) () dA. (2)

min

Proof. Since vy = u4(0) = 0, we have for the solution of (ACP) the representation
u(t) = V1 cos(VAE) Vg

(cf. for example [1, Theorem 5.1]). The expression for V! given in [4] yields the
formula for u4. O

Remark 2.6. Expression (2) comes from a term of the type * in F (see (1)) via the
representation of V=1, A solution formula for arbitrary initial conditions which is
valid on all branches is available in [4]. This general expression is not needed in
the following.

3. L°°-time decay

The time asymptotics of the L*°-norm of the solution of hyperbolic problems is
an important qualitative feature, for example in view of the study of nonlinear
perturbations.

In [16] the author derives the spectral theory for the 3D-wave equation with
different propagation speeds in two adjacent wedges. Further he attempts to give
the L*°-time decay which he reduces to a 1D-Klein-Gordon problem with potential
step (with a frequency parameter). He uses interesting tools, but his argument is
technically incomplete: the backsubstitution (see the proof of Theorem 3.2 below)
has not been carried out, and thus his results cannot be reliable. Nevertheless, we
have been inspired by some of his techniques.

The main problem to determine the L°°-norm is the oscillatory nature of
the integrands in the solution formula (2). The stationary phase formula as given
by L. Héormander in Theorem 7.7.5 of [12] provides a powerful tool to treat this
situation.

In the following theorem we formulate a special case of this result relevant
for us.
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Theorem 3.1 (Stationary phase method). Let K be a compact interval in R, X an
open neighborhood of K. Let U € C2(K), ¥ € C*(X) and Im¥ > 0 in X. If there

exists po € X such that aap\ll(po) =0, aaszlll(po) # 0, and Im¥(pg) = 0, aap\ll(p) #
07 pe K\{p0}7 then

w 0%

~1/2
o V)| U] < O [Ulaey w7

| / U (p)ei¥@) gy — ¥ (m0) [
K

for all w > 0. Moreover C(K) is bounded when ¥ stays in a bounded set in C*(X).

Theorem 3.2 (Time-decay of the solution of (ACP) in a special case). Fiz j, k €
{1,...,n} with k < j. Suppose that ug satisfies Condition (A;) and choose
Amin; Amax € (aj,a;j4+1) such that

supp(Vuo)x C [Amin, Amax] C (a5, a;541)-

Then for all z € N, withr < j andr # k and all t € RT such that (t,z) lies in
the cone described by

Amax t Amin
< < 3
\/C’I" ()\max - ar) T r \/Cr()\min - ar) ’ ( )

there exists H(t,x,up) € C and a constant c(ug) satisfying
i (t,) = Ht, 2, u0)t 2| < e(uo) -+, (4)

where uy s defined in Theorem 2.5, with

2mex\ /2 MAX € [vy50, ] V| (@r — A1)V + ar|
H(ta,uo) < (77 ) TN et v 2 (Va0 elloos
v (ZZST Ve (ar — a)vmin + ar)
Qg Ay
where Vyin = N — and Umax := N — @)
Remark 3.3. 1) Note that (3) is equivalent to
Vmin < 0(t,2) = ¢ (t/2)? — 1 < Upax - (5)

ii) The hypotheses of Theorem 3.2 imply that j > 2.

iii) An explicit expression for H(t,x, ug) is given at the end of the proof in (8).

iv) We have chosen to investigate only u4 in this proceedings article, since the
expression for u_ does not possess a stationary point in its phase. Hence, one
can prove that its contribution will decay at least as ct—!. A detailed analysis
will follow in a forthcoming paper.

Proof. We divide the proof in five steps.
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First step: Substitution. Realizing the substitution p := &.(\) = \/)‘*“T in the

Cr
expression for u given in Theorem 2.5 leads to:

Pmax ,
ut(t,x) = QCT/ ez\/a“"chthk(ar + crp2)e_lpI(Vu0)k(ar + crp2)p dp

Pmin

With Pmin := & (Amin) and pmax := & (Amax)-

Second step: Change of the parameters (t,x). In order to get bounded parameters,
we change (¢, x) into (7, x) defined by
t
T= and X = o with w:\/t2+:172,
w w

following an argument from [16]. Thus the argument of the exponential in the
integral defining w4 becomes:

iw(v/ar + ep?t — px) =t iwp(p, 7, X)-
Note that 7, x € [0,1] for ¢,z € [0, c0).

Third step: Application of the stationary phase method. Now we want to apply
Theorem 3.1 to u4 with the amplitude U and the phase ¥ defined by:

U(p) = ar(ar + ¢:p*) (Vuo)k(ar + cp®)p,  U(p) == 0(p,7,X), P € [Pmin,s Pmax]-

The functions U and ¥ satisfy the regularity conditions on the compact interval
K := [Pmin, Pmax] and ¥ is a real-valued function. One easily verifies, that for 7 # 0

2 2
Crp arX arx
\Illp: T T—X20<:>p:p0;: = ,
( ) \/ar + Crp2 Cr (C’I‘T2 - X2) Cr (Crt2 — ,’E2)
and that this stationary point py belongs to the interval of integration [pmin, Pmax),
if and only if (¢,z) lies in the cone defined by (3). Furthermore, for p € R

O = O ) =
apz p - apz p’TaX _T(

CrQp

0.
ay + ¢rp?)3/2 7

Thus, Theorem 3.1 implies that for all (¢, z) satisfying (3) there exists a constant
C(K,T,x) > 0 such that

—iwp(po,T,X) w 8250 e -1
ug (b, x)—e wPPOTX (2i7r op (po, T, X)> U(po)) < CK, 7, ) Ullc2(x) w
-

- ~~

(%)
for all w > 0.
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Fourth step: Backsubstitution. We must now control the dependence of C(K, 7, x)
on the parameters 7, y. To this end, one has to assure that ¥ = (-, 7, x) stays in a
bounded set in C*(X), if 7 and x vary in [0, 1], where we choose X = (py,, par) such
that 0 < pr < Prmin < Pmax < Py < 0o. This follows using the above expressions
dp 82
8;6’ Bpf
D3 3a,c2p ot 3a.c2(a, — 4p*c;)

3(]9,7',)():_ 25/2T7 4(]9,7',)():_ 2\7/2
dp (a’r +cp ) Op (a’r +crp )

for p € X. Thus Theorem 3.1 implies that there exists a constant C'(K) > 0 such
that C(K, 7, x) < C(K) for all 7, x € [0,1].

for and

To evaluate (x) we observe that py = t/ay2_1- Lhis implies

1
Ver\/ en

o flar+epd) —ar 1 (ar—a) (e (t/x)? = 1) +ar
&Glar + ¢pj) = \/ ‘o Je Jer(t/z)? — 1
and thus
ooy = Cbrlar+ crp3)
Wlar H P = s ki + )
= Ver/er(t/z)? =1 Ve —ag) (er(t/2) = 1) +a,

(S very/(ar = an) (e (t/2)? = 1)+ a,

9

Finally,
8290( ) CrQr (CTT2 — X2)3/2
JT,X) =T =T
Op? Po, 7, X (ar + ¢, p3)3/2 (apc.)t/272

3/2
 r(eyagyi/e (U2 STV
(t/z)?
Combining these results and using w7 =t we find

w 3280 e 2 2
() = <2m op? (po, T, x)) ar(ar + crpg) po (Vuo)k(ar + crpg)

— (2i7r)1/2t_1/2(c a )1/4 (t/;v)2 3/4
o e (t)z)° —1
Viar = a) (en(t/z)? = 1) +a,
‘El ven/(ar — ) (e (t/z)? — 1) + a,

: ¢1cr \/cr(t/zgz _ (Vuo)k(ar + cpf)

= (2im)Y2a3/4 e by (t, x) ho(t, ) (Vuo)k(ar + copd) t74/2

X erv/er(t)z)? — 1

2
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with

(1)
hi(t,x) := o
) <cr<f> .

x

9"

3/4 ar —a cr t\2 _ ar
’Zl \/Cl\/(ar*al)(cr(;)zfl)Jrar

Fifth step: Uniform estimates. It remains to estimate hq (¢, z)ha(t, 2)(Vuo)r(ar +
¢yp?) uniformly in ¢ and w, if (t,x) satisfies (3). To this end we note that the

function b — b1 is a decreasing function on (1/¢,, +00). Thus the maximum
crb —

of hy for (t,z) satisfying (3) is attained at ! = \/ Amax This implies

cr(Amax—ar)

3/4

hi(t,z) < ( )\max) for (t,z) satistying (3). (6)

Let us now estimate hy. For a fixed v in [Umin, Vmax], we denote by I the set of
indices [ such that (a, — a;)v+a, > 0and Ir ={1,...,n}\ I1.
Then, for any v in [Vmin, Vmax] We have {1,...,r} C I (since vy > 0) and

‘ Z \/cl\/(ar —a))v+a,
1

CrQr

2

2
:(Z\/Cl falquaT) ‘Z\/Cl r— a))v + a,
lel; lels
2
> (Z \/cl fal)quaT)
I<r
2
( \/Cl - al)vmin + ar) .
I<r
Thus, (5) implies
MAX e [0, 0max] V(@ — QK )V + ay|
[ha(t,2) < v (7)

(Zlgr Ve (ar — a)vmin + ar)2

Putting everything together, the assertion of the theorem is valid for

H(t,x,ug) := e_i“"(po’m)(2i7r)1/2af/4ci/4c,1€/2 hi(t,x) ho(t,x) (Vug)k(ar + chg) .
(8)
Finally the right-hand side of estimate (4) is derived from the inequality
C(K, 7, )10l c2x) w™!

< O(K qumaww Y(Vuo)u(ar + ep”)ll gy oy £ )

The C?-norm is finite, since the involved functions are regular on the compact set
[pminapmax]- |:|
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4. Growing potential step

For this section we specialize to the case of two branches N; and N; and, for
the sake of simplicity, we also set ¢c; = coa = 1. We show that, choosing a generic
initial condition ug in a compact energy band included in (az, 00), the coefficient
H(t,x,up) in the asymptotic expansion of Theorem 3.2 tends to zero, if the poten-
tial step az — a1 tends to infinity. Simultaneously the cone of the exact t~1/2-decay
shrinks and inclines toward the t-axis.

Theorem 4.1. Let 0 < oo < B < 1 and ¥ € C%((ar, B)) with ||¥]|cc = 1 be given.
Setting p(X) == (X — ag), we choose the initial condition ug € H satisfying
(Vug)z =0 and (Vug)1 = 1. Furthermore, let uy be defined as in Theorem 2.5.

Then there is a constant C(¢, «, ) independent of a; and as, such that for
allt € RT and all x € Ny with

a2+ﬂ< t <\/a2+oz
B T x «

the value H(t,x,ug) given in (8) satisfies
’U+(t,l’) - H(t,l’,Uo) : t_1/2’ < C(’l/J,Oé,B) ’ t_l

and

VB(az + 5)3/4
Vasvas —ai + 8

Proof. Note that it is always possible to choose the initial condition in the indicated
way, thanks to the surjectivity of V', cf. Theorem 2.3 ii).

The constant C'(¢, o, 8) has been already calculated in Theorem 3.2. It re-
mains to make sure that it is independent of a; and as and to prove the estimate
for |H(t,x,up)l|.

We start with the latter and carry out a refined analysis of the proof of
Theorem 3.2 for our special situation. Using the notation of this proof, (8) yields

‘H(t,x,uo)‘ <V2r

|H(t,2,u0)| = V2may by (t, 2) | ha(t, )| - | (Vo)1 ]| oo
By (6) and Apax = a2 + 8 we find
(ag + 5)3/4

ay

hl (tv x) S

and, investing the definition of hy together with (5), we have

| =] Vo= (@2 1) b
(V(az — a)((t/2)? — 1) +ay + yaz)?
1 1
= las - a)((t/2)? — 1)+ az — /(a2 — ar)vum + a2’
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Putting in the definitions of vy,i, and afterwords A .x and rearranging terms, this
leads to

o)< VP
Vazvaz —ay +
Since [|(Vuo)1lloe = [|¥]loo = |[¥]|c Was set to 1, we arrive at the estimate

VB
\/ag\/ag —a1+ 0
Going again back to Theorem 3.2 for the constant C' we have by (9)
C = CE)||U®)czx),

|H(t,l”u0)‘ S \/271’(@2 4+ ﬁ)3/4

where
U(p) = par(az +p*)(Vuo)r(az +p%), p€ K,
and
K = [avin, Pina] = [€2(a2 + ), &2(a2 + 8)] = [Vor, v/B).
Thus, the constant C'(K) is independent of a1 and a and we can start to estimate
the C%-norm of U:

" & (a2 + p?) \/a2—a1 + p?
U _ 2 _ 2
PY =002 52 6 (0 4. 52) + a2+ 98 =7 (g — iy 42 4 9)°
_ 2 f(p)
=P )(f( )+ )2
where f(p \/CLQ —ai + p2 For the function U itself we find
P < VBl VB vB VB

= <
f(p) \/ag—a1+p2_\/azfa1+04_\/04
Calculating the derivatives is lengthy, but using f’(p)f(p) = p, one finds constants
C1 and C5 depending only on ¢, a and 8 with

, o f(p) P2 —pf(p) —2f(p)?
U= (1) e #0130 |
1 2p+4pf(p) +2f(p)? 1 2
<0 sotmane )= " s
ol

and in a similar manner

" _ 27\ 2\\'P —pf(p) - 2f(p)2
U ) = | () H20 ) )
5f(p)* + 8pf(p)* —4p°f(p) — p*

f@)3(f(p) +p)*

f(p)
(f(p) +p)?

+ p(p)
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Remark 4.2.

i) In the situation of Theorem 4.1, we have

VB
Vazvaz — a1 + B8

~ /2783 a2_1/4 as ag — +00.

|H(t»$»U0)| < \/27r(a2 + ﬁ)3/4

ii) Suppose that () > m > 0 for u € [¢/, '] with o < &’ < 8’ < 8. Then one
can show that

|H(t, 2, u0)| > V2ra a;1/4m.

as + ' < t <\/a2+o/
B - r = o

if as is sufficiently large. Thus the coefficient of t~1/2 behaves exactly as
const - a2_1/4 (in particular it tends to zero) as ag — +00.
iti) The cone in the (t,z)-plane, where u, decays as const-t~1/2 is given by

15} T «
< < .
as+ B~ t T Va+a

Clearly it shrinks and inclines toward the t-axis as aa — +00. One can prove
that outside this cone, u, decays at least as t~!. This exact asymptotic
behavior of the L°°-norm might be experimentally verified.

iv) Note that (4) also implies that

for (t,x) satisfying

lus(t,@)| < |ug(t,z) — H(t, x, uo)t Y% + H(t, x, uo)tfl/z}
< C(, o, B + ’H(t,gc,uo)}t_l/2
< D(, B, a1, az)t™"/?
for (¢,x) in the cone indicated there, if ¢ is sufficiently large.
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