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Infinite Norm Decompositions of C∗-algebras

F.N. Arzikulov

Abstract. In the given article the notion of infinite norm decomposition of
a C∗-algebra is investigated. The infinite norm decomposition is some gen-
eralization of Peirce decomposition. It is proved that the infinite norm de-
composition of any C∗-algebra is a C∗-algebra. C∗-factors with an infinite
and a nonzero finite projection and simple purely infinite C∗-algebras are
constructed.
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Introduction

In the given article the notion of infinite norm decomposition of a C∗-algebra is
investigated. It is known that for any projection 𝑝 of a unital C∗-algebra 𝐴 the
next equality is valid 𝐴 = 𝑝𝐴𝑝⊕ 𝑝𝐴(1− 𝑝)⊕ (1− 𝑝)𝐴𝑝⊕ (1− 𝑝)𝐴(1− 𝑝), where ⊕
is a direct sum of spaces. The infinite norm decomposition is some generalization
of Peirce decomposition. First such infinite decompositions were introduced in [1]
by the author.

In this article a unital C∗-algebra 𝐴 with an infinite orthogonal set {𝑝𝑖} of
equivalent projections such that sup𝑖 𝑝𝑖 = 1, and the set

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 = {{𝑎𝑖𝑗} :

for any indexes 𝑖, 𝑗, 𝑎𝑖𝑗 ∈ 𝑝𝑖𝐴𝑝𝑗 , and ∥∑𝑘=1,...,𝑖−1(𝑎𝑘𝑖+𝑎𝑖𝑘)+𝑎𝑖𝑖∥ → 0 at 𝑖→ ∞}
are considered. Note that all infinite sets like {𝑝𝑖} are supposed to be countable.

The main results of the given article are the next:

– For any C∗-algebra 𝐴 with an infinite orthogonal set {𝑝𝑖} of equivalent pro-
jections such that sup𝑖 𝑝𝑖 = 1 the set

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a C∗-algebra with the

componentwise algebraic operations, the associative multiplication and the
norm.

– There exist a C∗-algebra 𝐴 and different countable orthogonal sets {𝑒𝑖}
and {𝑓𝑖} of equivalent projections in 𝐴 such that sup𝑖 𝑒𝑖 = 1, sup𝑖 𝑓𝑖 = 1,∑𝑜

𝑖𝑗 𝑒𝑖𝐴𝑒𝑗 ∕=∑𝑜
𝑖𝑗 𝑓𝑖𝐴𝑓𝑗 .
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– If 𝐴 is a W∗-factor of type II∞, then there exists a countable orthogonal set
{𝑝𝑖} of equivalent projections in 𝐴 such that

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a C∗-factor with a

nonzero finite and an infinite projection. In this case
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is not a von
Neumann algebra.

– If 𝐴 is a W∗-factor of type III, then for any countable orthogonal set {𝑝𝑖}
of equivalent projections in 𝐴. The C∗-subalgebra

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is simple and

purely infinite. In this case
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is not a von Neumann algebra.

– There exists a C∗-algebra 𝐴 with an orthogonal set {𝑝𝑖} of equivalent pro-
jections such that

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is not a two-sided ideal of 𝐴.

1. Infinite norm decompositions

Lemma 1. Let 𝐴 be a C∗-algebra, {𝑝𝑖} be an infinite orthogonal set of projections
with the least upper bound 1 in the algebra 𝐴 and let 𝒜 = {{𝑝𝑖𝑎𝑝𝑗} : 𝑎 ∈ 𝐴}. Then,
1) the set 𝒜 is a vector space with the next componentwise algebraic operations

𝜆{𝑝𝑖𝑎𝑝𝑗} = {𝑝𝑖𝜆𝑎𝑝𝑗}, 𝜆 ∈ ℂ

{𝑝𝑖𝑎𝑝𝑗} + {𝑝𝑖𝑏𝑝𝑗} = {𝑝𝑖(𝑎+ 𝑏)𝑝𝑗}, 𝑎, 𝑏 ∈ 𝐴,
2) the algebra 𝐴 and the vector space 𝒜 can be identified in the sense of the next
map

ℐ : 𝑎 ∈ 𝐴→ {𝑝𝑖𝑎𝑝𝑗} ∈ 𝒜.
Proof. Item 1) of the lemma can be easily proved.

Proof of item 2): We assert that ℐ is a one-to-one map. Indeed, it is clear, that for
any 𝑎 ∈ 𝐴 there exists a unique set {𝑝𝑖𝑎𝑝𝑗}, defined by the element 𝑎.

Suppose that there exist different elements 𝑎 and 𝑏 in 𝐴 such that 𝑝𝑖𝑎𝑝𝑗 =
𝑝𝑖𝑏𝑝𝑗 for all 𝑖, 𝑗, i.e., ℐ(𝑎) = ℐ(𝑏). Then 𝑝𝑖(𝑎 − 𝑏)𝑝𝑗 = 0 for all 𝑖 and 𝑗. Observe
that 𝑝𝑖((𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗) = ((𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗)𝑝𝑖 = 0 and (𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ ≥ 0 for
all 𝑖, 𝑗. Therefore, the element (𝑎 − 𝑏)𝑝𝑗(𝑎 − 𝑏)∗ commutes with every projection
in {𝑝𝑖}.

We prove (𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ = 0. Indeed, there exists a maximal commutative
∗-subalgebra 𝐴𝑜 of the algebra 𝐴, containing the set {𝑝𝑖} and the element (𝑎 −
𝑏)𝑝𝑗(𝑎− 𝑏)∗. Since (𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗𝑝𝑖 = 𝑝𝑖(𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ = 0 for any 𝑖, then the
condition (𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ ∕= 0 contradicts the equality sup𝑖 𝑝𝑖 = 1.

Indeed, in this case 𝑝𝑖 ≤ 1− 1/∥(𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗∥(𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ for any 𝑖.
Since by (𝑎−𝑏)𝑝𝑗(𝑎−𝑏)∗ ∕= 0 we have 1 > 1−1/∥(𝑎−𝑏)𝑝𝑗(𝑎−𝑏)∗∥(𝑎−𝑏)𝑝𝑗(𝑎−𝑏)∗,
then we get a contradiction with sup𝑖 𝑝𝑖 = 1. Therefore (𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ = 0.

Hence, since 𝐴 is a C∗-algebra, than ∥(𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗∥ = ∥((𝑎− 𝑏)𝑝𝑗)((𝑎−
𝑏)𝑝𝑗)

∗∥ = ∥((𝑎 − 𝑏)𝑝𝑗)∥∥((𝑎 − 𝑏)𝑝𝑗)∗∥ = ∥(𝑎 − 𝑏)𝑝𝑗∥2 = 0 for any 𝑗. Therefore
(𝑎 − 𝑏)𝑝𝑗 = 0, 𝑝𝑗(𝑎 − 𝑏)∗ = 0 for any 𝑗. Analogously, we can get 𝑝𝑗(𝑎 − 𝑏) = 0,
(𝑎 − 𝑏)∗𝑝𝑗 = 0 for any 𝑗. Hence the elements 𝑎 − 𝑏, (𝑎 − 𝑏)∗ commute with every
projection in {𝑝𝑖}. Then there exists a maximal commutative ∗-subalgebra 𝐴𝑜

of the algebra 𝐴, containing the set {𝑝𝑖} and the element (𝑎 − 𝑏)(𝑎 − 𝑏)∗. Since
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𝑝𝑖(𝑎−𝑏)(𝑎−𝑏)∗ = (𝑎−𝑏)(𝑎−𝑏)∗𝑝𝑖 = 0 for any 𝑖, then the condition (𝑎−𝑏)(𝑎−𝑏)∗ ∕= 0
contradicts the equality sup𝑖 𝑝𝑖 = 1.

Therefore, (𝑎 − 𝑏)(𝑎 − 𝑏)∗ = 0, 𝑎 − 𝑏 = 0, i.e., 𝑎 = 𝑏. Thus the map ℐ is
one-to-one. □

Lemma 2. Let 𝐴 be a C∗-algebra, {𝑝𝑖} be an infinite orthogonal set of projections
with the least upper bound 1 in the algebra 𝐴 and 𝑎 ∈ 𝐴. Then, if 𝑝𝑖𝑎𝑝𝑗 = 0 for
all 𝑖, 𝑗, then 𝑎 = 0.

Proof. Let 𝑝 ∈ {𝑝𝑖}. Observe that 𝑝𝑖𝑎𝑝𝑗𝑎
∗ = 𝑝𝑖(𝑎𝑝𝑗𝑎

∗) = 𝑎𝑝𝑗𝑎∗𝑝𝑖 = (𝑎𝑝𝑗𝑎
∗)𝑝𝑖 = 0

for all 𝑖, 𝑗 and 𝑎𝑝𝑗𝑎
∗ = 𝑎𝑝𝑗𝑝𝑗𝑎

∗ = (𝑎𝑝𝑗)(𝑝𝑗𝑎
∗) = (𝑎𝑝𝑗)(𝑎𝑝𝑗)

∗ ≥ 0. Therefore, the
element 𝑎𝑝𝑗𝑎

∗ commutes with all projections of the set {𝑝𝑖}.
We prove 𝑎𝑝𝑗𝑎

∗ = 0. Indeed, there exists a maximal commutative ∗-subalge-
bra 𝐴𝑜 of the algebra 𝐴, containing the set {𝑝𝑖} and the element 𝑎𝑝𝑗𝑎

∗. Since
𝑝𝑖(𝑎𝑝𝑗𝑎

∗) = (𝑎𝑝𝑗𝑎
∗)𝑝𝑖 = 0 for any 𝑖, then the condition 𝑎𝑝𝑗𝑎

∗ ∕= 0 contradicts the
equality sup𝑖 𝑝𝑖 = 1 (see the proof of Lemma 1). Hence 𝑎𝑝𝑗𝑎

∗ = 0.
Hence, since 𝐴 is a C∗-algebra, then

∥𝑎𝑝𝑗𝑎∗∥ = ∥(𝑎𝑝𝑗)(𝑎𝑝𝑗)∗∥ = ∥(𝑎𝑝𝑗)∥∥(𝑎𝑝𝑗)∗∥ = ∥𝑎𝑝𝑗∥2 = 0

for any 𝑗. Therefore 𝑎𝑝𝑗 = 0, 𝑝𝑗𝑎
∗ = 0 for any 𝑗. Analogously we have 𝑝𝑗𝑎 = 0,

𝑎∗𝑝𝑗 = 0 for any 𝑗. Hence the elements 𝑎, 𝑎∗ commute with all projections of the
set {𝑝𝑖}. Then there exists a maximal commutative ∗-subalgebra 𝐴𝑜 of the algebra
𝐴, containing the set {𝑝𝑖} and the element 𝑎𝑎∗. Since 𝑝𝑖𝑎𝑎∗ = 𝑎𝑎∗𝑝𝑗 = 0 for any
𝑖, then the condition 𝑎𝑎∗ ∕= 0 contradicts the equality sup𝑖 𝑝𝑖 = 1 (see the proof of
Lemma 1). Hence 𝑎𝑎∗ = 0 and 𝑎 = 0. □

Lemma 3. Let 𝐴 be a C∗-algebra on a Hilbert space 𝐻, {𝑝𝑖} be an infinite or-
thogonal set of projections in 𝐴 with the least upper bound 1 in the algebra 𝐵(𝐻)
and 𝑎 ∈ 𝐴. Then 𝑎 ≥ 0 if and only if for any finite subset {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} the
inequality 𝑝𝑎𝑝 ≥ 0 holds, where 𝑝 =

∑𝑛
𝑘=1 𝑝𝑘.

Proof. By positivity of the operator 𝑇 : 𝑎 → 𝑏𝑎𝑏, 𝑎 ∈ 𝐴 for any 𝑏 ∈ 𝐴, if 𝑎 ≥ 0,
then for any finite subset {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} the inequality 𝑝𝑎𝑝 ≥ 0 holds.

Conversely, let 𝑎 ∈ 𝐴. Suppose that for any finite subset {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} the
inequality 𝑝𝑎𝑝 ≥ 0 holds, where 𝑝 =

∑𝑛
𝑘=1 𝑝𝑘.

Let 𝑎 = 𝑐 + 𝑖𝑑 for some nonzero self-adjoint elements 𝑐, 𝑑 in 𝐴. Then (𝑝𝑖 +
𝑝𝑗)(𝑐+ 𝑖𝑑)(𝑝𝑖 + 𝑝𝑗) = (𝑝𝑖 + 𝑝𝑗)𝑐(𝑝𝑖 + 𝑝𝑗) + 𝑖(𝑝𝑖 + 𝑝𝑗)𝑑(𝑝𝑖 + 𝑝𝑗) ≥ 0 for all 𝑖, 𝑗. In
this case the elements (𝑝𝑖 + 𝑝𝑗)𝑐(𝑝𝑖 + 𝑝𝑗) and (𝑝𝑖 + 𝑝𝑗)𝑑(𝑝𝑖 + 𝑝𝑗) are self-adjoint.
Then (𝑝𝑖+𝑝𝑗)𝑑(𝑝𝑖+𝑝𝑗) = 0 and 𝑝𝑖𝑑𝑝𝑗 = 0 for all 𝑖, 𝑗. Hence by Lemma 2 we have
𝑑 = 0. Therefore 𝑎 = 𝑐 = 𝑐∗ = 𝑎∗, i.e., 𝑎 ∈ 𝐴𝑠𝑎. Hence, 𝑎 is a nonzero self-adjoint
element in 𝐴. Let 𝑏𝛼𝑛 =

∑𝑛
𝑘𝑙=1 𝑝

𝛼
𝑘𝑎𝑝

𝛼
𝑙 for all natural numbers 𝑛 and finite subsets

{𝑝𝛼𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖}. Then the set (𝑏𝛼𝑛) ultraweakly converges to the element 𝑎.
Indeed, we have 𝐴 ⊆ 𝐵(𝐻). Let {𝑞𝜉} be a maximal orthogonal set of minimal

projections of the algebra 𝐵(𝐻) such, that 𝑝𝑖 = sup𝜂 𝑞𝜂 for some subset {𝑞𝜂} ⊂
{𝑞𝜉} for any 𝑖. For arbitrary projections 𝑞 and 𝑝 in {𝑞𝜉} there exists a number
𝜆 ∈ ℂ such, that 𝑞𝑎𝑝 = 𝜆𝑢, where 𝑢 is an isometry in 𝐵(𝐻), satisfying the
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conditions 𝑞 = 𝑢𝑢∗, 𝑝 = 𝑢∗𝑢. Let 𝑞𝜉𝜉 = 𝑞𝜉, 𝑞𝜉𝜂 be such element that 𝑞𝜉 = 𝑞𝜉𝜂𝑞
∗
𝜉𝜂,

𝑞𝜂 = 𝑞∗𝜉𝜂𝑞𝜉𝜂 for all different 𝜉 and 𝜂. Then, let {𝜆𝜉𝜂} be a set of numbers such that

𝑞𝜉𝑎𝑞𝜂 = 𝜆𝜉𝜂𝑞𝜉𝜂 for all 𝜉, 𝜂. In this case, since 𝑞𝜉𝑎𝑎
∗𝑞𝜉 = 𝑞𝜉(

∑
𝜂 𝜆𝜉𝜂𝜆̄𝜉𝜂)𝑞𝜉 <∞ we

have the quantity of nonzero numbers of the set {𝜆𝜉𝜂}𝜂 (𝜉th string of the infinite-
dimensional matrix {𝜆𝜉𝜂}𝜉𝜂) is not greater then the countable cardinal number
and the sequence (𝜆𝜉𝑛) of all these nonzero numbers converges to zero. Let 𝑣𝑞𝜉 be
a vector of the Hilbert space 𝐻 which generates the minimal projection 𝑞𝜉. Then
the set {𝑣𝑞𝜉} forms a complete orthonormal system of the space 𝐻 . Let 𝑣 be an
arbitrary vector of the space 𝐻 and 𝜇𝜉 be a coefficient of Fourier of the vector 𝑣,
corresponding to 𝑣𝑞𝜉 in relative to the complete orthonormal system {𝑣𝑞𝜉}. Then,
since

∑
𝜉 𝜇𝜉𝜇̄𝜉 <∞ we have the quantity of all nonzero elements of the set {𝜇𝜉}𝜉

is not greater then the countable cardinal number and the sequence (𝜇𝑛) of all
these nonzero numbers converges to zero.

Let 𝜈𝜉 be the 𝜉th coefficient of Fourier (corresponding to 𝑣𝑞𝜉) of the vec-
tor 𝑎(𝑣) ∈ 𝐻 in relative to the complete orthonormal system {𝑣𝑞𝜉}. Then 𝜈𝜉 =∑

𝜂 𝜆𝜉𝜂𝜇𝜂 and the scalar product < 𝑎(𝑣), 𝑣 > is equal to the sum
∑

𝜉 𝜈𝜉𝜇𝜉. Since

the element 𝑎(𝑣) belongs to 𝐻 we have quantity of all nonzero elements in the set
{𝜈𝜉}𝜉 is not greater then the countable cardinal number and the sequence (𝜈𝑛) of
all these nonzero numbers converges to zero.

Let 𝜀 be an arbitrary positive number. Then, since quantity of nonzero num-
bers of the sets {𝜇𝜉}𝜉 and {𝜈𝜉}𝜉 is not greater then the countable cardinal number
and
∑

𝜉 𝜈𝜉𝜈𝜉 < ∞,
∑

𝜉 𝜇𝜉𝜇̄𝜉 < ∞ we have there exists {𝑓𝑘}𝑙𝑘=1 ⊂ {𝑝𝑖} such that

for the set of indexes Ω1 = {𝜉 : ∃𝑝 ∈ {𝑓𝑘}𝑙𝑘=1, 𝑞𝜉 ≤ 𝑝} the next equality holds∣∣∣∣∑
𝜉

𝜈𝜉𝜇𝜉 −
∑
𝜉∈Ω1

𝜈𝜉𝜇𝜉

∣∣∣∣ < 𝜀.
Then, since quantity of nonzero numbers of the sets {𝜇𝜉}𝜉 and {𝜆𝜉𝜂}𝜂 is not
greater then the countable cardinal number, and

∑
𝜂 𝜆𝜉𝜂𝜆̄𝜉𝜂 < ∞,

∑
𝜉 𝜇𝜉𝜇̄𝜉 < ∞

we have there exists {𝑒𝑘}𝑚𝑘=1 ⊂ {𝑝𝑖} such that for the set of indexes Ω2 = {𝜉 :
∃𝑝 ∈ {𝑒𝑘}𝑚𝑘=1, 𝑞𝜉 ≤ 𝑝} the next equality holds∣∣∣∣∑

𝜂

𝜆𝜉𝜂𝜇𝜂 −
∑
𝜂∈Ω2

𝜆𝜉𝜂𝜇𝜂

∣∣∣∣ < 𝜀.
Hence for the finite set {𝑝𝑘}𝑛𝑘=1 = {𝑓𝑘}𝑙𝑘=1 ∪ {𝑒𝑘}𝑚𝑘=1 and the set Ω = {𝜉 : ∃𝑝 ∈
{𝑝𝑘}𝑛𝑘=1, 𝑞𝜉 ≤ 𝑝} of indexes we have∣∣∣∣∑

𝜉

𝜈𝜉𝜇𝜉 −
∑
𝜉∈Ω

(∑
𝜂∈Ω
𝜆𝜉𝜂𝜇𝜂

)
𝜇𝜉

∣∣∣∣ < 𝜀.
At the same time, ⟨(∑𝑛

𝑘𝑙=1 𝑝𝑘𝑎𝑝𝑙)(𝑣), 𝑣⟩ =
∑

𝜉∈Ω(
∑

𝜂∈Ω 𝜆𝜉𝜂𝜇𝜂)𝜇𝜉. Therefore,∣∣∣∣⟨𝑎(𝑣), 𝑣⟩ −
〈( 𝑛∑

𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

)
(𝑣), 𝑣

〉∣∣∣∣ < 𝜀.
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Hence, since the vector 𝑣 and the number 𝜀 are chosen arbitrarily we have the net
(𝑏𝛼𝑛) ultraweakly converges to the element 𝑎.

Now there exists a maximal orthogonal set {𝑒𝜉} of minimal projections of the
algebra 𝐵(𝐻) of all bounded linear operators on 𝐻 such that the element 𝑎 and
the set {𝑒𝜉} belong to some maximal commutative ∗-subalgebra 𝐴𝑜 of the algebra
𝐵(𝐻). We have for any finite subset {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} and 𝑒 ∈ {𝑒𝜉} the inequality
𝑒(
∑𝑛

𝑘𝑙=1 𝑝𝑘𝑎𝑝𝑙)𝑒 ≥ 0 holds by the positivity of the operator 𝑇 : 𝑏→ 𝑒𝑏𝑒, 𝑏 ∈ 𝐴.
By the previous part of the proof the net (𝑒𝜉𝑏

𝛼
𝑛𝑒𝜉)𝛼𝑛 ultraweakly converges

to the element 𝑒𝜉𝑎𝑒𝜉 for any index 𝜉. Then we have 𝑒𝜉𝑏
𝛼
𝑛𝑒𝜉 ≥ 0 for all 𝑛 and 𝛼.

Therefore, the ultraweak limit 𝑒𝜉𝑎𝑒𝜉 of the net (𝑒𝜉𝑏
𝛼
𝑛𝑒𝜉)𝛼𝑛 is a nonnegative element.

Hence 𝑒𝜉𝑎𝑒𝜉 ≥ 0. Therefore, since 𝑒𝜉 is chosen arbitrarily we have 𝑎 ≥ 0. □

Lemma 4. Let 𝐴 be a C∗-algebra on a Hilbert space 𝐻, {𝑝𝑖} be an infinite orthog-
onal set of projections in 𝐴 with the least upper bound 1 in the algebra 𝐵(𝐻) and
𝑎 ∈ 𝐴. Then

∥𝑎∥ = sup

{∥∥∥∥ 𝑛∑
𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

∥∥∥∥ : 𝑛 ∈ 𝑁, {𝑝𝑘}𝑛𝑘=1 ⊆ {𝑝𝑖}
}
.

Proof. The inequality −∥𝑎∥1 ≤ 𝑎 ≤ ∥𝑎∥1 holds. Then −∥𝑎∥𝑝 ≤ 𝑝𝑎𝑝 ≤ ∥𝑎∥𝑝 for
all natural numbers 𝑛 and finite subsets {𝑝𝛼𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖}, where 𝑝 =

∑𝑛
𝑘=1 𝑝𝑘.

Therefore

∥𝑎∥ ≥ sup

{∥∥∥∥ 𝑛∑
𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

∥∥∥∥ : 𝑛 ∈ 𝑁, {𝑝𝑘}𝑛𝑘=1 ⊆ {𝑝𝑖}
}
.

At the same time, since the finite subset {𝑝𝑘}𝑛𝑘=1 of {𝑝𝑖} is chosen arbitrarily and
by Lemma 6 we have

∥𝑎∥ = sup

{∥∥∥∥ 𝑛∑
𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

∥∥∥∥ : 𝑛 ∈ 𝑁, {𝑝𝑘}𝑛𝑘=1 ⊆ {𝑝𝑖}
}
.

Otherwise, if

∥𝑎∥ > 𝜆 = sup

{∥∥∥∥ 𝑛∑
𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

∥∥∥∥ : 𝑛 ∈ 𝑁, {𝑝𝑘}𝑛𝑘=1 ⊆ {𝑝𝑖}
}

then by Lemma 3 −𝜆1 ≤ 𝑎 ≤ 𝜆1. But the last inequality is a contradiction. □

Lemma 5. Let 𝐴 be a C∗-algebra on a Hilbert space 𝐻, {𝑝𝑖} be an infinite orthog-
onal set of projections in 𝐴 with the least upper bound 1 in the algebra 𝐵(𝐻), and
let 𝒜 = {{𝑝𝑖𝑎𝑝𝑗} : 𝑎 ∈ 𝐴}. Then,
1) the vector space 𝒜 is a unit-order space with respect to the order {𝑝𝑖𝑎𝑝𝑗} ≥ 0

({𝑝𝑖𝑎𝑝𝑗} ≥ 0 if for any finite subset {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} the inequality 𝑝𝑎𝑝 ≥ 0
holds, where 𝑝 =

∑𝑛
𝑘=1 𝑝𝑘) and the norm

∥{𝑝𝑖𝑎𝑝𝑗}∥ = sup

{∥∥∥∥ 𝑛∑
𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

∥∥∥∥ : 𝑛 ∈ 𝑁, {𝑝𝑘}𝑛𝑘=1 ⊆ {𝑝𝑖}
}
.
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2) the algebra 𝐴 and the unit-order space 𝒜 can be identified as unit-order spaces
in the sense of the map

ℐ : 𝑎 ∈ 𝐴→ {𝑝𝑖𝑎𝑝𝑗} ∈ 𝒜.
Proof. This lemma follows by Lemmas 1, 3 and 4. □

Remark. Observe that by Lemma 4 the order and the norm in the unit-order
space 𝒜 = {{𝑝𝑖𝑎𝑝𝑗} : 𝑎 ∈ 𝐴} can be defined as follows to: {𝑝𝑖𝑎𝑝𝑗} ≥ 0 if 𝑎 ≥ 0;
∥{𝑝𝑖𝑎𝑝𝑗}∥ = ∥𝑎∥. By Lemmas 3 and 4 they are equivalent to the order and the
norm, defined in Lemma 5, correspondingly.

Let 𝐴 be a C∗-algebra, {𝑝𝑖} be a countable orthogonal set of equivalent
projections in 𝐴 such that sup𝑖 𝑝𝑖 = 1 and

𝑜∑
𝑖𝑗

𝑝𝑖𝐴𝑝𝑗 =

{
{𝑎𝑖𝑗} : for any indexes 𝑖, 𝑗, 𝑎𝑖𝑗 ∈ 𝑝𝑖𝐴𝑝𝑗 , and∥∥∥∥ ∑

𝑘=1,...,𝑖−1

(𝑎𝑘𝑖 + 𝑎𝑖𝑘) + 𝑎𝑖𝑖

∥∥∥∥→ 0 at 𝑖→ ∞
}
.

If we introduce a componentwise algebraic operations in this set then
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗
becomes a vector space. Also, note that

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a vector subspace of 𝒜.

Observe that
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a normed subspace of the algebra 𝒜 and ∥∑𝑛
𝑖,𝑗=1 𝑎𝑖𝑗 −∑𝑛+1

𝑖,𝑗=1 𝑎𝑖𝑗∥ → 0 at 𝑛→ ∞ for any {𝑎𝑖𝑗} ∈∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 .

Let
∑𝑜

𝑖𝑗 𝑎𝑖𝑗 := lim𝑛→∞
∑𝑛

𝑖,𝑗=1 𝑎𝑖𝑗 for any {𝑎𝑖𝑗} ∈∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 and

𝐶∗({𝑝𝑖𝐴𝑝𝑗}𝑖𝑗) :=
{ 𝑜∑

𝑖𝑗

𝑎𝑖𝑗 : {𝑎𝑖𝑗} ∈
𝑜∑
𝑖𝑗

𝑝𝑖𝐴𝑝𝑗

}
.

Then 𝐶∗({𝑝𝑖𝐴𝑝𝑗}𝑖𝑗) ⊆ 𝐴. By Lemma 5𝐴 and 𝒜 can be identified. We observe that,
the normed spaces

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 and 𝐶∗({𝑝𝑖𝐴𝑝𝑗}𝑖𝑗) can also be identified. Further,

without loss of generality we will use these identifications.

Theorem 6. Let 𝐴 be a unital C∗-algebra, {𝑝𝑖} be a countable orthogonal set of
equivalent projections in 𝐴 and sup𝑖 𝑝𝑖 = 1. Then

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a C

∗-subalgebra of
𝐴 with the componentwise algebraic operations, the associative multiplication and
the norm.

Proof. We have
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a normed subspace of the algebra 𝐴.

Let (𝑎𝑛) be a sequence of elements in
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 such that (𝑎𝑛) norm con-
verges to some element 𝑎 ∈ 𝐴. We have 𝑝𝑖𝑎𝑛𝑝𝑗 → 𝑝𝑖𝑎𝑝𝑗 at 𝑛 → ∞ for all 𝑖 and
𝑗. Hence 𝑝𝑖𝑎𝑝𝑗 ∈ 𝑝𝑖𝐴𝑝𝑗 for all 𝑖, 𝑗. Let 𝑏𝑛 =

∑𝑛
𝑘=1(𝑝𝑛−1𝑎𝑝𝑘 + 𝑝𝑘𝑎𝑝𝑛−1) + 𝑝𝑛𝑎𝑝𝑛

and 𝑐𝑛𝑚 =
∑𝑛

𝑘=1(𝑝𝑛−1𝑎𝑚𝑝𝑘 + 𝑝𝑘𝑎𝑚𝑝𝑛−1) + 𝑝𝑛𝑎𝑚𝑝𝑛 for any 𝑛. Then 𝑐𝑛𝑚 → 𝑏𝑛 at
𝑚→ ∞. It should be proven that ∥𝑏𝑛∥ → 0 at 𝑛→ ∞.

Let 𝜀 ∈ ℝ+. Then there exists 𝑚𝑜 such that ∥𝑎− 𝑎𝑚∥ < 𝜀 for any 𝑚 > 𝑚𝑜.
Also for all 𝑛 and {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} ∥(∑𝑛

𝑘=1 𝑝𝑘)(𝑎 − 𝑎𝑚)(
∑𝑛

𝑘=1 𝑝𝑘)∥ < 𝜀. Hence
∥𝑏𝑛−𝑐𝑛𝑚∥ < 2𝜀 for any𝑚 > 𝑚𝑜. At the same time, ∥𝑏𝑛−𝑐𝑛𝑚1

∥ < 2𝜀, ∥𝑏𝑛−𝑐𝑛𝑚2
∥ < 2𝜀
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for all 𝑚𝑜 < 𝑚1, 𝑚2. Since (𝑎𝑛) ⊂ ∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 then for any 𝑚 ∥𝑐𝑛𝑚∥ → 0 at

𝑛 → ∞. Hence, since ∥𝑐𝑛𝑚1
∥ → 0 and ∥𝑐𝑛𝑚2

∥ → 0 at 𝑛 → ∞ we have there exists
𝑛𝑜 such that ∥𝑐𝑛𝑚1

∥ < 𝜀, ∥𝑐𝑛𝑚2
∥ < 𝜀 and ∥𝑐𝑛𝑚1

+ 𝑐𝑛𝑚2
∥ < 2𝜀 for any 𝑛 > 𝑛𝑜. Then

∥2𝑏𝑛∥ = ∥𝑏𝑛−𝑐𝑛𝑚1
+𝑐𝑛𝑚1

+𝑐𝑛𝑚2
+𝑏𝑛−𝑐𝑛𝑚2

∥ ≤ ∥𝑏𝑛−𝑐𝑛𝑚1
∥+∥𝑐𝑛𝑚1

+𝑐𝑛𝑚2
∥+∥𝑏𝑛−𝑐𝑛𝑚2

∥ <
2𝜀+ 2𝜀+ 2𝜀 = 6𝜀 for any 𝑛 > 𝑛𝑜, i.e., ∥𝑏𝑛∥ < 3𝜀 for any 𝑛 > 𝑛𝑜. Since 𝜀 is chosen
arbitrarily we have ∥𝑏𝑛∥ → 0 at 𝑛 → ∞. Therefore 𝑎 ∈ ∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 . Since the

sequence (𝑎𝑛) is chosen arbitrarily we have
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a Banach space.

Let {𝑎𝑖𝑗}, {𝑏𝑖𝑗} be arbitrary elements of the Banach space
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 . Let

𝑎𝑚 =
∑𝑚

𝑘𝑙=1 𝑎𝑘𝑙, 𝑏𝑚 =
∑𝑚

𝑘𝑙=1 𝑏𝑘𝑙 for all natural numbers 𝑚. We have the se-
quence (𝑎𝑚) converges to {𝑎𝑖𝑗} and the sequence (𝑏𝑚) converges to {𝑏𝑖𝑗} in∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 . Also for all 𝑛 and 𝑚 𝑎𝑚𝑏𝑛 ∈ ∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 . Then for any 𝑛 the se-

quence (𝑎𝑚𝑏𝑛) converges to {𝑎𝑖𝑗}𝑏𝑛 at 𝑚 → ∞. Hence {𝑎𝑖𝑗}𝑏𝑛 ∈ ∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 .

Note that
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 ⊆ 𝐴. Therefore for any 𝜀 ∈ ℝ+ there exists 𝑛𝑜 such that

∥{𝑎𝑖𝑗}𝑏𝑛+1 − {𝑎𝑖𝑗}𝑏𝑛∥ ≤ ∥{𝑎𝑖𝑗}∥∥𝑏𝑛+1 − 𝑏𝑛∥ ≤ 𝜀 for any 𝑛 > 𝑛𝑜. Hence the se-
quence ({𝑎𝑖𝑗}𝑏𝑛) converges to {𝑎𝑖𝑗}{𝑏𝑖𝑗} at 𝑛→ ∞. Since

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a Banach

space then {𝑎𝑖𝑗}{𝑏𝑖𝑗} ∈ ∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 . Since

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 ⊆ 𝐴 we have

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a

C∗-algebra. □

Let 𝐻 be an infinite-dimensional Hilbert space, 𝐵(𝐻) be the algebra of all
bounded linear operators. Let {𝑝𝑖} be a countable orthogonal set of equivalent
projections in 𝐵(𝐻) and sup𝑖 𝑝𝑖 = 1. Let {{𝑝𝑖𝑗}𝑗}𝑖 be the set of infinite subsets of

{𝑝𝑖} such that for all distinct 𝜉 and 𝜂 {𝑝𝜉𝑗}𝑗 ∩ {𝑝𝜂𝑗 }𝑗 = ⊘, ∣{𝑝𝜉𝑗}𝑗 ∣ = ∣{𝑝𝜂𝑗 }𝑗 ∣ and
{𝑝𝑖} = ∪𝑖{𝑝𝑖𝑗}𝑗 . Then let 𝑞𝑖 = sup𝑗 𝑝

𝑖
𝑗 in 𝐵(𝐻) for all 𝑖. Then sup𝑖 𝑞𝑖 = 1 and

{𝑞𝑖} be a countable orthogonal set of equivalent projections. Then we say that the
countable orthogonal set {𝑞𝑖} of equivalent projections is defined by the set {𝑝𝑖}
in 𝐵(𝐻). We have the next corollary.

Corollary 7. Let 𝐴 be a unital C∗-algebra on a Hilbert space 𝐻, {𝑝𝑖} be a count-
able orthogonal set of equivalent projections in 𝐴 and sup𝑖 𝑝𝑖 = 1. Let {𝑞𝑖} be a
countable orthogonal set of equivalent projections in 𝐵(𝐻) defined by the set {𝑝𝑖}
in 𝐵(𝐻). Then

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 is a C

∗-subalgebra of the algebra 𝐴.

Proof. Let {{𝑝𝑖𝑗}𝑗}𝑖 be the set of infinite subsets of {𝑝𝑖} such that for all distinct

𝜉 and 𝜂 {𝑝𝜉𝑗}𝑗 ∩ {𝑝𝜂𝑗 }𝑗 = ⊘, ∣{𝑝𝜉𝑗}𝑗 ∣ = ∣{𝑝𝜂𝑗 }𝑗∣ and {𝑝𝑖} = ∪𝑖{𝑝𝑖𝑗}𝑗 . Then let 𝑞𝑖 =

sup𝑗 𝑝
𝑖
𝑗 in 𝐵(𝐻) for all 𝑖. Then we have for all 𝑖 and 𝑗 𝑞𝑖𝐴𝑞𝑗 = {{𝑝𝑖𝜉𝑎𝑝𝑗𝜂}𝜉𝜂 : 𝑎 ∈ 𝐴}.

Hence 𝑞𝑖𝐴𝑞𝑗 ⊂ 𝐴 for all 𝑖 and 𝑗.
The rest part of the proof is the repeating of the proof of Theorem 6. □

Example. 1. Let ℳ be the closure on the norm of the inductive limit ℳ𝑜 of the
inductive system

𝐶 →𝑀2(𝐶) →𝑀3(𝐶) →𝑀4(𝐶) → ⋅ ⋅ ⋅ ,
where 𝑀𝑛(𝐶) is mapped into the upper left corner of 𝑀𝑛+1(𝐶). Then ℳ is a
C∗-algebra ([1]). The algebra ℳ contains the minimal projections of the form 𝑒𝑖𝑖,
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where 𝑒𝑖𝑗 is an infinite-dimensional matrix, whose (𝑖, 𝑖)th component is 1 and the
rest components are zeros. These projections form the countable orthogonal set
{𝑒𝑖𝑖}∞

𝑖=1 of minimal projections. Let

𝑀𝑜
𝑛(ℂ) =

{∑
𝑖𝑗

𝜆𝑖𝑗𝑒𝑖𝑗 : 𝜆𝑖𝑗 ∈ ℂ for any indexes 𝑖, 𝑗 and∥∥∥∥ ∑
𝑘=1,...,𝑖−1

(𝜆𝑘𝑖𝑒𝑘𝑖 + 𝜆𝑖𝑘𝑒𝑖𝑘) + 𝜆𝑖𝑖𝑒𝑖𝑖

∥∥∥∥→ 0 at 𝑖→ ∞
}
.

Then ℂ ⋅ 1 + 𝑀𝑜
𝑛(ℂ) = ℳ (see [2]) and by Theorem 6 𝑀𝑜

𝑛(ℂ) is a simple C∗-
algebra. Note that there exists a mistake in the formulation of Theorem 3 in [2].
ℂ ⋅1+𝑀𝑜

𝑛(ℂ) is a C∗-algebra. But the algebra ℂ ⋅1+𝑀𝑜
𝑛(ℂ) is not simple. Because

ℂ ⋅ 1 +𝑀𝑜
𝑛(ℂ) ∕=𝑀𝑜

𝑛(ℂ) and 𝑀
𝑜
𝑛(ℂ) is an ideal of the algebra ℂ ⋅ 1 +𝑀𝑜

𝑛(ℂ), i.e.,
[ℂ ⋅ 1 +𝑀𝑜

𝑛(ℂ)] ⋅𝑀𝑜
𝑛(ℂ) ⊆𝑀𝑜

𝑛(ℂ).

2. There exist a C∗-algebra 𝐴 and different countable orthogonal sets {𝑒𝑖} and
{𝑓𝑖} of equivalent projections in 𝐴 such that sup𝑖 𝑒𝑖 = 1, sup𝑖 𝑓𝑖 = 1,

∑𝑜
𝑖𝑗 𝑒𝑖𝐴𝑒𝑗 ∕=∑𝑜

𝑖𝑗 𝑓𝑖𝐴𝑓𝑗 . Indeed, let 𝐻 be an infinite-dimensional Hilbert space, 𝐵(𝐻) be the

algebra of all bounded linear operators. Let {𝑝𝑖} be a countable orthogonal set
of equivalent projections in 𝐵(𝐻) and sup𝑖 𝑝𝑖 = 1. Then

∑𝑜
𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 ⊂ 𝐵(𝐻).

Let {{𝑝𝑖𝑗}𝑗}𝑖 be the set of infinite subsets of {𝑝𝑖} such that for all distinct 𝜉 and

𝜂 {𝑝𝜉𝑗}𝑗 ∩ {𝑝𝜂𝑗 }𝑗 = ⊘, ∣{𝑝𝜉𝑗}𝑗 ∣ = ∣{𝑝𝜂𝑗 }𝑗 ∣ and {𝑝𝑖} = ∪𝑖{𝑝𝑖𝑗}𝑗. Then let 𝑞𝑖 = sup𝑗 𝑝
𝑖
𝑗

for all 𝑖. Then sup𝑖 𝑞𝑖 = 1 and {𝑞𝑖} be a countable orthogonal set of equivalent
projections. We assert that

∑𝑜
𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 ∕= ∑𝑜

𝑖𝑗 𝑞𝑖𝐵(𝐻)𝑞𝑗 . Indeed, let {𝑥𝑖𝑗} be

a set of matrix units constructed by the infinite set {𝑝1𝑗}𝑗 ∈ {{𝑝𝑖𝑗}𝑗}𝑖, i.e., for
all 𝑖, 𝑗, 𝑥𝑖𝑗𝑥

∗
𝑖𝑗 = 𝑝1𝑖 , 𝑥

∗
𝑖𝑗𝑥𝑖𝑗 = 𝑝1𝑗 , 𝑥𝑖𝑖 = 𝑝1𝑖 . Then the von Neumann algebra 𝒩

generated by the set {𝑥𝑖𝑗} is isometrically isomorphic to 𝐵(ℋ) for some Hilbert
space ℋ. We note that 𝒩 is not a subset of

∑𝑜
𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 . At the same time,

𝒩 ⊆∑𝑜
𝑖𝑗 𝑞𝑖𝐵(𝐻)𝑞𝑗 and

∑𝑜
𝑖𝑗 𝑝

1
𝑖𝒩𝑝1𝑗 ⊆∑𝑜

𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 .

Theorem 8. Let 𝐴 be a unital simple C∗-algebra on a Hilbert space 𝐻, {𝑝𝑖} be a
countable orthogonal set of equivalent projections in 𝐴 and sup𝑖 𝑝𝑖 = 1. Let {𝑞𝑖}
be a countable orthogonal set of equivalent projections in 𝐵(𝐻) defined by the set
{𝑝𝑖} in 𝐵(𝐻). Then

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 is a simple C

∗-algebra.

Proof. By Theorem 6
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a C∗-algebra. Let {{𝑝𝑖𝑗}𝑗}𝑖 be the set of infinite
subsets of {𝑝𝑖} such that for all distinct 𝜉 and 𝜂 {𝑝𝜉𝑗}𝑗∩{𝑝𝜂𝑗}𝑗 = ⊘, ∣{𝑝𝜉𝑗}𝑗 ∣ = ∣{𝑝𝜂𝑗 }𝑗 ∣
and {𝑝𝑖} = ∪𝑖{𝑝𝑖𝑗}𝑗 . Then let 𝑞𝑖 = sup𝑗 𝑝

𝑖
𝑗 in 𝐵(𝐻), for all 𝑖. Then we have

𝑞𝑖𝐴𝑞𝑗 = {{𝑝𝑖𝜉𝑎𝑝𝑗𝜉} : 𝑎 ∈ 𝐴} for all 𝑖 and 𝑗. Hence 𝑞𝑖𝐴𝑞𝑗 ⊂ 𝐴 for all 𝑖 and 𝑗. By

Corollary 7
∑𝑜

𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 is a C∗-algebra.
Since projections of the set {𝑝𝑖} are pairwise equivalent we have the projection

𝑞𝑖 is equivalent to 1 ∈ 𝐴 for any 𝑖. Hence 𝑞𝑖𝐴𝑞𝑖 ∼= 𝐴 and 𝑞𝑖𝐴𝑞𝑖 is a simple C∗-
algebra for any 𝑖.
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Let 𝑞 be an arbitrary projection in {𝑞𝑖}. Then 𝑞𝐴𝑞 is a C∗-subalgebra of∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 . Let 𝐼 be a closed two-sided ideal of the algebra

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 . Then 𝐼𝑞𝐴𝑞 ⊂

𝐼 and 𝐼𝑞 ⋅ 𝑞𝐴𝑞 ⊂ 𝐼𝑞. Therefore 𝑞𝐼𝑞𝑞𝐴𝑞 ⊆ 𝑞𝐼𝑞, that is 𝑞𝐼𝑞 is a closed two-sided
ideal of the subalgebra 𝑞𝐴𝑞. Since 𝑞𝐴𝑞 is simple then 𝑞𝐼𝑞 = 𝑞𝐴𝑞.

Let 𝑞1, 𝑞2 be arbitrary projections in {𝑞𝑖}. We assert that 𝑞1𝐼𝑞2 = 𝑞1𝐴𝑞2 and
𝑞2𝐼𝑞1 = 𝑞2𝐴𝑞1. Indeed, we have the projection 𝑞1 + 𝑞2 is equivalent to 1 ∈ 𝐴. Let
𝑒 = 𝑞1 + 𝑞2. Then 𝑒𝐴𝑒 ∼= 𝐴 and 𝑒𝐴𝑒 is a simple C∗-algebra. At the same time
we have 𝑒𝐴𝑒 is a subalgebra of

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 and 𝐼 is a two-sided ideal of

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 .

Hence 𝐼𝑒𝐴𝑒 ⊂ 𝐼 and 𝐼𝑒 ⋅ 𝑒𝐴𝑒 ⊂ 𝐼𝑒. Therefore 𝑒𝐼𝑒𝑒𝐴𝑒 ⊆ 𝑒𝐼𝑒, that is 𝑒𝐼𝑒 is a closed
two-sided ideal of the subalgebra 𝑒𝐴𝑒. Since 𝑒𝐴𝑒 is simple then 𝑒𝐼𝑒 = 𝑒𝐴𝑒. Hence
𝑞1𝐼𝑞2 = 𝑞1𝐴𝑞2 and 𝑞2𝐼𝑞1 = 𝑞2𝐴𝑞1. Therefore 𝑞𝑖𝐼𝑞𝑗 = 𝑞𝑖𝐴𝑞𝑗 for all 𝑖 and 𝑗. We have
𝐼 is norm closed. Hence 𝐼 =

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 , i.e.,

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 is a simple C∗-algebra. □

2. Applications

Definition. A C∗-algebra is called a C∗-factor, if it does not have nonzero proper
two-sided ideals 𝐼 and 𝐽 such that 𝐼 ⋅ 𝐽 = {0}, where 𝐼 ⋅ 𝐽 = {𝑎𝑏 : 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽}.
Theorem 9. Let 𝒩 be a W∗-factor of type II∞ on a Hilbert space 𝐻, {𝑝𝑖} be a
countable orthogonal set of equivalent projections in 𝒩 and sup𝑖 𝑝𝑖 = 1. Then for
any countable orthogonal set {𝑞𝑖} of equivalent projections in 𝐵(𝐻) defined by the
set {𝑝𝑖} in 𝐵(𝐻) the C∗-algebra

∑𝑜
𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 is a C∗-factor with a nonzero finite

and an infinite projection. In this case
∑𝑜

𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 is not a von Neumann algebra.
Proof. By the definition of the set {𝑞𝑖} we have sup𝑖 𝑞𝑖 = 1 and {𝑞𝑖} be a countable
orthogonal set of equivalent infinite projections. By Theorem 6 we have

∑𝑜
𝑖𝑗 𝑞𝑖𝒩𝑝𝑗

is a C∗-subalgebra of 𝒩 . Let 𝑞 be a nonzero finite projection of 𝒩 . Then there
exists a projection 𝑝 ∈ {𝑞𝑖} such that 𝑞𝑝 ∕= 0. We have 𝑞𝒩 𝑞 is a finite von Neumann
algebra. Let 𝑥 = 𝑝𝑞. Then 𝑥𝒩𝑥∗ is a weakly closed C∗-subalgebra. Note that the
algebra 𝑥𝒩𝑥∗ has a center-valued faithful trace. Let 𝑒 be a nonzero projection of
the algebra 𝑥𝒩𝑥∗. Then 𝑒𝑝 = 𝑒 and 𝑒 ∈ 𝑝𝒩𝑝. Hence 𝑒 ∈∑𝑜

𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 . We have the

weak closure of
∑𝑜

𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 in the algebra 𝒩 coincides with this algebra 𝒩 . Then

by the weak continuity of the multiplication
∑𝑜

𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 is a C∗-factor. Note since

1 /∈ ∑𝑜
𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 then

∑𝑜
𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 is not weakly closed in 𝒩 . Hence the C∗-factor∑𝑜

𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 is not a von Neumann algebra. □

Remark. Note that, in the article [3] a simple C∗-algebra with an infinite and a
nonzero finite projection have been constructed by M.Rørdam. In the next corol-
lary we construct a simple purely infinite C∗-algebra. Note that simple purely
infinite C∗-algebras are considered and investigated, in particular, in [4] and [5].

Theorem 10. Let 𝒩 be a W∗-factor of type III on a Hilbert space 𝐻. Then for any
countable orthogonal set {𝑝𝑖} of equivalent projections in 𝒩 such that sup𝑖 𝑝𝑖 = 1,∑𝑜

𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 is a simple purely infinite C∗-algebra. In this case
∑𝑜

𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 is not a
von Neumann algebra.
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Proof. Let 𝑝𝑖𝑜 be a projection in {𝑝𝑖}. We have the projection 𝑝𝑖𝑜 can be exhibited

as a least upper bound of a countable orthogonal set {𝑝𝑗𝑖𝑜}𝑗 of equivalent projec-

tions in 𝒩 . Then for any 𝑖 the projection 𝑝𝑖 has a countable orthogonal set {𝑝𝑗𝑖}𝑗 of
equivalent projections in 𝒩 such that the set

∪
𝑖{𝑝𝑗𝑖}𝑗 is a countable orthogonal set

of equivalent projections in 𝒩 . Hence the set {𝑝𝑖} is defined by the set
∪

𝑖{𝑝𝑗𝑖}𝑗 in
𝐵(𝐻) (in 𝒩 ). Hence by Theorem 8

∑𝑜
𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 is a simple C∗-algebra. Note, since

1 /∈∑𝑜
𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 we have

∑𝑜
𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 is not weakly closed in 𝒩 . Hence

∑𝑜
𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 is

not a von Neumann algebra.
Suppose there exists a nonzero finite projection 𝑞 in

∑𝑜
𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 . Then there

exists a projection 𝑝 ∈ {𝑝𝑖} such that 𝑞𝑝 ∕= 0. We have 𝑞(
∑𝑜

𝑖𝑗 𝑝𝑖𝒩𝑝𝑗)𝑞 is a finite
C∗-algebra. Let 𝑥 = 𝑝𝑞. Then 𝑥𝒩𝑥∗ is a C∗-subalgebra. Moreover 𝑥𝒩𝑥∗ is weakly
closed and 𝑥𝒩𝑥∗ ⊂ 𝑝𝒩𝑝. Hence 𝑥𝒩𝑥∗ has a center-valued faithful trace. Then
𝑥𝒩𝑥∗ is a finite von Neumann algebra with a center-valued faithful normal trace.
Let 𝑒 be a nonzero projection of the algebra 𝑥𝒩𝑥∗. Then 𝑒𝑝 = 𝑒 and 𝑒 ∈ 𝑝𝒩𝑝.
Hence 𝑒 ∈ 𝒩 . This is a contradiction. □

Example. Let 𝐻 be a separable Hilbert space and 𝐵(𝐻) the algebra of all bounded
linear operators on 𝐻 . Let {𝑞𝑖} be a maximal orthogonal set of equivalent minimal
projections in 𝐵(𝐻). Then

∑𝑜
𝑖𝑗 𝑞𝑖𝐵(𝐻)𝑞𝑗 is a two-sided closed ideal of the algebra

𝐵(𝐻). Using the set {𝑞𝑖} we construct a countable orthogonal set {𝑝𝑖} of equivalent
infinite projections such that sup𝑖 𝑝𝑖 = 1. Let {{𝑞𝑖𝑗}𝑗}𝑖 be the countable set of

countable subsets of {𝑞𝑖} such that for all distinct 𝑖1 and 𝑖2 {𝑞𝑖1𝑗 }𝑗 ∩ {𝑝𝑖2𝑗 }𝑗 = ⊘
and {𝑞𝑖} = ∪𝑖{𝑞𝑖𝑗}𝑗. Then let 𝑝𝑖 = sup𝑗 𝑞

𝑖
𝑗 for all 𝑖. Then sup𝑖 𝑝𝑖 = 1 and {𝑝𝑖} is

a countable orthogonal set of equivalent infinite projections in 𝐵(𝐻) defined by
{𝑞𝑖} in 𝐵(𝐻).

Let {𝑞𝑖𝑗𝑛𝑚} be the set of matrix units constructed by the set {{𝑞𝑖𝑗}𝑗}𝑖, i.e.,
𝑞𝑖𝑗𝑛𝑚𝑞

𝑖𝑗
𝑛𝑚

∗
= 𝑞𝑖𝑛, 𝑞

𝑖𝑗
𝑛𝑚

∗
𝑞𝑖𝑗𝑛𝑚 = 𝑞𝑗𝑚, 𝑞𝑖𝑖𝑛𝑛 = 𝑞𝑖𝑛 for all 𝑖, 𝑗,𝑛,𝑚. Then let 𝑎 = {𝑎𝑖𝑗𝑛𝑚𝑞𝑖𝑗𝑛𝑚}

be the decomposition of the element 𝑎 ∈ 𝐵(𝐻), where the components 𝑎𝑖𝑗𝑛𝑚 are
defined as follows

𝑎1111 = 𝜆, 𝑎
21
12 = 𝜆, 𝑎

31
13 = 𝜆, . . . , 𝑎

𝑛1
1𝑛 = 𝜆, . . . ,

and the rest components 𝑎𝑖𝑗𝑛𝑚 are zero, i.e., 𝑎𝑖𝑗𝑛𝑚 = 0. Then 𝑝1𝑎 = 𝑎. Then, since
𝑎 /∈ ∑𝑜

𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 and 𝑝1 ∈ ∑𝑜
𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 we have

∑𝑜
𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 is not a two-

sided ideal of 𝐵(𝐻). But by theorem 6
∑𝑜

𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 is a C∗-algebra. Hence there
exists a C∗-algebra 𝐴 with an orthogonal set {𝑝𝑖} of equivalent projections such
that
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is not a two-sided ideal of 𝐴.
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