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Infinite Norm Decompositions of C*-algebras

F.N. Arzikulov

Abstract. In the given article the notion of infinite norm decomposition of
a C*-algebra is investigated. The infinite norm decomposition is some gen-
eralization of Peirce decomposition. It is proved that the infinite norm de-
composition of any C*-algebra is a C*-algebra. C*-factors with an infinite
and a nonzero finite projection and simple purely infinite C*-algebras are
constructed.
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Introduction

In the given article the notion of infinite norm decomposition of a C*-algebra is
investigated. It is known that for any projection p of a unital C*-algebra A the
next equality is valid A = pAp @ pA(1l —p)® (1 —p)Ap® (1 —p)A(1 —p), where &
is a direct sum of spaces. The infinite norm decomposition is some generalization
of Peirce decomposition. First such infinite decompositions were introduced in [1]
by the author.

In this article a unital C*-algebra A with an infinite orthogonal set {p;} of
equivalent projections such that sup; p; = 1, and the set ij piAp; = {{ai;} :
for any indexesi, j, a;; € p;Ap;, and || Zk:lq...,ifl(aki +aik)t+ay|| — 0at i — oo}
are considered. Note that all infinite sets like {p;} are supposed to be countable.
The main results of the given article are the next:

— For any C*-algebra A with an infinite orthogonal set {p;} of equivalent pro-
jections such that sup,p; = 1 the set ij piAp; is a C*-algebra with the
componentwise algebraic operations, the associative multiplication and the
norm.

— There exist a C*-algebra A and different countable orthogonal sets {e;}
and {f;} of equivalent projections in A such that sup;e; = 1, sup; f; = 1,
>oij eide; # 30 fiAf;.
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— If A is a W*-factor of type Il,, then there exists a countable orthogonal set
{pi} of equivalent projections in A such that ij piApj is a C*-factor with a
nonzero finite and an infinite projection. In this case ij p;Ap; is not a von
Neumann algebra.

— If A is a W*-factor of type III, then for any countable orthogonal set {p;}
of equivalent projections in A. The C*-subalgebra ij p;Ap; is simple and
purely infinite. In this case ZZ p;Ap; is not a von Neumann algebra.

— There exists a C*-algebra A with an orthogonal set {p;} of equivalent pro-
jections such that ij p;Ap; is not a two-sided ideal of A.

1. Infinite norm decompositions

Lemma 1. Let A be a C*-algebra, {p;} be an infinite orthogonal set of projections
with the least upper bound 1 in the algebra A and let A = {{p;ap;} : a € A}. Then,

1) the set A is a vector space with the next componentwise algebraic operations

Mpiap;} = {pidap;}, A € C
{piap;} + {pibp;} = {pi(a + b)p;},a,b € A,

2) the algebra A and the vector space A can be identified in the sense of the next
map
TZ:aeA— {pap;} €A

Proof. Ttem 1) of the lemma can be easily proved.

Proof of item 2): We assert that Z is a one-to-one map. Indeed, it is clear, that for
any a € A there exists a unique set {p;ap;}, defined by the element a.

Suppose that there exist different elements ¢ and b in A such that p;ap; =
pibp; for all ¢, j, i.e., Z(a) = Z(b). Then p;(a — b)p; = 0 for all ¢ and j. Observe
that p;((a —b)p;(a—b)*) = ((a — b)pj(a—b)*)p; =0 and (a — b)p;(a —b)* > 0 for
all 7, j. Therefore, the element (a — b)p;(a — b)* commutes with every projection
in {p;}.

We prove (a —b)p;(a —b)* = 0. Indeed, there exists a maximal commutative
x-subalgebra A, of the algebra A, containing the set {p;} and the element (a —
b)pj(a—b)*. Since (a —b)p;(a —b)*p; = pi(a —b)p;j(a —b)* = 0 for any 4, then the
condition (a — b)p;(a — b)* # 0 contradicts the equality sup; p; = 1.

Indeed, in this case p; <1—1/||(a —b)pj(a —b)*||(a — b)p;(a — b)* for any i.
Since by (a—b)p;(a—b)* #0we havel > 1—-1/||(a—b)p;j(a—b)*||(a—b)p;j(a—b)*,
then we get a contradiction with sup; p; = 1. Therefore (a — b)p;(a — b)* = 0.

Hence, since A is a C*-algebra, than ||(a — b)p;(a — b)*|| = ||((a — b)p;)((a —
D)l = (@ — Bp) (@ — b)p;)* | = llla — b)py|> = 0 for any j. Therefore
(e —b)p; =0, pj(a —b)* = 0 for any j. Analogously, we can get p;j(a —b) = 0,
(e — b)*p; = 0 for any j. Hence the elements a — b, (¢ — b)* commute with every
projection in {p;}. Then there exists a maximal commutative x-subalgebra A,
of the algebra A, containing the set {p;} and the element (a — b)(a — b)*. Since
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pi(a—b)(a—b)* = (a—b)(a—b)*p; = 0 for any ¢, then the condition (a—b)(a—b)* # 0
contradicts the equality sup; p; = 1.

Therefore, (a — b)(a —b)* =0, a — b = 0, i.e., a = b. Thus the map 7 is
one-to-one. ]

Lemma 2. Let A be a C*-algebra, {p;} be an infinite orthogonal set of projections
with the least upper bound 1 in the algebra A and a € A. Then, if p,ap; = 0 for
all i, 7, then a = 0.

Proof. Let p € {p;}. Observe that p,ap;a* = p;(ap;a*) = ap;ja*p; = (apja*)p; =0
for all ¢, j and apja* = ap;p;a* = (ap;)(pja*) = (ap;)(ap;)* > 0. Therefore, the
element ap;a* commutes with all projections of the set {p;}.

We prove apja* = 0. Indeed, there exists a maximal commutative *-subalge-
bra A, of the algebra A, containing the set {p;} and the element ap;a*. Since
pi(ap;ja*) = (apja*)p; = 0 for any 4, then the condition ap;a* # 0 contradicts the
equality sup; p; = 1 (see the proof of Lemma, 1). Hence apja* = 0.

Hence, since A is a C*-algebra, then

lapja*[| = || (ap;)(ap;)*[| = (@)l (apy)*|| = llap;|* = 0
for any j. Therefore ap; = 0, pja* = 0 for any j. Analogously we have pja = 0,
a*p; = 0 for any j. Hence the elements a, a* commute with all projections of the
set {p; }. Then there exists a maximal commutative x-subalgebra A, of the algebra
A, containing the set {p;} and the element aa*. Since p;aa* = aa*p; = 0 for any
i, then the condition aa™ # 0 contradicts the equality sup, p; = 1 (see the proof of
Lemma 1). Hence aa® =0 and a = 0. O

Lemma 3. Let A be a C*-algebra on a Hilbert space H, {p;} be an infinite or-
thogonal set of projections in A with the least upper bound 1 in the algebra B(H)
and a € A. Then a > 0 if and only if for any finite subset {px}i_; C {p:i} the
inequality pap > 0 holds, where p=>"}'_| pk.

Proof. By positivity of the operator T' : a — bab,a € A for any b € A, if a > 0,
then for any finite subset {px}7_; C {p;} the inequality pap > 0 holds.

Conversely, let a € A. Suppose that for any finite subset {py}7_; C {p;} the
inequality pap > 0 holds, where p = >"}'_| pk.

Let a = ¢+ id for some nonzero self-adjoint elements ¢, d in A. Then (p; +
p;)(c+id)(pi +p;) = (pi + p;)c(pi + pj) + i(pi + p;)d(pi + p;) = 0 for all i, j. In
this case the elements (p; + p;j)c(p; + p;) and (p; + p;)d(p; + p;) are self-adjoint.
Then (p; +p;)d(p; +pj) = 0 and p;dp; = 0 for all i, j. Hence by Lemma 2 we have
d = 0. Therefore a = ¢ = ¢* = a*, i.e., a € Ag. Hence, a is a nonzero self-adjoint
element in A. Let b2 = >"7,_, pfap{* for all natural numbers n and finite subsets
{P}2_; C {pi}. Then the set (b%) ultraweakly converges to the element a.

Indeed, we have A C B(H). Let {g¢} be a maximal orthogonal set of minimal
projections of the algebra B(H) such, that p; = sup,, ¢, for some subset {an} C
{ge¢} for any i. For arbitrary projections ¢ and p in {q¢} there exists a number
A € C such, that gap = Au, where u is an isometry in B(H), satisfying the
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conditions ¢ = uu*, p = u*u. Let qe¢ = q¢, q¢y be such element that ¢ = qgnqzn,
Iy = 4%, ey for all different § and 7. Then, let {A¢n} be a set of numbers such that
Qeaqy = AenGen for all €, n. In this case, since geaa*qe = qg(Z:?7 Ag,,j\gn)qg < 00 wWe
have the quantity of nonzero numbers of the set {\¢,}, ({th string of the infinite-
dimensional matrix {A¢,}e,) is not greater then the countable cardinal number
and the sequence ()§) of all these nonzero numbers converges to zero. Let vq, be
a vector of the Hilbert space H which generates the minimal projection g¢. Then
the set {vg, } forms a complete orthonormal system of the space H. Let v be an
arbitrary vector of the space H and p¢ be a coefficient of Fourier of the vector v,
corresponding to v, in relative to the complete orthonormal system {vg, }. Then,
since ¢ pefte < 0o we have the quantity of all nonzero elements of the set {/i¢}¢
is not greater then the countable cardinal number and the sequence (u,) of all
these nonzero numbers converges to zero.

Let ve be the {th coefficient of Fourier (corresponding to vy, ) of the vec-
tor a(v) € H in relative to the complete orthonormal system {v,, }. Then v¢ =
Zn Aenttn and the scalar product < a(v),v > is equal to the sum Zg Vg e Since
the element a(v) belongs to H we have quantity of all nonzero elements in the set
{ve}¢ is not greater then the countable cardinal number and the sequence (v,) of
all these nonzero numbers converges to zero.

Let € be an arbitrary positive number. Then, since quantity of nonzero num-
bers of the sets {1 }¢ and {v¢}¢ is not greater then the countable cardinal number
and Y, vele < 00, Y., figfie < 00 we have there exists {fi},_; C {pi} such that
for the set of indexes Q1 = {¢: 3p € {fi}i_1,qe < p} the next equality holds

’Z Vepe — Z Vsus‘ <&
3 EED

Then, since quantity of nonzero numbers of the sets {ue}e and {Ag,}y is not
greater then the countable cardinal number, and Zn )\57,5\5,7 < 00, Zg e fle < 0O
we have there exists {ex}7; C {p;} such that for the set of indexes Qo = {£ :
dp € {ex};,,q¢ < p} the next equality holds

Z/\ﬁnﬂn - Z Aenlin
n

IS

<e.

Hence for the finite set {py}7_; = {fr}i_; U {ex}7, and the set Q = {¢ : Ip €
{pPr}7_1,q¢ < p} of indexes we have

S vene = 3 (30 Aewm e <=
£ EEQ e
At the same time, ((32_; prapi)(v),v) = > ecq (3, cq Aentin)pte- Therefore,

) = (3 man ) 0] <=

k=1
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Hence, since the vector v and the number ¢ are chosen arbitrarily we have the net
(%) ultraweakly converges to the element a.

Now there exists a maximal orthogonal set {e¢} of minimal projections of the
algebra B(H) of all bounded linear operators on H such that the element a and
the set {e¢} belong to some maximal commutative x-subalgebra A, of the algebra
B(H). We have for any finite subset {px}p_; C {p;} and e € {e} the inequality
e(3>-1—1 prapi)e > 0 holds by the positivity of the operator T": b — ebe,b € A.

By the previous part of the proof the net (egb%ee)an ultraweakly converges
to the element ecae¢ for any index &. Then we have ecbjee > 0 for all n and o
Therefore, the ultraweak limit ecaeg of the net (e¢bSe¢)an is a nonnegative element.
Hence ecaeg > 0. Therefore, since e¢ is chosen arbitrarily we have a > 0. O

Lemma 4. Let A be a C*-algebra on a Hilbert space H, {p;} be an infinite orthog-
onal set of projections in A with the least upper bound 1 in the algebra B(H) and

a € A. Then
lall = sup{

Proof. The inequality —|la|]|l1 < a < ||a||1 holds. Then —|ja||p < pap < |la||p for
all natural numbers n and finite subsets {p{}?_; C {p;}, where p = >.7_| px.

Therefore
Z Prapi
ki=1

At the same time, since the finite subset {pj }7_; of {p;} is chosen arbitrarily and
by Lemma 6 we have

la]l = sup{

llal]| > A = sup{

n
Z Prapy

k=1

ne N (pios {pi}}.

lall > sup{

:n € N, {pr}r_1 C {pz}}

n
Z Prapi

k=1

:n € N, {pr}r_, C {pz}}

Otherwise, if

n
Z Prap;

kl=1

:n € N, {pr}r_s C {pz}}

then by Lemma 3 —A1 < a < Al. But the last inequality is a contradiction. (Il

Lemma 5. Let A be a C*-algebra on a Hilbert space H, {p;} be an infinite orthog-
onal set of projections in A with the least upper bound 1 in the algebra B(H), and
let A= {{piap;}:a € A}. Then,

1) the vector space A is a unit-order space with respect to the order {p;ap;} >0

({piap;} > 0 if for any finite subset {pi}}_; C {p:} the inequality pap > 0
holds, where p="}'_, pr) and the norm

n
Z prap;

kl=1

| piap;} | = sup{

ne N, () © {pi}}.
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2) the algebra A and the unit-order space A can be identified as unit-order spaces
in the sense of the map

TZ:a€A— {pap;} €A
Proof. This lemma follows by Lemmas 1, 3 and 4. (]

Remark. Observe that by Lemma 4 the order and the norm in the unit-order
space A = {{piap;} : a € A} can be defined as follows to: {p;ap;} > 0 if a > 0;
l{piap;}|| = |la|. By Lemmas 3 and 4 they are equivalent to the order and the
norm, defined in Lemma 5, correspondingly.

Let A be a C*-algebra, {p;} be a countable orthogonal set of equivalent
projections in A such that sup; p; = 1 and

o
ZpiApj = {{aij} : for any indexesi, j, a;; € p;Ap;, and
1j

Z (ak; + aik) + ai

—0at i — oo}.
k=1,...,i—1

If we introduce a componentwise algebraic operations in this set then ij piAp;
becomes a vector space. Also, note that ij piAp; is a vector subspace of A.
Observe that -7 p;Ap; is a normed subspace of the algebra A and || 3, a;; —

Z?;;ll aijl| = 0 at n — oo for any {a;;} € 37, piAp;.

Let ZZO] ai; = limy, o0 ZZj:l a;; for any {a;;} € ZZ piAp; and
C*({piAp;}ij) = {Z aij : {aij} € ZpiApj}~

Then C*({p;Ap; }i;) € A. By Lemma 5 A and A can be identified. We observe that,
the normed spaces ij piAp; and C*({p;Ap;}i;) can also be identified. Further,
without loss of generality we will use these identifications.

Theorem 6. Let A be a unital C*-algebra, {p;} be a countable orthogonal set of
equivalent projections in A and sup,; p; = 1. Then ij piApj is a C*-subalgebra of
A with the componentwise algebraic operations, the associative multiplication and
the norm.

Proof. We have ij piAp; is a normed subspace of the algebra A.

Let (a,) be a sequence of elements in ij piAp; such that (a,) norm con-
verges to some element a € A. We have p;an,p; — piap; at n — oo for all ¢ and
j. Hence p;ap; € p;Ap; for all i, j. Let b™ = 37| (Pn—1apk + Prapn—1) + Pnapn
and ¢ = > 1 (Pn—1@mPk + PkAmPn—1) + Pnampy, for any n. Then ¢, — b™ at
m — oo. It should be proven that ||b,| — 0 at n — co.

Let e € Ry. Then there exists m, such that ||a — a.,|| < € for any m > m,.

Also for all n and {pi}?_; C {pi} | r; pe)(a — am)(Xr_; pi)|| < €. Hence
6" —cp, || < 2¢ for any m > m,. At the same time, |[b" —cj, || < 2¢, [["—cpy,, || < 2¢
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for all m, < mi, ma. Since (a,) C > 7 piAp; then for any m |cj|| — 0 at
n — oo. Hence, since ||cy, || — 0 and ||c;, || — 0 at n — oo we have there exists
ne such that [lcy, || < e, [[ch, || < € and ||y, +cp, || < 2¢ for any n > n,. Then
[12bn| = (16" —c5p,, +Cm, +C, 0" =, | < 107 =i, 1 e, +ei, 1107 =, || <
2e + 2e + 2e = 6¢ for any n > n,, i.e., ||by|| < 3¢ for any n > n,. Since € is chosen
arbitrarily we have [[b,| — 0 at n — oo. Therefore a € 377 p;Ap;. Since the
sequence (ay,,) is chosen arbitrarily we have ZZO] p;Ap; is a Banach space.

Let {a;;}, {bij} be arbitrary elements of the Banach space 7, p;Ap;. Let
Am = D> ppe1 Wiy bm = Y11 by for all natural numbers m. We have the se-
quence (a,) converges to {a;;j} and the sequence (b,,) converges to {b;;} in
ij piAp;. Also for all n and m anb, € ZZO] piAp;. Then for any n the se-
quence (anb,) converges to {a;;}b, at m — oco. Hence {ai;}b, € 3 7 piAp;.
Note that ij piAp; C A. Therefore for any ¢ € R4 there exists n, such that
{aij }ont1 — {aij}onll < {aij}|||bnt1 — bn]| < € for any n > n,. Hence the se-
quence ({a;;}b,) converges to {a;;}{bi;} at n — oco. Since > 7, piAp; is a Banach
space then {a;; }{bi;} € X270 piAp;. Since 37 piAp; C A we have Y7, p;iAp; is a
C*-algebra. a

Let H be an infinite-dimensional Hilbert space, B(H) be the algebra of all
bounded linear operators. Let {p;} be a countable orthogonal set of equivalent
projections in B(H) and sup, p; = 1. Let {{p; }; i be the set of infinite subsets of
{pi} such that for all distinct £ and 5 {p$}; N {p7}; = @, {p5};| = [{p7};] and
{pi} = Ui{p}};. Then let ¢; = sup, p} in B(H) for all i. Then sup;¢; = 1 and
{¢;} be a countable orthogonal set of equivalent projections. Then we say that the
countable orthogonal set {¢;} of equivalent projections is defined by the set {p;}
in B(H). We have the next corollary.

Corollary 7. Let A be a unital C*-algebra on a Hilbert space H, {p;} be a count-
able orthogonal set of equivalent projections in A and sup; p; = 1. Let {q;} be a
countable orthogonal set of equivalent projections in B(H) defined by the set {p;}
in B(H). Then ij giAg; is a C*-subalgebra of the algebra A.

Proof. Let {{p’};}i be the set of infinite subsets of {p;} such that for all distinct
¢ and n {p5}; 0 (P} = @, {p5}il = [{p!};] and {p;} = Ui{p}};- Then let q; =
sup; pj in B(H) for all i. Then we have for all i and j ¢;Ag; = {{pgap)}e, : a € A}.
Hence ¢;Ag; C A for all ¢ and j.

The rest part of the proof is the repeating of the proof of Theorem 6. (]

Example. 1. Let M be the closure on the norm of the inductive limit M, of the
inductive system
C — M3(C) = M3(C) = My(C) = -+,

where M,,(C) is mapped into the upper left corner of M,41(C). Then M is a
C*-algebra ([1]). The algebra M contains the minimal projections of the form e;;,
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where e;; is an infinite-dimensional matrix, whose (4, 7)th component is 1 and the
rest components are zeros. These projections form the countable orthogonal set
{ei; }$2, of minimal projections. Let

M?(C) = { > " Aijeij : Aij € Cfor any indexesi, j and
ij

Z (Akieri + Aikeir) + Aises

k=1,...,i—1

Then C -1+ ME(C) = M (see [2]) and by Theorem 6 MS(C) is a simple C*-
algebra. Note that there exists a mistake in the formulation of Theorem 3 in [2].
C-1+M2(C) is a C*-algebra. But the algebra C-1+ MZ2(C) is not simple. Because
C-1+4+ M2(C) # M2(C) and M2(C) is an ideal of the algebra C -1+ MZ2(C), i.e.,
[C- 1+ M:(C)] - M3(C) € My(C).

2. There exist a C*-algebra A and different countable orthogonal sets {e;} and
{fi} of equivalent projections in A such that sup, e; =1, sup, f; = 1, ij ejAe; #
ij fiAf;. Indeed, let H be an infinite-dimensional Hilbert space, B(H) be the
algebra of all bounded linear operators. Let {p;} be a countable orthogonal set
of equivalent projections in B(H) and sup; p; = 1. Then Y7 p; B(H)p; C B(H).
Let {{p}},;}i be the set of infinite subsets of {p;} such that for all distinct & and
0 {p5t N {plt; = @, {p5}i| = 1{p]},] and {p;} = Ui{p'},. Then let g; = sup; p’
for all 4. Then sup;¢; = 1 and {¢;} be a countable orthogonal set of equivalent
projections. We assert that -0 p:B(H)p; # >_7; ¢;B(H)g;. Indeed, let {z;;} be
a set of matrix units constructed by the infinite set {pj}; € {{pi};}:, ie., for
all 4, j, zijay; = Py, Ty = p}, z; = p}. Then the von Neumann algebra N
generated by the set {x;;} is isometrically isomorphic to B(#) for some Hilbert
space H. We note that N is not a subset of ij piB(H)p;. At the same time,

N C 3205 aiB(H)g; and 357, piNp) © 327 pi B(H)p;.

Theorem 8. Let A be a unital simple C*-algebra on a Hilbert space H, {p;} be a
countable orthogonal set of equivalent projections in A and sup; p; = 1. Let {q;}
be a countable orthogonal set of equivalent projections in B(H) defined by the set
{pi} in B(H). Then Y77 qiAq; is a simple C*-algebra.

—>Oati—>oo}.

Proof. By Theorem 6 37, p;Ap; is a C*-algebra. Let {{p}};}: be the set of infinite
subsets of {p;} such that for all distinct § and 7 {pﬁ}jﬂ{py}j = 0, |{p§}]| = {pj};l
and {p;} = U;{p;};. Then let ¢; = sup;p; in B(H), for all i. Then we have
giAg; = {{péapé} :a € A} for all ¢ and j. Hence ¢;Ag; C A for all ¢ and j. By
Corollary 7 ij ¢;Ag; is a C*-algebra.

Since projections of the set {p;} are pairwise equivalent we have the projection
q; is equivalent to 1 € A for any i. Hence q;Aq; = A and ¢;Ag; is a simple C*-
algebra for any 1.
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Let ¢ be an arbitrary projection in {g;}. Then gAq is a C*-subalgebra of
ij ¢:Ag;. Let I be a closed two-sided ideal of the algebra ij ¢;Ag;. Then IqAq C
I and Iq - qAq C Iq. Therefore qlqqAq C qlq, that is qlq is a closed two-sided
ideal of the subalgebra gAgq. Since qAq is simple then qlq = qAq.

Let ¢1, g2 be arbitrary projections in {g; }. We assert that ¢1Ig2 = ¢1 Aga and
q2Iq1 = g2 Aq1. Indeed, we have the projection g1 + ¢o is equivalent to 1 € A. Let
e = q1 + q2- Then eAde =2 A and ede is a simple C*-algebra. At the same time
we have eAe is a subalgebra of 77 ¢iAg; and I is a two-sided ideal of 377, ¢;Ag;.
Hence IeAe C I and Ie-eAe C Ie. Therefore eleeAe C ele, that is ele is a closed
two-sided ideal of the subalgebra eAe. Since eAe is simple then ele = eAe. Hence
¢11g2 = g1 Ago and g21q1 = g2 Aq1. Therefore ¢;1q; = g; Ag; for all 7 and j. We have
I is norm closed. Hence I = ij ¢:Agj, ie., ij qiAg; is a simple C*-algebra. [

2. Applications

Definition. A C*-algebra is called a C*-factor, if it does not have nonzero proper
two-sided ideals I and J such that I -J = {0}, where I - J ={ab:a € I,b € J}.

Theorem 9. Let N be a W*-factor of type Il on a Hilbert space H, {p;} be a
countable orthogonal set of equivalent projections in N and sup,; p; = 1. Then for
any countable orthogonal set {q;} of equivalent projections in B(H) defined by the
set {p;} in B(H) the C*-algebra ij qiNg; is a C*-factor with a nonzero finite
and an infinite projection. In this case ij q:Ngq; is not a von Neumann algebra.

Proof. By the definition of the set {g;} we have sup, ¢; = 1 and {¢;} be a countable
orthogonal set of equivalent infinite projections. By Theorem 6 we have ij @Np;
is a C*-subalgebra of N. Let ¢ be a nonzero finite projection of A/. Then there
exists a projection p € {¢;} such that gp # 0. We have ¢/ ¢ is a finite von Neumann
algebra. Let z = pq. Then zANxz* is a weakly closed C*-subalgebra. Note that the
algebra zA z* has a center-valued faithful trace. Let e be a nonzero projection of
the algebra zA z*. Then ep = ¢ and e € pN'p. Hence e € ZZO] ¢iNg¢;. We have the
weak closure of 37, ¢;Ng; in the algebra A coincides with this algebra . Then
by the weak continuity of the multiplication ij ¢:Ng; is a C*-factor. Note since
1¢ ij ¢iNg; then ij ¢:Nq; is not weakly closed in N. Hence the C*-factor
ij ¢:N'gj is not a von Neumann algebra. (I

Remark. Note that, in the article [3] a simple C*-algebra with an infinite and a
nonzero finite projection have been constructed by M.Rgrdam. In the next corol-
lary we construct a simple purely infinite C*-algebra. Note that simple purely
infinite C*-algebras are considered and investigated, in particular, in [4] and [5].

Theorem 10. Let N be a W*-factor of type III on a Hilbert space H. Then for any
countable orthogonal set {p;} of equivalent projections in N such that sup, p; = 1,
ij piNpj is a simple purely infinite C*-algebra. In this case ZSJ piNpj is not a
von Neumann algebra.
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Proof. Let p;, be a projection in {p;}. We have the projection p;, can be exhibited
as a least upper bound of a countable orthogonal set {pgo }; of equivalent projec-
tions in N. Then for any 7 the projection p; has a countable orthogonal set {pf }; of
equivalent projections in A such that the set Uz{pf }; is a countable orthogonal set
of equivalent projections in A. Hence the set {p;} is defined by the set Ul{pf };in
B(H) (in NV). Hence by Theorem 8 37, p;N'p; is a simple C*-algebra. Note, since
1¢ ZZO] piNpj we have ij piN'p; is not weakly closed in V. Hence Efj piNp; is
not a von Neumann algebra.

Suppose there exists a nonzero finite projection ¢ in ij piNp;. Then there
exists a projection p € {p;} such that gp # 0. We have q(ij piNDpj)g is a finite
C*-algebra. Let © = pq. Then N z* is a C*-subalgebra. Moreover zN z* is weakly
closed and zNz* C pNp. Hence xNx* has a center-valued faithful trace. Then
N z* is a finite von Neumann algebra with a center-valued faithful normal trace.
Let e be a nonzero projection of the algebra xN'z*. Then ep = ¢ and e € pAp.
Hence e € V. This is a contradiction. (]

Example. Let H be a separable Hilbert space and B(H) the algebra of all bounded
linear operators on H. Let {¢;} be a maximal orthogonal set of equivalent minimal
projections in B(H). Then ij ¢iB(H)qg; is a two-sided closed ideal of the algebra
B(H). Using the set {¢;} we construct a countable orthogonal set {p;} of equivalent
infinite projections such that sup,p; = 1. Let {{q}};}; be the countable set of
countable subsets of {g;} such that for all distinct i1 and iy {q;1 N {p§2 =0
and {¢;} = Ui{qﬁ}j. Then let p; = sup; q; for all 4. Then sup,; p; = 1 and {p;} is
a countable orthogonal set of equivalent infinite projections in B(H) defined by
{g:} in B(H). _

Let {q;/,,} be the set of matrix units constructed by the set {{q;};}:, i.e.,
Ui = G @il Ui = @y Gt = @, for all i, jnm. Then let a = {a}),, 417, }
be the decomposition of the element a € B(H), where the components a4 are
defined as follows

11 _y 21 _ y 31 _ nl _
ajp =Aajs =MNaj3=A,....a, =\, ...,

ij : ij o _ _ :
and the rest components a;;,, are zero, i.e., a;},, = 0. Then p;a = a. Then, since

a ¢ >3 piB(H)pj and pr € 327, piB(H)p; we have > 7 p; B(H)p; is not a two-
sided ideal of B(H ). But by theorem 6 >_7; p; B(H)p; is a C*-algebra. Hence there
exists a C*-algebra A with an orthogonal set {p;} of equivalent projections such
that ij piAp; is not a two-sided ideal of A.
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