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Abstract. In the paper, a short survey on the theory of the Riemann zeta-
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1. Introduction

We recall that the function 𝑓(𝑧) is called analytic at the point 𝑧0 if 𝑓(𝑧) has a
power series expansion

𝑓(𝑧) =

∞∑
𝑚=0

𝑎𝑚(𝑧 − 𝑧0)
𝑚

which is convergent in some neighbourhood of the point 𝑧0. The function 𝑓(𝑧) is
analytic in the set 𝐷 if it is analytic in each point of 𝐷.

A set of points (𝑥, 𝑦), where

𝑥 = 𝑓1(𝑡), 𝑦 = 𝑓2(𝑡), 0 ≤ 𝑡 ≤ 1, (1.1)

and 𝑓1(𝑡) and 𝑓2(𝑡) are continuous functions such that, for given 𝑥 and 𝑦 the
system (1.1) has no more than one solution, is called the Jordan arc.

A set 𝐷 is said to be connected if any two of its points, arbitrarily chosen,
can be connected by a Jordan arc lying in 𝐷. A domain is an open connected set.

It is well known that analytic functions can be approximated by polynomials.
The ultimate result in this field belongs to S.N. Mergelyan [S.N. Mergelyan (1951)],
[S.N. Mergelyan (1952)], see also [J.L. Walsh (1960)].
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Theorem 1.1. Suppose that 𝐾 is a compact subset on the complex plane with con-
nected complement, and the function 𝑓(𝑧) is continuous on 𝐾 and analytic in the
interior of 𝐾. Then, for every 𝜖 > 0, there exists a polynomial 𝑃 (𝑧) such that

sup
𝑧∈𝐾

∣𝑓(𝑧)− 𝑃 (𝑧)∣ < 𝜖.

Note that conditions on the set 𝐾 and function 𝑓(𝑧) are necessary.
In Theorem 1.1, the approximating polynomial depends on the function 𝑓(𝑧).

It turns out that there exist functions 𝐹 (𝑧) such that their shifts 𝐹 (𝑧+𝑖𝜏) approx-
imate any analytic function. The simplest of 𝐹 (𝑧) is the Riemann zeta-function.

In this survey, we give an introduction to the theory of the Riemann zeta-
function, state the universality theorem, discuss the effectivization problem of this
theorem and present recent results on universality of zeta-functions.

2. The Riemann zeta-function

Let 𝑠 = 𝜎 + 𝑖𝑡 be a complex variable. The Riemann zeta-function 𝜁(𝑠) is defined,
in the half-plane 𝜎 > 1, by the series

𝜁(𝑠) =

∞∑
𝑚=1

1

𝑚𝑠
.

We recall that the series of the form
∞∑

𝑚=1

𝑎𝑚e
−𝜆𝑚𝑠,

where 𝑎𝑚 ∈ ℂ and {𝜆𝑚} is an increasing sequence of real numbers such that
lim

𝑚→∞𝜆𝑚 = +∞, are called general Dirichlet series. If 𝜆𝑚 = log𝑚, then we have

an ordinary Dirichlet series
∞∑

𝑚=1

𝑎𝑚
𝑚𝑠

.

The region of convergence as well as of absolute convergence of Dirichlet series
is a half-plane. Thus, the Riemann zeta-function is given, for 𝜎 > 1, by ordinary
Dirichlet series with coefficients 𝑎𝑚 ≡ 1.

The function 𝜁(𝑠), as a function of a complex variable, was introduced by B.
Riemann in 1859. However, the function 𝜁(𝑠) with real 𝑠 earlier was studied by
L. Euler.

Denote by [𝑢] the integer part of 𝑢. Summing by parts, it it easy to obtain
that, for 𝜎 > 1,

𝜁(𝑠) =
1

𝑠− 1
+

1

2
+ 𝑠

∞∫
1

[𝑥]− 𝑥+ 1
2

𝑥𝑠+1
d𝑥. (2.1)

Clearly, the integral converges absolutely for 𝜎 > 0, and uniformly for 𝜎 ≥ 𝜀 with
arbitrary 𝜀 > 0. Therefore, it defines a function analytic for 𝜎 > 0. Hence, (2.1)



The Riemann Zeta-function: Approximation of Analytic Functions 97

gives analytic continuation for 𝜁(𝑠) to the region 𝜎 > 0, except for a simple pole
at the point 𝑠 = 1 with residue 1.

Denote, as usual, by Γ(𝑠) the Euler gamma-function which is defined, for
𝜎 > 0, by

Γ(𝑠) =

∞∫
0

e−𝑢𝑢𝑠−1d𝑢.

Moreover, the function Γ(𝑠) is meromorphically continuable over the whole com-
plex plane, the points 𝑠 = −𝑚, 𝑚 = 0, 1, 2, . . . , are simple poles, and

Res𝑠=−𝑚Γ(𝑠) =
(−1)𝑚
𝑚!

.

The Euler gamma function is involved in the functional equation of the Rie-
mann zeta function

𝜋−
𝑠
2Γ
(𝑠
2

)
𝜁(𝑠) = 𝜋−

1−𝑠
2 Γ

(
1− 𝑠

2

)
𝜁(1 − 𝑠) (2.2)

which implies analytic continuation for 𝜁(𝑠) to the region 𝜎 < 1
2 .

Riemann began to study the function 𝜁(𝑠) for needs of the distribution of
prime numbers, i.e., for the asymptotics for the function

𝜋(𝑥) =
∑
𝑝≤𝑥

1, 𝑝 is prime,

as 𝑥 → ∞. A relation of 𝜁(𝑠) with prime numbers is clearly seen from the Euler
identity

𝜁(𝑠) =
∏
𝑝

(
1− 1

𝑝𝑠

)−1
, 𝜎 > 1, (2.3)

which is a simple consequence of the principal theorem of arithmetics and definition
of 𝜁(𝑠) by Dirichlet series. Riemann proposed [B. Riemann (1859)] an original way
to obtain the asymptotic formula

𝜋(𝑥) ∼
𝑥∫

2

d𝑢

log 𝑢
, 𝑥→∞,

however, his work was not completely correct. Riemann’s ideas were realized
probably 50 years later independently by C.J. de la Vallée Poussin [C.J. de la
Vallée-Poussin (1896)] and J. Hadamard [J. Hadamard (1896)].

It turned out that a problem of the asymptotics for 𝜋(𝑥) is closely connected
to zeros of the function 𝜁(𝑠). From the functional equation (2.2) it follows that
𝜁(𝑠) = 0 for 𝑠 = −2𝑚, 𝑚 ∈ ℕ. These zeros of 𝜁(𝑠) are called trivial and, in general,
are not interesting. The Euler identity (2.3) shows that 𝜁(𝑠) ∕= 0 for 𝜎 > 1. It is
not difficult to show that 𝜁(𝑠) ∕= 0 on the line 𝜎 = 1, and this is already sufficient
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to obtain the asymptotics for 𝜋(𝑥). This and (2.2) imply that 𝜁(𝑠) ∕= 0 for 𝜎 ≤ 0.
Application of elements of the theory of entire functions of order 1 for the function

𝜉(𝑠) =
1

2
𝑠(𝑠− 1)𝜋−

𝑠
2Γ
(𝑠
2

)
𝜁(𝑠)

allows us to prove that the function 𝜁(𝑠) has infinitely many zeros in the strip
0 < 𝜎 < 1. These zeros of 𝜁(𝑠) are called non-trivial, and play an important role
not only in analytic number theory but in mathematics in general. The famous
Riemann hypothesis (RH) says that all non-trivial zeros of 𝜁(𝑠) lie on the critical
line 𝜎 = 1

2 . RH is included in the list of seven Millennium Prize Problems, for
each of which a solution carries a prize of US $ 1 million, set up by the Clay
Mathematics Institute [The Millennium Prize problems (2006)].

There exist results favorable for RH, however some facts do not support it.
There are many computations on the location of zeros of 𝜁(𝑠). For example, in
[J. van de Lune, H.J.J. te Riele, D.T. Winter (1986)] the first 1500000001 zeros
of 𝜁(𝑠) were found, all lying on the critical line; moreover, they all are simple. Of
course, calculations can not prove RH, they can only disprove it.

In applications, it is important to know regions where 𝜁(𝑠) ∕= 0. The best
result in this direction is of the form: there exists an absolute constant 𝑐 > 0 such
that 𝜁(𝑠) ∕= 0 in the region

𝜎 ≥ 1− 𝑐

(log 𝑡)2/3(log log 𝑡)1/3
, 𝑡 ≥ 𝑡0 > 0.

This result is due to H.-E. Richert who never published its proof.

For 𝑇 > 0, let 𝑁(𝑇 ) denote the number of non-trivial zeros of 𝜁(𝑠) lying in
the rectangle 0 < 𝜎 < 1, 0 < 𝑡 ≤ 𝑇 . Then the von Mangoldt formula

𝑁(𝑇 ) =
𝑇

2𝜋
log

𝑇

2𝜋
− 𝑇

2𝜋
+O(log 𝑇 ), 𝑇 →∞,

is true. This formula was conjectured by Riemann and proved in [H. von Mangoldt
(1895)] by H. von Mangoldt.

Let𝑁0(𝑇 ) denote the number of zeros of 𝜁(𝑠) of the form 𝑠 = 1
2+𝑖𝑡, 0 < 𝑡 ≤ 𝑇 .

Then RH is equivalent to the assertion that 𝑁0(𝑇 ) = 𝑁(𝑇 ) for all 𝑇 > 0. We recall
some results on the relation between 𝑁(𝑇 ) and 𝑁0(𝑇 ).

In 1914, G.H. Hardy proved [G.H. Hardy (1914)] that𝑁0(𝑇 )→∞ as 𝑇 →∞.
More precisely, he obtained that 𝑁0(𝑇 ) > 𝑐𝑇 , 𝑐 > 0, for 𝑇 ≥ 𝑇0.

In 1942, A. Selberg found [A. Selberg (1942)] that 𝑁0(𝑇 ) > 𝑐𝑇 log𝑇 , 𝑐 > 0,
for 𝑇 ≥ 𝑇0, that is, that a positive proportion of non-trivial zeros lies on the critical
line.

A very important result belongs to N. Levinson. In 1974, he proved [N. Levin-
son (1974)] that

𝑁0(𝑇 ) ≥ 1

3
𝑁(𝑇 ).

In 1983, J.B. Conrey improved [J.B. Conrey (1989)] this result till𝑁0(𝑇 ) ≥ 2
5𝑁(𝑇 ).
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One more important conjecture in the theory of the Riemann zeta-function
is the Lindelöf hypothesis (LH). LH asserts that, with arbitrary 𝜀 > 0,

𝜁

(
1

2
+ 𝑖𝑡

)
= O𝜀(𝑡

𝜀), 𝑡 ≥ 𝑡0,

or equivalently

𝜁 (𝜎 + 𝑖𝑡) = O𝜀(𝑡
𝜀), 𝑡 ≥ 𝑡0,

for all 𝜎 > 1
2 . The classical estimate says that

𝜁

(
1

2
+ 𝑖𝑡

)
= O

(
𝑡
1
6

)
.

The best result in this direction belongs to M.N. Huxley [M.N. Huxley (2005)],
and is of the form

𝜁

(
1

2
+ 𝑖𝑡

)
= O

(
𝑡

32
205+𝜀

)
.

It is well known that RH implies LH.

There are several equivalents of LH. One of them is related to the moments
of 𝜁(𝑠). Namely, LH is equivalent to the estimates: for arbitrary 𝜀 > 0

𝑇∫
1

∣∣∣∣𝜁 (12 + 𝑖𝑡

)∣∣∣∣2𝑘 d𝑡 = O𝜀(𝑇
1+𝜀), 𝑘 ∈ ℕ,

or
𝑇∫
1

∣𝜁 (𝜎 + 𝑖𝑡)∣2𝑘 d𝑡 = O𝜀(𝑇
1+𝜀), 𝑘 ∈ ℕ,

for all 𝜎 > 1
2 .

In general, the moment problem is a very important and difficult one in the
theory of the Riemann zeta-function.In some applications, individual values of
𝜁(𝑠) can be replaced by its mean-value estimates. There exists a conjecture that,
as 𝑇 →∞,

𝑇∫
1

∣∣∣∣𝜁 (12 + 𝑖𝑡

)∣∣∣∣2𝑘 d𝑡 ∼ 𝑐𝑘𝑇 (log𝑇 )
𝑘2

, 𝑘 > 0.

This is proved only for three values of 𝑘:

𝑐1 = 1, Hardy-Littlewood (1918);

𝑐2 =
1

2𝜋2 , Ingham (1926).

From a probabilistic limit theorem for
∣∣𝜁 ( 12 + 𝑖𝑡

)∣∣ it follows [A. Laurinčikas (1996)]
that 𝑐𝑘 = 1 for 𝑘 = 𝑐(log log 𝑇 )−

1
2 , 𝑐 > 0.
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3. Universality

We understand the universal mathematical object as an object having influence
for a wide class of other objects. In analysis, this influence often is related with a
certain approximation.

The first universal object in analysis was found by Fekete in 1914. He proved
that there exists a real power series

∞∑
𝑚=1

𝑎𝑚𝑥𝑚

which is divergent for all 𝑥 ∕= 0. Moreover, this divergence is so extreme that,for
every continuous function 𝑓 on [−1, 1], 𝑓(0) = 0, there exists a sequence {𝑛𝑘} ⊂ ℕ
such that

lim
𝑘→∞

𝑛𝑘∑
𝑚=1

𝑎𝑚𝑥𝑚 = 𝑓(𝑥)

uniformly on [−1, 1].
After Fekete’s result, many universal objects were found. We recall one the-

orem of Birkhoff. He proved [G.D. Birkhoff (1929)] that there exists an entire
function 𝑓(𝑧) such that, for every entire function 𝑔(𝑧), there exists a sequence of
complex numbers {𝑎𝑚} such that

lim
𝑚→∞ 𝑓(𝑧 + 𝑎𝑚) = 𝑔(𝑧)

uniformly on compact subsets of the complex plane.

The term of universality was used for the first time by J. Marcinkiewicz in
[J. Marcinkiewicz (1935)]. He obtained the following result. Let {ℎ𝑛} be a sequence
of real numbers and lim

𝑛→∞ ℎ𝑛 = 0. Then he proved that there exists a continuous

function 𝑓 ∈ 𝐶[0, 1] such that, for every continuous function 𝑔 ∈ 𝐶[0, 1], there
exists an increasing sequence {𝑛𝑘} ⊂ ℕ such that

lim
𝑘→∞

𝑓(𝑥+ ℎ𝑛𝑘
)− 𝑓(𝑥)

ℎ𝑛𝑘

= 𝑔(𝑥)

almost everywhere on [0, 1]. Marcinkiewicz called the function 𝑓 a primitive uni-
versal.

However, all of the above and other known universal objects, were not ex-
plicitly given, only their existence was proved. As recently as 1975, S.M. Voronin
[S.M. Voronin (1975)] found the first explicitly given universal (in a certain sense
object). It was not very strange that this object is the famous Riemann zeta-
function 𝜁(𝑠).

The first version of the Voronin theorem is as follows.

Theorem 3.1 [S.M. Voronin (1975)]. Let 0 < 𝑟 < 1
4 . Suppose that 𝑓(𝑠) is a contin-

uous non-vanishing function on the disc ∣𝑠∣ ≤ 𝑟 which is analytic in the interior
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of this disc. Then, for every 𝜀 > 0, there exists a real number 𝜏 = 𝜏(𝜀) such that

max
∣𝑠∣≤𝑟

∣∣∣∣𝜁 (𝑠+ 3

4
+ 𝑖𝜏

)
− 𝑓(𝑠)

∣∣∣∣ < 𝜀.

Roughly speaking, the Voronin theorem asserts that any analytic function is
approximated with desired accuracy uniformly on the disc by shifts of the Riemann
zeta-function. Voronin himself called his theorem “theorem o kruzhochkakh”. Now-
adays its name is the Voronin universality theorem.

A modern version of the Voronin theorem has a bit more general form. Denote
by meas{𝐴} the Lebesgue measure of a measurable set 𝐴 ⊂ ℝ, see, for example,
[A. Laurinčikas (1996)].

Theorem 3.2. Let 𝐾 be a compact subset of the strip 𝐷 = {𝑠 ∈ ℂ : 1
2 < 𝜎 < 1} with

connected complement. Let 𝑓(𝑠) be a continuous and non-vanishing on 𝐾 function
which is analytic in the interior of 𝐾. Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)− 𝑓(𝑠)∣ < 𝜀

}
> 0.

The latter theorem shows that the set of shifts 𝜁(𝑠+ 𝑖𝜏) whose approximate
uniformly on 𝐾 a given analytic function 𝑓(𝑠) is sufficiently rich, it has a positive
lower density.

The universality in the Voronin sense of 𝜁(𝑠) has a direct connection to RH.It
is known, see, for example, [J. Steuding (2007)] that RH is equivalent to the fol-
lowing statement: for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)− 𝜁(𝑠)∣ < 𝜀

}
> 0,

where the set 𝐾 is the same as in Theorem 3.2.
In Theorem 3.2, the shifts 𝜁(𝑠 + 𝑖𝜏) occur, where 𝜏 varies continuously in

the interval [0, 𝑇 ]. Therefore, the universality of 𝜁(𝑠) in Theorem 3.2 is called
continuous. Also, a discrete universality of 𝜁(𝑠) is known. It is included in the
following theorem.

Theorem 3.3. Let ℎ > 0 be a fixed number, and 𝐾 and 𝑓(𝑠) be the same as in
Theorem 3.2. Then, for every 𝜀 > 0,

lim inf
𝑁→∞

1

𝑁 + 1
♯

{
0 ≤ 𝑚 ≤ 𝑁 : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝑚ℎ)− 𝑓(𝑠)∣ < 𝜀

}
> 0.

4. Effectivization problem

The universality theorem for 𝜁(𝑠) has one very important shortcoming. It is not
effective in the sense that we do not know any concrete value 𝜏 ∈ ℝ for which

sup
𝑠∈𝐾

∣𝜁(𝑠+ 𝑖𝜏)− 𝑓(𝑠)∣ < 𝜀,
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or 𝑚 ∈ ℕ with

sup
𝑠∈𝐾

∣𝜁(𝑠+ 𝑖𝑚ℎ)− 𝑓(𝑠)∣ < 𝜀.

For applications of the universality theorem, it is sufficient to know at least an in-
terval [0, 𝑇0] containing 𝜏 with an approximating property. However, in our opin-
ion, the latter problem is very difficult. The first attempt in this direction was
made in [A. Good (1981)] by A. Good, however, his results are too complicated to
be given here. Interesting results were obtained by my student R. Garunkštis. Sup-
pose that the function 𝑓(𝑠) is analytic on the disc ∣𝑠∣ ≤ 0.05 and max

∣𝑠∣≤0.05
∣𝑓(𝑠)∣ < 1.

Then Garunkštis proved [R. Garunkštis (2003)] that, for every 0 < 𝜀 < 1
2 , there

exists 𝜏 ,

0 ≤ 𝜏 ≤ exp
{
exp{10𝜀−13}} ,

such that

max
∣𝑠∣≤0.0001

∣∣∣∣log 𝜁 (𝑠+ 3

4
+ 𝑖𝜏

)
− 𝑓(𝑠)

∣∣∣∣ < 𝜀,

and

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : max

∣𝑠∣≤0.0001

∣∣∣∣log 𝜁 (𝑠+ 3

4
+ 𝑖𝜏

)
− 𝑓(𝑠)

∣∣∣∣ < 𝜀

}
≥ exp

{−𝜀−13} .
Also, an estimate for the upper universality density is known [J. Steuding

(2003)]. Suppose that 𝑟 ∈ (0, 14) and the function 𝑓(𝑠) is non-vanishing and ana-
lytic on the disc ∣𝑠∣ ≤ 𝑟. Then, for every 𝜀 ≥ 0,

lim sup
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : max

∣𝑠∣≤𝑟

∣∣∣∣𝜁 (𝑠+ 3

4
+ 𝑖𝜏

)
− 𝑓(𝑠)

∣∣∣∣ < 𝜀

}
= O(𝜀).

The last result in this direction is as follows. For 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑛−1) ∈ ℂ𝑛
,

let

∥𝑏∥ =
𝑛−1∑
𝑘=0

∣𝑏𝑛∣,

and

𝐴(𝑛, 𝑏, 𝜀) = ∣ log ∣𝑏0∣∣+
(∥𝑏∥

𝜀

)𝑛2

.

Then we have the following statement.

Theorem 4.1. [R. Garunkštis, A. Laurinčikas, K. Matsumoto, J. Steuding, R. Steud-
ing (2010)] Let 𝑠0 = 𝜎0+𝑖𝑡0, 𝜎0 ∈

(
1
2 , 1
)
and 𝐾 = {𝑠 ∈ ℂ : ∣𝑠−𝑠0∣ ≤ 𝑟}. Moreover,

let 𝑔 : 𝐾 → ℂ be a continuous function, 𝑔(𝑠0) ∕= 0, which is analytic on the disc
∣𝑠 − 𝑠0∣ ≤ 𝑟. Then, for every 𝜀 ∈ (0, ∣𝑔(𝑠0)∣), there exist real numbers 𝜏 ∈ [𝑇, 2𝑇 ]
and 𝛿 = 𝛿(𝜀, 𝑔, 𝜏) > 0, connected by the equality

𝑀(𝜏)
𝛿𝑛

1− 𝛿
=

𝜀

3

(
2− e𝛿𝑟

)
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with

𝑀(𝜏) = max
∣𝑠−𝑠0∣=𝑟

∣𝜁(𝑠+ 𝑖𝜏)∣,

such that

max
∣𝑠−𝑠0∣≤𝛿𝑟

∣𝜁(𝑠+ 𝑖𝜏)− 𝑔(𝑠)∣ < 𝜀.

Here 𝑇 = 𝑇 (𝑔, 𝜀, 𝜎0) > 𝑟 satisfies the inequality

𝑇 ≥ 𝐶(𝑛, 𝜎0)exp

{
exp

{
5𝐴
(
𝑛, 𝑔,

𝜀

3

) 8
1−𝜎0

+ 8

𝜎0− 1
2

}}
,

where

𝑔 =
(
𝑔(𝑠0), 𝑔

′((𝑠0), . . . , 𝑔(𝑛−1)(𝑠0)
)
,

and 𝐶(𝑛, 𝜎0) is an effective computable constant depending on 𝑛 and 𝜎0.

Remark. The requirement 𝑔(𝑠0) ∕= 0 can be removed if 𝐴(𝑛, 𝑔, 𝜀3 ) is changed by
𝐴(𝑛, 𝑔

𝜀
, 𝜀3 ), where

𝑔
𝜀
=
(𝜀
2
, 𝑔′(𝑠0), . . . , 𝑔(𝑛−1)(𝑠0)

)
.

We note that Theorem 4.1 gives only an approximation to the effectivization
problem of the universality theorem, and is far from the full solution of the problem.

5. Other zeta-functions

The Riemann zeta-function is not unique in having the above universality property.
There exists the Linnik-Ibragimov conjecture that all functions 𝑍(𝑠) in some half-
plane given by Dirichlet series

𝑍(𝑠) =

∞∑
𝑚=1

𝑎𝑚
𝑚𝑠

, 𝜎 > 𝜎0,

analytically continuable to the half-plane 𝜎 > 𝜎1, 𝜎1 < 𝜎0, and satisfying certain
natural growth conditions, are universal in the Voronin sense. Usually, in the proof
of universality the estimates, for 𝜎1 < 𝜎 < 𝜎0,

𝑇∫
0

∣𝑍(𝜎 + 𝑖𝑡)∣2d𝑡≪ 𝑇

and

𝑍(𝜎 + 𝑖𝑡)≪ 𝑡𝑎, 𝑎 > 0, 𝑡 > 𝑡0 > 0,

are applied. In our opinion, the latter conjecture is very difficult, however, the
majority of classical zeta-functions are universal.
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On the other hand, there exist non-universal functions given by Dirichlet
series. For example, suppose that

𝑎𝑚 =

{
1 if 𝑚 = 𝑚𝑘

0 , 𝑘 ∈ ℕ,

0 if 𝑚 ∕= 𝑚𝑘
0 ,

where 𝑚0 ∈ ℕ∖{1}. Then we have that, for 𝜎 > 0,

∞∑
𝑚=1

𝑎𝑚
𝑚𝑠

=

∞∑
𝑘=1

1

𝑚𝑘𝑠
0

=
1

𝑚𝑠
0 − 1

.

The function (𝑚𝑠
0− 1)−1 is analytic in the whole complex plane except, for simple

poles on the line 𝜎 = 0; it however, obviously, is non-universal. In this section, we
discuss some examples of other universal zeta-functions.

Let 0 < 𝛼 ≤ 1 be a fixed parameter. The Hurwitz zeta-function 𝜁(𝑠, 𝛼) is
defined, for 𝜎 > 1, by

𝜁(𝑠, 𝛼) =
∞∑

𝑚=0

1

(𝑚+ 𝛼)𝑠
,

and can be meromorphically continued to the whole complex plane. The point
𝑠 = 1 is a simple pole with residue 1. Obviously, 𝜁(𝑠, 1) = 𝜁(𝑠), so 𝜁(𝑠, 𝛼) is a
generalization of the Riemann zeta-function. On the other hand, its properties
are governed by the arithmetical nature of the parameter 𝛼. The simplest case
is of transcendental 𝛼, i.e., when 𝛼 is not a root of any polynomial with rational
coefficients. In this case, the set

{log(𝑚+ 𝛼) : 𝑚 ∈ ℕ0}, ℕ0 = ℕ ∪ {0},
is linearly independent over the field ℚ of rational numbers. We observe that
𝜁(𝑠, 𝛼) with transcendental 𝛼 has no Euler product over primes, therefore, its
universality differs from that of the Riemann zeta-function: the approximated
function can be not necessarily non-vanishing, see, for example, [A. Laurinčikas,
R. Garunkštis (2002)].

Theorem 5.1. Suppose that 𝛼 is transcendental. Let 𝐾 be a compact subset of the
strip 𝐷 with connected complement, and 𝑓(𝑠) be a continuous function on 𝐾 and
analytic in the interior of 𝐾. Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠 + 𝑖𝜏, 𝛼)− 𝑓(𝑠)∣ < 𝜀

}
> 0.

If 𝛼 is rational, then the function 𝜁(𝑠, 𝛼) is also universal. However, the case
of algebraic irrational 𝛼 is an open problem.

Some periodic generalizations of the Riemann and Hurwitz zeta-functions are
known. Let 𝔞 = 𝑎𝑚 : 𝑚 ∈ ℕ be a periodic with a minimal period 𝑘 ∈ ℕ sequence
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of complex numbers. Then the function

𝜁(𝑠; 𝔞) =

∞∑
𝑚=1

𝑎𝑚
𝑚𝑠

, 𝜎 > 1,

is called a periodic zeta-function. The periodicity of 𝔞 implies, for 𝜎 > 1, the
equality

𝜁(𝑠; 𝔞) =
1

𝑘𝑠

𝑘∑
𝑙=1

𝑎𝑙𝜁

(
𝑠,

𝑙

𝑘

)
.

Hence, by virtue of the well-known properties of 𝜁(𝑠, 𝛼), we have that the function
𝜁(𝑠; 𝔞) has analytic continuation to the whole complex plane. If

𝑎 =
1

𝑘

𝑘∑
𝑙=1

𝑎𝑙 ∕= 0,

then the point 𝑠 = 1 is a simple pole of 𝜁(𝑠; 𝔞) with residue 𝑎,while if 𝑎 ∕= 0, then
𝜁(𝑠; 𝔞) is an entire function.

If 𝔞 is a multiplicative sequence, i.e., 𝑎1 = 1 and 𝑎𝑚𝑛 = 𝑎𝑚𝑎𝑛 for all coprimes
𝑚,𝑛 ∈ ℕ, then an analogue of Theorem 3.2 is true [A. Laurinčikas, D. Šiaučiūnas
(2006)] for the function 𝜁(𝛼, 𝛼). In the general case, the following result is known
[J. Kaczorowski (2009)].

Theorem 5.2. For every non-zero periodic sequence 𝔞 of complex numbers with
period 𝑘, there exists a positive constant 𝑐0 = 𝑐0(𝔞) such that, for every compact
subset 𝐾 ⊂ 𝐷 with connected complement,

max
𝑠∈𝐾

Im𝑠−min
𝑠∈𝐾

Im𝑠 ≤ 𝑐0,

every continuous non-vanishing function 𝑓(𝑠) on 𝐾 which is analytic in the inte-
rior of 𝐾, and every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠 + 𝑖𝜏, 𝔞)− 𝑓(𝑠)∣ < 𝜀

}
> 0.

Now let 𝔟 = {𝑏𝑚 : 𝑚 ∈ ℕ0} be another periodic with a minimal period
𝑙 ∈ ℕ sequence of complex numbers, and 𝛼, 0 < 𝛼 ≤ 1, be a fixed parameter. The
periodic Hurwitz zeta-function 𝜁(𝑠, 𝛼, 𝔟) is defined, for 𝜎 > 1, by

𝜁(𝑠, 𝛼; 𝔟) =

∞∑
𝑚=0

𝑏𝑚
(𝑚+ 𝛼)𝑠

.

In view of periodicity of 𝔟,for 𝜎 > 1,

𝜁(𝑠, 𝛼; 𝔟) =
1

𝑙𝑠

𝑙−1∑
𝑘=0

𝑎𝑘𝜁

(
𝑠,

𝑘 + 𝑙

𝑙

)
,
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and this equality gives analytic continuation for 𝜁(𝑠, 𝛼; 𝔟) to the whole complex
plane. The function 𝜁(𝑠, 𝛼; 𝔟) is entire, if

𝑏 =
1

𝑙

𝑙−1∑
𝑘=0

𝑎𝑘 = 0,

and has a simple pole with residue 𝑏 at 𝑠 = 1 if 𝑏 ∕= 0.
If 𝛼 is transcendental, then an analogue of Theorem 5.1 is true [A. Javtokas,

A. Laurinčikas (2006)] for the function 𝜁(𝑠, 𝛼; 𝔟).
We will present one more example of universal zeta-functions with the Euler

product. Let 𝑆𝐿(2,ℤ) denote the full modular group, i.e.,

𝑆𝐿(2,ℤ) =

{(
𝑎 𝑏
𝑐 𝑑

)
: 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 𝑎𝑑− 𝑏𝑐 = 1

}
.

Suppose that the function 𝐹 (𝑧) is analytic in the upper half-plane Im𝑧 > 0

and, for all

(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝑆𝐿(2,ℤ), the functional equation

𝐹

(
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

)
= (𝑐𝑧 + 𝑑)𝜅𝐹 (𝑧)

with a certain 𝜅 ∈ 2ℕ is satisfied. Then 𝐹 (𝑠) has the Fourier series expansion

𝐹 (𝑧) =
∞∑

𝑚=−∞
𝑐𝑚e

2𝜋𝑖𝑚𝑧.

In the case when 𝑐𝑚 = 0 for 𝑚 ≤ 0, the function is called a cusp form of weight
𝜅. Additionally, suppose that 𝐹 (𝑧) is an eigenform of all Hecke operators

(𝑇𝑛𝑓)(𝑧) = 𝑛𝜅−1
∑
𝑑∣𝑛

𝑑−𝜅
𝑑−1∑
𝑏=0

𝑓

(
𝑛𝑧 + 𝑏𝑑

𝑑2

)
.

Then it is proved that 𝑐𝑚 ∕= 0, and, after normalization, we have that

𝐹 (𝑧) =

∞∑
𝑚=1

𝑐𝑚e
2𝜋𝑖𝑚𝑧 with 𝑐1 = 1. (5.1)

To the cusp form (5.1), we attach the zeta-function

𝜑(𝑠, 𝐹 ) =

∞∑
𝑚=1

𝑐𝑚
𝑚𝑠

, 𝜎 >
𝜅+ 1

2
.

Since the coefficients 𝑐𝑚 are multiplicative, 𝜑(𝑠, 𝐹 ) has the Euler product repre-
sentation

𝜑(𝑠, 𝐹 ) =
∏
𝑝

(
1− 𝛼(𝑝)

𝑝𝑠

)−1(
1− 𝛽(𝑝)

𝑝𝑠

)−1
, 𝜎 >

𝜅+ 1

2
.

Here 𝛼(𝑝) and 𝛽(𝑝) are complex numbers, 𝛽(𝑝) = 𝛼(𝑝), 𝛼(𝑝)𝛽(𝑝) = 1 and 𝛼(𝑝) +
𝛽(𝑝) = 𝑐(𝑝). Moreover, the function 𝜑(𝑠, 𝐹 ) is analytically continued to an entire
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function. The universality of 𝜑(𝑠, 𝐹 ) has been proved in [A. Laurinčikas, K. Mat-
sumoto (2001)].

Theorem 5.3 [A. Laurinčikas, K. Matsumoto (2001)]. Let 𝐾 be a compact subset
of the strip {𝑠 ∈ ℂ : 𝜅

2 < 𝜎 < 𝜅+1
2 } with connected complement, and 𝑓(𝑠) be a

continuous non-vanishing on 𝐾 function which is analytic in the interior of 𝐾.
Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜑(𝑠+ 𝑖𝜏, 𝐹 )− 𝑓(𝑠)∣ < 𝜀

}
> 0.

6. Joint universality

A more complicated and interesting problem is a simultaneous approximation of
a collection of analytic functions by shifts of zeta-functions. The first result in
this direction also belongs to S.M. Voronin: in [S.M. Voronin (1975)], he obtained
the joint universality for Dirichlet 𝐿-functions. For the definition of Dirichlet 𝐿-
functions, a notion of a Dirichlet character is needed. A full definition is rather
complicated, therefore, we only observe that every arithmetical function 𝑔(𝑚) ∕= 0
satisfies the following conditions:

1∘ 𝑔(𝑚) is a completely multiplicative function (𝑔(𝑚𝑛) = 𝑔(𝑚)𝑔(𝑛)) for all
𝑚,𝑛 ∈ ℕ;

2∘ 𝑔(𝑚) is periodic with period 𝑘;
3∘ 𝑔(𝑚) = 0 if (𝑚, 𝑘) > 1, and 𝑔(𝑚) ∕= 0 if (𝑚, 𝑘) = 1 coincides with one of the

Dirichlet characters modulo 𝑘.

Let 𝜒 be a Dirichlet character. Then the corresponding Dirichlet 𝐿-function
𝐿(𝑠, 𝜒) is defined, for 𝜎 > 1, by

𝐿(𝑠, 𝜒) =

∞∑
𝑚=1

𝜒(𝑚)

𝑚𝑠
=
∏
𝑝

(
1− 𝜒(𝑝)

𝑝𝑠

)−1
.

A character

𝜒0(𝑚) =

{
1, if (𝑚, 𝑘) = 1,
0, if (𝑚, 𝑘) > 0,

is called the principal character modulo 𝑘. It is not difficult to see that, for 𝜎 > 1,

𝐿(𝑠, 𝜒0) = 𝜁(𝑠)
∏
𝑝∣𝑘

(
1− 1

𝑝𝑠

)
,

thus 𝐿(𝑠, 𝜒0) has a simple pole at 𝑠 = 1 with residue
∏
𝑝∣𝑘

(
1− 1

𝑝𝑠

)
. If 𝜒 ∕= 𝜒0, then

the function 𝐿(𝑠, 𝜒) is entire.
Let 𝑙, 𝑘 ∈ ℕ, (𝑙, 𝑘) = 1. Define

𝜋(𝑥, 𝑘, 𝑙) =
∑
𝑝≤𝑥

𝑝≡𝑙(mod𝑘)

1.
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Dirichlet 𝐿-functions are applied for the investigation of prime numbers in arith-
metical progressions, i.e., for the asymptotics of the function 𝜋(𝑥, 𝑘, 𝑙) as 𝑥→∞.
It has been proved that

𝜋(𝑥, 𝑘, 𝑙) ∼ 𝑥

𝜑(𝑘) log 𝑥
, 𝑥→∞,

where 𝜑(𝑘) is the Euler function: 𝜑(𝑘) = ♯{1 ≤ 𝑚 ≤ 𝑘 : (𝑚, 𝑘) = 1}.
Let 𝜒1(mod𝑘1) and 𝜒2(mod𝑘2) be two Dirichlet characters, and 𝑘 = [𝑘1, 𝑘2]

denote the least common multiple. The characters 𝜒1 and 𝜒2 are called equivalent
if, for (𝑚, 𝑘) = 1,

𝜒1(𝑚) = 𝜒2(𝑚).

Each Dirichlet 𝐿-function is also universal in the Voronin sense. Moreover, the first
example of the joint universality is related to Dirichlet 𝐿-functions.

Theorem 6.1 [S.M. Voronin (1975)]. Suppose that 𝜒1, . . . , 𝜒𝑛 are pairwise non-
equivalent Dirichlet characters, and 𝐿(𝑠, 𝜒1), . . . , 𝐿(𝑠, 𝜒𝑛) are the corresponding
Dirichlet 𝐿-functions. Let 𝐾1, . . . ,𝐾𝑛 be compact subsets of the strip {𝑠 ∈ ℂ :
1/2 < 𝜎 < 1} with connected complements, and let functions 𝑓1(𝑠), . . . , 𝑓𝑛(𝑠) be
continuous non-vanishing on 𝐾1, . . . ,𝐾𝑛 and analytic in the interior of 𝐾1, . . . ,
𝐾𝑛, respectively. Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

1<𝑗≤𝑛
sup
𝑠∈𝐾𝑗

∣𝐿(𝑠+ 𝑖𝜏, 𝜒𝑗)− 𝑓(𝑠)∣ < 𝜀

}
> 0.

Now let 𝛼𝑗 ∈ ℝ, 0 < 𝛼𝑗 ≤ 1, 𝑗 = 1, . . . , 𝑟, and

𝐿(𝛼1, . . . , 𝛼𝑟) = {log(𝑚+ 𝑥𝑗) : 𝑚 ∈ ℕ0, 𝑗 = 1, . . . , 𝑟}.
A joint universality theorem for Hurwitz zeta-functions is of the form.

Theorem 6.2. Suppose that the set 𝐿(𝛼1, . . . , 𝛼𝑟) is linearly independent over ℚ. For
𝑗 = 1, . . . , 𝑟, let 𝐾𝑗 be a compact subset of the strip 𝐷 with connected complement,
and let 𝑓𝑗(𝑠) be a continuous function on 𝐾𝑗 which is analytic in the interior of
𝐾𝑗. Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

1<𝑗≤𝑟
sup
𝑠∈𝐾𝑗

∣𝜁(𝑠+ 𝑖𝜏, 𝛼𝑗)− 𝑓𝑗(𝑠)∣ < 𝜀

}
> 0.

Note that, differently from Theorem 6.1, the approximated analytic functions
in Theorem 6.2 can have zeros on the set 𝐾𝑗 .

There exist other results on joint universality, however, some of them are
conditional. We present a recent theorem on joint universality of zeta-functions
with periodic coefficients.

Let 𝔞𝑗 = {𝑎𝑗𝑚 : 𝑚 ∈ ℕ} be a periodic sequence of complex numbers with min-
imal period 𝑘𝑗 ∈ ℕ, and 𝜁(𝑠; 𝔞𝑗) denote the corresponding periodic zeta-function,
𝑗 = 1, . . . , 𝑟1, 𝑟1 > 1. Let 𝔟𝑗 = {𝑏𝑗𝑚 : 𝑚 ∈ ℕ0} be another periodic sequence of
complex numbers with minimal period 𝑙𝑗 ∈ ℕ, 0 < 𝛼𝑗 ≤ 1, and 𝜁(𝑠, 𝛼𝑗 ; 𝔟𝑗) be the
corresponding periodic Hurwitz zeta-function, 𝑗 = 1, . . . , 𝑟2, 𝑟2 > 1.
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Denote by 𝑘 = [𝑘1, . . . , 𝑘2] the least common multiple of the periods 𝑘1, . . . ,
𝑘𝑟, and let 𝜂1, . . . , 𝜂𝜑(𝑘) be the reduced residue system modulo 𝑘. Define the matrix

𝐴 =

⎛⎜⎜⎝
𝑎1𝜂1 𝑎2𝜂1 . . . 𝑎𝑟1𝜂1
𝑎1𝜂2 𝑎2𝜂2 . . . 𝑎𝑟1𝜂2
. . . . . . . . . . . . .

𝑎1𝜂𝜑(𝑘)
𝑎2𝜂𝜑(𝑘)

. . . 𝑎𝑟1𝜂𝜑(𝑘)

⎞⎟⎟⎠ .

Theorem 6.3 [A. Laurinčikas (2010)]. Suppose that 𝔞1, . . . , 𝔞𝑟1 are multiplicative,
rank(𝐴) = 𝑟1, and the numbers 𝛼1, . . . , 𝛼𝑟2 are algebraically independent over ℚ.
Let 𝐾1, . . . ,𝐾𝑟1 be compact subsets of the strip 𝐷 = {𝑠 ∈ ℂ : 1/2 < 𝜎 < 1} with
connected complements, and let the functions 𝑓1(𝑠), . . . , 𝑓𝑟(𝑠) be continuous non-
vanishing on 𝐾1, . . . ,𝐾𝑟1 and analytic in the interior of 𝐾1, . . . ,𝐾𝑟1 , respectively.

Let 𝐾̂1, . . . , 𝐾̂𝑟1 also be compact subsets of 𝐷 with connected complements, and let

the functions 𝑓1(𝑠), . . . , 𝑓𝑟1(𝑠) be continuous on 𝐾̂1, . . . , 𝐾̂𝑟2 and analytic in the

interior of 𝐾̂1, . . . , 𝐾̂𝑟2 , respectively. Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

1<𝑗≤𝑟1
sup
𝑠∈𝐾𝑗

∣𝜁(𝑠+ 𝑖𝜏, 𝔞𝑗)− 𝑓𝑗(𝑠)∣ < 𝜀,

sup
1<𝑗≤𝑟2

sup
𝑠∈𝐾̂𝑗

∣𝜁(𝑠+ 𝑖𝜏, 𝛼𝑗 ; 𝔟𝑗)− 𝑓𝑗(𝑠)∣ < 𝜀
}
> 0.

7. Proof of universality theorems

The original proof of the Voronin universality theorem is based on an analogue of
the Riemann theorem on rearrangement of terms of series in Hilbert spaces. How-
ever, a more convenient and universal approach uses probabilistic limit theorems
in the sense of weak convergence of probability measures in the space of analytic
functions.

Let 𝑆 be a metric space, and let ℬ(𝑆) denote the class of Borel sets of the
space 𝑆, i.e., the 𝜎-field generated by open sets of 𝑆. Let 𝑃𝑛, 𝑛 ∈ ℕ, and 𝑃 be
probability measures on (𝑆,ℬ(𝑆)). We recall that 𝑃𝑛 converges weakly to 𝑃 as
𝑛→∞ if

lim
𝑛→∞

∫
𝑆

𝑓d𝑃𝑛 =

∫
𝑆

𝑓d𝑃

for every real continuous bounded function 𝑓 on 𝑆.

Denote by 𝐻(𝐷) the space of analytic functions on 𝐷 equipped with the
topology of uniform convergence on compacta. On (𝐻(𝐷),ℬ(𝐻(𝐷))), define the
probability measure

𝑃𝑇 (𝐴) =
1

𝑇
meas {𝜏 ∈ [0, 𝑇 ] : 𝜁(𝑠+ 𝑖𝜏) ∈ 𝐴} .
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To state a limit theorem for the measure 𝑃𝑇 , we need some notation. Let

Ω =
∏
𝑝

𝛾𝑝,

where 𝛾𝑝 = {𝑠 ∈ ℂ : ∣𝑠∣ = 1} for each prime 𝑝. With the product topology and
pointwise multiplication, the infinite-dimensional torus Ω is a compact topological
Abelian group. Therefore, on (Ω,ℬ(Ω)), the probability Haar measure 𝑚𝐻 can
be defined, and this gives the probability space (Ω,ℬ(Ω),𝑚𝐻). Denote by 𝜔(𝑝)
the projection of 𝜔 ∈ Ω to the coordinate space 𝛾𝑝, and on the probability space
(Ω,ℬ(Ω),𝑚𝐻), define the 𝐻(𝐷)-valued random element 𝜁(𝑠, 𝜔) by the formula

𝜁(𝑠, 𝜔) =
∏
𝑝

(
1− 𝜔(𝑝)

𝑝𝑠

)−1
.

Note that the latter product converges uniformly on compact subset of the half-
plane 𝜎 > 1

2 for almost all 𝜔 ∈ Ω.Denote by 𝑃𝜁 the distribution of the random
element 𝜁(𝑠, 𝜔), i.e.,

𝑃𝜁(𝐴) = 𝑚𝐻(𝜔 ∈ Ω : 𝜁(𝑠, 𝜔) ∈ 𝐴), 𝐴 ∈ ℬ(𝐻(𝐷)).

Theorem 7.1. The probability measure 𝑃𝑇 converges weakly to 𝑃𝜁 as 𝑇 →∞.

The next ingredient of the proof of universality for 𝜁(𝑠) is the support of the
measure 𝑃𝜁 .We recall that the support of 𝑃𝜁 is a minimal closed set 𝑆𝜁 such that
𝑃𝜁(𝑆𝜁) = 1. The support 𝑆𝜁 consists of elements 𝑥 ∈ 𝐻(𝐷) such that, for every
neighbourhood 𝐺 of 𝑥, the inequality 𝑃𝜁(𝐺) > 0 is satisfied.

Theorem 7.2. The support of the measure 𝑃𝜁 is the set

{𝑔 ∈ 𝐻(𝐷) : 𝑔(𝑠) ∕= 0 or 𝑔(𝑠) ≡ 0}.

Proof of Theorem 3.2. First suppose that the function 𝑓(𝑠) has a non-vanishing
analytic continuation to the strip 𝐷. Then, by Theorem 7.2, 𝑓(𝑠) ∈ 𝑆𝜁 , therefore,
defining an open set 𝐺 by

𝐺 = {𝑔 ∈ 𝐻(𝐷) : sup
𝑠∈𝐾

∣𝑔(𝑠)− 𝑓(𝑠)∣ < 𝜀},

we obtain that

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)− 𝑓(𝑠)∣ < 𝜀

}
≥ 𝑃𝜁(𝐺) > 0.

Now let 𝑓(𝑠) be as in Theorem 3.2. Then, by Theorem 1.1, there exists a
polynomial 𝑝(𝑠) such that

sup
𝑠∈𝐾

∣𝑓(𝑠)− 𝑝(𝑠)∣ < 𝜀

4
.
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We have that 𝑝(𝑠) ∕= 0 on 𝐾. Therefore, we can choose a continuous branch of
log 𝑝(𝑠) which is analytic in some region containing 𝐾. By Theorem 1.1 again, we
can find a polynomial 𝑞(𝑠) such that

sup
𝑠∈𝐾

∣𝑝(𝑠)− e𝑞(𝑠)∣ < 𝜀

4
. (7.1)

This and (7.1) show that

sup
𝑠∈𝐾

∣𝑓(𝑠)− e𝑞(𝑠)∣ < 𝜀

2
. (7.2)

However, 𝑒𝑞(𝑠) is a non-vanishing analytic function on 𝐷. Thus, by the first part
of the proof

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)− e𝑞(𝑠)∣ < 𝜀

2

}
> 0.

In view of (7.2),{
𝜏 ∈ [0,𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)−𝑓(𝑠)∣<𝜀

}
⊃
{
𝜏 ∈ [0,𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)−e𝑞(𝑠)∣< 𝜀

2

}
,

hence the theorem follows.

8. Some applications

Universality theorems for zeta- and 𝐿-functions have theoretical and practical
applications. One of the theoretical applications is related to the functional inde-
pendence of functions.

In 1887, O. Hölder proved [O. Hölder (1887)] that the Euler gamma-function
Γ(𝑠) does not satisfy any algebraic-differential equation, i.e., there are no polyno-
mials 𝑃 ∕≡ such that

𝑃 (Γ(𝑠),Γ′(𝑠), . . . ,Γ(𝑛−1)) ≡ 0.

In 1900, Hilbert observed that the algebraic-differential independence of the Rie-
mann zeta-function can be proved by using the above Hölder’s result and the
functional equation for 𝜁(𝑠). S.M. Voronin, using a universality theorem, obtained
[S.M. Voronin (1973)] the functional independence of 𝜁(𝑠).

Theorem 8.1. Suppose that the functions 𝐹𝑗 : ℂ𝑁 → ℂ are continuous, 𝑗 =
0, . . . , 𝑟, and

𝑟∑
𝑗=0

𝑠𝑗𝐹𝑗(𝜁(𝑠), . . . , 𝜁
(𝑁−1)(𝑠)) ≡ 0.

Then 𝐹𝑗 ≡ 0 for 𝑗 = 0, . . . , 𝑟.

The functional independence also follows for other zeta- and 𝐿-functions that
are universal in the above sense.

The universality also can be used for approximate computations with ana-
lytic functions. Usually, zeta-functions satisfy approximate functional equations.
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For example, for the function 𝜁(𝑠), the following equation is true [A. Ivič(1985)].
Suppose that 0 ≤ 𝜎 ≤ 1, 𝑥, 𝑦, 𝑡 ≥ 𝑐 > 0 and 2𝜋𝑥𝑦 = 𝑡. Then uniformly in 𝜎,

𝜁(𝑠) =
∑
𝑚≤𝑥

1

𝑚𝑠
+ 𝜒(𝑠)

∑
𝑚≤𝑦

1

𝑚1−𝑠 +O(𝑥−𝜎) + O
(
𝑡1/2−𝜎𝑦𝜎−1

)
,

where

𝜒(𝑠) = 2𝑠𝜋𝑠−1Γ(1− 𝑠) sin
𝜋𝑠

2
.

Therefore, first we can evaluate 𝜁(𝑠 + 𝑖𝜏), and then, using Theorem 3.2, we can
obtain the desired information on a given analytic function 𝑓(𝑠).

An application of universality in physics is given in [K.M. Bitar, N.N. Khuri,
H.C. Ren (1991)].

The author thanks Professor S. Rogosin for inviting me to the school-seminar
and for suggesting that write this paper.
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