
Chapter 2
Simulation and Continuous Optimization

Oliver Kolb and Jens Lang

Abstract In this chapter we consider the solution of the model equations of water
supply networks and continuous optimal control tasks. We begin with the descrip-
tion of our simulation tool in Sect. 2.1, in particular the numerical treatment of
the water hammer equations. This includes the description of the implemented dis-
cretization scheme together with a stability and convergence analysis. As we will
see, the applied scheme perfectly matches with the properties of the water hammer
equations and thus builds a useful foundation for the solution of the entire model
equations as well as optimal control tasks.

In Sect. 2.2 we consider the computation of sensitivity information, which is
necessary for the application of gradient-based optimization techniques. Here, we
follow a first-discretize approach to derive adjoint equations. Due to the special
structure of the considered problems, very efficient algorithms can be applied.

Finally, Sect. 2.3 deals with the problem of singularities in the model equations
of water supply networks. Here, a physically motivated regularization approach is
applied and also extended to be applicable in an adjoint calculus.

2.1 Numerical Solution of the Model Equations

In this section, we describe our simulation tool, which numerically solves the un-
derlying model equations. The main structure of this tool is described in Sect. 2.1.1.
Here, we assume that the discretization of the model equations in time and space is
given.

The water hammer equations are an integral part of the entire model of water sup-
ply networks. As we will see, this system of partial differential equations is hyper-
bolic. The numerical solution of hyperbolic PDEs demands great care regarding the
discretization scheme, which crucially depends on the properties of the underlying
equations. After recapitulating the basic properties of the water hammer equations
in Sect. 2.1.2, we will describe the applied discretization scheme in Sect. 2.1.3 and
give stability and convergence results.

2.1.1 Network Equations
The first step towards the solution of the model equations is an appropriate dis-
cretization. The treatment of the water hammer equations is described in detail in
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Sect. 2.1.3. The same time discretization is applied to the other components, mod-
elled by algebraic and ordinary differential equations. The latter are discretized with
one-step methods.

Let t0 < t1 < · · · < tN be the time steps of the discretization. The application
of the discretization schemes to the model equations yields a coupled system of
(nonlinear) algebraic equations E(y,u), which depends on state variables

yT = (
y(t0)

T , y(t1)
T , . . . , y(tN )T

)
,

like pressure head and flow rates, and control variables

uT = (
u(t0)

T , u(t1)
T , . . . , u(tN )T

)
,

e.g. the speed of pumps. Boundary and coupling conditions are already included in
E(y,u). Now, the simulation task consists of solving these equations for a given
initial state y(t0) and control variables for all time steps. Due to the time-dependent
structure, this set of equations can be partitioned and solved for y(tj ) time step by
time step (j = 1, . . . ,N ), resulting in subsets of E of the form

F
(
tj−1, tj , y(tj−1), y(tj ), u(tj−1), u(tj )

) = 0.

While explicit dependencies may be solved in advance, the remaining (implicit)
equations have to be solved with Newton’s method. Here, we can exploit the spar-
sity structure of the underlying Jacobian matrix by using an appropriate solver for
the sets of linear equations [7]. Unfortunately, the discretized model equations of
water supply networks do not always yield unique solutions. The treatment of the
underlying singularities is described in Sect. 2.3.

2.1.2 Properties of the Water Hammer Equations

The water hammer equations play an integral role in the modelling of water supply
networks. The purpose of this section is to collect some properties of particular
interest.

The water hammer equations are given by

∂

∂t
h + a2

gA

∂

∂x
Q = 0,

∂

∂t
Q + gA

∂

∂x
h = −λ(Q)

Q|Q|
2dA

(2.1)

and can be written in the general form of a balance law

∂

∂t
w + ∂

∂x
f (w) = g(w)
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with w = ( h
Q

)
and

f (w) =
(

a2

gA
Q

gAh

)

, g(w) =
(

0
−λ(Q)

Q|Q|
2dA

)
.

Obviously, f (w) is linear in w and we have

∂

∂x
f (w) =

(
0 a2

ga

gA 0

)

︸ ︷︷ ︸
= ∂

∂w
f (w)

∂

∂x
w.

A short calculation yields

λ1,2 = ±a

for the eigenvalues of ∂
∂w

f (w). Thus, the water hammer equations form a hyper-
bolic system of PDEs with constant characteristic speeds.

Another important property of the water hammer equations is the dissipativity of
the source term g(w): The eigenvalues of

∂

∂w
g(w) =

(
0 0
0 − |Q|

2dA
(λ′(Q)Q + 2λ(Q))

)

are

μ1 = − |Q|
2dA

(
λ′(Q)Q + 2λ(Q)

)
< 0, μ2 = 0.

In practical computations, often the stationary limit of the water hammer equa-
tions is used. Setting the time derivatives to zero yields that the discharge is constant
(in space),

Q(x) ≡ Q, (2.2)

and a linearly decreasing pressure head in flow direction,

h(x1) − h(x0) = −λ(Q)
Q|Q|

2gdA2
(x1 − x0). (2.3)

2.1.3 Implicit Box Scheme

For the discretization of the water hammer equations, we apply an implicit box
scheme. The main drawback of explicit methods in the context of hyperbolic PDEs
is the stepsize restriction due to the CFL condition, which is of the form

Δt ≤ α
Δx

λmax
(2.4)
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with some positive α ∈ R. Here, λmax denotes the spectral radius of the Jacobian
matrix of the flux function. Regarding the water hammer equations, the CFL condi-
tion is very restrictive since λmax equals the speed of sound (in water). Thus, very
fine time discretizations would be necessary for stability reasons, while an appro-
priate resolution of the typically moderate dynamics in the daily operation of water
supply networks would allow much larger time steps.

We now formulate the applied scheme for balance laws of the form

∂

∂t
w + ∂

∂x
f (w) = g(w), (x, t) ∈R×R+ (2.5)

with given initial data

w(x,0) = w0(x), x ∈R. (2.6)

To approximate (weak) solutions of (2.5)–(2.6), we choose a spatial mesh size Δx,
a time grid size Δt and introduce a piecewise constant function w̃(x, t) defined by

w̃(x, t) = wn
j for (x, t) ∈ Ij × Jn (2.7)

with Ij = [(j − 0.5)Δx, (j + 0.5)Δx) and Jn = [nΔt, (n + 1)Δt). For the compu-
tation of the approximate values wn

j ≈ w(jΔx,nΔt), we consider the implicit box
scheme

wn+1
j−1 + wn+1

j

2
= wn

j−1 + wn
j

2
− Δt

Δx

(
f

(
wn+1

j

) − f
(
wn+1

j−1

))

+ Δt
g(wn+1

j−1) + g(wn+1
j )

2
. (2.8)

As initial conditions, we set

w0
j =

∫

Ij

w0(x)dx. (2.9)

When implementing this method for a scalar balance law on a finite grid xl <

xl+1 < · · · < xr−1 < xr , we get r − l equations for r − l + 1 variables. So, we have
to impose boundary conditions at exactly one boundary, depending on the charac-
teristic direction, i.e., on the sign of f ′. In order that the proposed scheme may
work, we have to assume that the sign of f ′ does not change over the computa-
tional domain. The generalization for systems of balance laws is that the signature
of the characteristic directions does not change. This assumption is often satisfied
for subsonic flows and also holds for the water hammer equations (2.1).

We mention that for g ≡ 0 and wn,wn+1 ∈ L1(Z), the scheme (2.8) is conserva-
tive. Moreover, it can be easily shown that the proposed scheme is exact in the sta-
tionary case (2.2)–(2.3) of the water hammer equations. Next, we give some further
results for the applied scheme in the scalar case, which have already been published
in [12], where also the proofs can be found.
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First, it can be shown that the box scheme admits a unique solution in L1(Z) in
every time step. For this, we assume f ′ ≥ λmin > 0. Analogously, Proposition 1 and
the following propositions hold in the case f ′ ≤ −λmin < 0.

Proposition 1 (Existence and Uniqueness) For wn ∈ L1(Z), f,g ∈ C1(R), g(0) =
0, g′ ≤ 0, f ′ ≥ λmin > 0 and Δt

Δx
≥ 1

2λmin
, scheme (2.8) admits a unique solution

wn+1 ∈ L1(Z).

In Proposition 1, we have introduced the requirement Δt ≥ Δx/(2λmin). In con-
trast to the CFL condition (2.4), which determines an upper bound for the time grid
size Δt , the implicit structure of the scheme leads to a lower bound for the time grid
size.

Motivated by the well-known results of Kružkov [13], the following stability
results can be shown:

Proposition 2 (Stability) Let wn,vn ∈ L∞(Z) ∩ L1(Z) = L1(Z), f,g ∈ C1(R),
g(0) = 0 and g′ ≤ 0. Then, scheme (2.8) has the following stability properties:

(1) If Δx
Δt

≤ 2f ′ + Δxg′, then ‖wn+1‖L∞(Z) ≤ ‖wn‖L∞(Z).
(2) If Δx

Δt
≤ 2f ′, then ‖wn+1 − vn+1‖L1(Z) ≤ ‖wn − vn‖L1(Z) and T V (wn+1) ≤

T V (wn).

The requirement in (1) can even be weakened to Δx
Δt

≤ 2f ′ under mild addi-
tional assumptions. Next, in analogy to the Lax-Wendroff-Theorem (see e.g. [14],
pp. 239ff.), it can be shown:

Proposition 3 Let (w(k))k∈N be a sequence constructed by scheme (2.8)–(2.9)

and converging in L1
loc(R × R+) with Δt(k),Δx(k) k→∞−→ 0. Then, the limit ŵ =

limk→∞ w(k) is a weak solution of the Cauchy problem (2.5)–(2.6).

Finally, assuming the stability properties

∥∥wn+1
∥∥

L∞(Z)
≤ ∥∥wn

∥∥
L∞(Z)

,

∥∥wn+1
∥∥

L1(Z)
≤ ∥∥wn

∥∥
L1(Z)

,

T V
(
wn+1) ≤ T V

(
wn

)
,

(2.10)

which can for instance be achieved by fulfilling the requirements of Proposition 2,
convergence to the so-called entropy solution can be shown:

Proposition 4 (Convergence to Entropy Solution) Let w0 ∈ L∞(R) ∩ L1(R),
f,g ∈ C1(R), g(0) = 0, g′ ≤ 0, f ′ ≥ λmin > 0 and T V (u0) < ∞. Let (w(k))k∈N
be a sequence constructed by scheme (2.8)–(2.9), fulfilling the stability proper-

ties (2.10) and with Δt(k),Δx(k) k→∞−→ 0, where r = Δt(k)

Δx(k) ≥ 1
2λmin

. Then, the limit
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ŵ = limk→∞ w(k) exists in L1
loc(R×R+) and is the entropy solution of the Cauchy

problem (2.5)–(2.6).

2.2 Adjoint Calculus

The last section was concerned with the solution of the simulation task. The next
step is to determine the control u in such a way that a given objective function is
optimized while certain constraints have to be fulfilled. Therefore, we consider the
following optimal control problem:

min
u

f
(
y(u),u

)

s.t. g
(
y(u),u

) ≥ 0

h
(
y(u),u

) = 0

umin ≤ u ≤ umax

(2.11)

with state vector y, control vector u, objective function f , inequality constraints g

and equality constraints h. The state vector is assumed to be a function of the control
vector, that is, for a given control u the state y is uniquely determined. As described
in Sect. 2.1.1, the state vector results from solving a (nonlinear) set of equations
E(y,u) = 0 for y. For this reason, the functions f , g and h can also be considered
as functions solely depending on the control u. In fact, the state variables are not
visible for the optimization tools we have linked to our software, their interface
only contains the control variables.

We want to solve (2.11) with gradient-based optimization methods like DONLP2
[17, 18], IPOPT [19] and KNITRO [5]. While the simulation tool enables us to
evaluate the objective function and the constraints for a given control u, we still
have to provide sensitivity information for all functions with respect to the control.
Adjoint calculus is a very efficient way to compute the so-called reduced gradients.
In principle, there are two different ways to compute the desired information via
adjoint equations as shown in Fig. 2.1. Starting with the model equations, one may
first derive (analytically) adjoint equations and apply an appropriate discretization
scheme afterwards. The second possibility is to derive adjoint equations based on
the discretized model equations.

Since both approaches have their advantages and disadvantages, we apply both
in our software. Nevertheless, there is a strong emphasis on the second approach
because the necessary components are much easier to implement. Further details of
this approach are provided in the following sections.

2.2.1 The First-Discretize Approach

We consider the computation of the reduced gradient of an arbitrary scalar function
f (y(u),u) via adjoint equations derived by a first-discretize approach. As above
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Fig. 2.1 Two ways from the model equations to the discretized adjoint equations

y(u) is considered to be the unique solution of E(y,u) = 0. Of course, the described
procedure is not only valid for f being our objective function but any of the equality
or inequality constraints in (2.11).

To derive the adjoint equations, which are necessary for the computation of
d
du

f (y(u),u), we introduce the Lagrange function

L(y,u) = f (y,u) + ξT E(y,u), (2.12)

where ξ is the so-called adjoint state. With y = y(u), basic transformations of (2.12)
lead to

d

du
f

(
y(u),u

) = d

du
L

(
y(u),u

) − d

du
ξT E

(
y(u),u

)

︸ ︷︷ ︸
=0

= d

du
L

(
y(u),u

)

= ∂

∂y
L

(
y(u),u

)

︸ ︷︷ ︸
!=0 ⇒ ξ

dy

du
+ ∂

∂u
L

(
y(u),u

) = ∂

∂u
L

(
y(u),u

)

= ∂

∂u
f

(
y(u),u

) + ξT ∂

∂u
E

(
y(u),u

)
. (2.13)

Thus, we have reduced the task of computing the total derivative of f with respect
to u to the computation of the partial derivatives of f and E with respect to u and
solving the system of adjoint equations:

∂

∂y
L

(
y(u),u

) = ∂

∂y
f

(
y(u),u

) + ξT ∂

∂y
E

(
y(u),u

) != 0
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⇔
(

∂

∂y
E

(
y(u),u

))

︸ ︷︷ ︸
independent of f

T

ξ = −
(

∂

∂y
f (y(u),u)

)T

. (2.14)

It is important to notice that (2.14) is a linear system and the matrix ∂
∂y

E(y(u),u)

is independent of the function f . Therefore, this matrix and any decomposition of
it computed for solving (2.14) only needs to be computed once.

After having solved (2.14), we get our reduced gradient from (2.13):

d

du
f

(
y(u),u

) = ∂

∂u
f

(
y(u),u

) + ξT ∂

∂u
E

(
y(u),u

)

︸ ︷︷ ︸
independent of f

.

Here, the matrix ∂
∂u

E(y(u),u) is independent of f and therefore only needs to be
computed once, independent of the number of computed gradients.

2.2.2 Application to Time-Dependent Problems

In the case of time-dependent control problems, the task (2.11) and therewith the
reduced gradient (2.13) and the adjoint system (2.14) have a very special structure.

Let us begin with the state defining function E(y,u). As described in Sect. 2.1.1,
we start in a certain state y(t0) = y0. From any state y(tj ), we come to the next state
y(tj+1) by solving a set of equations of the following form:

F
(
told, tnew, y(told), y(tnew), u(told), u(tnew)

) = 0. (2.15)

Altogether, we have

E(y,u) =

⎛

⎜⎜⎜
⎝

y(t0) − y0
F(t0, t1, y(t0), y(t1), u(t0), u(t1))

...

F (tN−1, tN , y(tN−1), y(tN ),u(tN−1), u(tN ))

⎞

⎟⎟⎟
⎠

= 0. (2.16)

For the matrix in the adjoint system, we get

∂

∂y
E(y,u) =

⎛

⎜⎜⎜⎜
⎜
⎝

I

A1 B1
A2 B2

. . .
. . .

AN BN

⎞

⎟⎟⎟⎟
⎟
⎠

with

Aj = ∂

∂yold
F

(
tj−1, tj , y(tj−1), y(tj ), u(tj−1), u(tj )

)
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and

Bj = ∂

∂ynew
F

(
tj−1, tj , y(tj−1), y(tj ), u(tj−1), u(tj )

)
.

For an arbitrary scalar function f , the set of adjoint equations (2.14) then reads
⎛

⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

I AT
1

BT
1 AT

2

BT
2

. . .

. . . AT
N

BT
N

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

ξ(t0)

ξ(t1)
...

ξ(tN )

⎞

⎟⎟⎟
⎠

= −

⎛

⎜⎜⎜⎜⎜
⎝

∂
∂y0

f (y,u)T

∂
∂y1

f (y,u)T

...
∂

∂yN
f (y,u)T

⎞

⎟⎟⎟⎟⎟
⎠

. (2.17)

Here, the partial derivatives ∂
∂yj

refer to the blockwise partitioning of the state vector
according to the time steps.

Due to the blockwise bidiagonal structure of the matrix ∂
∂y

E(y,u), the linear
system (2.17) can be solved backwards in time and blockwise, reducing the size of
the systems to be solved:

ξ(tN ) = −(
BT

N

)−1 ∂

∂yN

f (y,u)T ,

...

ξ(tj ) = −(
BT

j

)−1
(

∂

∂yj

f (y,u)T + AT
j+1ξ(tj+1)

)
,

...

ξ(t0) = −
(

∂

∂y0
f (y,u)T + AT

1 ξ(t1)

)
.

Besides the structure of the matrix ∂
∂y

E(y,u), the right-hand side of (2.17) typi-
cally also features a special structure. Further benefit can be made out of the struc-
ture of ∂

∂u
E(y,u). Similar to the structure of ∂

∂y
E(y,u), we get

∂

∂u
E(y,u) =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0 . . . . . . . . . 0
∂

∂uold
E1

∂
∂unew

E1

∂
∂uold

E2
∂

∂unew
E2

. . .
. . .

∂
∂uold

EN
∂

∂unew
EN

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

where Ej abbreviates F(tj−1, tj , y(tj−1), y(tj ), u(tj−1), u(tj )). Since the first
block of rows equals zero, there is no need to compute ξ(t0) for the evaluation of
the reduced gradient via (2.13). This result is not surprising, because the initial state
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y(t0) is given and therefore does not depend on the control. Moreover, we usually
have ∂

∂uold
Ej = 0. In this case, ∂

∂u
E(y,u) reduces to a block-diagonal matrix.

2.3 Singularities

As already mentioned in Sect. 2.1.1, the model equations of a water supply networks
may contain non-unique solutions for certain constellations of elements and control
states. Naturally, non-unique solutions cause problems when trying to solve the dis-
cretized model equations. In Newton’s method, we are confronted with singular or
at least ill-conditioned Jacobian matrices. But it is possible to introduce a physi-
cally reasonable regularization of the underlying matrices, which turns out to be
a Tychonoff-like regularization. The presented results have already been published
in [11].

2.3.1 Introduction

The first algorithm to determine pressure heads and flows for a networked system
in the steady state case was published in 1936 [6]. Meanwhile, a variety of software
packages has been implemented, e.g. KANET [1], STANET [2] and EPANET [15].
The latter one is released as freeware by the United States Environmental Protec-
tion Agency, broadly accepted, and often a core part of proprietary packages. But
EPANET and also other codes have difficulties with certain constellations of con-
trol devices. Several problem cases have been published by Simpson in 1999 [16].
Meanwhile, the EPANET software copes with all of them but many recent publica-
tions still report about new cases where it fails or computes wrong results, e.g. [4, 9].

One underlying problem can be explained by a very simple example: Consider
two closed valves as shown in Fig. 2.2. The equations modelling the pressure heads
hl and hr and the flow rates ql and qr at the connection of the two valves are given
as follows,

F(hl, ql, hr , qr) =

⎛

⎜⎜
⎝

hl − hr

ql − qr

ql

qr

⎞

⎟⎟
⎠

︸ ︷︷ ︸
=:b(hl ,ql ,hr ,qr )

!=

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠ . (2.18)

Here, the pressure head between the two valves is not uniquely determined by the
model equations. We only claim that hl equals hr . From the practical point of view,
we might not be interested in the “real” pressure values between the two closed
valves, but in a dynamic or quasi-stationary numerical simulation, we would expect
the pressure variables to keep the same or at least similar values as in the previous
time step.

Of course, one could cope with the non-uniqueness in the mentioned example but
the situation becomes more difficult for large networks and especially when devices
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Fig. 2.2 Two closed
valves—the model equations
do not yield a unique solution

are state-controlled so that “truncated” parts are not known a priori. Anyway, we
expect getting into trouble when solving the in general nonlinear model equations
of a water supply network with Newton’s method in situations like above.

The nature of the non-uniqueness in our small example is in close correlation
with the Jacobian matrix of the model equations:

A(hl, ql, hr , qr ) =

⎛

⎜
⎜
⎝

1 0 −1 0
0 1 0 −1
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠ . (2.19)

The Jacobian matrix is singular, and obviously, the vector v0 = (1,0,1,0) is an
element of the kernel of A. Thus, when solving Aδ = b in Newton’s method, we
have to cope with the singularity of A, and moreover, an arbitrary multiple of v0

could be added to any solution δ, which corresponds to arbitrary but equal values
for hl and hr .

As already mentioned, from the practical point of view, we might not be inter-
ested in the pressure values between the two closed valves, but at least, we have to
ensure that the underlying singularity does not impede the solution process of the
whole system of model equations. Moreover, we would prefer the pressure variables
to change as little as possible.

In literature, there are different approaches to handle the shown problem in gen-
eral. Alvarez et al. [4] propose to add virtual tanks in the network. In [8], Deuerlein
proposes a reformulation of the model equations in the form of a minimization prob-
lem. For the analysis of the resulting model, he also uses game theory. Hähnlein [10]
uses basically the same modelling as we do. For solving the sets of linear equations
in Newton’s method, he applies singular value decomposition.

Regarding the example problem, solving Aδ = b with an SVD has exactly the
desired effect: We get the solution of the linear system of equations with minimal
norm—the solution component in the nullspace of A (multiples of the vector v0)
equals zero. Since this property of using an SVD for solving sets of linear equations
holds in a more general setting, singular value decomposition seems to be a good
approach. While we get a solution of the linear system of equations (if one exists),
the correction terms for the “critical variables” (here hl and hr ) are kept small.
Moreover, we may eliminate small singular values in the SVD of the matrix to
stabilize the solution process. Besides all those advantages of using singular value
decomposition, the price to pay is the huge computational effort.

Typically, there are various points in water supply networks where the pressure
variables may not be uniquely determined and thus may be “critical” in the solu-
tion process. Without proper treatment, one gets very large correction terms δ in
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Newton’s method or no solution at all for the linear system of equations, and either
usually leads to a failure of the method.

In the next section, we will present our approach to the solution of the introduced
class of problems. In the general setting, parts of the solution of the underlying sets
of linear equations are uniquely determined while there may be degrees of freedom
in other parts. We want to keep those solution components as small as possible while
maintaining a useful solution.

Our approach is based on the QR decomposition of a modified matrix Ã. Since
we know the critical variables in our applications, the original matrix A is extended
with additional rows in such a way that the resulting matrix has full rank. The basic
idea behind this approach is to penalize corrections in critical variables. Although
we increase the size of the underlying matrix, the application of a QR decomposi-
tion to the modified matrix compared to the SVD of the original matrix results in an
enormous speed-up. But this is not the only contribution we make to the simulation
task of water supply networks. Additionally, we use the decomposition of the mod-
ified matrix to efficiently compute sensitivity information with respect to a given
target functional in Sect. 2.3.3.

2.3.2 Theoretical Analysis—Forward Direction

We consider the same setting as in Sects. 2.1.1 and 2.2: The discretization of the
model equations of the whole water supply network yields a coupled system of
nonlinear algebraic equations E(y,u), which can be split up according to (2.16).
During the solution process with Newton’s method, we have to compute corrections
δ by solving a linear system of equations of the form

Aδ = b ⇔ Aδ − b = 0 (2.20)

with A being an n × n matrix. If A is singular (or ill-conditioned), we cannot make
use of an LU decomposition of A in order to solve (2.20). Instead, we reformulate
(2.20) as linear least squares problem

min
δ

‖Aδ − b‖2
2. (2.21)

This problem can always be solved with a singular value decomposition of A. The
SVD yields the (unique) solution δ∗ of (2.21) where additionally ‖δ∗‖2 is minimal
among all solutions. In general, there is a residual r∗ = Aδ∗ − b.

Linear least squares problems can also be solved via a QR decomposition of the
underlying matrix if it has full rank. Therefore, we consider the modified problem

min
δ

‖Ãδ − b̃‖2
2 (2.22)

with Ã = ( A
Bs

)
and b̃ = (

b
0

)
.
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Here, Bs is a k × n matrix (with k ≤ n) where in each row, there is exactly one
nonzero entry s > 0 and at most one entry in every column, for example,

Bs =
⎛

⎝
s 0 0 0 0
0 s 0 0 0
0 0 0 s 0

⎞

⎠ . (2.23)

Let IB be the set of column indices of the nonzero entries in Bs (in the example
IB = {1,2,4}). By adding additional rows to A, we can achieve that Ã has full rank,
and accordingly, the modified minimization problem (2.22) can be solved via a QR
decomposition of Ã.

There are several advantages of using a singular value decomposition for solving
the original problem (2.21):

1. If A is regular, δ∗ = A−1b and r∗ = 0.
2. If A is not regular, ‖δ∗‖2 is minimal among all solutions.
3. By eliminating small singular values, the solution process can be stabilized.

The main disadvantage of using SVD is the computational effort. Typically, the
singular value decomposition is computed in two steps. First, the matrix is reduced
to a bidiagonal matrix, and afterwards, the SVD of the bidiagonal matrix is com-
puted by an iterative method up to a certain precision. In one of our real life applica-
tions, we have a 766 × 766 matrix with 1774 nonzero entries. For the computation
of the SVD, 9.68 seconds are needed using MATLAB [3].

For the same example, the QR factorization of the corresponding modified matrix
(1018×766 with 2026 nonzero entries) takes only 13 milliseconds. Hence, from the
computational point of view, we prefer a QR decomposition to solve the modified
problem (2.22) instead of solving (2.21) with an SVD. The results computed for the
modified task (2.22) have to be measured in comparison to the three points given
above. This is done in the following.

Let δ̃∗ be the unique solution of (2.22) and r̃∗ = Aδ̃∗ − b. With

f (δ) = ‖Ãδ − b̃‖2
2 = ‖Aδ − b‖2

2 + s2
∑

j∈IB

δ2
j = ‖Aδ − b‖2

2 + s2‖δIB
‖2

2 (2.24)

we have

f
(
δ̃∗) ≤ f

(
δ∗). (2.25)

Inequality (2.25) yields for the corresponding residuals

∥∥r̃∗∥∥2
2 ≤ ∥∥r∗∥∥2

2 + s2(∥∥δ∗
IB

∥∥2
2 − ∥∥δ̃∗

IB

∥∥2
2

) ≤ ∥∥r∗∥∥2
2 + s2

∥∥δ∗
IB

∥∥2
2. (2.26)

Thus, the maximum deviation of the Euclidean norm of the residual term r̃∗
from the possible minimum ‖r∗‖2 is limited and can be reduced by reducing s. In
particular, if A is regular (or at least b is in the range of A), we have ‖r∗‖2 = 0 and

∥∥r̃∗∥∥
2 ≤ s

∥∥δ∗
IB

∥∥
2. (2.27)
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Moreover, we get in the regular case:

A
(
δ̃∗ − δ∗) = r̃∗ ⇔ δ̃∗ − δ∗ = A−1r̃∗. (2.28)

Taking the Euclidean norm on both sides yields

∥∥δ̃∗ − δ∗∥∥
2 ≤ ∥∥A−1

∥∥
2

∥∥r̃∗∥∥
2

(2.27)≤ ∥∥A−1
∥∥

2s
∥∥δ∗

IB

∥∥
2 ≤ ∥∥A−1

∥∥
2s

∥∥δ∗∥∥
2 (2.29)

and finally

‖δ̃∗ − δ∗‖2

‖δ∗‖2
≤ s

∥∥A−1
∥∥

2 (2.30)

for the relative error of δ̃∗ compared to δ∗ = A−1b. Note that δ̃∗ = δ∗ if ‖δ∗‖2 = 0.
Since ‖δ̃∗

IB
− δ∗

IB
‖2 ≤ ‖δ̃∗ − δ∗‖2, we also get from (2.29):

‖δ̃∗
IB

− δ∗
IB

‖2

‖δ∗
IB

‖2
≤ s

∥∥A−1
∥∥

2. (2.31)

Similar to above, note that δ̃∗
IB

= δ∗
IB

if ‖δ∗
IB

‖2 = 0.
In addition to the given results, (2.25) also yields

∥∥δ̃∗
IB

∥∥2
2 ≤ ∥∥δ∗

IB

∥∥2
2 − 1

s2

(∥∥r̃∗∥∥2
2 − ∥∥r∗∥∥2

2

)

︸ ︷︷ ︸
≥0

≤ ∥∥δ∗
IB

∥∥2
2. (2.32)

This means that regarding the indices IB of the “correction terms” δ̃∗ and δ∗, the
correction induced by the QR decomposition of the modified matrix Ã is not greater
than the one induced by the SVD of the original matrix A. This is an important
property since the set of indices IB typically refers to “critical” variables of the
problem, while the rest of the variables is supposed to be determined anyway.

So far, we have given quantitative results for our QR decomposition approach
related to the first two advantages of using singular value decomposition. To give
a quantitative result related to the third point, we consider the case IB = {1, . . . , n}
with Bs = sIn, where In is the n-dimensional identity matrix.

Let A = UΣV T be a singular value decomposition of A with

Σ =
⎛

⎜
⎝

σ1
. . .

σn

⎞

⎟
⎠ . (2.33)

For the modified matrix Ã we get

ÃT Ã = (
AT BT

s

)(
A

Bs

)
= AT A + B2

s = V
(
Σ2 + B2

s

)
V T . (2.34)
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Hence, the singular values σ̃j (j = 1, . . . , n) of Ã are given by

σ̃ 2
j = σ 2

j + s2. (2.35)

In particular, we have σ̃j > σj and σ̃j ≥ s > 0.
While in the results above a smaller s is always preferred, here, the opposite is

the case since an increase of the singular values leads to more stability. Thus, in
practice, a trade-off has to be made.

2.3.3 Theoretical Analysis—Backward Direction

Let f (y,u) be a (scalar) quantity of interest. As described in Sect. 2.2, we can
efficiently compute sensitivity information with respect to the control u by solving
adjoint equations. Due to the special structure of E, this can also be done time step
wise, but backwards in time, and we finally have to solve linear systems of equations
with the same matrices as in the forward direction, but transposed.

Thus, we have to solve systems of the form

AT ξ = c. (2.36)

In the whole section, we postulate that c is in the range of AT . This has the fol-
lowing reason: The solution of the simulation process has degrees of freedom in
the kernel ker(A) of A. Thus, regarding the quantity of interest f , it is reasonable to
claim that the partial derivatives of f with respect to the state variables (in each time
step) are perpendicular to ker(A), which is equivalent to being in the range of AT .
Additionally to the partial derivatives of f , c also may contain components from the
preceding time step. This can only occur in parts of the network where the model
contains temporal derivatives, but those parts do not suffer from the described prob-
lem of non-uniqueness since the state variables of consecutive time steps are linked
here.

Let ξ∗ be the solution of (2.36) of minimal Euclidean norm. Similar to
Sect. 2.3.2, this can be computed by a singular value decomposition of A respec-
tively AT . It is natural to apply the QR decomposition of Ã to solve the modified
problem

ÃT

(
ξ

μ

)
= c. (2.37)

With the QR decomposition

Ã =
(

Q̃11 Q̃12

Q̃21 Q̃22

)(
R̃

0

)
, (2.38)
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where Q̃11 and R̃ are n × n matrices, the solution of (2.37) of minimal norm can be
written as

(
ξ̃∗
μ̃∗

)
=

(
Q̃11

Q̃21

)
R̃−T c. (2.39)

This results from the well-known fact that the columns of
( Q̃12

Q̃22

)
form a basis of the

kernel of ÃT . With q̃∗ = AT ξ̃∗ − c we have

∥∥ξ̃∗∥∥2
2 + 1

s2

∥∥q̃∗∥∥2
2 = ∥∥ξ̃∗∥∥2

2 + ∥∥μ̃∗∥∥2
2 =

∥∥∥∥

(
ξ̃∗
μ̃∗

)∥∥∥∥

2

2
≤

∥∥∥∥

(
ξ∗
0

)∥∥∥∥

2

2
= ∥∥ξ∗∥∥2

2. (2.40)

This yields
∥∥q̃∗∥∥2

2 ≤ s2(∥∥ξ∗∥∥2
2 − ∥∥ξ̃∗∥∥2

2

) ≤ s2
∥∥ξ∗∥∥2

2 (2.41)

as upper bound for the residual with respect to the original equation (2.36). Analo-
gously to Sect. 2.3.2, we get in the regular case

∥∥ξ̃∗ − ξ∗∥∥
2∥∥ξ∗∥∥

2

≤ s
∥∥A−T

∥∥
2 (2.42)

for the relative error of ξ̃∗ compared to ξ∗ = A−T c.
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