
Preface

Natural Computing is the field of research that investigates human-designed computing

inspired by nature as well as computing taking place in nature, that is, it investigates models

and computational techniques inspired by nature, and also it investigates, in terms of

information processing, phenomena taking place in nature.

Examples of the first strand of research include neural computation inspired by the

functioning of the brain; evolutionary computation inspired by Darwinian evolution of

species; cellular automata inspired by intercellular communication; swarm intelligence

inspired by the behavior of groups of organisms; artificial immune systems inspired by the

natural immune system; artificial life systems inspired by the properties of natural life in

general; membrane computing inspired by the compartmentalized ways in which cells process

information; and amorphous computing inspired by morphogenesis. Other examples of

natural-computing paradigms are quantum computing and molecular computing, where

the goal is to replace traditional electronic hardware, by, for example, bioware in molecular

computing. In quantum computing, one uses systems small enough to exploit quantum-

mechanical phenomena to perform computations and to perform secure communications

more efficiently than classical physics, and, hence, traditional hardware allows. In molecular

computing, data are encoded as biomolecules and then tools of molecular biology are used to

transform the data, thus performing computations.

The second strand of research, computation taking place in nature, is represented by

investigations into, among others, the computational nature of self-assembly, which lies at the

core of the nanosciences; the computational nature of developmental processes; the computa-

tional nature of biochemical reactions; the computational nature of bacterial communication;

the computational nature of brain processes; and the systems biology approach to bionetworks

where cellular processes are treated in terms of communication and interaction, and, hence, in

terms of computation.

Research in natural computing is genuinely interdisciplinary and forms a bridge between

the natural sciences and computer science. This bridge connects the two, both at the level of

information technology and at the level of fundamental research. Because of its interdisciplin-

ary character, research in natural computing covers a whole spectrum of research methodol-

ogies ranging from pure theoretical research, algorithms, and software applications to

experimental laboratory research in biology, chemistry, and physics.

Computer Science and Natural Computing

A preponderance of research in natural computing is centered in computer science. The

spectacular progress in Information and Communication Technology (ICT) is highly sup-

ported by the evolution of computer science, which designs and develops the instruments

needed for this progress: computers, computer networks, software methodologies, etc. As ICT

has such a tremendous impact on our everyday lives, so does computer science.



However, there is much more to computer science than ICT: it is the science of informa-

tion processing and, as such, a fundamental science for other disciplines. On one hand, the

only common denominator for research done in such diverse areas of computer science is

investigating various aspects of information processing. On the other hand, the adoption of

Information and Information Processing as central notions and thinking habit has been an

important development in many disciplines, biology and physics being prime examples. For

these scientific disciplines, computer science provides not only instruments but also a way

of thinking.

We are now witnessing exciting interactions between computer science and the natural

sciences. While the natural sciences are rapidly absorbing notions, techniques, and methodol-

ogies intrinsic to information processing, computer science is adapting and extending its

traditional notion of computation, and computational techniques, to account for computa-

tion taking place in nature around us. Natural Computing is an important catalyst for this

two-way interaction, and this handbook constitutes a significant record of this development.

The Structure of the Handbook

Natural Computing is both a well-established research field with a number of classical areas,

and a very dynamic field with many more recent, novel research areas. The field is vast, and so

it is quite usual that a researcher in a specific area does not have sufficient insight into other

areas of Natural Computing. Also, because of its dynamic development and popularity, the

field constantly attracts more and more scientists who either join the active research or actively

follow research developments.

Therefore, the goal of this handbook is two-fold:

(i) to provide an authoritative reference for a significant and representative part of the

research in Natural Computing, and

(ii) to provide a convenient gateway to Natural Computing for motivated newcomers to this

field.

The implementation of this goal was a challenge because this field and its literature are

vast — almost all of its research areas have an extensive scientific literature, including

specialized journals, book series, and even handbooks. This implies that the coverage of

the whole field in reasonable detail and within a reasonable number of pages/volumes is

practically impossible.

Thus, we decided to divide the presented material into six areas. These areas are by no

means disjoint, but this division is convenient for the purpose of providing a representative

picture of the field — representative with respect to the covered research topics and with

respect to a good balance between classical and emerging research trends.

Each area consists of individual chapters, each of which covers a specific research theme.

They provide necessary technical details of the described research, however they are self-

contained and of an expository character, which makes them accessible for a broader audience.

They also provide a general perspective, which, together with given references, makes the

chapters valuable entries into given research themes.

This handbook is a result of the joint effort of the handbook editors, area editors, chapter

authors, and the Advisory Board. The choice of the six areas by the handbook editors in

consultation with the Advisory Board, the expertise of the area editors in their respective

vi Preface



areas, the choice by the area editors of well-known researchers as chapter writers, and the

peer-review for individual chapters were all important factors in producing a representative

and reliable picture of the field. Moreover, the facts that the Advisory Board consists of

68 eminent scientists from 20 countries and that there are 105 contributing authors from

21 countries provide genuine assurance for the reader that this handbook is an authoritative

and up-to-date reference, with a high level of significance and accuracy.

Handbook Areas

The material presented in the handbook is organized into six areas: Cellular Automata, Neural

Computation, Evolutionary Computation, Molecular Computation, Quantum Computation,

and Broader Perspective.

Cellular Automata

Cellular automata are among the oldest models of computation, dating back over half a

century. The first cellular automata studies by John von Neumann in the late 1940s were

biologically motivated, related to self-replication in universal systems. Since then, cellular

automata gained popularity in physics as discrete models of physical systems, in computer

science as models of massively parallel computation, and in mathematics as discrete-time

dynamical systems. Cellular automata are a natural choice to model real-world phenomena

since they possess several fundamental properties of the physical world: they are massively

parallel, homogeneous, and all interactions are local. Other important physical constraints such

as reversibility and conservation laws can be added as needed, by properly choosing the local

update rule. Computational universality is common in cellular automata, and even starkly

simple automata are capable of performing arbitrary computation tasks. Because cellular

automata have the advantage of parallelism while obeying natural constraints such as locality

and uniformity, they provide a framework for investigating realistic computation in massively

parallel systems. Computational power and the limitations of such systems are most naturally

investigated by time- and space-constrained computations in cellular automata. In mathemat-

ics— in terms of symbolic dynamics— cellular automata are viewed as endomorphisms of the

full shift, that is, transformations that are translation invariant and continuous in the product

topology. Interesting questions on chaotic dynamics have been studied in this context.

Neural Computation

Artificial neural networks are computer programs, loosely modeled after the functioning of

the human nervous system. There are neural networks that aim to gain understanding of

biological neural systems, and those that solve problems in artificial intelligence without

necessarily creating a model of a real biological system. The more biologically oriented neural

networks model the real nervous system in increasing detail at all relevant levels of information

processing: from synapses to neurons to interactions between modules of interconnected

neurons. One of the major challenges is to build artificial brains. By reverse-engineering the

mammalian brain in silicon, the aim is to better understand the functioning of the (human)

Preface vii



brain through detailed simulations. Neural networks that are more application-oriented tend

to drift further apart from real biological systems. They come in many different flavors, solving

problems in regression analysis and time-series forecasting, classification, and pattern recog-

nition, as well as clustering and compression. Good old multilayered perceptrons and self-

organizing maps are still pertinent, but attention in research is shifting toward more recent

developments, such as kernel methods (including support vector machines) and Bayesian

techniques. Both approaches aim to incorporate domain knowledge in the learning process in

order to improve prediction performance, e.g., through the construction of a proper kernel

function or distance measure or the choice of an appropriate prior distribution over the

parameters of the neural network. Considerable effort is devoted to making neural networks

efficient so that large models can be learned from huge databases in a reasonable amount of

time. Application areas include, among many others, system dynamics and control, finance,

bioinformatics, and image analysis.

Evolutionary Computation

The field of evolutionary computation deals with algorithms gleaned from models of organic

evolution. The general aim of evolutionary computation is to use the principles of nature’s

processes of natural selection and genotypic variation to derive computer algorithms for

solving hard search and optimization tasks. A wide variety of instances of evolutionary

algorithms have been derived during the past fifty years based on the initial algorithms, and

we are now witnessing astounding successes in the application of these algorithms: their

fundamental understanding in terms of theoretical results; understanding algorithmic princi-

ples of their construction; combination with other techniques; and understanding their work-

ing principles in terms of organic evolution. The key algorithmic variations (such as genetic

algorithms, evolution strategies, evolutionary programming, and genetic programming) have

undergone significant developments over recent decades, and have also resulted in very

powerful variations and recombinations of these algorithms. Today, there is a sound under-

standing of how all of these algorithms are instances of the generic concept of an evolutionary

search approach. Hence the generic term ‘‘evolutionary algorithm’’ is nowadays being used to

describe the generic algorithm, and the term ‘‘evolutionary computation’’ is used for the field as

a whole. Thus, we have observed over the past fifty years how the field has integrated the various

independently developed initial algorithms into one common principle. Moreover, modern

evolutionary algorithms benefit from their ability to adapt and self-adapt their strategy para-

meters (such as mutation rates, step sizes, and search distributions) to the needs of the task at

hand. In this way, they are robust and flexible metaheuristics for problem-solving even without

requiring too much special expertise from their users. The feature of self-adaptation illustrates

the ability of evolutionary principles to work on different levels at the same time, and therefore

provides a nice demonstration of the universality of the evolutionary principle for search and

optimization tasks. The widespread use of evolutionary computation reflects these capabilities.

Molecular Computation

Molecular computing is an emergent interdisciplinary field concerned with programming

molecules so that they perform a desired computation, or fabricate a desired object, or

viii Preface



control the functioning of a specific molecular system. The central idea behind molecular

computing is that data can be encoded as (bio)molecules, e.g., DNA strands, and tools of

molecular science can be used to transform these data. In a nutshell, a molecular program

is just a collection of molecules which, when placed in a suitable substrate, will perform a

specific function (execute the program that this collection represents). The birth of molecular

computing is often associated with the 1994 breakthrough experiment by Leonard Adleman,

who solved a small instance of a hard computational problem solely by manipulating

DNA strands in test tubes. Although initially the main effort of the area was focused on

trying to obtain a breakthrough in the complexity of solving hard computational problems,

this field has evolved enormously since then. Among the most significant achievements of

molecular computing have been contributions to understanding some of the fundamental

issues of the nanosciences. One notable example among them is the contribution to the

understanding of self-assembly, a central concept of the nanosciences. The techniques of

molecular programming were successfully applied in experimentally constructing all kinds

of molecular-scale objects or devices with prescribed functionalities. Well-known examples

here are self-assembly of Sierpinski triangles, cubes, octahedra, DNA-based logic circuits,

DNA ‘‘walkers’’ that move along a track, and autonomous molecular motors. A complemen-

tary approach to understanding bioinformation and computation is through studying the

information-processing capabilities of cellular organisms. Indeed, cells and nature ‘‘compute’’

by ‘‘reading’’ and ‘‘rewriting’’ DNA through processes that modify DNA (or RNA) sequences.

Research into the computational abilities of cellular organisms has the potential to uncover

the laws governing biological information, and to enable us to harness the computational

power of cells.

Quantum Computation

Quantum computing has been discussed for almost thirty years. The theory of quantum

computing and quantum information processing is simply the theory of information proces-

sing with a classical notion of information replaced by its quantum counterpart. Research in

quantum computing is concerned with understanding the fundamentals of information

processing on the level of physical systems that realize/implement the information. In

fact, quantum computing can be seen as a quest to understand the fundamental limits of

information processing set by nature itself. The mathematical description of quantum infor-

mation is more complicated than that of classical information — it involves the structure of

Hilbert spaces. When describing the structure behind known quantum algorithms, this

reduces to linear algebra over complex numbers. The history of quantum algorithms spans

the last fifteen years, and some of these algorithms are extremely interesting, and even

groundbreaking — the most remarkable are Shor’s factorization in polynomial time and

Grover’s search algorithm. The nature of quantum information has also led to the invention

of novel cryptosystems, whose security is not based on the complexity of computing

functions, but rather on the physical properties of quantum information. Quantum com-

puting is now a well-established discipline, however implementation of a large-scale quan-

tum computer continues to be extremely challenging, even though quantum information

processing primitives, including those allowing secure cryptography, have been demon-

strated to be practically realizable.

Preface ix



Broader Perspective

In contrast to the first five areas focusing on more-established themes of natural computing,

this area encompasses a perspective that is broader in several ways. First, the reader will find

here treatments of certain well-established and specific techniques inspired by nature (e.g.,

simulated annealing) not covered in the other five areas. Second, the reader will also find

application-centered chapters (such as natural computing in finance), each covering, in one

chapter, a collection of natural computing methods, thus capturing the impact of natural

computing as a whole in various fields of science or industry. Third, some chapters are full

treatments of several established research fields (such as artificial life, computational systems

biology, evolvable hardware, and artificial immune systems), presenting alternative perspec-

tives and cutting across some of the other areas of the handbook, while introducing much new

material. Other elements of this area are fresh, emerging, and novel techniques or perspectives

(such as collision-based computing, nonclassical computation), representing the leading edge

of theories and technologies that are shaping possible futures for both natural computing and

computing in general. The contents of this area naturally cluster into two kinds (sections),

determined by the essential nature of the techniques involved. These are ‘‘Nature-Inspired

Algorithms’’ and ‘‘Alternative Models of Computation’’. In the first section, ‘‘Nature-Inspired

Algorithms’’, the focus is on algorithms inspired by natural processes realized either through

software or hardware or both, as additions to the armory of existing tools we have for dealing

with well-known practical problems. In this section, we therefore find application-centered

chapters, as well as chapters focusing on particular techniques, not otherwise dealt with in

other areas of the handbook, which have clear and proven applicability. In the second section,

‘‘Alternative Models of Computation’’, the emphasis changes, moving away from specific

applications or application areas, toward more far-reaching ideas. These range from develop-

ing computational approaches and ‘‘computational thinking’’ as fundamental tools for the

new science of systems biology to ideas that take inspiration from nature as a platform for

suggesting entirely novel possibilities of computing.

Handbook Chapters

In the remainder of this preface we will briefly describe the contents of the individual chapters.

These chapter descriptions are grouped according to the handbook areas where they belong

and given in the order that they appear in the handbook. This section provides the reader

with a better insight into the contents, allowing one to design a personal roadmap for using

this handbook.

Cellular Automata

This area is covered by nine chapters.

The first chapter, ‘‘Basic Concepts of Cellular Automata’’, by Jarkko J. Kari, reviews some

classical results from the theory of cellular automata, relations between various concepts of

injectivity and surjectivity, and some basic dynamical system concepts related to chaos in

cellular automata. The classical results discussed include the celebrated Garden-of-Eden and

Curtis–Hedlund–Lyndon theorems, as well as the balance property of surjective cellular

x Preface



automata. All these theorems date back to the 1960s. The results are provided together with

examples that illustrate proof ideas. Different variants of sensitivity to initial conditions and

mixing properties are introduced and related to each other. Also undecidability results

concerning cellular automata are briefly discussed.

A popular mathematical approach is to view cellular automata as dynamical systems in the

context of symbolic dynamics. Several interesting results in this area were reported as early as

1969 in the seminal paper by G.A. Hedlund, and still today this research direction is among the

most fruitful sources of theoretical problems and new results. The chapter ‘‘Cellular Automata

Dynamical Systems’’, by Alberto Dennunzio, Enrico Formenti, and Petr Kůrka, reviews some

recent developments in this field. Recent research directions considered here include subshifts

attractors and signal subshifts, particle weight functions, and the slicing construction. The first

two concern one-dimensional cellular automata and give precise descriptions of the limit

behavior of large classes of automata. The third one allows one to view two-dimensional

cellular automata as one-dimensional systems. In this way combinatorial complexity is

decreased and new results can be proved.

Programming cellular automata for particular tasks requires special techniques. The

chapter ‘‘Algorithmic Tools on Cellular Automata’’, by Marianne Delorme and Jacques

Mazoyer, covers classical algorithmic tools based on signals. Linear signals as well as signals

of nonlinear slope are discussed, and basic transformations of signals are addressed. The

chapter provides results on using signals to construct functions in cellular automata and to

implement arithmetic operations on segments. The methods of folding the space–time,

freezing, and clipping are also introduced.

The time-complexity advantage gained from parallelism under the locality and uniformity

constraints of cellular automata can be precisely analyzed in terms of language recognition.

The chapter ‘‘Language Recognition by Cellular Automata’’, by Véronique Terrier, presents

results and questions about cellular automata complexity classes and their relationships to

other models of computations. Attention is mainly directed to real-time and linear-time

complexity classes, because significant benefits over sequential computation may be obtained

at these low time complexities. Both parallel and sequential input modes are considered.

Separate complexity classes are given also for cellular automata with one-way communications

and two-way communications.

The chapter ‘‘Computations on Cellular Automata’’, by Jacques Mazoyer and Jean-Baptiste

Yunès, continues with the topic of algorithmic techniques in cellular automata. This chapter

uses the basic tools, such as signals and grids, to build natural implementations of common

algorithms in cellular automata. Examples of implementations include real-time multiplica-

tion of integers and the prime number sieve. Both parallel and sequential input and output

modes are discussed, as well as composition of functions and recursion.

The chapter ‘‘Universalities in Cellular Automata’’, by Nicolas Ollinger, is concerned with

computational universalities. Concepts of universality include Turing universality (the ability

to compute any recursive function) and intrinsic universality (the ability to simulate any other

cellular automaton). Simulations of Boolean circuits in the two-dimensional case are

explained in detail in order to achieve both kinds of universality. The more difficult one-

dimensional case is also discussed, and seminal universal cellular automata and encoding

techniques are presented in both dimensions. A detailed chronology of important papers on

universalities in cellular automata is also provided.

A cellular automaton is reversible if every configuration has only one previous configu-

ration, and hence its evolution process can be traced backward uniquely. This naturally

Preface xi



corresponds to the fundamental time-reversibility of the microscopic laws of physics.

The chapter ‘‘Reversible Cellular Automata’’, by Kenichi Morita, discusses how reversible

cellular automata are defined, as well as their properties, how they are designed, and

their computing abilities. After providing the definitions, the chapter surveys basic

properties of injectivity and surjectivity. Three design methods of reversible cellular auto-

mata are provided: block rules, partitioned, and second-order cellular automata. Then the

computational power of reversible cellular automata is discussed. In particular, simulation

methods of irreversible cellular automata, reversible Turing machines, and some other

universal systems are given to clarify universality of reversible cellular automata. In spite

of the strong constraint of reversibility, it is shown that reversible cellular automata possess

rich information processing capabilities, and even very simple ones are computationally

universal.

A conservation law in a cellular automaton is a statement of the invariance of a local

and additive energy-like quantity. The chapter ‘‘Conservation Laws in Cellular Automata’’,

by Siamak Taati, reviews the basic theory of conservation laws. A general mathematical

framework for formulating conservation laws in cellular automata is presented and several

characterizations are summarized. Computational problems regarding conservation laws

(verification and existence problems) are discussed. Microscopic explanations of the dynamics

of the conserved quantities in terms of flows and particle flows are explored. The related

concept of dissipating energy-like quantities is also discussed.

The chapter ‘‘Cellular Automata and Lattice Boltzmann Modeling of Physical Systems’’,

by Bastien Chopard, considers the use of cellular automata and related lattice Boltzmann

methods as a natural modeling framework to describe and study many physical systems

composed of interacting components. The theoretical basis of the approach is introduced

and its potential is illustrated for several applications in physics, biophysics, environmental

science, traffic models, and multiscale modeling. The success of the technique can be explained

by the close relationship between these methods and a mesoscopic abstraction of many natural

phenomena.

Neural Computation

This area is covered by ten chapters.

Spiking neural networks are inspired by recent advances in neuroscience. In contrast to

classical neural network models, they take into account not just the neuron’s firing rate,

but also the time moment of spike firing. The chapter ‘‘Computing with Spiking Neuron

Networks’’, by Hélène Paugam-Moisy and Sander Bohte, gives an overview of existing

approaches to modeling spiking neural neurons and synaptic plasticity, and discusses their

computational power and the challenge of deriving efficient learning procedures.

Image quality assessment aims to provide computational models to predict the perceptual

quality of images. The chapter ‘‘Image Quality Assessment — A Multiscale Geometric

Analysis-Based Framework and Examples’’, by Xinbo Gao, Wen Lu, Dacheng Tao, and Xuelong

Li, introduces the fundamentals and describes the state of the art in image quality assessment.

It further proposes a new model, which mimics the human visual system by incorporating

concepts such as multiscale analysis, contrast sensitivity, and just-noticeable differences.

Empirical results clearly demonstrate that this model resembles subjective perception values

and reflects the visual quality of images.

xii Preface



Neurofuzzy networks have the important advantage that they are easy to interpret. When

applied to control problems, insight about the process characteristics at different operating

regions can be easily obtained. Furthermore, nonlinear model predictive controllers can be

developed as a nonlinear combination of several local linear model predictive controllers that

have analytical solutions. Through several applications, the chapter ‘‘Nonlinear Process

Modelling and Control Using Neurofuzzy Networks’’, by Jie Zhang, demonstrates that

neurofuzzy networks are very effective in the modeling and control of nonlinear processes.

Similar to principal component and factor analysis, independent component analysis is a

computational method for separating a multivariate signal into additive subcomponents.

Independent component analysis is more powerful: the latent variables corresponding to the

subcomponents need not be Gaussian and the basis vectors are typically nonorthogonal. The

chapter ‘‘Independent Component Analysis’’, by Seungjin Choi, explains the theoretical

foundations and describes various algorithms based on those principles.

Neural networks has become an important method for modeling and forecasting time

series. The chapter ‘‘Neural Networks for Time-Series Forecasting’’, by G. Peter Zhang, reviews

some recent developments (including seasonal time-series modeling, multiperiod forecasting,

and ensemble methods), explains when and why they are to be preferred over traditional

forecasting models, and also discusses several practical data and modeling issues.

Support vector machines have been extensively studied and applied in many domains

within the last decade. Through the so-called kernel trick, support vector machines can

efficiently learn nonlinear functions. By maximizing the margin, they implement the principle

of structural risk minimization, which typically leads to high generalization performance. The

chapter ‘‘SVM Tutorial — Classification, Regression and Ranking’’, by Hwanjo Yu and

Sungchul Kim, describes these underlying principles and discusses support vector machines

for different learning tasks: classification, regression, and ranking.

It is well known that single-hidden-layer feedforward networks can approximate any

continuous target function. This still holds when the hidden nodes are automatically and

randomly generated, independent of the training data. This observation opened up many

possibilities for easy construction of a broad class of single-hidden-layer neural networks. The

chapter ‘‘Fast Construction of Single-Hidden-Layer Feedforward Networks’’, by Kang Li,

Guang-Bin Huang, and Shuzhi Sam Ge, discusses new ideas that yield a more compact

network architecture and reduce the overall computational complexity.

Many recent experimental studies demonstrate the remarkable efficiency of biological

neural systems to encode, process, and learn from information. To better understand the

experimentally observed phenomena, theoreticians are developing new mathematical

approaches and tools to model biological neural networks. The chapter ‘‘Modeling Biological

Neural Networks’’, by Joaquin J. Torres and Pablo Varona, reviews some of the most popular

models of neurons and neural networks. These not only help to understand how living systems

perform information processing, but may also lead to novel bioinspired paradigms of artificial

intelligence and robotics.

The size and complexity of biological data, such as DNA/RNA sequences and protein

sequences and structures, makes them suitable for advanced computational tools, such

as neural networks. Computational analysis of such databases aims at exposing hidden

information that provides insights that help in understanding the underlying biological

principles. The chapter ‘‘Neural Networks in Bioinformatics’’, by Ke Chen and Lukasz A.

Kurgan, focuses on proteins. In particular it discusses prediction of protein secondary

structure, solvent accessibility, and binding residues.

Preface xiii



Self-organizing maps is a prime example of an artificial neural network model that both

relates to the actual (topological) organization within the mammalian brain and at the same

time has many practical applications. Self-organizing maps go back to the seminal work of

Teuvo Kohonen. The chapter ‘‘Self-organizing Maps’’, by Marc M. Van Hulle, describes the

state of the art with a special emphasis on learning algorithms that aim to optimize a

predefined criterion.

Evolutionary Computation

This area is covered by thirteen chapters.

The first chapter, ‘‘Generalized Evolutionary Algorithms’’, by Kenneth De Jong, describes

the general concept of evolutionary algorithms. As a generic introduction to the field, this

chapter facilitates an understanding of specific instances of evolutionary algorithms as instan-

tiations of a generic evolutionary algorithm. For the instantiations, certain choices need to be

made, such as representation, variation operators, and the selection operator, which then yield

particular instances of evolutionary algorithms, such as genetic algorithms and evolution

strategies, to name just a few.

The chapter ‘‘Genetic Algorithms— A Survey of Models and Methods’’, by Darrell Whitley

and Andrew M. Sutton, introduces and discusses (including criticism) the standard genetic

algorithm based on the classical binary representation of solution candidates and a theoretical

interpretation based on the so-called schema theorem. Variations of genetic algorithms with

respect to solution representations, mutation operators, recombination operators, and selec-

tion mechanisms are also explained and discussed, as well as theoretical models of genetic

algorithms based on infinite and finite population size assumptions and Markov chain theory

concepts. The authors also critically investigate genetic algorithms from the perspective of

identifying their limitations and the differences between theory and practice when working

with genetic algorithms. To illustrate this further, the authors also give a practical example of

the application of genetic algorithms to resource scheduling problems.

The chapter ‘‘Evolutionary Strategies’’, by Günter Rudolph, describes a class of evolution-

ary algorithms which have often been associated with numerical function optimization and

continuous variables, but can also be applied to binary and integer domains. Variations of

evolutionary strategies, such as the (mþl)-strategy and the (m,l)-strategy, are introduced and

discussed within a common algorithmic framework. The fundamental idea of self-adaptation

of strategy parameters (variances and covariances of the multivariate normal distribution used

for mutation) is introduced and explained in detail, since this is a key differentiating property

of evolutionary strategies.

The chapter ‘‘Evolutionary Programming’’, by Gary B. Fogel, discusses a historical branch

of evolutionary computation. It gives a historical perspective on evolutionary programming

by describing some of the original experiments using evolutionary programming to evolve

finite state machines to serve as sequence predictors. Starting from this canonical evolutionary

programming approach, the chapter also presents extensions of evolutionary programming

into continuous domains, where an attempt towards self-adaptation of mutation step sizes has

been introduced which is similar to the one considered in evolutionary strategies. Finally, an

overview of some recent applications of evolutionary programming is given.

The chapter ‘‘Genetic Programming — Introduction, Applications, Theory and Open

Issues’’, by Leonardo Vanneschi and Riccardo Poli, describes a branch of evolutionary

xiv Preface



algorithms derived by extending genetic algorithms to allow exploration of the space of

computer programs. To make evolutionary search in the domain of computer programs

possible, genetic programming is based on LISP S-expression represented by syntax trees, so

that genetic programming extends evolutionary algorithms to tree-based representations. The

chapter gives an overview of the corresponding representation, search operators, and technical

details of genetic programming, as well as existing applications to real-world problems. In

addition, it discusses theoretical approaches toward analyzing genetic programming, some of

the open issues, as well as research trends in the field.

The subsequent three chapters are related to the theoretical analysis of evolutionary

algorithms, giving a broad overview of the state of the art in our theoretical understanding.

These chapters demonstrate that there is a sound theoretical understanding of capabilities

and limitations of evolutionary algorithms. The approaches can be roughly split into conver-

gence velocity or progress analysis, computational complexity investigations, and global

convergence results.

The convergence velocity viewpoint is represented in the chapter ‘‘The Dynamical Systems

Approach — Progress Measures and Convergence Properties’’, by Silja Meyer-Nieberg and

Hans-Georg Beyer. It demonstrates how the dynamical systems approach can be used to

analyze the behavior of evolutionary algorithms quantitatively with respect to their progress

rate. It also provides a complete overview of results in the continuous domain, i.e., for all types

of evolution strategies on certain objective functions (such as sphere, ridge, etc.). The chapter

presents results for undisturbed as well as for noisy variants of these objective functions, and

extends the approach to dynamical objective functions where the goal turns into optimum

tracking. All results are presented by means of comparative tables, so the reader gets a

complete overview of the key findings at a glance.

The chapter ‘‘Computational Complexity of Evolutionary Algorithms’’, by Thomas Jansen,

deals with the question of optimization time (i.e., the first point in time during the run of an

evolutionary algorithm when the global optimum is sampled) and an investigation of upper

bounds, lower bounds, and the average time needed to hit the optimum. This chapter presents

specific results for certain classes of objective functions, most of them defined over binary

search spaces, as well as fundamental limitations of evolutionary search and related results on

the ‘‘no free lunch’’ theorem and black box complexity. The chapter also discusses the

corresponding techniques for analyses, such as drift analysis and the expected multiplicative

distance decrease.

Concluding the set of theoretical chapters, the chapter ‘‘Stochastic Convergence’’, by

Günter Rudolph, addresses theoretical results about the properties of evolutionary algorithms

concerned with finding a globally optimal solution in the asymptotic limit. Such results exist

for certain variants of evolutionary algorithms and under certain assumptions, and this

chapter summarizes the existing results and integrates them into a common framework.

This type of analysis is essential in qualifying evolutionary algorithms as global search

algorithms and for understanding the algorithmic conditions for global convergence.

The remaining chapters in the area of evolutionary computation report some of the major

current trends.

To start with, the chapter ‘‘Evolutionary Multiobjective Optimization’’, by Eckart Zitzler,

focuses on the application of evolutionary algorithms to tasks that are characterized by

multiple, conflicting objective functions. In this case, decision-making becomes a task of

identifying good compromises between the conflicting criteria. This chapter introduces the

concept and a variety of state-of-the-art algorithmic concepts to use evolutionary algorithms

Preface xv



for approximating the so-called Pareto front of solutions which cannot be improved in one

objective without compromising another. This contribution presents all of the required formal

concepts, examples, and the algorithmic variations introduced into evolutionary computation

to handle such types of problems and to generate good approximations of the Pareto front.

The term ‘‘memetic algorithms’’ is used to characterize hybridizations between evolution-

ary algorithms and more classical, local search methods (and agent-based systems). This is a

general concept of broad scope, and in order to illustrate and characterize all possible

instantiations, the chapter ‘‘Memetic Algorithms’’, by Natalio Krasnogor, presents an algorith-

mic engineering approach which allows one to describe these algorithms as instances of

generic patterns. In addition to explaining some of the application areas, the chapter presents

some theoretical remarks, various different ways to define memetic algorithms, and also an

outlook into the future.

The chapter ‘‘Genetics-Based Machine Learning’’, by Tim Kovacs, extends the idea of

evolutionary optimization to algorithmic concepts in machine learning and data mining,

involving applications such as learning classifier systems, evolving neural networks, and

genetic fuzzy systems, to mention just a few. Here, the application task is typically a data

classification, data prediction, or nonlinear regression task — and the quality of solution

candidates is evaluated by means of some model quality measure. The chapter covers a wide

range of techniques for applying evolutionary computation to machine learning tasks, by

interpreting them as optimization problems.

The chapter ‘‘Coevolutionary Principles’’, by Elena Popovici, Anthony Bucci, R. Paul

Wiegand, and Edwin D. de Jong, deals with a concept modeled after biological evolution in

which an explicit fitness function is not available, but solutions are evaluated by running them

against each other. A solution is evaluated in the context of the other solutions, in the actual

population or in another. Therefore, these algorithms develop their own dynamics, because

the point of comparison is not stable, but coevolving with the actual population. The chapter

provides a fundamental understanding of coevolutionary principles and highlights theoretical

concepts, algorithms, and applications.

Finally, the chapter ‘‘Niching in Evolutionary Algorithms’’, by Ofer M. Shir, describes the

biological principle of niching in nature as a concept for using a single population to find,

occupy, and keep multiple local minima in a population. The motivation for this approach is

to find alternative solutions within a single population and run of evolutionary algorithms,

and this chapter discusses approaches for niching, and the application in the context of genetic

algorithms as well as evolutionary strategies.

Molecular Computation

This area is covered by eight chapters.

The chapter ‘‘DNA Computing — Foundations and Implications’’, by Lila Kari, Shinno-

suke Seki, and Petr Sosı́k, has a dual purpose. The first part outlines basic molecular biology

notions necessary for understanding DNA computing, recounts the first experimental dem-

onstration of DNA computing by Leonard Adleman in 1994, and recaps the 2001 milestone

wet laboratory experiment that solved a 20-variable instance of 3-SAT and thus first demon-

strated the potential of DNA computing to outperform the computational ability of an

unaided human. The second part describes how the properties of DNA-based information,

and in particular the Watson–Crick complementarity of DNA single strands, have influenced

xvi Preface



areas of theoretical computer science such as formal language theory, coding theory, automata

theory, and combinatorics on words. More precisely, it explores several notions and results in

formal language theory and coding theory that arose from the problem of the design of

optimal encodings for DNA computing experiments (hairpin-free languages, bond-free

languages), and more generally from the way information is encoded on DNA strands (sticker

systems, Watson–Crick automata). Lastly, it describes the influence that properties of DNA-

based information have had on research in combinatorics on words, by presenting several

natural generalizations of classical concepts (pseudopalindromes, pseudoperiodicity, Watson–

Crick conjugate and commutative words, involutively bordered words, pseudoknot bordered

words), and outlining natural extensions in this context of two of the most fundamental

results in combinatorics of words, namely the Fine and Wilf theorem and the Lyndon–

Schützenberger result.

The chapter ‘‘Molecular Computing Machineries — Computing Models and Wet Imple-

mentations’’, by Masami Hagiya, Satoshi Kobayashi, Ken Komiya, Fumiaki Tanaka, and

Takashi Yokomori, explores novel computing devices inspired by the biochemical properties

of biomolecules. The theoretical results section describes a variety of molecular computing

models for finite automata, as well as molecular computing models for Turing machines based

on formal grammars, equality sets, Post systems, and logical formulae. It then presents

molecular computing models that use structured molecules such as hairpins and tree struc-

tures. The section on wet implementations of molecular computing models, related issues,

and applications includes: an enzyme-based DNA automaton and its applications to drug

delivery, logic gates and circuits using DNAzymes and DNA tiles, reaction graphs for

representing various dynamics of DNA assembly pathways, DNA whiplash machines imple-

menting finite automata, and a hairpin-based implementation of a SATengine for solving the

3-SAT problem.

The chapter ‘‘DNA Computing by Splicing and by Insertion Deletion’’, by Gheorghe

Păun, is devoted to two of the most developed computing models inspired by DNA biochem-

istry: computing by splicing, and computing by insertion and deletion. DNA computing by

splicing was defined by Tom Head already in 1987 and is based on the so-called splicing

operation. The splicing operation models the recombination of DNA molecules that results

from cutting themwith restriction enzymes and then pasting DNA molecules with compatible

ends by ligase enzymes. This chapter explores the computational power of the splicing

operation showing that, for example, extended splicing systems starting from a finite language

and using finitely many splicing rules can generate only the family of regular languages, while

extended splicing systems starting from a finite language and using a regular set of rules can

generate all recursively enumerable languages. Ways in which to avoid the impractical notion

of a regular infinite set of rules, while maintaining the maximum computational power, are

presented. They include using multisets and adding restrictions on the use of rules such as

permitting contexts, forbidding contexts, programmed splicing systems, target languages, and

double splicing. The second model presented, the insertion deletion system, is based on a

finite set of axioms and a finite set of contextual insertion rules and contextual deletion rules.

Computational power results described here include the fact that insertion deletion systems

with context-free insertion rules of words of length at most one and context-free deletion rules

of words of unbounded length can generate only regular languages. In contrast, for example,

the family of insertion deletion systems where the insertion contexts, deletion contexts, and

the words to be inserted/deleted are all of length at most one, equals the family of recursively

enumerable languages.

Preface xvii



The chapter ‘‘Bacterial Computing and Molecular Communication’’, by Yasubumi

Sakakibara and Satoshi Hiyama, investigates attempts to create autonomous cell-based Turing

machines, as well as novel communication paradigms that use molecules as communication

media. The first part reports experimental research on constructing in vivo logic circuits as well

as efforts towards building in vitro and in vivo automata in the framework of DNA computing.

Also, a novel framework is presented to develop a programmable and autonomous in vivo

computer in a bacterium. The first experiment in this direction uses DNA circular strands

(plasmids) together with the cell’s protein-synthesis mechanism to execute a finite state

automaton in E. coli. Molecular communication is a new communication paradigm that

proposes the use of molecules as the information medium, instead of the traditional electro-

magnetic waves. Other distinctive features of molecular communication include its stochastic

nature, its low energy consumption, the use of an aqueous transmission medium, and its high

compatibility with biological systems. A molecular communication system starts with a sender

(e.g., a genetically modified or an artificial cell) that generates molecules, encodes information

onto the molecules (called information molecules), and emits the information molecules into

a propagation environment (e.g., aqueous solution within and between cells). A molecular

propagation system (e.g., lipid bilayer vesicles encapsulating the information molecules)

actively transports the information molecules to an appropriate receiver. A receiver (e.g.,

a genetically modified or an artificial cell) selectively receives the transported information

molecules, and biochemically reacts to the received information molecules, thus ‘‘decoding’’

the information. The chapter describes detailed examples of molecular communication system

designs, experimental results, and research trends.

The chapter ‘‘Computational Nature of Gene Assembly in Ciliates’’, by Robert Brijder,

Mark Daley, Tero Harju, Nataša Jonoska, Ion Petre, and Grzegorz Rozenberg, reviews several

approaches and results in the computational study of gene assembly in ciliates. Ciliated

protozoa contain two functionally different types of nuclei, the macronucleus and the micro-

nucleus. The macronucleus contains the functional genes, while the genes of the micronucleus

are not functional due to the presence of many interspersing noncoding DNA segments. In

addition, in some ciliates, the coding segments of the genes are present in a permuted order

compared to their order in the functional macronuclear genes. During the sexual process of

conjugation, when two ciliates exchange genetic micronuclear information and form two new

micronuclei, each of the ciliates has to ‘‘decrypt’’ the information contained in its new

micronucleus to form its new functional macronucleus. This process is called gene assembly

and involves deleting the noncoding DNA segments, as well as rearranging the coding

segments in the correct order. The chapter describes two models of gene assembly, the

intermolecular model based on the operations of circular insertion and deletion, and the

intramolecular model based on the three operations of ‘‘loop, direct-repeat excision’’, ‘‘hairpin,

inverted-repeat excision’’, and ‘‘double-loop, alternating repeat excision’’. A discussion follows

of the mathematical properties of these models, such as the Turing machine computational

power of contextual circular insertions and deletions, and properties of the gene assembly

process called invariants, which hold independently of the molecular model and assembling

strategy. Finally, the template-based recombination model is described, offering a plausible

hypothesis (supported already by some experimental data) about the ‘‘bioware’’ that imple-

ments the gene assembly.

The chapter ‘‘DNA Memory’’, by Masanori Arita, Masami Hagiya, Masahiro Takinoue,

and Fumiaki Tanaka, summarizes the efforts that have been made towards realizing Eric

Baum’s dream of building a DNA memory with a storage capacity vastly larger than

xviii Preface



the brain. The chapter first describes the research into strategies for DNA sequence design, i.e.,

for finding DNA sequences that satisfy DNA computing constraints such as uniform melting

temperature, avoidance of undesirable Watson–Crick bonding between sequences, preventing

secondary structures, avoidance of base repeats, and absence of forbidden sequences. Various

implementations of memory operations, such as access, read, and write, are described. For

example, the ‘‘access’’ to a memory word in Baum’s associative memory model, where a

memory word consists of a single-stranded portion representing the address and a double-

stranded portion representing the data, can be implemented by using the Watson–Crick

complement of the address fixed to a solid support. In the Nested Primer Molecular Memory,

where the double-stranded data is flanked on both sides by address sequences, the data can be

retrieved by Polymerase Chain Reaction (PCR) using the addresses as primer pairs. In the

multiple hairpins DNA memory, the address is a catenation of hairpins and the data can be

accessed only if the hairpins are opened in the correct order by a process called DNA branch

migration. After describing implementations of writable and erasable hairpin memories either

in solution or immobilized on surfaces, the topic of in vivo DNA memory is explored. As an

example, the chapter describes how representing the digit 0 by regular codons, and the digit 1

by wobbled codons, was used to encode a word into an essential gene of Bacillus subtilis.

The chapter ‘‘Engineering Natural Computation by Autonomous DNA-Based Biomolecu-

lar Devices’’, by John H. Reif and Thomas H. LaBean, overviews DNA-based biomolecular

devices that are autonomous (execute steps with no external control after starting) and

programmable (the tasks executed can be modified without entirely redesigning the DNA

nanostructures). Special attention is given to DNA tiles, roughly square-shaped DNA nanos-

tructures that have four ‘‘sticky-ends’’ (DNA single strands) that can specifically bind them to

other tiles via Watson–Crick complementarity, and thus lead to the self-assembly of larger and

more complex structures. Such tiles have been used to execute sequential Boolean computa-

tion via linear DNA self-assembly or to obtain patterned 2D DNA lattices and Sierpinski

triangles. Issues such as error correction and self-repair of DNA tiling are also addressed. Other

described methods include the implementation of a DNA-based finite automaton via disas-

sembly of a double-stranded DNA nanostructure effected by an enzyme, and the technique of

whiplash PCR. Whiplash PCR is a method that can achieve state transitions by encoding both

transitions and the current state of the computation on the same DNA single strand: The free

end of the strand (encoding the current state) sticks to the appropriate transition rule on the

strand forming a hairpin, is then extended by PCR to a new state, and finally is detached from

the strand, this time with the new state encoded at its end. The technique of DNA origami is

also described, whereby a scaffold strand (a long single DNA strand, such as from the sequence

of a virus) together with many specially designed staple strands (short single DNA strands)

self-assemble by folding the scaffold strand — with the aid of the staples — in a raster pattern

that can create given arbitrary planar DNA nanostructures. DNA-based molecular machines

are then described such as autonomous DNA walkers and programmable DNA nanobots

(programmable autonomous DNA walker devices). A restriction-enzyme-based DNA walker

consists of a DNA helix with two sticky-ends (‘‘feet’’) that moves stepwise along a ‘‘road’’

(a DNA nanostructure with protruding ‘‘steps’’, i.e., single DNA strands).

The chapter ‘‘Membrane Computing’’, by Gheorghe Păun, describes theoretical results and

applications of membrane computing, a branch of natural computing inspired by the archi-

tecture and functioning of living cells, as well as from the organization of cells in tissues,

organs, or other higher-order structures. The cell is a hierarchical structure of compartments,

defined by membranes, that selectively communicate with each other. The computing model

Preface xix



that abstracts this structure is a membrane system (or P system, from the name of its inventor,

Gheorghe Păun) whose main components are: the membrane structure, the multisets of

objects placed in the compartments enveloped by the membranes, and the rules for processing

the objects and the membranes. The rules are used to modify the objects in the compartments,

to transport objects from one compartment to another, to dissolve membranes, and to create

new membranes. The rules in each region of a P system are used in a maximally parallel

manner, nondeterministically choosing the applicable rules and the objects to which they

apply. A computation consists in repeatedly applying rules to an initial configuration of the P

system, until no rule can be applied anymore, in which case the objects in a priori specified

regions are considered the output of the computation. Several variants of P systems are

described, including P systems with symport/antiport rules, P systems with active membranes,

splicing P systems, P systems with objects on membranes, tissue-like P systems, and spiking

neural P systems. Many classes of P systems are able to simulate Turing machines, hence they

are computationally universal. For example, P systems with symport/antiport rules using only

three objects and three membranes are computationally universal. In addition, several types of

P systems have been used to solve NP-complete problems in polynomial time, by a space–time

trade-off. Applications of P systems include, among others, modeling in biology, computer

graphics, linguistics, economics, and cryptography.

Quantum Computation

This area is covered by six chapters.

The chapter ‘‘Mathematics for Quantum Information Processing’’, by Mika Hirvensalo,

contains the standard Hilbert space formulation of finite-level quantum systems. This is the

language and notational system allowing us to speak, describe, and make predictions about the

objects of quantum physics. The chapter introduces the notion of quantum states as unit-

trace, self-adjoint, positive mappings, and the vector state formalism is presented as a special

case. The physical observables are introduced as complete collections of mutually orthogonal

projections, and then it is discussed how this leads to the traditional representation of

observables as self-adjoint mappings. The minimal interpretation, which is the postulate

connecting the mathematical objects to the physical world, is presented. The treatment of

compound quantum systems is based mostly on operative grounds. To provide enough tools

for considering the dynamics needed in quantum computing, the formalism of treating state

transformations as completely positive mappings is also presented. The chapter concludes by

explaining how quantum versions of finite automata, Turing machines, and Boolean circuits

fit into the Hilbert space formalism.

The chapter ‘‘Bell’s Inequalities — Foundations and Quantum Communication’’, by

Časlav Brukner and Marek Żukowski, is concerned with the nature of quantum mechanics.

It presents the evidence that excludes two types of hypothetical deterministic theories: neither

a nonlocal nor a noncontextual theory can explain quantum mechanics. This helps to build a

true picture of quantum mechanics, and is therefore essential from the philosophical point of

view. The Bell inequalities show that nonlocal deterministic theories cannot explain the

quantum mechanism, and the Kochen–Specker theorem shows that noncontextual theories

are not possible as underlying theories either. The traditional Bell theorem and its variants,

GHZ and CHSH among them, are presented, and the Kochen–Specker theorem is discussed.

In this chapter, the communication complexity is also treated by showing how the violations

xx Preface



of classical locality and noncontextuality can be used as a resource for communication

protocols. Stronger-than quantum violations of the CHSH inequality are also discussed.

They are interesting, since it has been shown that if the violation of CHSH inequality is strong

enough, then the communication complexity collapses into one bit (hence the communica-

tion complexity of the true physical world seems to settle somewhere between classical and

stronger-than quantum).

The chapter ‘‘Algorithms for Quantum Computers’’, by Jamie Smith and Michele Mosca,

introduces the most remarkable known methods that utilize the special features of quantum

physics in order to gain advantage over classical computing. The importance of these methods

is that they form the core of designing discrete quantum algorithms. The methods presented

and discussed here are the quantum Fourier transform, amplitude amplification, and quan-

tum walks. Then, as specific examples, Shor’s factoring algorithm (quantum Fourier trans-

form), Grover search (amplitude amplification), and element distinctness algorithms

(quantum random walks) are presented. The chapter not only involves traditional methods,

but it also contains discussion of continuous-time quantum random walks and, more impor-

tantly, an extensive presentation of an important recent development in quantum algorithms,

viz., tensor network evaluation algorithms. Then, as an example, the approximate evaluation

of Tutte polynomials is presented.

The chapter ‘‘Physical Implementation of Large-Scale Quantum Computation’’, by Kalle-

Antti Suominen, discusses the potential ways of physically implementing quantum computers.

First, the DiVincenzo criteria (requirements for building a successful quantum computer) are

presented, and then quantum error correction is discussed. The history, physical properties,

potentials, and obstacles of various possible physical implementations of quantum computers

are covered. They involve: cavity QED, trapped ions, neutral atoms and single electrons,

liquid-form molecular spin, nuclear and electron spins in silicon, nitrogen vacancies in

diamond, solid-state qubits with quantum dots, superconducting charge, flux and phase

quantum bits, and optical quantum computing.

The chapter ‘‘Quantum Cryptography’’, by Takeshi Koshiba, is concerned with quantum

cryptography, which will most likely play an important role in future when quantum com-

puters make the current public-key cryptosystems unreliable. It gives an overview of classical

cryptosystems, discusses classical cryptographic protocols, and then introduces the quantum

key distribution protocols BB84, B92, and BBM92. Also protocol OTU00, not known to be

vulnerable under Shor’s algorithm, is presented. In future, when quantum computers are

available, cryptography will most probably be based on quantum protocols. The chapter

presents candidates for such quantum protocols: KKNY05 and GC01 (for digital signatures).

It concludes with a discussion of quantum commitment, oblivious transfer, and quantum

zero-knowledge proofs.

The complexity class BQP is the quantum counterpart of the classical class BPP. Intuitively,

BQP can be described as the class of problems solvable in ‘‘reasonable’’ time, and, hence, from

the application-oriented point of view, it will likely become the most important complexity

class in future, when quantum computers are available. The chapter ‘‘BQP-Complete Pro-

blems’’, by Shengyu Zhang, introduces the computational problems that capture the full

hardness of BQP. In the very fundamental sense, no BQP-complete problems are known,

but the promise problems (the probability distribution of outputs is restricted by promise)

bring us as close as possible to the ‘‘hardest’’ problems in BQP, known as BQP-complete

promise problems. The chapter discusses known BQP-complete promise problems. In partic-

ular, it is shown how to establish the BQP-completeness of the Local Hamiltonian Eigenvalue

Preface xxi



Sampling problem and the Local Unitary Phase Sampling problem. The chapter concludes

with an extensive study showing that the Jones Polynomial Approximation problem is a BQP-

complete promise problem.

Broader Perspective

This area consists of two sections, ‘‘Nature-Inspired Algorithms’’ and ‘‘Alternative Models of

Computation’’.

Nature-Inspired Algorithms

This section is covered by six chapters.

The chapter ‘‘An Introduction to Artificial Immune Systems’’, by Mark Read, Paul S.

Andrews, and Jon Timmis, provides a general introduction to the field. It discusses the

major research issues relating to the field of Artificial Immune Systems (AIS), exploring the

underlying immunology that has led to the development of immune-inspired algorithms, and

focuses on the four main algorithms that have been developed in recent years: clonal selection,

immune network, negative selection, and dendritic cell algorithms; their use in terms of

applications is highlighted. The chapter also covers evaluation of current AIS technology,

and details some new frameworks and methodologies that are being developed towards more

principled AIS research. As a counterpoint to the focus on applications, the chapter also gives a

brief outline of how AIS research is being employed to help further the understanding of

immunology.

The chapter on ‘‘Swarm Intelligence’’, by David W. Corne, Alan Reynolds, and

Eric Bonabeau, attempts to demystify the term Swarm Intelligence (SI), outlining the particu-

lar collections of natural phenomena that SI most often refers to and the specific classes of

computational algorithms that come under its definition. The early parts of the chapter focus

on the natural inspiration side, with discussion of social insects and stigmergy, foraging

behavior, and natural flocking behavior. Then the chapter moves on to outline the most

successful of the computational algorithms that have emerged from these natural inspirations,

namely ant colony optimization methods and particle swarm optimization, with also some

discussion of different and emerging such algorithms. The chapter concludes with a brief

account of current research trends in the field.

The chapter ‘‘Simulated Annealing’’, by Kathryn A. Dowsland and Jonathan M.

Thompson, provides an overview of Simulated Annealing (SA), emphasizing its practical

use. The chapter explains its inspiration from the field of statistical thermodynamics, and then

overviews the theory, with an emphasis again on those aspects that are important for practical

applications. The chapter then covers some of the main ways in which the basic SA algorithm

has been modified by various researchers, leading to improved performance for a variety of

problems. The chapter briefly surveys application areas, and ends with several useful pointers

to associated resources, including freely available code.

The chapter ‘‘Evolvable Hardware’’, by Lukáš Sekanina, surveys this growing field. Starting

with a brief overview of the reconfigurable devices used in this field, the elementary principles

and open problems are introduced, and then the chapter considers, in turn, three main

areas: extrinsic evolution (evolving hardware using simulators), intrinsic evolution (where

the evolution is conducted within FPGAs, FPTAs, and so forth), and adaptive hardware

xxii Preface



(in which real-world adaptive hardware systems are presented). The chapter finishes with an

overview of major achievements in the field.

The first of two application-centered chapters, ‘‘Natural Computing in Finance — A

Review’’, by Anthony Brabazon, Jing Dang, Ian Dempsey, Michael O’Neill, and David

Edelman, provides a rather comprehensive account of natural computing applications in

what is, at the time of writing (and undoubtedly beyond), one of the hottest topics of the

day. This chapter introduces us to the wide range of different financial problems to which

natural computing methods have been applied, including forecasting, trading, arbitrage,

portfolio management, asset allocation, credit risk assessment, and more. The natural com-

puting areas that feature in this chapter are largely evolutionary computing, neural comput-

ing, and also agent-based modeling, swarm intelligence, and immune-inspired methods. The

chapter ends with a discussion of promising future directions.

Finally, the chapter ‘‘Selected Aspects of Natural Computing’’, by David W. Corne,

Kalyanmoy Deb, Joshua Knowles, and Xin Yao, provides detailed accounts of a collection of

example natural computing applications, each of which is remarkable or particularly interest-

ing in some way. The thrust of this chapter is to provide, via such examples, an idea of both the

significant impact that natural computing has already had, as well as its continuing significant

promise for future applications in all areas of science and industry. While presenting this

eclectic collection of marvels, the chapter also aims at clarity and demystification, providing

much detail that helps see how the natural computing methods in question were applied to

achieve the stated results. Applications covered include Blondie24 (the evolutionary neural

network application that achieves master-level skill at the game of checkers), the design of

novel antennas using evolutionary computation in conjunction with developmental comput-

ing, and the classic application of learning classifier systems that led to novel fighter-plane

maneuvers for the USAF.

Alternative Models of Computation

This section is covered by seven chapters.

The chapter ‘‘Artificial Life’’, by Wolfgang Banzhaf and Barry McMullin, traces the roots,

raises key questions, discusses the major methodological tools, and reviews the main applica-

tions of this exciting and maturing area of computing. The chapter starts with a historical

overview, and presents the fundamental questions and issues that Artificial Life is concerned

with. Thus the chapter surveys discussions and viewpoints about the very nature of the

differences between living and nonliving systems, and goes on to consider issues such as

hierarchical design, self-construction, and self-maintenance, and the emergence of complexity.

This part of the chapter ends with a discussion of ‘‘Coreworld’’ experiments, in which a number

of systems have been studied that allow spontaneous evolution of computer programs. The

chapter moves on to survey the main theory and formalisms used in Artificial Life, including

cellular automata and rewriting systems. The chapter concludes with a review and restatement of

the main objectives of Artificial Life research, categorizing them respectively into questions

about the origin and nature of life, the potential and limitations of living systems, and the

relationships between life and intelligence, culture, and other human constructs.

The chapter ‘‘Algorithmic Systems Biology— Computer Science Propels Systems Biology’’,

by Corrado Priami, takes the standpoint of computing as providing a philosophical founda-

tion for systems biology, with at least the same importance as mathematics, chemistry,

Preface xxiii



or physics. The chapter highlights the value of algorithmic approaches in modeling, simula-

tion, and analysis of biological systems. It starts with a high-level view of how models and

experiments can be tightly integrated within an algorithmic systems biology vision, and then

deals in turn with modeling languages, simulations of models, and finally the postprocessing

of results from biological models and how these lead to new hypotheses that can then re-enter

the modeling/simulation cycle.

The chapter ‘‘Process Calculi, Systems Biology and Artificial Chemistry’’, by Pierpaolo

Degano and Andrea Bracciali, concentrates on the use of process calculi and related techniques

for systems-level modeling of biological phenomena. This chapter echoes the broad viewpoint

of the previous chapter, but its focus takes us towards a much deeper understanding of the

potential mappings between formal systems in computer science and systems interpretation of

biological processes. It starts by surveying the basics of process calculi, setting out their

obvious credentials for modeling concurrent, distributed systems of interacting parts, and

mapping these onto a ‘‘cells as computers’’ view. After a process calculi treatment of systems

biology, the chapter goes on to examine process calculi as a route towards artificial chemistry.

After considering the formal properties of the models discussed, the chapter ends with notes

on some case studies showing the value of process calculi in modeling biological phenomena;

these include investigating the concept of a ‘‘minimal gene set’’ prokaryote, modeling the nitric

oxide-cGMP pathway (central to many signal transduction mechanisms), and modeling the

calyx of Held (a large synapse structure in the mammalian auditory central nervous system).

The chapter on ‘‘Reaction Diffusion Computing’’, by Andrew Adamatzky and Benjamin

De Lacy Costello, introduces the reader to the concept of a reaction diffusion computer. This

is a spatially extended chemical system, which processes information via transforming an

input profile of ingredients (in terms of different concentrations of constituent ingredients)

into an output profile of ingredients. The chapter takes us through the elements of this field

via case studies, and it shows how selected tasks in computational geometry, robotics, and

logic can be addressed by chemical implementations of reaction diffusion computers. After

introducing the field and providing a treatment of its origins and main achievements,

a classical view of reaction diffusion computers is then described. The chapter moves on to

discuss varieties of reaction diffusion processors and their chemical constituents, covering

applications to the aforementioned tasks. The chapter ends with the authors’ thoughts on

future developments in this field.

The chapter ‘‘Rough Fuzzy Computing’’, by Andrzej Skowron, shifts our context towards

addressing a persistent area of immense difficulty for classical computing, which is the fact

that real-world reasoning is usually done in the face of inaccurate, incomplete, and often

inconsistent evidence. In essence, concepts in the real world are vague, and computation needs

ways to address this. We are hence treated, in this chapter, to an overarching view of rough set

theory, fuzzy set theory, their hybridization, and applications. Rough and fuzzy computing are

broadly complementary approaches to handling vagueness, focusing respectively on capturing

the level of distinction between separate objects and the level of membership of an object in a

set. After presenting the basic concepts of rough computing and fuzzy computing in turn, in

each case going into some detail on the main theoretical results and practical considerations,

the chapter goes on to discuss how they can be, and have been, fruitfully combined. The

chapter ends with an overview of the emerging field of ‘‘Wisdom Technology’’ (Wistech) as a

paradigm for developing modern intelligent systems.

The chapter ‘‘Collision-Based Computing’’, by Andrew Adamatzky and Jérôme Durand-

Lose, presents and discusses the computations performed as a result of spatial localizations in

xxiv Preface



systems that exhibit dynamic spatial patterns over time. For example, a collision may be

between two gliders in a cellular automaton, or two separate wave fragments within an

excitable chemical system. This chapter introduces us to the basics of collision-based comput-

ing and overviews collision-based computing schemes in 1D and 2D cellular automata as well

as continuous excitable media. Then, after some theoretical foundations relating to 1D cellular

automata, the chapter presents a collision-based implementation for a 1D Turing machine and

for cyclic tag systems. The chapter ends with discussion and presentation of ‘‘Abstract

Geometrical Computation’’, which can be seen as collision-based computation in a medium

that is the continuous counterpart of cellular automata.

The chapter ‘‘Nonclassical Computation — A Dynamical Systems Perspective’’, by Susan

Stepney, takes a uniform view of computation, in which inspiration from a dynamical systems

perspective provides a convenient way to consider, in one framework, both classical discrete

systems and systems performing nonclassical computation. In particular, this viewpoint

presents a way towards computational interpretation of physical embodied systems that

exploit their natural dynamics. The chapter starts by discussing ‘‘closed’’ dynamical systems,

those whose dynamics involve no inputs from an external environment, examining their

computational abilities from a dynamical systems perspective. Then it discusses continuous

dynamical systems and shows how these too can be interpreted computationally, indicating

how material embodiment can give computation ‘‘for free’’, without the need to explicitly

implement the dynamics. The outlook then broadens to consider open systems, where the

dynamics are affected by external inputs. The chapter ends by looking at constructive, or

developmental, dynamical systems, whose state spaces change during computation. These

latter discussions approach the arena of biological and other natural systems, casting them as

computational, open, developmental, dynamical systems.

Acknowledgements

This handbook resulted from a highly collaborative effort. The handbook and area editors are

grateful to the chapter writers for their efforts in writing chapters and delivering them on time,

and for their participation in the refereeing process.

We are indebted to the members of the Advisory Board for their valuable advice and

fruitful interactions. Additionally, we want to acknowledge David Fogel, Pekka Lahti, Robert

LaRue, Jason Lohn, Michael Main, David Prescott, Arto Salomaa, Kai Salomaa, Shinnosuke

Seki, and Rob Smith, for their help and advice in various stages of production of this

handbook. Last, but not least, we are thankful to Springer, especially to Ronan Nugent, for

intense and constructive cooperation in bringing this project from its inception to its

successful conclusion.

Leiden; Edinburgh; Nijmegen; Grzegorz Rozenberg (Main Handbook Editor)

Turku; London, Ontario Thomas Bäck (Handbook Editor and Area Editor)

October 2010 Joost N. Kok (Handbook Editor and Area Editor)

David W. Corne (Area Editor)

Tom Heskes (Area Editor)

Mika Hirvensalo (Area Editor)

Jarkko J. Kari (Area Editor)

Lila Kari (Area Editor)

Preface xxv



http://www.springer.com/978-3-540-92909-3


