
Chapter 2
Electronic Liquid Crystal Phases in Strongly
Correlated Systems

Eduardo Fradkin

Abstract I discuss the electronic liquid crystal (ELC) phases in correlated electronic
systems, what these phases are and in what context they arise. I will go over the
strongest experimental evidence for these phases in a variety of systems: the two-
dimensional electron gas (2DEG) in magnetic fields, the bilayer material Sr3Ru2O7
(also in magnetic fields), and a set of phenomena in the cuprate superconductors
(and more recently in the pnictide materials) that can be most simply understood in
terms of ELC phases. Finally we will go over the theory of these phases, focusing
on effective field theory descriptions and some of the known mechanisms that may
give rise to these phases in specific models.

2.1 Electronic Liquid Crystal Phases

Electronic liquid crystal phases [1] are states of correlated quantum electronic
systems that break spontaneously either rotational invariance or translation invari-
ance. Since most correlated electronic systems arise in a solid state environment
the underlying crystal symmetry plays a role as it is the unbroken symmetry of the
system. Thus in practice these phases break the point group symmetry of the under-
lying lattice, in addition of the possible breaking of the lattice translation symmetry.

This point of view is commonplace in the classification of phases of classical liquid
crystals [2]. Classical liquid crystal systems are assemblies of a macroscopically large
number of molecules with various shapes. The shapes of the individual molecules
(the “nematogens”) affect their mutual interactions, as well as enhancing entropically-
driven interactions (“steric forces”) which, when combined, give rise to the dazzling
phase diagrams of liquid crystals and the fascinating properties of their phases [2].
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The physics of liquid crystals is normally regarded as part of “soft” condensed
matter physics, while the physics of correlated electrons is usually classified as part
of “hard” condensed matter physics. The necessity to use both points of view clearly
brings to the fore the underlying unity of Physics as a science. Thus, one may think of
this area as “soft quantum matter” or “quantum soft matter” depending on to which
tribe you belong to.

These lectures are organized as follows. In Sect. 2.1 ELC phases and their
symmetries are described. In Sect. 2.2 I cover the main experimental evidence
for these phases in 2DEGs, in Sr3Ru2O7 and in high temperature superconductors.
In Sect. 2.3 I present the theories of stripe phases, in Sect. 2.4 the relation between
electronic inhomogeneity and high temperature superconductivity is discussed, and
Sect. 2.5 is devoted to the theory of the pair density wave (the striped supercon-
ductor). Section 2.6 is devoted to the theories of nematic phases and a theory of
nematic electronic order in the strong coupling regime is discussed in Sect. 2.7 The
stripe-nematic quantum phase transition is discussed in Sect. 2.8.

2.1.1 Symmetries of Electronic Liquid Crystal Phases

We will follow Ref.[1] and classify the ELC phases of strongly correlated electrons1

following the symmetry-based scheme used in classical liquid crystals [2, 3]:

1. Crystalline phases: phases that break all continuous translation symmetries and
rotational invariance.

2. Smectic (“stripe”) phases: phases break one translation symmetry and rotational
invariance.

3. Nematic and hexatic phases: uniform (liquid) phases that break rotational invari-
ance.

4. Isotropic: uniform and isotropic phases.

A cartoon of the real space structure of these ordered phases is shown in Fig. 2.1.
Unlike classical liquid crystals, electronic systems carry charge and spin, and have

strong quantum mechanical effects (particularly in the strong correlation regime).
This leads to a host of interesting possibilities of ordered states in which the liquid
crystalline character of the spatial structure of these states becomes intertwined with
the “internal” degrees of freedom of electronic systems. These novel ordered phases
will be the focus of these lectures. One of the aspects that we will explore is the
structure of their phase diagrams. Thus in addition of considering the thermal melting
of these phases, we will also be interested in the quantum melting of these states and
the associated quantum phase transitions (see a sketch in Fig. 2.2).

1 You may call the ELC phases the anisotropic states of point particles!
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Fig. 2.1 Cartoon of liquid
crystal phases
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Fig. 2.2 Schematic phase
diagram of electronic liquid
crystal phases. Here T is
temperature and r denotes a
tuning parameter the controls
the strength of the quantum
fluctuations. In practice it
can represent doping,
magnetic field, pressure or
even material. The full dots
are quantum critical points
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In this context, the crystalline phases are either insulating or “almost insulating”,
e.g. multiple charge density waves (CDW) ordered states either commensurate or
sliding (incommensurate). However, these phases may also be superconducting either
by coexistence or, more interestingly, by modulating the superconducting states
themselves. Similarly, electron nematics are anisotropic metallic or superconducting
states, while the isotropic phases are also either metallic or superconducting. As we
will see these phases display a set of rather striking and unusual behaviors, some of
which have been observed in recent experiments.
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2.1.2 Order Parameters and Their Symmetries

The order parameters of ELC phases are well known [1, 4]. In the crystalline phases,
the order parameters are ρK , the expectation values of the density operators at the
set of ordering wave vectors {K } that defines the crystal [3].

ρK =
∫

d r ρ(r) ei K ·r (2.1)

where ρ(r) is the local charge density. Thus, under an uniform translation by R, ρK
transforms as

ρK → ρK ei K ·R (2.2)

Smectic phases are unidirectional density waves and their order parameters are also
expectation values ρK but for only one wave vector K . For charged systems, ρ(r)
is the charge density, and the order parameter ρK is the charge density wave order
parameter. Since ρ(r) is real, ρK = ρ∗−K , and the density can be expanded as

ρ(r) = ρ0(r)+ ρK (r)ei K ·r + c.c. (2.3)

where ρ0(r) are the Fourier components close to zero wave vector, k = 0, and ρK (r)
are the Fourier components with wave vectors close to k = K .Hence, a density wave
(a smectic) is represented by a complex order parameter field, in this case ρK (r).
This is how we will describe a CDW and a charge stripe (which from the point of
view of symmetry breaking have the same description).2

Smectic order is detected most easily in scattering experiments through the
measurement of the static structure factor, usually denoted by S(k),

S(k) =
∫

dω

2π
S(k, ω) (2.5)

where S(k, ω) is the dynamical structure factor, i.e. the Fourier transform of the
(in this case) density-density correlation function. The signature of smectic order
is the existence of a delta-function component of S(k) at the ordering wave vector,
k = K , with a prefactor that is equal to |〈ρK 〉|2 [3].

In the case of a spin density wave (a “spin stripe”) the picture is the same except
that the order parameter field is multi-component, SK (r), corresponding to different
spin polarizations. Thus, the local spin density S(r) has the expansion

S(r) = S0(r)+ SK (r) ei K ·r + c.c. (2.6)

2 On the other hand, in the case of a crystal phase, the expansion is

ρ(r) = ρ0(r)+
∑
K∈�

ρK (r)ei K ·r + c.c. (2.4)

where � denotes the set of primitive lattice vectors of the crystal phase [3].
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where S0(r) denotes the local (real) ferromagnetic order parameter and SK (r) is
the (complex) SDW (or spin stripe) order parameter field, a complex vector in spin
space.

One of the questions we will want to address is the connection between these
orders and superconductivity. The superconducting order parameter, a pair conden-
sate, is the complex field �(r). It is natural (and as we will see it is borne out by
current experiments) to consider the case in which the superconducting order is also
modulated, and admits an expansion of the form

�(r) = �0(r)+�K (r) ei K ·r +�−K (r) e−i K ·r (2.7)

where the uniform component �0 is the familiar BCS order parameter, and �K(r)
is the pair-density-wave (PDW) order parameter [5, 6], closely related to the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) order parameter [7, 8] (but without an external
magnetic field). Since�(r) is complex,�K (r) �= �−K (r)∗, the PDW state has two
complex order parameters.3

In contrast, nematic phases are translationally invariant but break rotational invari-
ance. Their order parameters transform irreducibly under the rotation group for a
continuous system, or under the point (or space) group of the lattice. Hence, the
order parameters of a nematic phase (hexatic and their generalizations) are symmetric
traceless tensors, that we will denote by Qi j [2]. In 2D, as most of the problems we
will be interested in are 2D systems (or quasi2D systems), the order parameter takes
the form (with i, j = x, y)

Qi j =
(

Qxx Qxy

Qxy −Qxx

)
(2.8)

which, alternatively, can be written in terms of a director N,

N = Qxx + i Qxy = |N | eiϕ. (2.9)

Under a rotation by a fixed angle θ, N transforms as4

N → N ei2θ . (2.10)

Hence, it changes sign under a rotation by π/2 and it is invariant under a rotation
by π (hence the name director, a headless vector). On the other hand, it is invariant
under uniform translations by R.

In practice we will have great latitude when choosing a nematic order parameter
since any symmetric traceless tensor in space coordinates will transform properly
under rotations. In the case of a charged metallic system, a natural choice to describe

3 I will not discuss the case of spiral order here.
4 For a lattice system, rotational symmetries are those of the point (or space) group symmetry
of the lattice. Thus, nematic order parameters typically become Ising-like (on a square lattice) or
three-state Potts on a triangular lattice (and so forth).
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a metallic nematic state is the traceless symmetric component of the resistivity
(or conductivity) tensor [9–12]. In 2D we will use the traceless symmetric tensor

Qi j =
(
ρxx − ρyy ρxy

ρxy ρyy − ρxx

)
(2.11)

where ρxx and ρyy are the longitudinal resistivities and ρxy = ρyx is the transverse
(Hall) resistivity. This tensor changes sign under a rotation by π

2 but is invariant
under a rotation by π.A similar analysis can be done in terms of the dielectric tensor,
which is useful in the context of light scattering experiments.

On the other hand, when looking at the spin polarization properties of a system
other measures of nematic order are available. For instance, in a neutron scat-
tering experiment, the anisotropy under a rotation R (say, by π/2) of the structure
factor S(k)

Q ∼ S(k)− S(Rk) (2.12)

is a measure of the nematic order parameter Q [4, 13].
Other, more complex, yet quite interesting phases are possible. One should keep in

mind that the nematic order parameter (as defined above) corresponds to a field that
transforms under the lowest (angular momentum 	 = 2) irreducible representation
of the rotations group, compatible with inversion symmetry. The nematic phase thus
defined has d-wave symmetry, the symmetry of a quadrupole. Higher symmetries
are also possible, e.g. hexatic (	 = 6). However it is also possible to have states
that break both rotational invariance and 2D inversion (mirror reflection), as in the
	 = 3 channel. Such states break (although mildly) time-reversal invariance [14, 15].
Other complex phases arise by combining the nematic order in real space with those
of some internal symmetry, e.g. spin or orbital degeneracies. Thus one can consider
nematic order parameters in the spin-triplet channels, which give rise to a host of
(as yet undetected) phases with fascinating behaviors in the spin channel or under
time-reversal, such as the dynamical generation of spin orbit coupling or the spon-
taneous breaking of time-reversal invariance [14, 16, 17].

2.1.3 Electronic Liquid Crystal Phases and Strong
Correlation Physics

One of the central problems in condensed matter physics is the understanding of
doped Mott insulators. Most of the interesting systems in condensed matter, notably
high temperature superconductors, are doped Mott insulators [18]. A Mott insulator
is a phase of an electronic system in which there is a gap in the single particle
spectrum due to the effects of electronic correlations and not to features of the band
structure. Thus, Mott insulators have an odd number of electrons in the unit cell.
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For a system like this, band theory would predict that such systems must be metallic,
not insulating, and be described by the Landau theory of the Fermi liquid. Electronic
systems that become insulating due to the effects of strong correlation are states of
matter with non-trivial correlations.

Most known Mott insulating states are ordered phases, associated with the sponta-
neous breaking of some global symmetry of the electronic system, and have a clearly
defined order parameter. Typically the Mott state is an antiferromagnetic state (or
generalizations thereof). However there has been a sustained interest in possible non-
magnetic Mott phases, e.g. dimerized, various sorts of conjectured spin liquids, etc.,
some of which do not admit an order parameter description (as in the case of the
topological phases).

We will not concern ourselves on these questions here. What will matter to us is
that doping this insulator by holes disrupts the correlations that define the insulating
state. Consequently doped holes are more costly (energetically) if they are apart
than if they are together. The net effect is that the disruption of the correlations of the
Mott state results in an effective strong attractive interaction between the doped holes.
This effect was early on mistaken for a sign of pairing in models of high temperature
superconductors (such as the Hubbard and t-J models). Further analysis revealed that
this effective attraction meant instead the existence of a generic instability of strongly
correlated systems to phase separation [19]. This feature of strong correlation has
been amply documented in numerical simulations (see, for instance, Ref. [20]).

Due to the inherent tendency to phase separation of Hubbard-type models
(and its descendants), the insulating nature of a Mott insulator cannot be ignored
and, in particular, its inability to screen the longer range Coulomb interactions. Thus,
quite generally, one can expect that the combined effects of the kinetic energy of the
doped holes and the repulsive Coulomb interactions should in effect frustrate the
tendency to phase separation of short-ranged models of strong correlation [21].

The existence of strong short range attractive forces and long range repulsion is
a recipe for the formation of phases with complex spatial structure. As noted above,
this is what happens in classical liquid crystals. It is also the general mechanism
giving rise to generally inhomogeneous phases in classical complex fluids such as
ferrofluids and heteropolymers [22], as well as in astrophysical problems such as the
crusts of neutron stars [23].

The point of view that we take in these lectures is that the behavior observed in
the underdoped regime of high temperature superconductors and in other strongly
correlated systems is due to the strong tendency that these systems have to form
generally inhomogeneous and anisotropic phases, “stripes”. In the following lectures
we will go over the experimental evidence for these phases and for their theoretical
underpinning.5

5 Ref. [24] is a recent, complementary, review of the phenomenology of nematic phases in strongly
correlated systems.
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Fig. 2.3 Schematic phase
diagram of the cuprate
superconductors. The full
lines are the phase
boundaries for the
antiferromagnetic and
superconducting phases. The
broken line is the phase
diagram for a system with
static stripe order and a
pronounced 1/8 anomaly.
The dotted line marks the
crossover between the bad
metal and pseudogap
regimes

T

x

an
ti

fe
rr

om
ag

ne
t

superconductor

1
8

pseudogap

bad metal

2.2 Experimental Evidence in Strongly Correlated Systems

During the past decade or so experimental evidence has been mounting of the exis-
tence of electronic liquid crystal phases in a variety of strongly correlated (as well as
not as strongly correlated) electronic systems. We will be particularly interested in the
experiments in the copper oxide high temperature superconductors, in the ruthenate
materials (notably Sr3Ru2O7), and in two-dimensional electron gases (2DEG) in
large magnetic fields. However, as we will discuss below, these concepts are also
relevant to more conventional CDW systems Fig. 2.3.

2.2.1 Nematic Phases in the 2DEG in High Magnetic Fields

To this date, the best documented electron nematic state is the anisotropic compress-
ible state observed in 2DEGs in large magnetic fields near the middle of a Landau
level, with Landau index N ≥ 2 [25–28] (Figs. 2.4, 2.5). In ultra high mobility samples
of a 2DEG in AlAs-GaAs heterostructures, transport experiments in the second
Landau level (and above) near the center of the Landau level show a pronounced
anisotropy of the longitudinal resistance rising sharply below T 
 80 mK, with an
anisotropy that increases by orders of magnitude as the temperature is lowered. This
effect is only seen in ultra-clean samples, with nominal mean free paths of about
0.5 mm (!) and nominal mobilities of 10 − 30 × 106.6

A nematic order parameter can be constructed phenomenologically from the
measured resistivity tensor, by taking the symmetric traceless piece of it. This was
done in Ref. [9] where a fit of the data of Lilly et al. [25, 26] was shown to be

6 The anisotropy is strongly suppressed by disorder.
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Fig. 2.4 a 2DEG in a magnetic field. b Landau levels
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Fig. 2.5 Spontaneous magneto-transport anisotropy in the 2DEG: a peaks in ρxx developing at low
T in high LLs (dotted line: T = 100 mK; thick line: 65 mK; thin line: 25 mK). Inset: temperature
dependence of peak height at ν = 9/2 (closed circles), 11/2 (open circles), 13/2 (closed triangles)
and 15/2 (open triangles). b Anisotropy of ρxx at T = 25 mK. From Lilly et al. [25], reprinted with
permission from APS

consistent with a classical 2D XY model (in a weak symmetry breaking field). A
2D XY symmetry is expected for a planar nematic order provided the weak lattice
symmetry breaking is ignored. Presumably lattice anisotropy is responsible for the
saturation shown at low temperatures in Fig. 2.6 (left panel).

These experiments were originally interpreted as evidence for a quantum Hall
smectic (stripe) phase [29–33]. However, further experiments ([10, 34, 35])
(Fig. 2.6, right panel) did not show any evidence of pinning of this putative unidi-
rectional CDW as the I-V curves were found to be strictly linear at low bias. In
addition, the observation of broadband noise in the current, which is a character-
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Fig. 2.6 Left: Nematic order in the 2DEG; fit of the resistance anisotropy to a 2D XY model Monte
carlo simulation. From Fradkin et al [9], reprinted with permission from APS. Right: a Longitudinal
resistance anisotropy around ν = 9/2at T = 25 mK. Solid trace: Rxx ; average current flow along
[110]. b Temperature dependence of resistances at ν = 9/2. c Rxx and Ryy at ν = 9/2 at T = 25 mK
vs in-plane magnetic field along [110] and [110]. From Cooper et al [10], reprinted with permission
from APS

istic of CDW systems, has not been detected in the regime where this remarkable
anisotropy is observed. In contrast, extremely sharp threshold electric fields and
broadband noise in transport was observed in a nearby reentrant integer quantum
Hall phase, suggesting a crystallized electronic state. These facts, together with a
detailed analysis of the experimental data, suggested that the compressible state is in
an electron nematic phase [9, 31, 36–38], which is better understood as a quantum
melted stripe phase.7 An alternative picture, a nematic phase accessed by a Pomer-
anchuk instability from a “composite fermion” Fermi liquid is conceivable but hard
to justify microscopically [38, 39].

2.2.2 The Nematic Phase of Sr3Ru2O7

Recent magneto-transport experiments in the quasi-two-dimensional bilayer
ruthenate Sr3Ru2O7 by the St. Andrews group [12] have given strong evidence
of a strong temperature-dependent in-plane transport anisotropy in strongly corre-
lated materials at low temperatures T � 800 mK and for a window of perpendicular
magnetic fields around 7.5 Tesla (see Fig. 2.7). Sr3Ru2O7 is a quasi-2D bilayer mate-
rial known to have a metamagnetic transition as a function of applied perpendicular
magnetic field and temperature. Contrary to the case of the 2DEG in AlAs-GaAs
heterostructures and quantum wells, the magnetic fields applied to Sr3Ru2O7 are too
weak to produce Landau quantization. However, as in the case of the 2DEG of the
previous section, the transport anisotropy appears at very low temperatures and only
in the cleanest samples. The observed transport anisotropy has a strong temperature

7 The 2DEG in a strong magnetic field is inherently a strongly correlated system as the interaction
is always much bigger than the (vanishing) kinetic energy.
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Fig. 2.7 Phase diagram of
Sr3Ru2O7 in the
temperature-magnetic field
plane. The nematic phase is
the region comprised
between ∼ 7.5T and
∼ 8.1T . N transport
anisotropy is detected
outside this region where the
system behaves as an
isotropic (metamagnetic)
metal. From Grigera et al.
[40], reprinted with
permission from AAAS

and field dependence (although not as pronounced as in the case of the 2DEG) is
shown in Fig. 2.8. These experiments provide strong evidence that the system is in
an electronic nematic phase in that range of magnetic fields [12, 41]. The electronic
nematic phase appears to have preempted a metamagnetic QCP in the same range of
magnetic fields [42–45]. This suggests that proximity to phase-separation may be a
possible microscopic mechanism to trigger such quantum phase transitions, consis-
tent with recent ideas on the role of Coulomb-frustrated phase separation in 2DEGs
[46, 47].

2.2.3 Stripe Phases and Nematic Phases in the Cuprates

In addition to high temperature superconductivity, the copper oxide materials display
a strong tendency to have charge-ordered states, such as stripes. The relation between
charge ordered states [48], as well as other proposed ordered states [ 15, 49], and the
mechanism(s) of high temperature superconductivity is a subject of intense current
research. It is not, however, the main focus of these lectures. Stripe phases have
been extensively investigated in high temperature superconductors and detailed and
recent reviews are available on this subject [4, 52]. Stripe phases in high temperature
superconductors have unidirectional order in both spin and charge (although not
always) which are typically incommensurate. In general the detected stripe order
(by low energy inelastic neutron scattering) in La2−x Srx CuO4, La2−x Bax CuO4 and
YBa2Cu3O6+x (see Refs. [4, 52] and references therein) is not static but “fluctuating”.
As emphasized in Ref. [4], “fluctuating order” means that there is no true long range
unidirectional order. Instead, the system is in a (quantum) disordered phase, very
close to a quantum phase transition to such an ordered phase, with very low energy
fluctuations that reveal the character of the proximate ordered state. On the other hand,
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Fig. 2.8 Left: ρaa and ρbb of the in-plane magnetoresistivity tensor of a high-purity single crystal of
Sr3Ru2O7. (A) For an applied c-axis field, ρaa (upper curve) and ρbb (lower curve). (B) Tilted field
(13◦ from c). Right: The temperature dependence difference of ρaa and ρbb for fields applied at θ =
72◦ such that the in-plane field component lies along a (upper inset). Temperature dependence of ρaa
(open symbols) and ρbb (filled symbols) for μ0 H = 7.4 T applied in the direction specified above.
(Lower inset) The temperature dependence of the difference between the two magnetoresistivities
shown in the upper inset, normalized by their sum. From Borzi et al. [12], reprinted with permission
from AAAS

Fig. 2.9 Left: Static spin and charge stripe order in La2−x Bax CuO4 in neutron scattering. From
Fujita et al. [50], reprinted with permission from APS. Right: resonant X-ray scattering. From
Abbamonte et al. [51], reprinted with permission from Nature Physics

in La2−x Bax CuO4 near x = 1/8 (and in La1.6−x Nd0.4Srx Cuo4 also near x = 1/8 where
they were discovered first [53]), the order detected by elastic neutron scattering [54],
and resonant X-ray scattering in La2−x Bax CuO4 [51] also near x = 1/8, becomes true
long range static order (see Fig. 2.9).

In the case of La2−x Srx CuO4, away from x = 1/8, and particularly on the more
underdoped side, the in-plane resistivity has a considerable temperature-dependent
anisotropy, which has been interpreted as an indication of electronic nematic
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Fig. 2.10 Nematic order in underdoped YBa2Cu3O6+x (y = 6.45). (a to c) Intensity maps of the
spin-excitation spectrum at 3, 7,and 50 meV, respectively. The a∗ and b∗ directions are indicated in
(a). (d) Colormap of the intensity at 3 meV, as it would be observed in a crystal consisting of two
perpendicular twin domains with equal population. (e and f) Scans along a∗ and b∗ through Q AF .

From Hinkov et al. [13], reprinted with permission from AAAS

order [11]. The same series of experiments also showed that very underdoped
YBa2Cu3O6+x is an electron nematic as well.

The most striking evidence for electronic nematic order in high temperature super-
conductors are the recent neutron scattering experiments in YBa2Cu3O6+x at y = 6.45
[56] (see Figs. 2.10, 2.11). In particular, the temperature-dependent anisotropy of the
inelastic neutron scattering in YBa2Cu3O6+x shows that there is a critical temper-
ature for nematic order (with Tc ∼ 150 K) where the inelastic neutron peaks also
become incommensurate. Similar effects were reported by the same group [57] at
higher doping levels (y ∼ 6.6)who observed that the nematic signal was decreasing
in strength suggesting the existence of a nematic-isotropic quantum phase transi-
tion closer to optimal doping. Fluctuating stripe order in underdoped YBa2Cu3O6+x

has been detected earlier on in inelastic neutron scattering experiments [58, 59]
which, in hindsight, can be reinterpreted as evidence for nematic order. However,
as doping increases past a y ∼ 6.6a spin gap appears and magnetic scattering is
strongly suppressed at low energies (in the absence of magnetic fields) making
inelastic neutron scattering experiments less effective in this regime.

In a series of particularly interesting experiments, the Nernst coefficient was
measured in YBa2Cu3O6+x ranging from the very underdoped regime, where
inelastic neutron scattering detects nematic order, to a slightly overdoped regime
[60]. The Nernst coefficient is defined as follows. Let je and jQ be the charge and
heat currents established in a 2D sample by an electric field E and a temperature
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Fig. 2.11 a Incommensurability δ (squares), half-width-at-half-maximum of the incommensurate
peaks along a∗ (ξ−1

a , dark circles) and along b∗ (ξ−1
b , white circles) in reciprocal lattice units.

From Hinkov et al. [13], reprinted with permission from AAAS. b Static stripe order induced by
an external magnetic field in YBa2Cu3O6+x at y = 6.45. From Haug et al. [55], reprinted with
permission from APS

gradient ∇T :
(

je
jQ

)
=

(
σ α

T α κ

) (
E
−∇T

)
(2.13)

where σ , α and κ are 2 × 2 tensors for the conductivity, the thermoelectric conduc-
tivity and the thermal conductivity respectively. The Nernst coefficient, also a 2 × 2
tensor θ is measured (see Ref. [61]) say by applying a temperature gradient in the x
direction and measuring the voltage along the y direction:

E = −θ∇T (2.14)

Since no current flows through the system, the Nernst tensor is

θ = −σ−1α (2.15)

These experiments revealed that the Nernst (tensor) coefficient has an anisotropic
component whose onset coincides (within the error bars) with the conventionally
defined value of the pseudogap temperature T ∗, and essentially tracks its evolution
as a function of doping. Thus, it appears that, at least in YBa2Cu3O6+x , the pseudogap
is a regime with nematic order (see Fig. 2.12). The same group had shown earlier
than the Nernst coefficient is a sensitive indicator of the onset of stripe charge order
in La1.6−x Nd0.4Srx Cuo4 [62].

Inelastic neutron scattering experiments have found nematic order also in
La2−x Srx CuO4 materials where fluctuating stripes where in fact first discovered
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Fig. 2.12 The pseudogap as
a regime with of charge
nematic order in
YBa2Cu3O6+x : measured
from the Nernst effect, the
onset (data) coincides with
the T ∗ of the pseudogap PG
(broken line). Here Tc is the
superconducting (SC)
critical temperature of
YBa2Cu3O6+x plotted as a
function of p (the hole
concentration). From Ref.
[60], reprinted with
permission from Nature

[53]. Matsuda et al. [63] have found in underdoped La2−x Srx CuO4 (x = 0.05), a
material that was known to have “fluctuating diagonal stripes”, evidence for nematic
order similar to what Hinkov et al. [56] found in underdoped YBa2Cu3O6+x . Earlier
experiments in La2−x Srx CuO4 in moderate magnetic fields had also shown that a spin
stripe state became static over some critical value of the field [64]. These experiments
strongly suggest that the experiments that had previously identified the high temper-
ature superconductors as having “fluctuating stripe order” (both inside and outside
the superconducting phase) were most likely detecting an electronic nematic phase,
quite close to a state with long range stripe (smectic) order. In all cases the back-
ground anisotropy (due to the orthorhombic distortion of the crystal structure) acts as
a symmetry breaking field that couples linearly to the nematic order, thus rounding
the putative thermodynamic transition to a state with spontaneously broken point
group symmetry. These effects are much more apparent at low doping where the
crystal orthorhombicity is significantly weaker.

In La2−x Bax CuO4 at x = 1/8 there is strong evidence for a complex stripe ordered
state that intertwines charge, spin and superconducting order [5, 65] (shown in
Fig. 2.13). In fact La2−x Bax CuO4 at x = 1/8 appears to have some rather fascinating
properties. As summarized in Fig. 2.14, La2−x Bax CuO4 at x = 1/8 has a very low
critical superconducting Tc ∼ 4 K (where the Meissner state sets in). However it is
known from angle-resolved photoemission (ARPES) experiments that the anti-nodal
gap (which roughly gives the pairing scale) is actually largest at x = 1/8 [66] (or unsup-
pressed by the 1/8 anomaly according to Ref. [67].) Static charge stripe order sets
in at 54 K (where there is a structural transition from the LTO to the LTT lattice
structure), but static spin stripe order only exists below 42 K. As soon as static spin
order sets in, the in-plane resistivity begins to decrease very rapidly with decreasing
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Fig. 2.13 a Dynamical layer decoupling in La2−x Bax CuO4 at x = 1/8 from transport data.
b Kosterlitz-Thouless transition in La2−x Bax CuO4 at x = 1/8. From Q. Li et al. [65], reprinted
with permission from APS

temperature, while the c-axis resistivity increases (see Fig. 2.13, left panel). Below
35 K strong 2D superconducting fluctuations are observed and at 16 K the in-plane
resistivity vanishes at what appears to be a Kosterlitz–Thouless transition (shown
in Fig. 2.13, right panel). However, the full 3D resistive transition is only reached
at 10 K (where ρc → 0) although the Meissner state is only established below 4 K!
This dazzling set of phenomena shows clearly that spin, charge and superconducting
order are forming a novel sort of intertwined state, rather than compete. We have
conjectured that a pair density wave is stabilized in this intermediate temperature
regime [5, 6, 68]. Similar phenomenology, i.e. a dynamical layer decoupling, has
been seen in La2−x Srx CuO4 at moderate fields where the stripe order is static [69].
We will return below on how a novel state, the pair-density wave, explains these
phenomena.

An important caveat to the analysis we presented here is that in doped systems
there is always quenched disorder, which has different degrees of short range “orga-
nization” in different high temperature superconductors. Since disorder also couples
linearly to the charge order parameters it ultimately also rounds the transitions and
renders the system to a glassy state (as noted already in Refs. [1, 4]). Such effects are
evident in scanning tunneling microscopy (STM) experiments in Bi2Sr2CaCu2O8+δ
which revealed that the high energy (local) behavior of the high temperature super-
conductors has charge order and it is glassy [4, 70–73]. This is most remarkable as
the STM data on Bi2Sr2CaCu2O8+δ at low bias shows quasiparticle propagation in
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Fig. 2.14 Summary of the
behavior of the
stripe-ordered
superconductor
La2−x Bax CuO4 near
x = 1/8 : Tco is the charge
ordering temperature, Tspin
the spin ordering
temperature, T ∗∗ marks the
beginning of layer
decoupling behavior, TK T is
the 2D superconducting
temperature (“KT”), T3D is
the 3D resistive transition,
and Tc is the 3D Meissner
transition
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the superconducting state (but not above Tc). Yet, at high bias (i.e. high energies)
there are no propagating “quasiparticles” but, instead, provides a vivid image of
electronic inhomogeneity with short range charge order. This behavior is contrary
to what is commonly the case in conventional superconductors where STM at high
energies shows Fermi-liquid like electronic quasiparticles. Similarly, the high energy
spectrum of ARPES has never resembled that of a conventional metal. We note that
a recent analysis of this data by Lawler and coworkers has revealed the existence of
nematic order over much longer length scales than the broken positional order [74]
(Fig. 2.15).

Finally, we note that in the recently discovered iron pnictides based family of high
temperature superconductors, such as La (O1−x Fx )FeAs and Ca(Fe1−x Cox )2As2
[75, 76], a unidirectional spin-density-wave has been found. It has been suggested
[77] that the undoped system LaOFeAs and CaFe2As2 may have a high-temperature
nematic phase and that quantum phase transitions also occur as a function of fluorine
doping [78, 79]. This suggests that many of the ideas and results that we present here
may be relevant to these still poorly understood materials.

The existence of stripe-ordered phases is well established in other complex oxide
materials, particularly the manganites and the nickelates. In general, these mate-
rials tend to be “less quantum mechanical” than the cuprates in that they are typi-
cally insulating (although with interesting magnetic properties) and the observed
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Fig. 2.15 Short range stripe order in Bi2Sr2CaCu2O8+δ (Dy-Bi2212) as seen in STM experiments.
a R maps taken at 150 mV; b �2 R shows the local nematic order. From Kohsaka et al. [70], reprinted
with permission from AAAS

charge-ordered phases are very robust. These materials typically have larger electron-
phonon interactions and electronic correlation are comparatively less dominant in
their physics. For this reason they tend to be “more classical” and less prone to
quantum phase transitions. However, at least at the classical level, many of the issues
we discussed above, such as the role of phase separation and Coulomb interactions,
also play a key role [80]. The thermal melting of a stripe state to a nematic has been
seen in the manganite material Bix Cax MnO3 [81].

2.2.4 Conventional CDW Materials

CDWs have been extensively studied since the mid-seventies and there are extensive
reviews on their properties [82, 83]. From the symmetry point of view there is no
difference between a CDW and a stripe (or electron smectic). CDW states are usually
observed in systems which are not particularly strongly correlated, such as the quasi-
one-dimensional and quasi-two-dimensional dichalcogenides, and the more recently
studied tritellurides. These CDW states are reasonably well described as Fermi liquids
(FL) which undergo a CDW transition, commensurate or incommensurate, triggered
by a nesting condition of the FS [84, 85]. As a result, a part or all of the FS is gapped
in which case the CDW may or may not retain metallic properties. Instead, in a
strongly correlated stripe state, which has the same symmetry breaking pattern, at
high energy has Luttinger liquid behavior [1, 86, 87].

What will interest us here is that conventional quasi-2D dichalcogenides, the also
quasi-2D tritellurides and other similar CDW systems can quantum melt as a function
of pressure in TiSe2 [88], or by chemical intercalation as in Cux TiSe2 [89, 90] and
Nbx TaS2 [91]. Thus, CDW phases in chalcogenides can serve as a weak-coupling
version of the problem of quantum melting of a quantum smectic. Interestingly, there
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is strong experimental evidence that both TiSe2 [88] and Nbx TaS2 [91] do not melt
directly to an isotropic Fermi fluid but go instead through an intermediate, possibly
hexatic, phase.8 Whether or not the intermediate phases are anisotropic is not known
as no transport data is yet available in the relevant regime.

The case of the CDWs in tritellurides is more directly relevant to the theory we
will present here. Tritellurides are quasi-2D materials which for a broad range of
temperatures exhibit a unidirectional CDW (i.e. an electronic smectic phase) and
whose anisotropic behavior appears to be primarily of electronic origin [93–96].
However, the quantum melting of this phase has not been observed yet. Theoretical
studies have also suggested that it may be possible to have a quantum phase transition
to a state with more than one CDW in these materials [97].

2.3 Theories of Stripe Phases

2.3.1 Stripe Phases in Microscopic Models

Of all the electronic liquid crystal phases, stripe states have been studied most. There
are in fact a number of excellent reviews on this topic [4, 87, 98] covering both the
phenomenology and microscopic mechanisms. I will only give a brief summary of
important results and refer to the literature for details.

As we noted in Sect. 2.1.2, stripe and CDW (and SDW) phases have the same order
parameter as they correspond to the same broken symmetry state, and therefore the
same order parameter ρK (and S Q).9 There is however a conceptual difference. CDW
and SDW are normally regarded as weak coupling instabilities of a Fermi liquid (or
free fermion state) typically triggered by a nesting condition satisfied by the ordering
wave vector [82, 84]. In this context, the quasiparticle spectrum is modified by the
partial opening of gaps and a change in the topology of the original Fermi surface
(or, equivalently, by the formation of “pockets”). Because of this inherently weak
coupling physics, the ordering wave vector is rigidly tied to the Fermi wave vector kF .

In one-dimensional systems, non-linearities lead to a more complex form of
density wave order, a lattice of solitons, known in this context as discommensu-
rations [85, 99] whose ordering wavevector is no longer necessarily tied to kF .

A stripe state is essentially a two-dimensional generally incommensurate ordered
state which is an analog of this strong coupling one-dimensional lattice of discom-
mensurations [100]. Thus, in this picture, the spin stripe seen in neutron scattering
[53] is pictured as regions of antiferromagnetic (commensurate) order separated by
anti-phase domain walls (the discommensurations) where the majority of the doped

8 Cux TiSe2 is known to become superconducting [89]. The temperature-pressure phase diagram
of TiSe2 exhibits a superconducting dome enclosing the quantum critical point at which the CDW
state melts [92].
9 In principle the order parameter of the stripe state may not be pure sinusoidal and will have
higher harmonics of the fundamental order parameter.
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holes reside. This picture is quite hard to achieve by any weak coupling approxima-
tion such as Hartree–Fock.

Stripe phases were first found in Hartree–Fock studies of Hubbard and t-J
models in two dimensions [101–105]. In this picture stripe phases are unidirectional
charge density waves with or without an associated spin-density-wave (SDW) order.
As such they are characterized by a CDW and/or SDW order parameters, ρK and
S Q respectively.10 A Hartree–Fock theory of stripe phases was also developed in the
context of the 2DEG in large magnetic fields [29, 30, 32] to describe the observed
and very large transport anisotropy we discussed above.

As it is usually the case, a serious limitation of the Hartree–Fock approach is that
it is inherently reliable only at weak coupling, and hence away from the regime of
strong correlation of main interest. In particular, all Hartree–Fock treatments of the
stripe ground state typically produce an “empty stripe state”, an insulating crystal and
therefore not a metallic phase. Thus, in this approach a conducting (metallic) stripe
phase can only arise from some sort of quantum melting of the insulting crystal and
hence not describable in mean-field theory. The phenomenological significance of
stripe phases was emphasized by several authors, particularly by Emery and Kivelson
[21, 106, 107].

Mean field theory predicts that, at a fixed value of the electron (or hole) density
(doping), the generally incommensurate ordering wave vectors satisfy the relation
K = 2 Q. That this result should generally hold follows from a simple Landau–
Ginzburg (LG) analysis of stripe phases (see, e.g. [108, 109] where it is easy to see
that a trilinear term of the form ρ∗

K S Q · S Q (and its complex conjugate) is generally
allowed in the LG free energy. In an ordered state of this type the antiferromagnetic
spin order is “deformed” by anti-phase domain walls whose periodic pattern coin-
cides with that of the charge order, as suggested by the observed magnetic structure
factor of the stripe state first discovered in the cuprate La1.6−x Nd0.4Srx Cuo4 [53].

This pattern of CDW and SDW orders has suggested the popular cartoon of
stripe phases as antiferromagnetic regions separated by narrow “rivers of charge” at
antiphase domain walls. The picture of the stripe phase as an array of rivers suggests
a description of stripe phases as a quasi-one-dimensional system. As we will see in
the next subsection, this picture turned out to be quite useful for the construction
of a strong coupling theory of the physics of the stripe phase. On the other hand, it
should not be taken literally in the sense that these rivers always have a finite width
which does not have to be small compared with the stripe period and in many cases
they may well be of similar magnitude. Thus, one may regard this phase as being
described by narrow 1D regions with significant transversal quantum fluctuations in
shape (as it was presented in Ref.[1]) or, equivalently, as quasi-1D regions with a
significant transversal width.

An alternative picture of the stripe phases can be gleaned from the t-J model, the
strong coupling limit of the Hubbard model. Since in the resulting effective model
there is no small parameter, the only (known) way to treat it is to extend the SU(2)
symmetry of the Hubbard (and Heisenberg) model to either SU(N) or Sp(N) and to

10 I will ignore here physically correct but more complex orders such as helical phases.
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use the large N expansion to study its properties [98, 110–112]. In this (large N)
limit the undoped antiferromagnet typically has a dimerized ground state, a periodic
(crystalline) pattern of valence bond spin singlets. Since all degrees of freedom are
bound into essentially local singlets this state is a quantum paramagnet. However, it
is also “striped” in the sense that the valence bond crystalline state breaks at least
the point group symmetry C4 of the square lattice as well as translation invariance:
it is usually a period 2 columnar state.11 In the doped system the valence bond
crystal typically becomes a non-magnetic incommensurate insulating system. Mean-
field analyses of these models [112] also suggest the existence of superconducting
states, some of which are “striped”. Similar results are suggested by variational wave
functions based of the RVB state [114–116]. We should note, however, that mean-
field states are no longer controlled by a small parameter, such as 1/N, and hence it is
unclear how reliable they may be at the physically relevant case N = 2. For a detailed
(and up-to-date) review of this approach see Ref. [98].

There are also extensive numerical studies of stripe phases in Hubbard type
models. The best numerical data to date is the density matrix renormalization group
(DMRG) work of White and Scalapino (and their collaborators) on Hubbard and t-J
ladders of various widths (up to 5) and varying particle densities [117–120] and by
Jackelmann et al. in fairly wide ladders (up to 7) [121]. An excellent summary and
discussion on the results from various numerical results (as well as other insights)
can be found in Ref. [87]. The upshot of all the DMRG work is that there are strong
stripe correlations in Hubbard and t-J models which may well be the ground state.12

Much of the work on microscopic mechanisms of stripe formation has been done
in models with short range interactions such as the Hubbard and t-J models. As it
is known [ 19, 20, 122], models of this type have a strong tendency to electronic
phase separation. As we noted in the introduction, the physics of phase separation is
essentially the disruption of the correlations of the Mott (antiferromagnetic) state by
the doped holes which leads to an effective attractive interaction among the charge
carriers. When these effects overwhelm the stabilizing effects of the Fermi pressure
(i.e. the fermion kinetic energy), phase separation follows. In more realistic models,
however, longer range (and even Coulomb) interactions must be taken into account
which tend to frustrate this tendency to phase separation [21], as well as a more
complex electronic structure [123]. The structure of actual stripe phases in high Tc

materials results from a combination of these effects. One of the (largely) unsolved
questions is the relation between the stripe period and the filling fraction of each stripe
at a given density. Most simple minded calculation yield simple commensurate filling
fractions for each stripe leading to insulating states. At present time, except for results
from DMRG studies on wide ladders [121], there are no controlled calculations
that reproduce these effects, although suggestive variational estimates have been
published [124].

11 This state is a close relative of the resonating valence bond (RVB) state originally proposed as
a model system for a high Tc superconducting state [18, 113], i.e. a (non-resonating) valence bond
(VB) state.
12 A difficulty in interpreting the DMRG results lies in the boundary conditions that are used that
tend to enhance inhomogeneous, stripe-like, phases.
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2.3.2 Phases of Stripe States

We will now discuss the strong coupling picture of the stripe phases [48, 86, 87,
112, 125, 126]. We will assume that a stripe phase exists with a fixed (gener-
ally incommensurate) wave vector K and a fixed filling fraction (or density) on
each stripe. In this picture a stripe phase is equivalent to an array of ladders of
certain width. In what follows we will assume that each stripe has a finite spin gap:
a Luther–Emery liquid [127, 128].

2.3.2.1 Physics of the 2-Leg Ladder

The assumption of the existence of a finite spin gap in ladders can be justified in
several ways. In DMRG studies of Hubbard and t-J ladders in a rather broad density
range, 0< x < 0.3, it is found that the ground state has a finite spin gap [129]. Similar
results were found analytically in the weak coupling regime [130–133].

Why there is a spin gap? There is actually a very simple argument for it [134].
In the non-interacting limit, U = V = 0, the two-leg ladder has two bands with two
different Fermi wave vectors, pF1 �= pF2. Let us consider the effects of interactions
in this weak coupling regime. The only allowed processes involve an even number
of electrons. In this limit is is easy to see that the coupling of CDW fluctuations with
Q1 = 2pF1 �= Q2 = 2pF2 is suppressed due to the mismatch of their ordering wave
vectors. In this case, scattering of electron pairs with zero center of mass momentum
from one system to the other is a peturbatively (marginally) relevant interaction.
The spin gap arises since the electrons can gain zero-point energy by delocalizing
between the two bands. To do that, the electrons need to pair, which may cost some
energy. When the energy gained by delocalizing between the two bands exceeds the
energy cost of pairing, the system is driven to a spin-gap phase.

This physics is borne out by detailed numerical (DMRG) calculations, even in
systems with only repulsive interactions. Indeed, at x = 0 (the undoped ladder) the
system is in a Mott insulating state, with a unique fully gapped ground state (“C0S0”
in the language of Ref. [130]). In the strong coupling limit (in which the rungs of
the ladder are spin singlet valence bonds), U 
 t, the spin gap is large: �s ∼ J/2
[135].

At low doping, 0 < x < xc ∼ 0.3, the doped ladder is in a Luther–Emery liquid:
there is no charge gap and large spin gap (“C1S0”). In fact, in this regime the spin gap
is found to decrease monotonically as doping increases, �s ↓ as x ↑, and vanishes
at a critical value xc : �s → 0 as x → xc.

The most straightforward way to describe this system is to use bosonization.
Although the ladder system has several bands of electrons that have charge and spin
degrees of freedom, in the low energy regime the effective description is consider-
ably simplified. Indeed, in this regime it is sufficient to consider only one effective
bosonized charge field and one bosonized spin field. Since there is a spin gap,�s �= 0,
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the spin sector is massive. In contrast, the charge sector is only massive at x = 0, where
there is a finite Mott gap �M .

The effective Hamiltonian for the charge degrees of freedom in this (Luther–
Emery) phase is

H =
∫

dy
vc

2

[
1

K

(
∂yθ

)2 + K (∂xφ)
2
]

+ . . . (2.16)

where φ is the CDW phase field, and θ is the SC phase field. They satisfy canonical
commutation relations

[φ(y′), ∂yθ(y)] = iδ(y − y′). (2.17)

The parameters of this effective theory, the spin gap �s, the charge Luttinger para-
meter K, the charge velocity vc, and the chemical potential μ, have non-universal
but smooth dependences on the doping x and on the parameters of the microscopic
Hamiltonian, the hopping matrix elements t ′/t and the Hubbard interaction U/t.
The ellipsis . . . in the effective Hamiltonian represent cosine potentials responsible
for the Mott gap �M in the undoped system (x = 0). It can be shown that the spec-
trum in the low doping regime, x → 0, consists of gapless and spinless charge 2e
fermionic solitons.

The charge Luttinger parameter is found to approach K → 1/2 as x → 0.
As x increases, so does K reaching the value K ∼ 1 for x ∼ 0.1. On the other hand
K ∼ 2 for x ∼ xc where the pin gap vanishes. The temperature dependence of the
superconducting and CDW susceptibilities have the scaling behavior

χSC ∼ �s

T 2−K
(2.18)

χCDW ∼ �s

T 2−K −1 . (2.19)

Thus, both susceptibilities diverge χCDW(T ) → ∞ and χSC(T ) → ∞ for
0 < x < xc as T → 0. However, for x � 0.1, the SC susceptibility is more diver-
gent: χSC 
 χCDW. Hence, the doped ladder in the Luther–Emery regime is effec-
tively a 1D superconductor even for a system with nominally repulsive interactions
(i.e. without “pairing”).

2.3.2.2 The spin-Gap Stripe State

Now consider a system with N stripes, each labeled by an integer a = 1, . . . , N .
We will consider first the phase in which there is a spin gap. Here, the spin fluctuations
are effectively frozen out at low energies. Nevertheless each stripe a has two degrees
of freedom [1]: a transverse displacement field which describes the local dynamics
of the configuration of each stripe, and the phase field φa for the charge fluctuations
on each stripe. The action of the generalized Luttinger liquid which describes the
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smectic charged fluid of the stripe state is obtained by integrating out the local
shape fluctuations associated with the displacement fields. These fluctuations give
rise to a finite renormalization of the Luttinger parameter and velocity of each stripe.
More importantly, the shape fluctuations, combined with the long-wavelength inter-
stripe Coulomb interactions, induce inter-stripe density-density and current-current
interactions, leading to an imaginary time Lagrangian density of the form

Lsmectic = 1

2

∑
a,a′,μ

ja
μ(x) W̃μ(a − a′) ja′

μ (x). (2.20)

where the current operators on stripe a are ja
μ(x) = 1√

π
εμν∂νφ

a(x); here μ = t, x .

These operators are marginal, i.e., have scaling dimension 2, and preserve the smectic
symmetry φa → φa + αa (where αa is constant on each stripe) of the decoupled
Luttinger fluids. Notice that the current (and density) operators of each stripe are
invariant under these transformations. Whenever this symmetry is exact, the charge-
density-wave order parameters of the individual stripes do not lock with each other,
and the charge density profiles on each stripe can slide relative to each other without
an energy cost. In other words, there is no rigidity to shear deformations of the
charge configuration on nearby stripes. This is the smectic metal phase [1], a sliding
Luttinger liquid [136].

The fixed point action for a generic smectic metal phase thus has the form
(in Fourier space)

S =
∑

Q

K (Q)

2

{
ω2

v(Q)
+ v(Q)k2

}
|φ(Q)|2

=
∑

Q

1

2K (Q)

{
ω2

v(Q)
+ v(Q)k2

}
|θ(Q)|2

(2.21)

where Q = (ω, k, k⊥).Here θa is the field dual to φa and obey the canonical (equal-
time) commutation relations

[
φa(x

′), ∂xθb(x)
] = iδ(x ′ − x)δab (2.22)

In Eq. 2.21 k is the momentum along the stripe and k⊥ perpendicular to the stripes.
The kernels K(Q) and v(Q) are analytic functions of Q whose form depends on micro-
scopic details, e.g. at weak coupling they are functions of the inter-stripe Fourier
transforms of the forward and backward scattering amplitudes g2(k⊥) and g4(k⊥),
respectively. In practice, up to irrelevant operators, it is sufficient to keep the depen-
dence of the kernels only on the transverse momentum k⊥. Thus, the smectic fixed
point is characterized by the effective Luttinger parameter and velocity (functions),
K (k⊥) and v(k⊥). Much like the ordinary 1D Luttinger liquid, this “fixed point”
is characterized by power-law decay of correlations functions. This effective field
theory also yields the correct low energy description of the quantum Hall stripe phase
of the 2DEG in large magnetic fields [31–33, 137, 138].



2 Electronic Liquid Crystal Phases in Strongly Correlated Systems 77

In the presence of a spin gap, single electron tunneling is irrelevant [134], and the
only potentially relevant interactions involving pairs of stripes a, a’ are singlet pair
(Josephson) tunneling, and the coupling between the CDW order parameters. These
interactions have the form Hint = ∑

n

(
Hn

SC + Hn
CDW

)
for a′ − a = n, where

Hn
SC =

(
�

2π

)2 ∑
a

Jn cos[√2π(θa − θa+n)]

Hn
CDW =

(
�

2π

)2 ∑
a

Vn cos[√2π(φa − φa+n)].
(2.23)

Here Jn are the inter-stripe Josephson couplings (SC), Vn are the 2kF component of
the inter-stripe density-density (CDW) interactions, and � is an ultra-violet cutoff,
�∼ 1/a where a is a lattice constant. A straightforward calculation, yields the scaling
dimensions �1,n ≡ �SC,n and �−1,n ≡ �CDW,n of Hn

SC and Hn
CDW :

�±1,n =
π∫

−π

dk⊥
2π

[κ(k⊥)]±1 (1 − cos nk⊥) , (2.24)

where κ(k⊥) ≡ K (0, 0, k⊥). Since κ(k⊥) is a periodic function of k⊥ with period
2π, κ(k⊥) has a convergent Fourier expansion of the form κ(k⊥) = ∑

n κn cos nk⊥.
We will parametrize the fixed point theory by the coefficients κn, which are smooth
non-universal functions. In what follows we shall discuss the behavior of the simpli-
fied model with κ(k⊥) = κ0 +κ1cos k⊥.Here, κ0 can be thought of as the intra-stripe
inverse Luttinger parameter, and κ1 is a measure of the nearest neighbor inter-stripe
coupling. For stability we require κ0 > κ1.

Since it is unphysical to consider longer range interactions in Hint than are present
in the fixed point Hamiltonian, we treat only perturbations with n = 1, whose dimen-
sions are

�SC,1 ≡ �SC = κ0 − κ1

2
(2.25)

and

�CDW,1 ≡ �CDW = 2(
κ0 − κ1 +

√
κ2

0 − κ2
1

) (2.26)

For a more general function κ(k⊥), operators with larger n must also be considered,
but the results are qualitatively unchanged [ 136, 139].13

In Fig. 2.16 we present the phase diagram of this model. The dark AB curve is
the set of points where �CDW = �SC, and it is a line of first order transitions.

13 �SC,2 is the most relevant operator. For a model with κ(k⊥) = [κ0 + κ1 cos(k⊥)]2, all pertur-
bations are irrelevant for large κ0 and small |κ0 − κ1|.
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Fig. 2.16 Phase diagram for
a stripe state with a spin gap
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To the right of this line the inter-stripe CDW coupling is the most relevant pertur-
bation, indicating an instability of the system to the formation of a 2D stripe crystal
[1]. To the left, Josephson tunneling (which still preserves the smectic symmetry)
is the most relevant, so this phase is a 2D smectic superconductor. (Here we have
neglected the possibility of coexistence since a first order transition seems more
likely). Note that there is a region of κ0 ≥ 1, and large enough κ1, where the global
order is superconducting although, in the absence of inter-stripe interactions (which
roughly corresponds to κ1 = 0), the superconducting fluctuations are subdominant.
There is also a (strong coupling) regime above the curve CB where both Josephson
tunneling and the CDW coupling are irrelevant at low energies. Thus, in this regime
the smectic metal state is stable. This phase is a 2D smectic non-Fermi liquid in
which there is coherent transport only along the stripes.

To go beyond this description we need to construct an effective theory of the
two-dimensional ordered phase. For instance, the superconducting state is a 2D
striped superconductor, whereas the crystal is a bidirectional charge density wave.
A theory of these 2D ordered phases can be developed by combining the quasi-one-
dimensional renormalization group with an effective inter-stripe mean field theory,
as in Ref. [140], which in turn can be fed into a 2D renormalization group theory
[141]. One advantage of this approach is that the inter-stripe mean field theory has
the same analytic structure as the dimensional crossover RG (see Ref. [126]).

Let us consider the superconducting state, a striped superconductor. In the way
we constructed this state all ladders are equivalent. Hence this is a period 2 stripe
(columnar) SC phase, similar to the one discussed by Vojta [98]. Let us use inter-
stripe mean field theory to estimate the critical temperature of the 2D state. For the
isolated ladder, Tc = 0 as required by the Mermin-Wagner theorem. If the inter-stripe
Josephson and CDW couplings are non-zero, J �= 0 and V �= 0, the system will now
have a finite SC critical temperature, Tc > 0. Now, for x � 0.1, CDW couplings are
irrelevant as in this range 1/2 < K < 1. Hence, in the same range, the inter-ladder
Josephson coupling are relevant and lead to a SC state in a small x with a somewhat
low Tc which, in inter-stripe (or ‘chain’) mean field theory can be estimated by
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2J χSC(Tc) = 1. (2.27)

In this regime, however, Tc ∝ δt x and it is low due to the low carrier density.
Conversely, for larger x, K > 1 and χC DW is more strongly divergent than χSC .

Thus, for x � 0.1 the CDW couplings become more relevant. This leads to an
insulating incommensurate CDW state with ordering wave number P = 2πx .

In the scenario we just outlined [ 48, 126] in the 2D regime the system has a first
order transition from a superconducting state to a non-superconducting phase with
charge order. However at large enough inter-stripe forward scattering interactions
both couplings become irrelevant and there is a quantum bicritical point separating
both phases from a smectic metal (as depicted in Fig. 2.16). However, an alternative
possibility is that instead of a bicritical point, we may have a quantum tetracritical
point and a phase in which SC and CDW orders coexist.

2.4 Is Inhomogeneity Good or Bad for Superconductivity?

The analysis we just did raises the question of whether stripe order (that is,
some form of spatial charge inhomogeneity) is good or bad for superconductivity.
This question was addressed in some detail in Refs. [48, 126] where it was concluded
that (a) there is an optimal degree of inhomogeneity at which Tc reaches a maximum,
and (b) that charge order in a system with a spin gap can provide a mechanism of
“high temperature superconductivity” (the meaning of which we will specify below).

The argument goes as follows. Consider a system with a period 4 stripe phase,
consisting of an alternating array of inequivalent A and B type ladders in the Luther–
Emery regime.14 The inter-stripe mean field theory estimate for the superconducting
and CDW critical temperatures now takes the somewhat more complex form:

(2J )2χ A
SC(Tc)χ

B
SC(Tc) = 1 (2.28)

for the superconducting Tc, and

(2V)2χ A
CDW(P, Tc)χ

B
CDW(P, Tc) = 1 (2.29)

for the CDW Tc. In particular, the 2D CDW order is greatly suppressed due to the
mismatch between ordering vectors, PA and PB, on neighboring ladders.

For inequivalent A and B ladders SC beats CDW if the corresponding Luttinger
parameters satisfy the inequalities

2 > K −1
A + K −1

B − K A; 2 > K −1
A + K −1

B − K B . (2.30)

14 In Ref. [125] a similar pattern was also considered except that the (say) ‘B’ stripes do no have
a spin gap. This patterns was used to show how a crude model with nodal quasiparticles can arise
in an inhomogeneous state.
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Fig. 2.17 Model of a period
4 stripe phase

The SC critical temperature is then found to obey a power law scaling form (instead
of the essential singularity of the BCS theory of superconductivity):

Tc ∼ �s

( J
W̃

)α
;α = 2K A K B

[4K A K B − K A − K B] . (2.31)

A simple estimate of the effective inter-stripe Josephson coupling,15 J ∼ δt2/J and
of the high energy scale W̃ ∼ J, implies that the superconducting critical temper-
ature Tc is (power law) small for small J !, with an exponent that typically is α∼1
(Fig. 2.17).

These arguments can be used to sketch a phase diagram of the type presented
in Fig. 2.18 which shows the qualitative dependence of the SC Tc with doping x.
The broken line shown is the spin gap�s(x) as a function of doping x and, within this
analysis, it must be an upper bound on Tc. Our arguments then showed that a period
4 structure can have a substantially larger Tc than a period 2 stripe. Consequently, the
critical dopings, xc(2) and xc(4), for the SC-CDW quantum phase transition must
move to higher values of x for period 4 compared with period 2. On the other hand,
for x � xc the isolated ladders do not have a spin gap, and this strong coupling
mechanism is no longer operative.

How reliable are these estimates? What we have are mean-field estimates for Tc

and it is an upper bound to the actual Tc. As it is usually the case, Tc should be
suppressed by phase fluctuations by up to a factor of 2. On the other hand, pertur-
bative RG studies for small J yield the same power law dependence. This result

15 Josephson coupling is due to pair tunneling from one stripe to a neighboring one. Josephson
processes arise in second order in perturbation theory and involve intermediate states with excitations
energies of order J and have an amplitude controlled by δt.
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Fig. 2.18 Evolution of the
superconducting critical
temperature with doping

is asymptotically exact for J << W̃ . Since Tc is a smooth function of δt/J , it is
reasonable to extrapolate for δt ∼ J . Hence, T max

c ∝ �s and we have a “high Tc”.
This is in contrast to the exponentially small Tc obtained in a BCS-like mechanism.

Now, having convinced ourselves that a period 4 stripe will have a larger SC Tc

than a period 2 stripe one may wonder if an even longer period stripe state would
do better. It is easy to see that there will be a problem with this proposal. Clearly,
although the argument we just presented would suggest that the exponents will also be
of order 1 for longer periods, the problem now is that the effective couplings become
very small very quickly as the Josephson coupling has an exponential dependence
on distance (tunneling!). Thus, there must be an optimal period for this mechanism
and it is likely to be a number larger than 2 but smaller than (say) 6.

In summary, we have shown that in systems with strong repulsive interactions
(and without attractive interactions), an (inhomogeneous) stripe-ordered state can
support a 2D superconducting state with a high critical temperature, in the sense that
it is not exponentially suppressed, with a high paring scale (the spin gap). This state
is an inhomogeneous version of the RVB mechanism [18, 113, 142]. The arguments
suggest that there is an optimal degree of inhomogeneity. There is suggestive evidence
in ARPES data in La2−x Bax CuO4 that show a large pairing scale in the stripe- ordered
state which support this picture [66, 67].

2.5 The Striped Superconductor: A Pair Density Wave State

We now turn to a novel type of striped superconductor, the pair density wave state.
Berg et al. [5, 109, 143] have recently proposed this state as a symmetry-based
explanation of the spectacular dynamical layer decoupling seen in stripe-ordered
La2−x Bax CuO4 (and La1.6−x Nd0.4Srx Cuo4) [65, 144, 145], and in La2−x Srx CuO4
in magnetic fields [69].

Summary of experimental facts for La2−x Bax CuO4 near x = 1/8:
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Fig. 2.19 Period 4 striped superconducting state

• ARPES finds an anti-nodal d-wave SC gap that is large and unsuppressed at x =
1/8. Hence, there is a large pairing scale in the stripe-ordered state.

• Resonant X-Ray scattering finds static charge stripe order for T < Tcharge = 54 K.
• Neutron Scattering finds static Stripe Spin order T < Tspin = 42 K.
• The in-plane resistivity ρab drops rapidly to zero from Tspin to TK T (the Kosterlitz–

Thouless (KT) transition).
• ρab shows KT behavior for Tspin > T > TK T .

• ρc increases as T decreases for T > T ∗∗ ≈ 35 K.
• ρc → 0 as T → T3D = 10 K (the bulk 3D resistive transition).
• ρc/ρab → ∞ for TK T > T > T3D.

• Theres is a Meissner state only below Tc = 4 K.

How do we understand these remarkable effects that can be summarized as
follows: There is a broad temperature range, T3D < T < T2D with 2D super-
conductivity but not in 3D, as if there is no interlayer Josephson coupling. In this
regime there is both striped charge and spin order. This can only happen if there is
a special symmetry of the superconductor in the striped state that leads to an almost
complete cancellation of the c-axis Josephson coupling.

What else do we know? The stripe state in the LTT (“low temperature tetragonal”)
crystal structure of La2−x Bax CuO4 has two planes in the unit cell. Stripes in the 2nd
neighbor planes are shifted by half a period to minimize the Coulomb interaction: 4
planes per unit cell. The anti-ferromagnetic spin order suffers a π phase shift accross
the charge stripe which has period 4. Berg et al. [5] proposed that the superconducting
order is also striped and also suffers a π phase shift. The superconductivity resides
in the spin gap regions and there is a π phase shift in the SC order across the anti-
ferromagnetic regions (Fig. 2.19).

The PDW SC state has intertwined striped charge, spin and superconducting
orders.16

16 While there is some numerical evidence for a state of this type in variational Monte Carlo
calculations [115] and in slave particle mean field theory [114, 146] (see, however, Ref.[147, 148]),
a consistent and controlled microscopic theory is yet to be developed. Since the difference between
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How does this state solve the puzzle? If this order is perfect, the Josephson
coupling between neighboring planes cancels exactly due to the symmetry of the
periodic array of π textures, i.e. the spatial average of the SC order parameter is
exactly zero. The Josephson couplings J1 and J2 between planes two and three
layers apart also cancel by symmetry. The first non-vanishing coupling J3 occurs at
four spacings. It is quite small and it is responsible for the non-zero but very low
Tc. Defects and/or discommensurations give rise to small Josephson coupling J0
between neighboring planes.

Are there other interactions? It is possible to have an inter-plane biquadratic
coupling involving the product of the SC order parameters between neighboring
planes �1�2 and the product of spin stripe order parameters also on neighboring
planes M1 · M2. However in the LTT structure M1 · M2 = 0 and there is no such
coupling. In a large enough perpendicular magnetic field it is possible (spin flop
transition) to induce such a term and hence an effective Josephson coupling. Thus
in this state there should be a strong suppression of the 3D SC Tc. but not of the
2D SC Tc.

On the other hand, away from x = 1/8 there is no perfect commensuration. Discom-
mensurations are defects that induce a finite Josephson coupling between neighboring
planes J1|x−1/8|2, leading to an increase of the 3D SC Tc. away from x = 1/8. Similar
effects arise from disorder which also lead to a rise in the 3D SC Tc.

2.5.1 Landau–Ginzburg Theory of the Pair Density Wave

In what follows we will rely heavily on the results of Refs. [68, 109, 143]. We begin
with a description of the order parameters:

1. PDW (Striped) SC:

�(r) = �Q(r)ei Q·r +�− Q(r)e−i Q·r (2.32)

complex charge 2e singlet pair condensate with wave vector Q, (i.e. an FFLO
type state at zero magnetic field)17

2. Nematic: detects breaking of rotational symmetry: N, a real neutral pseudo-scalar
order parameter

3. Charge stripe: ρK , unidirectional charge stripe with wave vector K
4. Spin stripe order parameter: S Q, a neutral complex spin vector order parameter.

These order parameters have the following transformation properties under rota-
tions by π/2, Rπ/2 :

(Footnote 16 continued)
the energies of the competing states seen numerically is quite small one must conclude that they
are all reasonably likely.
17 A state that is usually described as a pair crystal is commonly known as a pair density wave
[149, 150]. However that state cannot be distinguished by symmetry from a (two) CDWs coexisting
with a uniform SC.
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1. The nematic order parameter changes sign: N → −N
2. The CDW ordering wave vector rotates: ρK → ρRπ/2 K
3. The SDW ordering wave vector also rotates: S Q → SRπ/2 Q
4. The striped SC (s or d wave) order parameter:�± Q → ±�±Rπ/2 Q (+ for s-wave,

– for d- wave)

and by translations by R

N → N , ρK → ei K ·RρK , S Q → ei Q·R S Q (2.33)

The Landau–Ginzburg free energy functional is, as usual, a sum of terms of the form

F = F2 + F3 + F4 + . . . (2.34)

where F2, the quadratic term, is simply a sum of decoupled terms for each order para-
meter. There exist a number of trilinear terms mixing several of the order parameters
described above. They are

F3 =γs[ρ−K S Q · S Q + ρ−K̄ S Q̄ · S Q̄ + c.c]
+ γ�[ρ−K�

�− Q�Q + ρ−K̄�
�

− Q̄
� Q̄ + c.c.]

+ g�N [��Q�Q +��− Q�− Q −��
Q̄
� Q̄ −��− Q̄

�− Q̄]
+ gs N [S− Q · S Q − S− Q̄ · S Q̄]
+ gc N [ρ−KρK − ρ−K̄ρK̄ ], (2.35)

where Q̄ = Rπ/2 Q, and K̄ = Rπ/2 K . The fourth order term, which is more or less
standard, is shown explicitly below.

Several consequences follow directly from the form of the trilinear terms,
Eq. 2.35. One is that, at least in a fully translationally invariant system, the first
two terms of Eq. 2.35 imply a relation between the ordering wave vectors: K = 2 Q.
Also, as we will see below, these terms imply the existence of vortices of the SC
order with half the flux quantum.

Another important feature of the PDW SC is that it implies the existence of a non-
zero charge 4e uniform SC state. Indeed, if we denote by �4 the (uniform) charge
4e SC order parameter, then the following term in the LG expansion is allowed

F ′
3 = g4

[
�∗

4

(
�Q�− Q + rotation by

π

2

)
+ c.c.

]
(2.36)

Hence, the existence of striped SC order (PDW) implies the existence of uniform
charge 4e SC order!18

18 A charge 4e SC order parameter is an expectation value of a four fermion operator.
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We should also consider a different phase in which there are coexisting uniform
and striped SC orders, as it presumably happens at low temperatures in La2−x Bax

CuO4. If this is so, there is a non-zero PDW SC order parameter �Q as well as an
uniform (d-wave) SC order parameter �0 which are coupled by new (also trilinear)
terms in the LG free energy of the form

F3,u = γ��
∗
0(ρQ�− Q + ρ− Q�Q)+ gρρ−2 Qρ

2
Q + π

2
rotation + c.c. (2.37)

If �0 �= 0 and �Q �= 0, there is a new ρQ component of the charge order!. Also,
the small uniform component�0 removes the sensitivity to quenched disorder of the
PDW SC state.

2.5.2 Charge 4e SC Order and the Topological Excitations
of the PDW SC State

If there is a uniform charge 4e SC order, its vortices must be quantized in units
of hc/4e instead of the conventional hc/2e flux quantum. Hence, half- vortices are
natural in this state. To see how they arise let us consider a system deep in the PDW
SC state so that the magnitude of all the order parameters is essentially constant, but
their phases may vary. Thus we can write the PDW SC order parameter as

�(r) = |�Q| ei Q·r+iθ+ Q(r) + |�− Q| e−i Q·r+iθ− Q(r) (2.38)

where (by inversion symmetry) |�Q| = |�− Q| = const. It will be convenient to
define the new phase fields θ±(r) by

θ± Q(r) = 1

2
(θ+(r)± θ−(r)) . (2.39)

Likewise, in the same regime the CDW order parameter can be written as

ρ(r) = |ρK | cos(K · r + φ(r)) (2.40)

(and a similar expression for the SDW order parameter.) In this notation, the second
trilinear term shown in Eq. 2.35 takes the form

F3,γ = 2γ�|ρK�Q�− Q | cos(2θ−(r)− φ(r)) (2.41)

Hence, the relative phase θ− is locked to φ, the Goldstone boson of the CDW (the
phason), and they are not independently fluctuating fields. Furthermore, the phase
fields θ± Q are defined modulo 2π while θ+ is defined only modulo π.

This analysis implies that the allowed topological excitations of the PDW SC are

1. A conventional SC vortex with�θ+ = 2π and�φ = 0,with topological charges
(1,0).
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Fig. 2.20 Schematic phase
diagram of the thermal
melting of the PDW state
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2. A bound state of a 1/2 vortex and a CDW dislocation, �θ+ = π and �φ = 2π,
with topological charges (±1/2,±1/2) (any such combination is allowed).

3. A double dislocation, �θ+ = 0 and �φ = 4π, with topological charge (0, 1).

All three topological defects have logarithmic interactions.
There are now three different pathways to melt the PDW SC [68], depending which

one of these topological excitations becomes relevant (in the Kosterlitz–Thouless RG
sense [151]) first. To determine the relevance or irrelevance of an operator O one
must first compute its scaling dimension�O given by the exponent of its correlation
function

〈O(x)O( y)〉 = 1

|X − y|2�O
(2.42)

For the case of a topological excitation (vortices, dislocations, etc) this amounts
to the computation of the ratio of the partition function of a system without topo-
logical excitations with two operators that create these excitations inserted at X and
y (respectively) with the free partition function without these insertions. It is the
straightforward to show [3, 152, 153] that at temperature T, the scaling dimension
of a topological excitation of topological charge (p, q) is

�p,q = π

T

(
ρsc p2 + κC DW q2

)
(2.43)

where ρsc is the superfluid density (the stiffness of the θ+ phase field) and κC DW is
the CDW stiffness (that is, of the φ phase field).

As usual the criterion of relevance is that an operator that creates an excitation is
relevant if its scaling dimension is equal to the space dimension (for details see, for
instance, Ref.[153]) which in this case is 2. This condition, �p,q = 2 for each one
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of the topological excitations listed above, leads to the phase thermal phase diagram
shown in Fig. 2.20.19

Thus, the PDW state may thermally melt in three possible ways:

1. First into a CDW phase by proliferating conventional SC vortices, a (1, 0) topo-
logical excitation, followed by a subsequent melting of the CDW into the normal
(Ising nematic) high temperature phase. This scenario corresponds to the right
side of the phase diagram and, presumably, is what happens in La2−x Bax CuO4.

2. A direct melting into the normal (Ising nematic) phase by proliferation of frac-
tional vortices, with topological charge (±1/2,±1/2).

3. Melting into a charge 4 e uniform SC phase by proliferation of double dislocations,
with topological charge (0, 1).

The prediction that the PDW state should effectively have a uniform charge 4e
SC order with an anomalous hc/4e flux quantization leads to a direct test of this
state. this can be done by searching for fractional vortices, and similarly of fractional
periodicity in the Josephson effect (and Shapiro steps). Similarly, the prediction that
in the phase in which an uniform (d-wave) SC is present there should be a charge-
ordered state with period equal to that of the SC (and of the SDW) is another direct
test of this theory.

2.6 Nematic Phases in Fermi Systems

We now turn to the theory of the nematic phases. The nematic phase is the simplest
of the liquid crystal states. In this state the system is electronically uniform but
anisotropic. There are two ways to access this phase. One is by a direct transition
from the isotropic electronic fluid. The other is by melting (thermal or quantum
mechanical) the stripe phase. We will consider both cases. We will begin with the
first scenario in its simplest description as a Pomeranchuk instability of a Fermi
liquid.

2.6.1 The Pomeranchuk Instability

The central concept of the Landau theory of the Fermi liquid [157] is the quasi-
particle. A Landau quasiparticle is the elementary excitation of a Fermi liquid with
the same quantum numbers as a non-interacting electron. A necessary condition for
the Landau theory to work is the condition that the quasiparticle becomes sharp
(or well defined) at asymptotically low energies, i.e. as the Fermi surface is

19 A more elaborate version of this phase diagram, based on a one-loop Kosterlitz RG calculation
for physically very different systems with the same RG structure system, was given in Refs. [154–
156].
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approached. For the Landau quasiparticle to be well defined it is necessary that
the quasiparticle width, i.e. the quasiparticle scattering rate, to be small on the
scale of the quasiparticle energy. The quasiparticle scattering rate, the imaginary
part of the electron self energy, �′′(ω, p), is determined by the quasiparticle inter-
actions, which in the Landau theory of the Fermi liquid are parametrized by the
Landau parameters. Except for the BCS channel, the forward scattering interactions
(with or without spin flip) are the only residual interactions among the quasiparticles
that survive at low energies [158, 159].

The Landau “parameters” are actually functions F S,A( p, p′) that quantifying the
strength of the forward scattering interactions among quasiparticles at low energies
with momenta p and p′ close to the Fermi surface in the singlet (charge) channel
(S) or the triplet (spin) channel (A). For a translationally invariant system it depends
only on the difference of the two momenta, F( p, p′) = F( p − p′). Furthermore, if
the system is also rotationally invariant, the Landau parameters can be expressed in
an angular momentum basis. In 3D they take the form F S,A

	,m (with 	 = 0, 1, 2, . . .

and |m| ≤ 	), while in 2D they are simply F S,A
m (where m ∈ Z). We will see below

that in some cases of interest we will also need to keep the dependence on a small
momentum transfer in the Landau parameters (i.e. p and p′ will not be precisely at
the FS) even though it amounts to keeping a technically irrelevant interaction. On
the other hand, for a lattice model rotational invariance is always broken down to the
point (or space) group symmetry of the lattice. In that case the Landau parameters are
classified according to the irreducible representations of the point (or space) group
of the lattice, e.g. the C4 group of the square lattice.

It is well known in the Landau theory of the Fermi liquid that the thermodynamic
stability of the Fermi liquid state requires that the Landau parameters cannot be too
negative. This argument, due to Pomeranchuk [160], implies that if in one channel the
forward scattering interaction becomes sufficiently negative (attractive) to overcome
the stabilizing effects of the Pauli pressure, the Fermi liquid becomes unstable to a
distortion of the FS with the symmetry of the unstable channel.20

Oganesyan et al. [39] showed that in a 2D system of interacting fermions, the
Pomeranchuk instability in fact marks a quantum phase transition to a nematic Fermi
fluid. We will discuss this theory below in some detail. While the theory of Oganesyan
and coworkers applied to a system in the continuum, Kee and coworkers [161, 162]
considered a lattice model. Hints of nematic order in specific models had in fact
been discovered independently (but not recognized as such originally), notably by
the work of Metzner and coworkers [163–167].21

There is by now a growing literature on the nematic instability. Typically the
models, both in the continuum [39] or on different lattices [161, 171, 172], are

20 Although the Pomeranchuk argument is standard and reproduced in all the textbooks on Fermi
liquid theory (see, e.g. Ref.[157]) the consequences of this instability were not pursued until quite
recently.
21 In fact, perturbative renormalization group calculations [168, 169] have found a runaway flow
in the dx2−y2 particle-hole channel, which is a nematic instability, but it was not recognized as such.
See, however, Ref.[170].
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solved within a Hartree–Fock type approximation (with all the limitations that such
an approach has), or in special situations such as vicinity to Van Hove singularities
[162, 163] and certain degenerate band crossings [173] (where the theory is better
controlled), or using uncontrolled approximations to strong coupling systems such
as slave fermion/boson methods [174, 175]. A strong coupling limit of the Emery
model of the cuprates was shown to have a nematic state in Ref. [176] (we will review
this work below). Finally some non-perturbative work on the nematic quantum phase
transition has been done using higher dimensional bosonization in Refs. [177, 178]
and by RG methods [179].

Extensions of these ideas have been applied to the problem of the nematic phase
seen in the metamagnetic bilayer ruthenate Sr3Ru2O7 relying either on the van Hove
mechanism [180–183] or on an orbital ordering mechanism [184, 185], and in the
new iron-based superconducting compounds [77, 78]. More recently nematic phases
of different types have been argued to occur in dipolar Fermi gases of ultra-cold
atoms [186, 187].22

2.6.2 The Nematic Fermi Fluid

Here I will follow the work of Oganesyan, Kivelson and Fradkin [39] and consider
first the instability in the charge (symmetric) channel. Oganesyan et al. defined a
charge nematic order parameter for a two-dimensional Fermi fluid as the 2 × 2
symmetric traceless tensor of the form

Q̂(x) ≡ − 1

k2
F

�†(r)
(
∂2

x − ∂2
y 2∂x∂y

2∂x∂y ∂2
y − ∂2

x

)
�(r), (2.44)

It can also be represented by a complex valued field Q2(x) whose expectation value
in the nematic phase is

〈Q2〉 ≡ 〈�† (
∂x + i∂y

)2
�〉 = |Q2| e2iθ2 = Q11 + iQ12 �= 0 (2.45)

Q2 transforms under rotations in the representation of angular momentum 	 = 2.
Oganesyan et al. showed that if 〈Q2〉 �= 0 then the Fermi surface spontaneously
distorts and becomes an ellipse with eccentricity ∝ Q. This state breaks rotational
invariance mod π.

More complex forms of order can be considered by looking at particle-hole
condensates with angular momenta 	 > 2 (see Ref. [14])

〈Q	〉 = 〈�† (
∂x + i∂y

)	
�〉 (2.46)

22 Another class of nematic state can occur inside a dx2−y2 superconductor. This quantum phase
transition involves primarily the nodal quasiparticles of the superconductor and it is tractable within
large N type approximations [188, 189].
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For 	 odd, this condensate breaks rotational invariance (mod 2π/	). It also breaks
parity P and time reversal T but PT is invariant. For example the condensate with
	 = 3 is effectively equivalent to the “Varma loop state” [15, 190]. The states with 	
even are also interesting, e.g. a hexatic state is described by a particle-hole condensate
with 	 = 6 [191].

In a 3D system, the anisotropic state is described by an order parameter Qi j

which is a traceless symmetric tensor (as in conventional liquid crystals [2, 3]).
More generally, we can define an order parameter that transforms under the (	,m)
representation of the group of SO(3) spatial rotations.

Oganesyan et al. considered in detail a Fermi liquid type model of the nematic
transition and developed a (Landau) theory of the transition (“Landau on Landau”).
The Hamiltonian of this model describes (spinless) fermions in the continuum with
a two-body interaction corresponding to the 	 = 2 particle- hole angular momentum
channel. The Hamiltonian is

H =
∫

d r �†(r)ε(�)�(r)+ 1

4

∫
d r

∫
d r ′F2(r − r ′)Tr[Q̂(r)Q̂(r ′)] (2.47)

where the free-fermion dispersion (near the FS) is ε(k) = vF q[1 + a( q
kF
)2] (here

q ≡ |k| − kF ), and the interaction is given in terms of the coupling

F2(r) = (2π)−2
∫

dqeiq·r F2

1 + κF2q2 (2.48)

where F2 is the 	 = 2 Landau parameter, and κ measures the range of these inter-
actions. Notice that we have kept a cubic momentum dependence in the dispersion,
which is strongly irrelevant in the Landau Fermi liquid phase (but it is needed to
insure stability in the broken symmetry state).

The Landau energy density functional for this model has the form (which can be
derived by Hartree–Fock methods or, equivalently, using a Hubbard–Stratonovich
decoupling)

U[Q] = E(Q)− κ̃

4
Tr[QDQ] − κ̃ ′

4
Tr[Q2 DQ] + . . . (2.49)

Here we have use the 2 × 2 symmetric tensor Di j ≡ ∂i∂ j , and κ̃ and κ̃
′

are the
two effective Franck constants (see Ref. [3, 39]). The uniform part of the energy
functional, E(Q), is given by

E(Q) = E(0)+ A

4
Tr[Q2] + B

8
Tr[Q4] + . . . (2.50)

where

A = 1

2NF
+ F2 (2.51)
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NF is the density of states at the Fermi surface, and the coefficient of the quartic
term is

B = 3aNF |F2|3
8E2

F

(2.52)

EF ≡ vF kF is the Fermi energy [39]. The (normal) Landau Fermi liquid phase
is stable provided A > 0, or, what is the same, if 2NF F2 > −1 which is the
Pomeranchuk condition (in this notation). On the other hand, thermodynamic stability
also requires that B > 0, which implies that the coefficient of the cubic correction
in the dispersion be positive, a > 0. If this condition is not satisfied, as it is the case
in simple lattice models [161], higher order terms must be kept to insure stability.

However, in this case the transition is typically first order.
This model has two phases:

• an isotropic Fermi liquid phase, A > 0
• a nematic (non-Fermi liquid) phase, A < 0

separated by a quantum critical point at the Pomeranchuk value, 2NF F2 = −1.
Let us discuss the quantum critical behavior. We will parametrize the distance to

the Pomeranchuk QCP by

δ = 1

2NF
+ F2 (2.53)

and define s = ω/qvF . The transverse collective nematic modes have Landau
damping at the QCP [39]. Their effective action has the form

S⊥ =
∫

dωdq
(
κq2 + δ − i

|ω|
qvF

) |Q⊥(ω, q)|2 (2.54)

which implies that the dynamic critical exponent is z = 3.23

According to the standard perturbative criterion of Hertz [193] and Millis [194],
the quantum critical behavior is that of an equivalent φ4 type field theory in dimen-
sions D = d + z which in this case is D = 5. Since the upper critical (total) dimension
is 4, the Hertz-Millis analysis would predict that mean field theory is asymptoti-
cally exact and that the quartic (and higher) powers of the order parameter field are
irrelevant at the quantum critical point (for an extensive discussion see Ref. [195]).
However we will see below that while this analysis is correct for the bosonic sector
of the theory, i.e. the behavior of the bosonic collective modes such as the order
parameter itself, the situation is far less clear in the fermionic sector. We will come
back to this question below.

Let us discuss now the physics of the nematic phase. In the nematic phase the
FS is spontaneously distorted along the direction of the (director) order parameter

23 There are other collective modes at higher energies. In particular there is an underdamped
longitudinal collective mode with z = 2 [39]. These higher energy modes contribute to various
crossover effects [192], but decouple in the asymptotic quantum critical regime.
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Fig. 2.21 Spontaneous
distortion of the Fermi
surface in the nematic phase
of a 2D Fermi fluid

(see Fig. 2.21 ) and exhibits a quadrupolar (d-wave) pattern, i.e. the Fermi wave vector
has an angular dependence kF (θ) ∝ cos 2θ (in 2D). Indeed, in the nematic phase the
Hartree–Fock wave function is a Slater determinant whose variational parameters
determine the shape of the FS.

In principle, a wave function with a similar structure can be used to suggest
(as it was done in Ref. [39]) that it should also apply to the theory of the electronic
nematic state observed in the 2DEG in large magnetic fields. In that framework one
thinks of the 2DEG in a half-filled Landau level as an equivalent system of “composite
fermions” [196], fermions coupled to a Chern-Simons gauge field [197, 198]. It has
been argued [199] that this state can be well described by a Slater determinant wave
function, projected onto the Landau level. The same procedure can be applied to
the nematic wave function, and some work has been done along this direction [200].
A problem that needs to be solved first is the determination of the Landau parameters
of the composite fermions of which very little (that makes sense) is known.

A simple (Drude) calculation then shows that the transport is anisotropic. The
resistivity in the nematic phase, due to scattering from structureless isotropic impu-
rities, yields the result that the resistivity tensor is anisotropic with an anisotropy
controlled by the strength of the nematic order parameter:

ρxx − ρyy

ρxx + ρyy
= 1

2

my − mx

my + mx
= Re Q

EF
+ O(Q3) (2.55)

where mx and my are the (anisotropic) effective masses of the quasiparticles in the
nematic state. In general it is a more complex odd function of the order parameter.

In the nematic phase the transverse Goldstone boson is generically overdamped
(Landau damping) except for a finite set of symmetry directions, φ = 0, ±π/4,
±π/2, where it is underdamped. Thus, z = 3 scaling also applies to the nematic
phase for general directions. Naturally, in a lattice system the rotational symmetry
is not continuous and the transverse Goldstone modes are gapped. However, the
continuum prediction still applies if the lattice symmetry breaking is weak and if
either the energy or the temperature is larger that the lattice anisotropy scale.

On the other hand, the behavior of the fermionic correlators is much more strongly
affected. To one loop order, the quasiparticle scattering rate, �′′(ω, p) is found to
have the behavior
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�′′(ω, k) = π√
3

(κk2
F )

1/3

κNF

∣∣∣∣∣
kx ky

k2
F

∣∣∣∣∣
4/3 ∣∣∣∣ ω

2vF kF

∣∣∣∣
2/3

+ . . . (2.56)

for k along a general direction. On the other hand, along a symmetry direction

�′′(ω) = π

3NFκ

1

(κk2
F )

1/4

∣∣∣∣ ω

vF kF

∣∣∣∣
3/2

+ . . . (2.57)

Hence, the entire nematic phase is a non-Fermi liquid (again, with the caveat on
lattice symmetry breaking effects).

At the Pomeranchuk quantum critical point the quasiparticle scattering rate obeys
the same (one loop) scaling shown in Eq. 2.56, �′′(ω) ∝ |ω|2/3, both in continuum
[39] and lattice models [167], but it is isotropic. In the quantum critical regime the
electrical resistivity obeys a T 4/3 law [201]. Also, both in the nematic phase (without
lattice anisotropy) and in the quantum critical regime, the strong nematic fluctuations
yield an electronic contribution to the specific heat that scales as T 2/3 (consistent
with the general scaling form T d/z [195]) which dominates over the standard Fermi
liquid linear T dependence at low temperatures [157].

Since �′′(ω) 
 �′(ω) (as ω → 0), we need to asses the validity of these results
as they signal a failure of perturbation theory. To this end we have used higher
dimensional bosonization as a non-perturbative tool [202–206]. Higher dimensional
bosonization reproduces the collective modes found in Hartree–Fock+ RPA and is
consistent with the Hertz-Millis analysis of quantum criticality:
deff = d + z = 5 [177, 178]. Within the higher bosonization approach, the fermion
propagator takes the form

G F (x, t) = G0(x, t)Z(x, t) (2.58)

where G0(x, t) is the free fermion propagator. In the Fermi liquid phase the quantity
Z(x,t) approaches a finite constant at long distances and at long times leading to
a reduction of the quasiparticle residue Z (see, e.g. [178] and references therein).
However, at the Nematic-FL QCP, Z(x, t) becomes singular, and the full quasiparticle
propagator now has the form

G F (x, 0) = G0(x, 0) e−const.|x |1/3 (2.59)

at equal times, and

G F (0, t) = G0(0, t) e−const.|t |−2/3 ln t (2.60)

at equal positions. Notice that these expressions are consistent with the expected
z = 3 scaling even though the time and space dependence is not a power law.
The quasiparticle residue is then seen to vanish at the QCP:

Z = lim
x→∞ Z(x, 0) = 0 (2.61)
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However, the single particle density of states, N (ω) = − 1
π

ImG(ω, 0), turns out to
have a milder behavior:

N (ω) = N (0)
(

1 − const′.|ω|2/3 lnω
)

(2.62)

Let us now turn to the behavior near the QCP. For T=0 and δ � 1 (on the Fermi
Liquid side) the quasiparticle residue is now finite (see Fig. 2.22 )

Z ∝ e−const./
√
δ (2.63)

but its dependence on the distance to the nematic QCP is an essential singularity.
On the other hand, right at the QCP (δ = 0), and for a temperature range TF 

T 
 Tκ , the equal-time fermion propagator is found to vanish exactly

Z(x, 0) ∝ e−const.T x2 ln(L/x) → 0 as L → ∞ (2.64)

but, the equal-position propagator Z(0, t) remains finite in the thermodynamic limit,
L → ∞ ! This behavior has been dubbed “Local quantum criticality”.24 On the
other hand, irrelevant quartic interactions of strength u lead to a renormalization of
δ that smears the QCP at T > 0 [194]

δ → δ(T ) = −uT ln
(

uT 1/3
)

(2.65)

leading to a milder behavior at equal-times

Z(x, 0) ∝ e−const.T x2 ln(ξ/x) where ξ = δ(T )−1/2 (2.66)

These results are far from being universally accepted. Indeed Chubukov and
coworkers [208–210] have argued that the perturbative non-Fermi liquid behavior,
�′′(ω) ∼ ω2/3, which is also found at a ferromagnetic metallic QCP, persists to
all orders in perturbation theory and can recover the results of higher dimensional
bosonization only by taking into account the most infrared divergent diagrams. The
same non-Fermi liquid one-loop perturbative scaling has been found in other QCPs
such as in the problem of fermions (relativistic or not) at finite density coupled to
dynamical gauge fields. This problem has been discussed in various settings ranging
from hot and dense QED and QCD [211–213], to the gauge-spinon system in RVB
approaches to high Tc superconductors [214– 219] to the compressible states of the
2DEG in large magnetic fields [198]. In all cases these authors have also argued that
the one-loop scaling persists to all orders. In a recent paper Metlitski and Sachdev
[179] found a different scaling behavior.

We end with a brief discussion on the results in lattice models of the nematic
quantum phase transition. This is important since, with the possible exception of
the 2DEG in large magnetic fields and in ultra-cold atomic systems, all strongly

24 A similar behavior was found in the quantum Lifshitz model at its QCP [207].
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Fig. 2.22 The discontinuity
of the quasiparticle
momentum distribution
function in a Fermi liquid. Z
is the quasiparticle residue at
the Fermi surface

kF

Z

k

n (k)

correlated systems of interest have very strong lattice effects. The main difference
between the results in lattice models and in the continuum is that in the former
the quantum phase transition (at the mean field, Hartree–Fock, level) has a strong
tendency to be first order. Although fluctuations can soften the quantum transition
and turn the system quantum critical (as emphasized in Ref. [220]), nevertheless
there are good reasons for the transition to be first order more or less generically.
One is that if the stabilizing quartic terms are negative (e.g. say due to the band
structure), this also results, in the case of a lattice system, in a Lifshitz transition at
which the topology of the FS changes from closed to open. This cannot happen in a
continuous way.

2.7 Generalizations: Unconventional Magnetism and Time
Reversal Symmetry Breaking

We will now consider briefly the extension of these ideas to the spin-triplet channel
[16, 17]. In addition to particle-hole condensates in the singlet (charge) channel we
will be interested in particle-hole condensates in the spin (triplet) channel. In 2D the
order parameters for particle-hole condensates in the spin triplet channel are (here
α, β =↑,↓)

Qa
	(r) = 〈�†

α(r)σ
a
αβ

(
∂x + i∂y

)	
�β(r)〉 ≡ na

1 + ina
2 (2.67)

These order parameters transform under both SO(2) spatial rotations and under the
internal SU(2) symmetry of spin. If 	 �= 0 the state has a broken rotational invariance
in space and in spin space. These states are a particle-hole condensate analog of the
unconventional superconductors and superfluids, such as He3A and He3B. Indeed
one may call these states “unconventional magnetism” as the 	 = 0 (isotropic) state is
just a ferromagnet. In 2D these states are then given in terms of two order parameters,
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each in the vector (adjoint) representation of the SU(2) spin symmetry.25 We will
discuss only the 2D case. The order parameters obey the following transformation
laws:

1. Time reversal:

T Qa
	T −1 = (−1)	+1Qa

	 (2.68)

2. Parity:

PQa
	P−1 = (−1)	Qa

	 (2.69)

3. Qa
	 rotates under an SOspin(3) transformation, and transforms as Qa

	 → Qa
	ei	θ

under a rotation in space by an angle θ.
4. Qa

	 is invariant under a rotation by π/	 followed by a spin flip.

Wu and collaborators [16, 17] have shown that these phases can also be accessed
by a Pomeranchuk instability in the spin (triplet) channel.26 They showed that the
Landau-Ginzburg free energy takes the simple form

F[n] = r(|n1|2 + |n2|2)+ v1(|n1|2 + |n2|2)2 + v2|n1 × n2|2 (2.70)

The Pomeranchuk instability occurs at r = 0, i.e., for NF F A
	 = −2 (with 	 ≥ 1),

where F A
	 are the Landau parameters in the spin- triplet channel. Notice that this

free energy is invariant only by global SO(3) rotations involving both vector order
parameters, n1 and n2. Although at this level the SO(3) invariance is seemingly an
internal symmetry, there are gradient terms that lock the internal SO(3) spin rotations
to the “orbital” spatial rotations (see Ref. [17]). A similar situation also occurs in
classical liquid crystals [3].

At the level of the Landau–Ginzburg theory the system has two phases with broken
SO(3) invariance:

1. If v2 > 0, then the two SO(3) spin vector order parameters must be parallel to
each other, n1 × n2 = 0. They dubbed this the “α” phase. In the α phases the
up and down Fermi surfaces are distorted (with a pattern determined by 	) but
are rotated from each other by π/	. One case of special interest is the α phase
with 	 = 2. This is the “nematic-spin-nematic” discussed briefly in Ref. [4].27

In this phase the spin up and spin down FS have an 	 = 2 quadrupolar (nematic)
distortion but are rotated by π/2 (see Fig. 2.23 ).

2. Conversely, if v2 < 0, then the two SO(3) spin vector order parameters must be
orthogonal to each other, n1 · n2 = 0 and |n1| = |n2|. Wu et al. dubbed these

25 In 3D the situation is more complex and the possible are more subtle. In particular, in 3D there
are three vector order parameters involved [17].
26 The 	 = 0 case is, of course, just the conventional Stoner ferromagnetic instability.
27 The term “nematic-spin-nematic” is a poor terminology. A spin nematic is a state with a magnetic
order parameter that is a traceless symmetric tensor, which this state does not.



2 Electronic Liquid Crystal Phases in Strongly Correlated Systems 97

Fig. 2.23 The α-phases in
the 	 = 1 and 	 = 2 spin
triplet channels. The Fermi
surfaces exhibit the p and
d-wave distortions,
respectively

Fig. 2.24 The β-phases in
the 	 = 2 triplet channel.
Spin configurations exhibit
the vortex structure with
winding number w = ±2.
These two configurations can
be transformed to each other
by performing a rotation
around the x-axis with the
angle of π

the “β” phases. In the β phases there are two isotropic FS but spin is not a good
quantum number. In fact, the electron self energy in the β-phases acquires a spin-
orbit type form with a strength given by the magnitude of the order parameter.

The mean-field electronic structure thus resembles that of a system with a strong and
tunable spin-orbit coupling (i.e. not of O((vF/c)2) as it is normally the case).
We can define now a d vector:

d(k) = (cos(	θk), sin(	θk), 0) (2.71)

In the β phases the d vector winds about the undistorted FS. For the special case of
	 = 1, the windings are w = 1 (corresponding to a “Rashba” type state) and w= − 1
(corresponding to a “Dresselhaus” type state). For the d-wave case, the winding
numbers are w = ±2 (see Fig. 2.24).
These phases have a rich phenomenology of collective modes and topological exci-
tations which we will not elaborate on here. See Ref. [17] for a detailed discussion.28

Fermionic systems with dipolar magnetic interactions may be a good candidate
for phases similar to the ones we just described (See Refs. [186, 187], and it is quite
possible that these systems may be realized in ultra-cold atomic gases. In that context
the anisotropic form of the dipolar interaction provides for a mechanism to access
some of this physics. Indeed, in the case of a fully polarized (3D) dipolar Fermi
gas, the FS will have an uniaxial distortion. If the polarization is spontaneous (in the

28 The p-wave (	 = 1) β phase has the same physics as the ‘spin-split’ metal of Ref. [221].
A similar state was proposed in Ref. [222] as an explanation of the “hidden order” phase of URu2Si2.
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absence of a polarizing external field) this phase is actually a ferro-nematic state,
a state with coexisting ferromagnetism and nematic order. If the system is partially
polarized then the phase is a mix of nematic order and ferromagnetism coexisting
with a phase with a non-trivial “spin texture” in momentum space.

It turns out that generalizations of the Pomeranchuk picture of the nematic state
to multi-band electronic systems can describe metallic states with a spontaneous
breaking of time reversal invariance. This was done in Ref. [14] where it was shown
that in a two-band system (i.e. a system with two Fermi surfaces) it is possible to
have a metallic state which breaks time reversal invariance and exhibits a spontaneous
anomalous Hall effect. While the treatment of this problem has a superficial formal
similarity with the triplet (spin) case, i.e. regarding the band index as a “pseudo- spin”
(or flavor), the physics differs considerably. At the free fermion level the fermion
number on each band is separately conserved, leading to a formal SU(2) symmetry.
However, the interacting system has either a smaller U (1) × U (1) invariance or,
more generally, Z2 × Z2 invariance, as the more general interactions preserve only
the parity of the band fermion number [14]. At any rate it turns out that analogs
of the “α” and “β” phases of the triplet channel exist in multi-band systems. The
“α” phases break time reversal and parity (but not the product). An example of such
metallic (gapless) states is the “Varma loop state” [15, 223]. The “β” states break
time reversal invariance (and chirality). In the “β” phases there is a spontaneous
anomalous Hall effect, i.e. a zero field Hall effect with a Hall conductivity that is not
quantized as this state is a metal,29 whereas the “α” phases there is not.

2.8 Nematic Order in the Strong Correlation Regime

We will now discuss how a nematic state arises as the exact ground state in the
strong coupling limit of the Emery model [176]. The Emery model is a simplified
microscopic model of the important electronic degrees of freedom of the copper
oxides [123]. In this model, the CuO plane is described as a square lattice with the
Cu atoms residing on the sites and the O atoms on the links (the medial lattice of the
square lattice). On each site of the square lattice there is a single dx2−y2 Cu orbital,
and a px (py) O orbital on each site of the medial along the x (y) direction. We will
denote by d†

σ (r) the operator that creates a hole on the Cu site r and by p†
x,σ (r + ex

2 )

and p†
y,σ (r + ey

2 ) the operators the create a hole on the O sites r + ex
2 and r + ey

2
respectively.

The Hamiltonian of the Emery model is the sum of kinetic energy and interaction
terms. The kinetic energy terms consist of the hopping of a hole from a Cu site
to its nearest O sites (with amplitude tpd ), an on-site energy ε > 0 on the O sites
(accounting for the difference in “affinity” between Cu and O), and a (small) direct
hopping between nearest-neighboring O sites, tpp. The interaction terms are just the
on-site Hubbard repulsion Ud (on the Cu sites) and Up (on the O sites) as well as

29 This is consistent with the general arguments of Ref. [224].



2 Electronic Liquid Crystal Phases in Strongly Correlated Systems 99

Fig. 2.25 The Emery model
of the CuO lattice Ud

Up

Vp p

Vpd

tpp

tpd

nearest neighbor (“Coulomb”) repulsive interactions of strength Vpd (between Cu
and O) and Vpp (between two nearest O) (see Fig. 2.25 ). It is commonly believed that
this model is equivalent to its simpler cousin, the one band Hubbard model. However,
while this equivalency is approximately correct in the weak coupling limit, it is known
to fail already at moderate couplings. We will see that in the strong coupling limit,
no such reduction (to a “Zhang-Rice singlet”) is possible.

Let us look at the energetics of the 2D Cu O model in the strong coupling limit. By
strong coupling we will mean the regime in which the following inequalities hold:

tpd

Up
,

tpd

Ud
,

tpd

Vpd
,

tpd

Vpp
→ 0, Ud > Up 
 Vpd > Vpp, and

tpp

tpd
→ 0

(2.72)
as a function of hole doping x > 0, where x is the number of doped holes per Cu.
In this regime, neither Cu nor O sites can be doubly occupied. At half filling, x = 0, the
holes occupy all the Cu sites and all O sites are empty. At half-filling and in this strong
coupling regime the Emery model (much as the Hubbard model) is equivalent to a

quantum Heisenberg antiferromagnet with a small exchange coupling JH ≈ 8t4
pd

Up V 2
pd
.

This is the double-exchange mechanism (It turns out that in this model the four-spin
ring exchange interactions can be of the same order of magnitude as the Heisenberg
exchange JH [176]).

Let us consider now the very low doping regime, x → 0. Any additional hole
will have to be on an O site. The energy to add one hole (i.e. the chemical potential
μ of a hole) is μ ≡ 2Vpd + ε. Similarly, the energy of two holes on nearby O sites is
2μ+ Vpp. It turns out that in this strong coupling regime, with tpp = 0, the dynamic
of the doped holes is strongly constrained and effectively becomes one-dimensional.
The simplest allowed move for a hole on an O site, which takes two steps, is shown
in Fig. 2.26. The final and initial states are degenerate, and their energy is E0 + μ,

where E0 is the ground state energy of the undoped system. If this was the only
allowed process, the system would behave as a collection of 1D fermionic systems.

To assess if this is correct let us examine other processes to the same (lowest)
order in perturbation theory (in powers of the kinetic energy). One possibility is a
process in which in the final state the hole “turned the corner” (went from being
on an x oxygen to a near y oxygen). However for that to happen it will have to go
through an intermediate state such as the one shown in Fig. 2.27a. This intermediate



100 E. Fradkin

Fig. 2.26 An allowed
two-step move

Fig. 2.27 Intermediate states
for processes in which a hole
a turns a corner and b
continues on the same row

a) b)

state has an energy E0 + μ + Vpp. Hence, the effective hopping matrix element to

turn the corner is teff = t2
pd

Vpp
� tpd , which is strongly suppressed by the Coulomb

effects of Vpp. In contrast, the intermediate state for the hole to continue on the
same row (see Fig. 2.27 ) is E0 + μ + ε. Thus the effective hopping amplitude

instead becomes teff = t2
pd
ε
, which is not suppressed by Coulomb effects of Vpp.

All sorts of other processes have large energy denominators and are similarly
suppressed
(for a detailed analysis see Ref. [176].) The upshot of this analysis is that in the
strong coupling limit the doped holes behave like a set of one-dimensional fermions
(one per row and column). The argument for one-dimensional effective dynamics
can in fact be made more rigorous. In Ref. [176] it is shown that to leading order
in the strong coupling expansion the system is a generalized t-J type model (with J
effectively set to zero). In this limit there are an infinite number of conserved charges,
exactly one per row and one per column.

The next step is to inquire if, at fixed but very small doping x → 0, the rows
and columns are equally populated or not. Consider then two cases; a) all rows and
columns have the same fermion density, and b) the columns (or the rows) are empty.
Case a) is isotropic while case b) is nematic. It turns out that due to the effects of the
repulsive Coulomb interaction Vpp, the nematic configuration has lower energy at
low enough doping. The argument is as follows. For the nematic state (in which all
rows are equally populated but all columns are empty), the ground state energy has
an expansion in powers of the doping x of the form:

Enematic = E(x = 0)+�c x + W x3 + O(x5) (2.73)

where �c = 2Vpd + ε + . . . and W = π2
�

2/6m∗. The energy of the isotropic state
(at the same doping x) is
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Eisotropic = E(x = 0)+�c x + (1/4)W x3 + Veff x2 + . . . (2.74)

where Veff ∝ Vpp is an effective coupling for holes on intersecting rows and columns.
Clearly, for x small enough Eisotropic > Enematic. Therefore, at low enough doping
the ground state of the Emery model in the strong coupling limit is a nematic, in the
sense that it breaks spontaneously the point symmetry group of the square lattice,
C4.

30 What happens for larger values of x is presently not known. Presumably a
complex set of stripe phases exist. How this analysis is modified by the spin degrees
of freedom is an open important problem which may illuminate our understanding
of the physics of high temperature superconductors.

The nematic state we have found to be the exact ground state is actually maximally
nematic: the nematic order parameter is 1. To obtain this result we relied on the fact
that we have set tpp = 0 as this is by far the smallest energy scale. The state that we
have found is reminiscent of the nematic state found in 2D mean field theories of
the Pomeranchuk transition [161] in which it is found that the nematic has an open
Fermi surface, as we have also found. Presumably, for the more physical case of
tpp �= 0, the strong 1D-like nematic state we found will show a crossover to a 2D
(Ising) Nematic Fermi liquid state.

2.9 The Quantum Nematic-Smectic QCP and the Melting
of the Stripe Phase

We will now turn to the problem of the quantum phase transition between electron
stripe and nematic phases. For simplicity we will consider only the simpler case of
the charge stripe and the charge nematic, and we will not discuss here the relation
with antiferromagnetic stripes and superconductivity. Even this simpler problem is
not well understood at present.

In classical liquid crystals there are two well established ways to describe this
transition, known as the smectic A-nematic transition. One approach is the McMillan-
de Gennes theory, and it is a generalization of the Landau–Ginzburg theory of phase
transitions to this problem (see Ref. [2].) The other approach regards this phase
transition as a melting of the smectic by proliferation of its topological excitations,
the dislocations of the smectic order [3, 225, 226].

There are however important (and profound) differences between the problem
of the quantum melting of a stripe phase into a quantum nematic and its clas-
sical smectic/nematic counterpart. The classical problem refers to three-dimensional
liquid crystals whereas here we are interested in a two- dimensional quantum
system. One may think that the time coordinate, i.e. the existence of a time evolu-
tion dictated by quantum mechanics, provides for the third dimension and that two

30 It also turns out that in the (so far physically unrealizable) case of x = 1, the ground state is a
nematic insulator as each row is now full. However, for x → 1 the ground state is again a nematic
metal.
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problems may indeed be closely related. Although to a large extent this is correct
(this is apparent in the imaginary time form of the path integral representation) some
important details are different.The problem we are interested in involves a metal and
hence has dynamical fermionic degrees of freedom which do not have a counterpart
in its classical cousin. One could develop a theory of quantum melting of the stripe
phase by a defect proliferation mechanism by considering only the collective modes
of the stripes. Theories of this type can be found in Refs. [227, 228] and in Ref.
[156] (in the context of a system of cold atoms) which lead to several interesting
predictions. Theories of this type would describe correctly an insulating stripe state
in which the fermionic degrees of freedom are gapped and hence not part of the low
energy physics. The problem of how to develop a non-perturbative theory of this
transition with dynamical fermions is an open and unsolved problem.31

Another important difference is that in most cases of interest the quantum version
of this transition takes place in a lattice system. thus, even if the stripe state may
be incommensurate, and hence to a first approximation be allowed to “slide” over
the lattice background, there is no continuous rotational invariance but only a point
group symmetry leftover. Thus, at least at the lowest energies, the nematic Goldstone
mode which plays a key role in the classical problem, is gapped and drops out of the
critical behavior. However one should not be a purist about this issue as there may be
significant crossovers that become observable at low frequencies and temperatures
if the lattice effects are weak enough. Thus it is meaningful to consider a system
in which the lattice symmetry breaking are ignored at the beginning and considered
afterwards.

In Ref. [229] a theory of the quantum melting of a charge stripe phase is developed
using an analogy with the McMillan-deGennes theory. The main (and important)
difference is the role that the fermionic degrees of freedom play in the dynamics. Thus
we will describe the stripe (which at this level is equivalent to a CDW) by its order
parameter, the complex scalar field �(r, t), representing the Fourier component of
the charge density operator near the ordering wavevector Q.32

We will assume that the phase transition occurs in a regime in which the nematic
order is well developed and has a large amplitude |N |. In this regime the fluctuations
of the amplitude of the nematic order parameter N are part of the high energy physics,
and can be integrated out. In contrast we will assume that the phase mode of the
nematic order, the Goldstone mode, is either gapless (as in a continuum system)
or of low enough energy that it matters to the physics (as if the lattice symmetry
breaking is sufficiently weak). In this case we will only need to consider the nematic
Goldstone (or ‘pseudo-Goldstone’) field which we will denote by ϕ(r, t).

We should note that there is another way to think about this problem, in which
one considers the competition between the CDW order parameters (two in this case),
the nematic order and the normal Fermi liquid near a suitable multi-critical point.
This problem was considered briefly in Ref. [229] and revisited in more detail in

31 Important work with a similar approach has been done on the problem of the quantum melting
of the stripe state in quantum Hall systems [36, 37].
32 For a different perspective see Ref. [230].
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Ref. [231]. The main conclusion is that for a (square) lattice system, the multicritical
point is inaccessible as it is replaced by a direct (and weak) fluctuation-induced
first-order transition from the FL to the CDW state. Thus, the theory that we discuss
here applies far from this putative multicritical point in a regime in which, as we
stated above, the nematic order is already well developed and large.

Following Ref. [229] we will think of this quantum phase transition in the spirit
of a Hertz-Millis type approach and postulate the existence of an order parameter
theory coupled to the fermionic degrees of freedom. The quantum mechanical action
of the order parameter theory Sop[�,ϕN ], has the McMillan-deGennes form

Sop =|N |2
∫

d rdt
(
(∂tϕN )

2 − K1(∂xϕN )
2 − K2(∂yϕN )

2
)

+
∫

d rdt

(
|∂t�|2 − Cy |∂y�|2 − Cx

∣∣(∂x − i
Q

2
ϕN

)∣∣2

−�C DW |�|2 − uC DW |�|4
)

(2.75)

where |N | is the amplitude of the nematic order parameter, K1 and K2 are the two
Franck constants (which were discussed before), Cx and Cy are the stiffnesses of the
CDW order parameter along the x and y directions, Q is the modulus of the CDW
ordering wavevector, �C DW and uC DW are parameters of the Landau theory that
control the location of the CDW transition (�C DW = 0) and stability. Here we have
assumed a stripe state, a unidirectional CDW, with its ordering wavevector along
the x direction. We have also assumed z = 1 (“relativistic”) quantum dynamics which
would be natural for an insulating system.

The fermionic contribution has two parts. One part of the fermionic action,
SF L [ψ], where ψ is the quasiparticle Fermi field (we are omitting the spin indices),
describes a conventional Fermi liquid, i.e. the quasiparticle spectrum with a Fermi
surface of characteristic Fermi wavevector kF , and the quasiparticle interactions
given in terms of Landau parameters. What will matter to us is the coupling between
the fermionic quasiparticles and the nematic order parameter (the complex director
field N), and the CDW order parameter �,

Sint =gN

∫
d rdt

(
Q2(r, t)N †(r, t)+ h.c.

)

+ gC DW

∫
d rdt

(
nC DW (r, t)�†(r, t)+ h.c.

)
(2.76)

where gN and gC DW are two coupling constants and, as before,

Q2(r, t) = ψ†(r, t)(∂x + i∂y)
2ψ(r, t) (2.77)

is the nematic order parameter (in terms of quasiparticle Fermi fields), and

nC DW (q, ω) =
∫

dkd� ψ†(k + q + Q, ω +�)ψ(k,�) (2.78)
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is the CDW order parameter (also in terms of the quasiparticle Fermi fields.)
This theory has two phases: a) a nematic phase, for�C DW > 0, where 〈�〉 = 0,

and b) a CDW phase, for �C DW < 0, where 〈�〉 �= 0, separated by a QCP at
�C DW = 0. In the nematic (“normal”) phase the only low energy degrees of freedom
are the (overdamped) fluctuations of the nematic Goldstone mode ϕN , and nematic
susceptibility in the absence of lattice effects (which render it gapped otherwise)

χN⊥ (q, ω) = 1

g2
N N (0)

1(
i ωq sin2(2φq)− K1q2

x − K2q2
y

) (2.79)

where sin(2φq) = 2qx qy/q2 and N(0) is the quasiparticle density of states at the FS.
We will consider here the simpler case in which the CDW ordering wavevector

obeys Q < 2kF (see the general discussion in Ref. [229].) In this case one can see
that the main effect of the coupling to the quasiparticles (aside from some finite
renormalizations of parameters) is to change the dynamics of the CDW order para-
meter due to the effects of Landau damping. The total effective action in this case
becomes

S =
∫

dqdω

(2π)3
C0i |ω||�(q, ω)|2

−
∫

d rdt

(
Cy |∂y�|2 + Cx

∣∣
(
∂x − i

Q

2
ϕN

)
�|2 +�C DW |�|2 + uC DW |�|4

)

+
∫

dqdω

(2π)3

(
K̃0

i |ω|
q

sin2(2φq)− K̃1q2
x − K̃2q2

y

)
|ϕN (q, ω)|2 (2.80)

where C0 ∼ g2
C DW , K̃0 = g2

N |N |2 N (0) and K1,2 = g2
N |N |2 N (0)K1,2.

By inspecting Eq. 2.80 one sees that at �C DW = 0, as before the nematic Gold-
stone fluctuations have z = 3 (provided they remain gapless), and the CDW fluctua-
tions have z = 2. Thus the nematic Goldstone modes dominate the dynamics at the
nematic-CDW QCP. Even if the nematic Goldstone modes were to become gapped
(by the lattice anisotropy), the QCP now will have z = 2 (due to Landau damping)
instead of z = 1 as in the “pure” order parameter theory. In both cases, the nematic
Goldstone mode and the CDW order parameter fluctuations effectively decouple in
the nematic phase. The result is that the nematic phase has relatively low energy
CDW fluctuations with a dynamical susceptibility

χC DW (q, ω) = −i〈�†(q, ω)�(q, ω)〉ret = 1

iC0|ω| − Cx q2
x − Cyq2

y −�C DW
(2.81)

In other terms, as the QCP is approached, the nematic phase exhibits low energy CDW
fluctuations that would show up in low energy inelastic scattering experiments much
in the same way as the observed fluctuating stripes do in inelastic neutron scattering
experiments in the high temperature superconductors [4]. As we saw before, a regime
with “fluctuating” CDW (stripe) order is a nematic.
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A simple scaling analysis of the effective action of Eq. 2.80 shows that, since
z> 1 at this QCP, the coupling between the nematic Goldstone mode ϕN and the
CDW order parameter� is actually irrelevant. In contrast, in the (classical) case it is a
marginally relevant perturbation leading to a fluctuation induced first order transition
[3, 232]. Thus, this “generalized McMillan-de Gennes” theory has a continuous
(quantum) phase transition which, possibly, may become weakly first order at finite
temperature.

This is not to say, however, that the stripe-nematic quantum phase transition is
necessarily continuous. In Ref. [229] it is shown that the nature of the quantum
phase transition depends on the relation between the ordering wave vector Q and the
Fermi wave vector kF . For | Q| < 2kF the transition is continuous and has dynamical
scaling z = 2. Instead, for | Q| = 2kF it depends on whether | Q| is commensurate
or incommensurate with the underlying lattice: for the incommensurate case the
transition is (fluctuation induced) first order (consistent with the results of Ref. [233])
but it is continuous for the commensurate case with z = 2 and anisotropic scaling in
space.

As in the case of the Pomeranchuk transition, the quasiparticles are effectively
destroyed at the stripe-nematic QCP as well. Indeed, already to order one loop it is
found [229] that the quasiparticle scattering rate scales with frequency as �′′(ω) ∝√|ω|, signaling a breakdown of Fermi liquid theory. As in our discussion of the
nematic-FL QCP, this behavior must be taken as an indication of a breakdown of
perturbation theory and not as the putative ultimate quantum critical behavior, which
remains to be understood.

In the quasiparticle picture we are using, the stripe state is similar to a CDW.
Indeed, in the broken symmetry state the Fermi surface of the nematic is reconstructed
leading to the formation of fermion pockets. As we noted above, we have not however
assumed a rigid connection between the ordering wave vector and the Fermi surface
and, in this sense, this is not a weak coupling state. Aside from that, in the presence of
lattice pinning of the nematic Goldstone mode, the asymptotic low-energy properties
of the stripe state are similar to those of a CDW (for details, see Ref. [229]).

2.10 Outlook

In these lectures we have covered a wide range of material on the theory of electronic
liquid crystal phases and on the experimental evidence for them. As it is clear these
lectures have a particular viewpoint, developed during the past decade in close collab-
oration with Steven Kivelson. I have tried, primarily at the level of citations as well
an on numerous caveats, to make it clear that there are many important unsolved and
still poorly understood questions that (at present) allow for more than one answer. It
is a problem that requires the development of many points of view which eventually
complement each other.

Several major problems remain open. One of them, in my view the most pressing
one, is to establish the relation between the existence of these phases (stripes,
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nematics, etc.) and the mechanism(s) of high temperature superconductivity. In my
opinion there is mounting experimental evidence, some of which I discussed here,
that strongly suggests the existence of a close and probably unavoidable connection.
A question that deserves more consideration is the particular connection between
nematic order and superconductivity. Superficially these two issues would seem
quite orthogonal to each other. Indeed, it is hard to see any connection within the
context of a weak coupling theory. However if the nematic order arises from melting
a stripe state which has a spin gap (such as the pair density wave state we discussed
in these lectures) it is quite likely that a close connection may actually exist and be
related. The current experimental evidence suggests such a relation.

Another key theoretical question that is wide open is to develop a more micro-
scopic theory of the pair density wave state. In spite with the formal analogy with the
Larkin-Ovchinnikov state, it seems very unlikely that a a “straight BCS approach”
would be successful in this case. This state seems to have a strong coupling character.

As it must be apparent from the presentation of these lectures, the theory that has
been done (and that is being done now) is for the most part quite phenomenological
in character. There are very few “rigorous” results on the existence of these phases in
strongly correlated systems. The notable exception are the arguments we presented
for the existence of nematic order in the strong coupling limit of the Emery model.
Clearly more work is needed.
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