
Chapter 2
Construction of Covariance Functions
and Unconditional Simulation of Random Fields

Martin Schlather

Abstract Covariance functions and variograms are the most important ingredients
in the classical approaches to geostatistics. We give an overview over the approaches
how models can be obtained. Variant types of scale mixtures turn out to be the
most important way of construction. Some of the approaches are closely related to
simulation methods of unconditional Gaussian random field, for instance the turning
bands and the random coins. We discuss these methods and complement them by an
overview over further methods.

2.1 Introduction

Random fields are used to model regionalized variables [65] such as temperature,
humidity, soil moisture, wave heights or metal concentrations of reservoirs, to
mention a few. A random field,Z say, can be seen as a random real function on R

d ,
or as a bundle of dependent random variablesZ.x/, indexed by x 2 R

d . Assuming
that the variances exist, such a random field can be characterized by its expectation
and its covariance function

C.x; y/ D cov.Z.x/;Z.y//; x; y 2 R
d :

These two characteristics determine the random field uniquely if the field is
Gaussian, i.e. if .Z.x1/; : : : ; Z.xn// has a multivariate Gaussian distribution for
any xi 2 R

d and n 2 N. Considering the variances of linear combinationsPn
kD1 akZ.xk/ with ak 2 R and xk 2 R

d , we get that
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nX

kD1

nX

jD1

ak C.xk ; xj / aj � 0 for all xk 2 R
d , ak 2 R, and for all n 2 N:

(2.1)
Hence, C.x; y/ cannot be any arbitrary function. On the other hand, Kolmogorov’s
existence theorem (cf. [9], for instance) shows that if a symmetric, real-valued
function C satisfies (2.1) then at least a Gaussian random field exists that has C
as covariance function. Note that not all covariance functions are compatible with
a given marginal distribution. For instance, a log-Gaussian process on the real axis
cannot have the cosine as covariance function [1, 68].

Beyond characterizing (Gaussian) random fields from both a practical and a
theoretical point of view, covariance functions are the key elements to determine
likelihoods, to perform simulations and to spatially interpolate data (kriging).

In this chapter, we concentrate on the construction of covariance functions. In
Sect. 2.2, we give methods that are as elementary as important. Sections 2.3–2.5
introduce the spectral approach, the convolutions, and the power series. The
approaches in Sects. 2.2–2.4 are closely related to simulation methods for uncondi-
tional Gaussian random fields. Hence, they are presented on the way. Unconditional
simulations are the key ingredients for conditional simulations [55] and are used
for simulation studies. Scale mixtures, discussed in Sect. 2.6, allow for an elegant
way to construct models. In particular, scale mixtures of the “Gaussian” covariance
model, C.x; y/ D exp.�kx � yk/2/, play an exceptional role. The turning
bands method, presented in Sect. 2.7, is primarily a simulation method, but also
defines a way to construct covariance models. In Sect. 2.8, the montée is presented.
Section 2.9 gives an overview over simulation methods that are not related to the
construction of covariance functions. Sections 2.10 and 2.11 deal with the advanced
topics of space-time covariance functions and multivariate covariance models. Some
excercises are given in section 2.12.

Henceforth, we will always assume that the expectation of the random field is
zero. Translation invariant covariance functions, i.e. covariance functions C with
C.x; y/ D '.x � y/ for some function ' W Rd ! R, play a dominant role when
modelling spatial data. In this case, the function ' is called a positive definite func-
tion. A corresponding random field is called (weakly) stationary. If, furthermore,
the covariance function is motion invariant, i.e. C.x; y/ D Q'.kx � yk/ for some
function Q' W Œ0;1/ ! R, then the corresponding random field is called (weakly)
stationary and isotropic. Henceforth, k �k will always denote the Eucledian distance.

If Z.x C h/ � Z.x/ is weakly stationary for all h 2 R
d , then the random field

Z is called intrinsically stationary and the (uncentred) (semi-)variogram � is used
to characterize the random field:

�.h/ D 1

2
E.Z.h/ �Z.0//2:

Matheron [66] shows that a function � W Rd ! Œ0;1/ is a variogram if and only if
�.0/ D 0 and � is conditionally negative definite, i.e., � is symmetric and
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nX

iD1

nX

jD1

aiaj �.xi � xj / � 0 for all xi 2 R
d ; ai 2 R with

nX

iD1

ai D 0; n 2 N:

(2.2)
If Z is even weakly stationary then �.h/ D '.0/� '.h/.

For theoretical considerations, we will also consider complex valued random
fields and hence complex-valued covariance functions C , i.e., functions that satisfy

nX

kD1

nX

jD1

ak C.xk ; xj / aj � 0 for all xk 2 R
d , ak 2 C, and for all n 2 N:

(2.3)
[78] shows that any complex valued function satisfying (2.3) is Hermitian.

Complementaries and applications are given, for instance, in the books of [15],
[18], and [55]. Related review papers are given by [36] and [60], for example. See
also the technical report by [84].

Most of the models, many construction principles and nearly all simulation
methods given here are available within the R package RandomFields of [87].

2.2 Basic Constructions of Positive Definite Functions

A simple, but also important example of a covariance function is the scalar product
C.x; y/ D hx; yi. Most generally, let H W Rd ! H be a mapping into a Hilbert
space H . Then

C.x; y/ D hH.x/;H.y/iH (2.4)

is a covariance function. This representation of covariance functions is used
particularly in machine learning, see [27] and [95], for instance. As a consequence,
the function

C.x; y/ D eiht;x�yi (2.5)

is a covariance function for any fixed t 2 R
d . Here, i is the imaginary number.

Further, if C is a covariance function on R
d and A is a linear mapping from

R
m into R

d , then C.A�; A�/ is a covariance function on R
m. In particular, rescaling

C.s�; s�/, s > 0, does not change the property (2.1).

Remark 2.1. If A has full rank then the corresponding random field is called
geometrically anisotropic, otherwise zonally anisotropic. Such kind of anisotropies
are frequently assumed due to preferential directions of underlying processes. Note
that the zonal anisotropy implies that if Q'.k � k/ is a positive definite function in R

d

so is Q'.k � k/ in R
k with k < d .

Also sums and products of covariance functions are again covariance functions
[15, 18]. This can easily be seen by considering sums and products of respective
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independent random fields. In particular, vC is a covariance function for any
constant v � 0 since a non-negative constant function is positive definite.

Assume Cn is a sequence of covariance functions that converges pointwise to
some function C ,

C.x; y/ D lim
n!1Cn.x; y/; x; y 2 R

d : (2.6)

Then, it can be easily seen that condition (2.1) holds also for C if C.x; x/ is finite
for all x 2 R

d .
These basic construction principles for covariance functions already allow us to

create many classes of covariance functions.

2.3 Spectral Representation

Equations (2.5) and (2.6), or (2.4) with a suitably defined scalar product, yield that

'.h/ D
Z

Rd

eih!;hi�.d!/ (2.7)

is a positive definite, complex valued function for any finite, non-negative measure
� on R

d . For real-valued random fields we have

'.h/ D
Z

Rd

cos.h!; hi/�.d!/:

It is easy to see that ' is uniformly continuous. Bochner’s celebrated theorem
[10, 11] gives the reverse statement, namely that all continuous positive definite
functions have a unique representation (2.7).

The representation (2.7) allows for an immediate simulation procedure. Let
Z.x/ D p

�.Rd /ei.hR;xiC˚/ or Z.x/ D p
�.Rd / cos.hR; xi C ˚/ where ˚ �

U Œ0; 2�/ and R � �=�.Rd / are independent. Then Z is (strongly) stationary, i.e.,
the finite dimensional distributions of .Z.x//x2Rd and .Z.xCh//x2Rd are the same
for any h 2 R

d . The marginal distributions are not multivariate Gaussian. However,
an approximationZ0 to a Gaussian random field is obtained if Zi , i D 1; : : : ; n, are
independent and identically distributed according to Z and Z0 D n�1=2

Pn
iD1Zi

for some n large enough.

Example 2.1. The important Whittle-Matérn model [44, 62, 90],

W�.h/ D 21��.� .�//�1khk�K�.khk/; � > 0; (2.8)

has spectral density



2 Construction of Covariance Functions and Unconditional Simulation 29

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

h

γ

Fig. 2.1 A variogram in R constructed by an infinite sum over cosine functions, see example 2.2

d�.!/

d!
D � .� C d=2/

� .�/�d=2.1C k!k2/�Cd=2
:

Here, � is the Gamma function and K� is a modified Bessel function of the second
kind.

Example 2.2. Variograms with exceptional properties can be obtained by sums of
cosine functions. However, they do not have any practical relevance. Let

�.h/ D
1X

kD1

ak.1 � cos.h=bk//:

If ak D 1 and bk D kŠ then lim infh!1 �.h/ D 0 and lim suph!1 �.h/ D 1
[4]. Independently, [50] showed that these two properties hold also for bk D 2k .
Figure 2.1 illustrates � for ak D 10�3 � k1:1 and bk D 1:11:1k

.

2.3.1 Spectral Turning Bands

An important special case appears when � is rotation invariant and thus can be
represented by spherical coordinates ˛ and a radial coordinate r , i.e.,

�.d!/ D s�1
d�1d˛F.dr/ (2.9)

for some finite non-negative measureF on Œ0;1/. Here, sd denotes the surface area
of the d -dimensional sphere. Integrating over ˛ in (2.7) we get

Q'.r/ D
Z

Œ0;1/

B.d�2/=2.rs/F.ds/ for all r 2 Œ0;1/; (2.10)
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where

B�.r/ D
1X

kD0

.�1/k� .� C 1/

kŠ� .� C k C 1/

� r

2

�2k D � .� C 1/
�2

r

��

J�.r/; � > �1
2
; (2.11)

and J� is the Bessel function. Hence, the function '.h/ D B.d�2/=2.khk/ is the
elementary rotation invariant, continuous positive definite function in R

d . For d D
1; 2, and 3, the function J.d�2/=2.h/ equals

p
2 cos.h/=

p
�h; 2��1

Z 1

0

sin.h cosh t/dt; and
p
2 sin.h/=

p
�h;

respectively [46]. In analogy to Bochner’s theorem, [88] stated that a rotation
invariant function h 7! Q'.khk/, h 2 R

d , is real, continuous and positive definite
if and only if Q' is the Hankel transform (2.10) of a non-negative finite measure F
on the half-line Œ0;1/. Note that equation 6.567.1 in [42] ensures that B�.khk/ is a
positive definite function on R

d for any � � .d � 2/=2.

Remark 2.2. In three dimensions we have

Q'.r/ D
Z

Œ0;1/

sin rs

rs
F.ds/;

i.e., the elementary rotation invariant positive definite function in R
3 is '.h/ D

sin.khk/=khk, the so-called hole effect model.

Example 2.3. Equations 6.649.2, 6.618.1, and 6.623.3 in [42] consider functions Q'
of the form (2.10), and hence yield that Q'.khk/ is a positive definite function on R

d

if

1. � � .d � 2/=4 and Q'.r/ D 2�I�.r/K�.r/;

2. � � .d � 2/=4 and Q'.r/ D
(
2�� .� C 1/r�2�e�r2

I�.r
2/; r 6D 0

1; r D 0
,

3. � � maxf0; .d � 2/=2g and Q'.r/ D
8
<

:

2�
�p

1Cr2�1
��

r2� ; r > 0

1; r D 0
,

respectively. Here, I� denotes the Bessel I -function. For instance, the first model is
b�c times differentiable where b�c denotes the largest integer less than or equal to
�; it decays at rate h�1 to infinity.

Remark 2.3. The function B�.2
p
�r/ converges to the function r 7! exp.�r2/ as

� ! 1. Since B�.k � k/ is a positive definite function in R
d for d < 2� C 2, the

“Gaussian” covariance function C.x; y/ D exp.�kx � yk2/ is the candidate for a
fundamental motion invariant covariance function that is valid in all dimensions d .
This is indeed true, see Sect. 2.6.2.
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The simulation method that uses decomposition (2.9) is called spectral turning
bands method in geostatistics, see [61]. A random field Z with a motion invariant
covariance function C.x; y/ D Q'.kx � yk/ is obtained if

Z.x/ D
p
2F.Œ0;1// cos.RhS; xi C˚/

and R � F=F.Œ0;1// is given by (2.9), ˚ � U Œ0; 2�/, and S � USd�1

is uniformly distributed on the .d � 1/-dimensional sphere Sd�1. All random
variables are independent. Again, Z0 D n�1=2

Pn
iD1Zi yields an approximation to

a Gaussian random field for Zi , i D 1; : : : ; n, that are independent and identically
distributed according toZ. The value of n should be of order 500 to get good results.
Figure 2.2 shows the performances of the method for the “Gaussian” covariance
function.

Remark 2.4. The spectral representation by Bochner and Schoenberg leaves the
question open, which discontinuous positive definite functions exist and which
are of practical interest. In practice, only one discontinuous model exists that is
regularly used as a summand in additive covariance models, the so-called nugget
effect '.h/ D 1f0g.h/ ([15], for instance). Here, 1A denotes the indicator function
for a set A, i.e. 1A.h/ equals 1 if h 2 A and 0 otherwise. It is easily seen that
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Fig. 2.2 Simulation of the spectral turning bands method with 1, 2, 3, 4, 10, and 1,000 lines (top
left to bottom right); the random field has the “Gaussian” covariance function
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the nugget effect is a positive definite function in any dimension. More generally,
for any subgroup Q of Rd , the validity of inequality (2.1) is readily checked for
C.x; y/ D 1Q.x � y/.

Any measurable positive definite function ' is a sum of a continuous positive
definite function and a positive definite function that vanishes almost everywhere
[78]. If, additionally, ' is rotation invariant and d � 2, then ' must be the sum of a
continuous positive definite function and a nugget effect [38]. However, covariance
functions do not need to be measurable [78].

2.4 Convolutions and Random Coin Method

Another immediate consequence of equation (2.4) is that

'.h/ D
Z

Rd

f .x/f .x C h/dx; h 2 R
d ; (2.12)

is a positive definite function for any real-valuedL2-function f on R
d . The function

' is called a covariogram. If f is an indicator function, then ' is also called a set
covariance function.

Whilst in R
1 many functions f lead to analytic formulae for ', the situations

where the explicit calculation of ' is feasable are limited in higher dimensions.
Examples are f .x/ D .�=4/d=4 exp.�2kxk2/ leading to the “Gaussian” model
'.h/ D exp.�khk2/, and the indicator functions of the d -dimensional balls of
radius 1=2, up to a multiplicative constant, yielding covariance functions with finite
range 1, i.e. compact support. Examples are the hat function '.h/ D .1 � jhj/C
for d D 1, the circulant model '.h/ D 1 � 2��1.khkp1 � khk2 C arcsin.khk//,
khk � 1, in R

2 and the spherical model '.h/ D 1 � 3
2
khk C 1

2
khk3, khk � 1, in

R
3. See [33] for further properties of these functions, and sufficient conditions for

positive definiteness based on these properties.
A random field that corresponds to (2.12) can be defined as

Z.x/ D
X

y2˘

f .x � y/

where ˘ is a stationary Poisson point process on R
d with intensity � D 1. The

random field Z has a direct interpretation as the sum of effects of certain events
y 2 ˘ and is therefore a convenient model for a non-Gaussian random field in
many applications. It possesses a lot of names, for instance, dilution random field
[15], random coin model, random token model [55], shot noise process [17, 69],
moving average model [62], and trigger process [20]. Of course, an approximation
to a Gaussian random field can be obtained through the central limit theorem.
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Fig. 2.3 Recentred and renormalised superpositions of 1, 10, 100, and 1,000 simulations of an
additive Boolean model with radius r D 1=2 of the disks (top left, top right, bottom left, bottom
right)

Figure 2.3 shows Z for � D 4=� and f the indicator function of a disk with
radius 0:5, i.e., the covariance function of Z is the circulant model. A satisfying
approximation to the Gaussian distribution is obtained if n � 500 independent
realizations are superposed.

Remark 2.5. A related method to obtain positive definite functions and correspond-
ing random fields replaces the product in the integrand of (2.12) by a maximum:

 .h/ D
Z

Rd

maxff .x/; f .x C h/gdx; h 2 R
d ;

Here, f is a non-negative, integrable function. Then,  is a conditionally negative
definite function and the function '.h/ D 2

R
f .x/dx �  .h/ is positive definite.

These functions appear in extreme value theory and are called extremal coefficient
functions  or extremal correlation functions ' [25]. A random field that has
C.x; y/ D '.x � y/ as its covariance function appears as a thresholded max-stable
random field [85], a special class of Boolean random functions [47].

Both, the spectral representation and the convolution representation are special
cases of the Karhunen orthogonal representation [52]. We refer here to the version
of [8] who give a more rigorous proof and more general results.

Theorem 2.1. Let Z be a second order random field on V � R
d , i.e. VarZ.x/

exists for all x 2 R
d . Assume that for some measurable space .W;W /, the

covariance function C allows for a representation

C.x; y/ D
Z

W

g.x; s/g.y; s/F.ds/; x; y 2 V;
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where

1. F is a positive, �-finite measure on W ;
2. L is the L2 space of functions that are square integrable with respect to F ;
3. g W V 	W ! C is such that g.x; �/ 2 L for all x 2 V ;
4. dim.span fg.x; �/ W x 2 V g?/ � dim.spanfZ.x/ W x 2 V g/ where the

complement is taken with respect to L.

Then Z can be represented as

Z.x/ D
Z

W

g.x; s/d	.s/; x 2 V;

where 	 is a uniquely determined random orthogonal measure on W0 D fA 2
W W F.A/ < 1g with 	.A [ B/ D 	.A/ C 	.B/ for all disjoint A;B 2 W0 and
E 	.A/	.B/ D F.A\ B/ for any A;B 2 W0.

This theorem complements Mercer’s theorem [7] which implies that any con-
tinuous covariance function C.x; y/ on a compact set can be decomposed into
eigenfunctions. In case the eigenvalues drop quickly towards zero, fast simulation
algorithms for excellent approximations can be obtained by neglecting eigenfunc-
tions that have small eigenvalues.

2.5 Power Series

Since products and pointwise limits of covariance functions are covariance func-
tions, power series of covariance functions with summable, non-negative coeffi-
cients yield further models.

For instance, consider the Taylor development of .1C x/q ([42], formula 1.10),
i.e.,

.1C x/q D 1C qx C q.q � 1/

2Š
x2 C � � � C q.q � 1/ : : : .q � k C 1/

kŠ
xk C : : :

Then we get that

C1.x; y/ D .M � C.x; y//q �M q; q < 0; M > supC; (2.13)

C2.x; y/ D
2kC1X

jD0

q.q � 1/ : : : .q � j C 1/

j Š
Œ�C.h/
jM q�j � .M � C.h//q;

q 2 .2k; 2k C 1/; k 2 N0; M � supC;

and
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C3.x; y/ D .M � C.h//q �
2kX

jD0

q.q � 1/ : : : .q � j C 1/

j Š
Œ�C.h/
jM q�j ; (2.14)

q 2 .2k � 1; 2k/; k 2 N0; M � supC;

are covariance functions for any covariance function C . In particular,

'.0/q � .'.0/� '.�//q; (2.15)

is a positive definite function for q 2 .0; 1
 and any positive definite function '. The
function 1� 1p

2
.1��/1=2 has the form (2.15) up to an additive constant, and appears

as the covariance function of a thresholded extremal Gaussian random field [85].
Further examples of functions that have power series with non-negative coeffi-

cients are exp, sinh and cosh. Hence, if C is a covariance function, so are exp.C /,
sinhC and coshC . See also [86].

2.5.1 Application to Variograms

If � is a variogram then

C.x; y/ D �.x/C �.y/� �.x � y/

is a covariance function [66]. This is readily seen if an intrinsically stationary
random field Y with variogram � is considered and the covariance function of
Z.x/ D Y.x/ � Y.0/ is calculated. As e�s.�.x/C�.y// is a covariance function by
(2.4), cf. [66], it follows that

h 7! exp.�s�.h// (2.16)

is a positive definite function for all s > 0 and any conditionally negative definite
function � . Since �.h/ D lims!0 s

�1.1� e�s�.h//, the reverse holds as well, i.e., if
the function given by (2.16) is positive definite for all s > 0, then � is a conditionally
negative definite function.

Remark 2.6. Equations (2.16) and (2.15) yield that for any conditionally negative
definite function � and any q 2 .0; 1
 the function

�q.h/ D lim
s!0

.s�1.1 � e�s�.h///q D �q.h/ (2.17)

is non-negative and conditionally negative definite. As additing a constant does not
change the property of a function being conditionally negative definite, .�Ca/q �aq

is a variogram for any variogram � and a � 0.
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Note that for q > 1, the function �q may not be a variogram anymore. In general,
products of variograms are not variograms. See [100] for a discussion and classes
of examples. In contrast, any convex combination of variograms is a variogram.

Example 2.4. It is immediately seen from inequality (2.2) that �.h/ D hh; hi is
a variogram for any scalar product h�; �i. Equation (2.17) yields that h 7! khk˛ ,
˛ 2 .0; 2
 is a variogram model for any dimension d . If d D 1, the corresponding
random field is called fractional Brownian motion, and Brownian motion if ˛ D 1.
Equation (2.13) yields that .1C �/�ˇ D lims!0.1C s�1 � s�1 exp.�s�//�ˇ is a
positive definite function for any variogram � and ˇ > 0. Hence, the generalized
Cauchy model [28],

'.h/ D .1C khk˛/�ˇ=˛ (2.18)

and, by (2.16), the powered exponential model '.h/ D exp.�khk˛/ are positive
definite functions on R

d for any d 2 N, ˇ > 0 and ˛ 2 .0; 2
.
Although power series are useful for constructing covariance functions, they have

not been of direct use for simulating random fields.

2.6 Mixtures

Equation (2.6) yields that C D R
C��.d�/ is a covariance function if � is a

non-negative finite measure and C� are covariance functions such that C is finite
everywhere. In this case, C is called a mixture of the models C� .

Example 2.5. Integrating (2.16) over the interval Œ0; 1
 with respect to s yields that

'.h/ D
8
<

:

1 � e��.h/

�.h/
; �.h/ 6D 0

1; �.h/ D 0

is a positive definite function for any variogram � .

2.6.1 Scale Mixtures

The most important class of mixtures are the scale mixtures. Let ' and '0 be
complex-valued functions on R

d . The function ' is called a scale mixture of '0

if there exists a non-negative measure F on Œ0;1/, such that

'.h/ D
Z

Œ0;1/

'0.sh/F.ds/ for all h 2 R
d (2.19)
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or, more generally,

C..x1; : : : ; xd /; .y1; : : : ; yd // D
Z

Œ0;1/d

C0..s1x1; : : : ; sdxd /; .s1y1; : : : ; sdyd // F.d.s1; : : : ; sd //; xi ; yi 2 R;

for some non-negative measureF on Œ0;1/d . For instance, all continuous, isotropic
covariance functions are scale mixtures of Bessel functions, see Sect. 2.3.1.

Example 2.6. The scale mixture of the “Gaussian” model with mixing density

f .s/ D .�=ı/�

2K�.ı�/
s��1 exp

� � .�2s C ı2=s/=2
�

yields the generalized hyperbolic model [3, 28, 89],

Q'.r/ D ı��

K�.�ı/
.ı2 C r2/�=2K�.�.ı

2 C r2/1=2/; r � 0:

Here, the parameters �, �, and ı satisfy:

ı � 0; � > 0 for � > 0;

ı > 0; � > 0 for � D 0;

ı > 0; � � 0 for � < 0:

It includes, as special cases, the Cauchy model (2.18) with ˛ D 2 and the Whittle-
Matérn model in example 2.1.

2.6.2 Completely Monotone Functions

A continuous function  on Œ0;1/ with  .0/ 2 R [ f1g is called completely
monotone function if it is infinitely often differentiable and .�1/n .n/.r/ � 0 for
any r 2 .0;1/ and n 2 N. It is well-known [98] that  is completely montone if
and only if it is a scale mixture of the exponential function, i.e.,

 .r/ D
Z 1

0

e�srF.ds/; r > 0; (2.20)

for some non-negative measure F such that  is finite on .0;1/. A function  is
called absolutely monotone if all derivatives are positive.

Since exp.�s�/ is a positive definite function for any s > 0 and any variogram � ,
the function .�/ is positive definite on R

d for any bounded, completely monotone
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function  and any variogram � on R
d . As h 7! khk2 is variogram for any

dimension d , we get that  .khk2/ is a covariance function for any dimension d and
any bounded, completely monotone function  . [88] proved that the reverse also
holds. Namely, if  .khk2/, h 2 R

d , is a continuous and isotropic positive definite
function in all dimensions d 2 N, then  is a bounded, completely monotone
function.

Since 1 � e�s� D s
R �

0 e
�tsdt is a variogram for any variogram � we get that

R �

0
 .u/du is a variogram for any completely monotone, integrable function  . A

non-negative function on .0;1/ that is infinitely often differentiable and whose
first derivative is completely monotone is called a Bernstein function. For particular
properties and a considerable amount of examples, see [74] and [83].

Example 2.7. The conditional negative definiteness of �˛ , ˛ 2 .0; 1/, see equation
(2.17), also follows immediately from the fact that r 7! r˛ is a Bernstein function.

Example 2.8. A completely monotone function is r 7! .1C r/�1, cf. (2.18), which
implies that

h 7! log.�.h/C 1/

is a variogram for any variogram � . If �.h/ D khk˛ , ˛ 2 .0; 2
, then the model
h 7! log.khk˛ C 1/ is called de Wijsian model [96].

Example 2.9. The concatenation of two Bernstein functions is a Bernstein function
[5]. This is a consequence of the product rule for the nth derivative, which implies
that the product of two completely monotone functions is completely monotone.
Hence,

r 7!
Z f .r/

0

g.f  .s//ds

is a Bernstein function for any completely monotone function g and any Bernstein
function f . For instance, choosing g.r/ D exp.�r/ and f .r/ D r1=2 shows that
erfc.

p
�/ is a covariance function for any variogram � . The latter function appears

as the covariance function of a thresholded Brown-Resnick process [51].

Remark 2.7. If  is a bounded and absolutely monotone function and C is a
covariance function then  .C / is a covariance function, see Sect. 2.5. Let 0 < M <

�=2, ˛ 2 .0; 1/ and � be a covariance function with j�j � 1. Then the following
functions are also covariance functions

�=.1� e�4M�/; arcsin �; tanM�; cossec.�/���1; .2M�/�1 � cot.2M�/;

sec �; � log.1 � ˛�/; log j�= sin �j; � log cos.M�/; log j tan.M�/=.M�/j:
The function arcsin � appears as the covariance function of a thresholded Gaussian
random field, see [2] for instance.

Remark 2.8. If  is a bounded, absolutely monotone function, the function  .�/ �
 .0/ is also absolutely monotone and should be considered preferentially, since the
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covariance function  .C / with  .0/ 6D 0 always refers to a non-ergodic random
field.

2.6.3 More Mixture Models

Mixtures of exp.���/ yield several mappings from the set of variograms to the set
of positive definite functions.

For instance, equation 6.521.3 in [42] and equation (2.8) yield that

'.h/ D
8
<

:

��
1 .h/ � ��

2 .h/

�1.h/ � �2.h/
; �1.h/ 6D �2.h/

����1
1 .h/; otherwise

;

is a positive definite function for � 2 .0; 1
 and any two non-negative, conditionally
negative definite functions �1 and �2 where at least one of them is strictly positive.
Equation 9.111 in [42] and example 2.4 yield that

F.˛IˇI ıI ��/ (2.21)

is a positive definite function for ˛ > 0, ı > ˇ > 0 and any variogram � . Here, F is
the hypergeometric function, see Sect. 9.1 in [42]. Similarly, F.˛IˇI ıIC.x; y// is
a covariance function for any covariance functionC with C.x; y/ < 1 for all x; y 2
R

d , if .˛ C k/.ˇ C k/=.ı C k/ � 0 for all k 2 N.
Furthermore,

'.h/ D
8
<

:

f .�.h//

�.h/
; �.h/ 6D 0

1 otherwise

is a positive definite function for f .z/ D log.1C z/, f .z/ D arctan.z/, f D log.zCp
z2 C 1/ and any variogram � , see equations 9.121.6, 9.121.27 and 9.121.28 in

[42], respectively. See also example 2.5.
One more example is

'.h/D
Z 1

0

e�s2�1.h/e��2.h/=s2

e�ˇs2

dsD
p
�

2
p
ˇC�1.h/

expf�2p.ˇC�1.h//�2.h/g;

where �1 and �2 are variograms and ˇ > 0, cf. equation 3.325 in [42] and [22].
Hence,

'.h/ D .ˇ C �1.h//
�1=2 Q'

�p
.ˇ C �1.h//�2.h/

�

is a positive definite function for any bounded, completely monotone function Q'.
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2.7 Turning Bands Operator

The turning bands method, introduced by [67], see also [49], allows for the
simulation of a stationary random field using a projection technique onto one-
dimensional spaces. In almost all applications, the field is assumed to be isotropic
and the dimension d is less than or equal to 3.

The turning bands method is based on the following idea. Let s be an arbitrary
fixed orientation in R

d and Zs a random field in R
d that is constant on hyperplanes

perpendicular to s. Assume that the random process Y along direction s is stationary.
Then Zs is stationary, but not isotropic, except for the trivial case that Y is constant
for any realization. An isotropic random field is obtained if we replace s by a random
unit vector S that is uniformly distributed on the .n � 1/-dimensional sphere Sn�1

and that is independent of Y ,

ZS .x/ D Y.hx; Si/; h 2 R
d :

Let C1.x; y/ D '1.x � y/ be the covariance function of Y . Then, the covariance
function C.x; y/ D '.x � y/ of ZS is given by

'.h/ D E '1.hh; Si/ D
Z

Sn�1

'1.hh; si/�.ds/ D
Z

Sn�1

'1.khkhe; si/�.ds/

where � is the uniform probability measure on Sn�1 and e 2 R
d denotes any fixed

unit vector. Hence, C is rotation invariant, i.e., C.x; y/ D Q'.kx � yk/ for some
function Q' W Œ0;1/ ! R. [67] showed the following relation between Q' and '1:

'1.r/ D

8
ˆ̂
<̂

ˆ̂
:̂

d

dr
Œr Q'.r/
; d D 3

d

dr

Z r

0

s Q'.s/p
r2 � s2

ds; d D 2

; r > 0: (2.22)

In fact, relation (2.22) holds reversely for any continuous positive definite function
Q'.k � k/ on R

d , d D 2 and 3, respectively [32]. The mapping which assigns Q'1 to
Q' is called the turning bands operator. See Fig. 2.4 for an illustration of the turning
bands method. In Sect. 7.4.2 of [15] the case of a general dimension d 2 N is
considered.

Note that the continuity assumption is equivalent to the assumption thatC has no
nugget effect [38] and that C is at least m times differentiable away from the origin
form the largest integer less than or equal to .d � 1/=2 [32].

An approximation to a Gaussian random field is again obtained through the
central limit theorem:

Z.x/ D n�1=2

nX

iD1

Yi .hx; Sii/:
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Fig. 2.4 Recentred and renormalised superpositions of 1, 10, 100, and 1000 simulations of an
additive Boolean model with radius r D 1=2 of the disks (top left, top right, bottom left, bottom
right)

Here, Yi � Y , i D 1; : : : ; n, and Si � S , i D 1; : : : ; n, are all independent. The
number of independent copies k that are needed is about 60 for d D 2 and 500 for
d D 3 [30], see also [55]. The simulation of the random field Y is performed on a
grid for example by methods described in Sect. 2.9, and the closest grid point to the
left, say, is taken as an approximation for hx; Si.

Remark 2.9. Closed solutions for the Abel integral (2.22) in the case d D 2 are
rare [29]. Hence, the covariance function on the line must be evaluated numerically,
using the following more convenient form if r Q'.r/ is differentiable:

Q'1.r/ D d

dr

Z 1

0

r Q'.r
p
1 � s2/ds D

Z 1

0

d

dr
r Q'.r

p
1 � s2/ds: (2.23)

Alternatively, if Q'.k � k/ is a positive definite function also in R
3, the space R

2

can be considered as a hyperplane in R
3 and the simulation is performed in R

3.

Remark 2.10. In practice, one should not use random directions Si in the two-
dimensional turning bands method. Instead, equal angles between the lines should
be taken. By choosing the direction of the very first line purely random, isotropy is
still guaranteed from a theoretical point of view.

In dimension 3 or higher, a deterministic point pattern of equally spaced locations
does not exist for an arbitrary number of points. Therefore, the directions are usually
chosen randomly. A random direction S in R

3 is obtained by

.
p
1 � V 2 cosU;

p
1 � V 2 sinU; V /;

where U � U Œ0; 2�
 is independent of V � U Œ0; 1
, see [26], for instance.
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Remark 2.11. [32] generalizes the turning bands operator in the following way. Let
Q'.k � k/ be a positive definite function on R

d and

Q'd�2.r/ D Q'.r/� r

d � 2
Q' 0.r/; d � 2 � 1:

Then Q'd�2.k � k/ is a positive definite function in R
d�2, and vice versa.

2.8 Montée

Apart from the turning bands operator, further operators transform between sets of
positive definite functions by means of derivations or integrals.

For instance, the i th second partial derivative @2'.h/=.@hi /
2 of a positive definite

function ' is positive definite, provided it exists (e.g., [81]). This is proved by
considering the covariance function of the i th partial derivative of a random field
corresponding to '.

[71] show that, if '.h/ D Q'.khk/ is a positive definite function in R
d , then

'1.h/ D Q'1.khk/ with Q'1.r/ D d Q'.pr/=dr is a positive definite function in R
d�2.

Here, the montée, and its inverse, the descente, are considered. See [101] for a
unified approach to the turning bands operator and the montée.

Let Z.x1; x2/ be a random field on R
d1 	 R

d2 with covariance function C and
C..x1; x2/; .y1; y2// D C..x1; x2 � y2/; .y1; 0//. Let

YM .x1/ D 1

.2M/d2=2

Z

Œ�M;M�d2

Z.x1; x2/dx2; x1 2 R
d1 :

Then, the covariance function CM of the random field YM yields

CM .x1; y1/ D 1

.2M/d2

Z

Œ�M;M�d2

Z

Œ�M;M�d2

C..x1; x2/; .y1; y2//dx2dy2

!
Z

R
d2

C..x1; h/; .y1; 0//dh .M ! 1/:

This transformation of the covariance functions is called montée [64]. If C.x; y/ D
Q'.kx � yk/ is motion invariant, then CM .x; y/ ! Q'd1

.kx � yk/ with

Q'd1
.r/ D

8
ˆ̂
<̂

ˆ̂
:̂

2

Z 1

0

Q'.
p
r2 C s2/ds; d2 D 1

2�

Z 1

r

s Q'.s/ds; d2 D 2

:
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That is, Q'd1
.kx � yk/ is a positive definite function in R

d1 . Reversely, let '.h/ D
Q'.khk/ be a positive definite function in R

d and assume that Q' 00.0/ exists. Then the
descente is given by

D Q'.r/ D
�
1; r D 0

Q' 0.r/=.r Q' 00.0//; r > 0 ;

and '.h/ D D Q'.khk/ is a positive definite function in R
dC2 [34].

[31], see also [97] and [12], uses the montée to construct classes of differentiable
covariance functions with compact support from the function

Q'.r/ D .1 � rb/a1Œ0;1�.r/:

If b D 1, then the function Q'.khk/ is positive definite if and only if a � .d C 1/=2

[40]. For instance, '.h/ D Q'.khk/ is a positive definite function in R
d for

Q'.r/ D .1C .� C 2/r C 3�1Œ.� C 2/2 � 1
r2/.1 � r/�C21Œ0;1�.r/

and � � .d C 5/=2.
[80] and [79] extend the montée by considering integrations of real-valued order.

See [45] for a further extension of the Wendland-Gneiting functions. [70] derive
vector-valued covariance functions with comport support.

2.9 General Simulation Methods

In the following, widely used simulation methods are presented that are not imme-
diately related to construction methods of covariance functions and variograms.

2.9.1 Simulation of a Multivariate Gaussian Vector

Let Y be an n-vector of independent Gaussian random variables with zero expecta-
tion and unit variance, andD D D0D

>
0 be any positive semi-definite n	 n-matrix.

Let

X � D0Y: (2.24)

ThenX has a multivariate, centred Gaussian distribution with covariance matrixD.
Of course, this basic fact can also be used to simulate from stationary or non-
stationary random fields, defining D D .C.xi ; xj //i;jD1;:::;n. The method has its
numerical limitation at about n D 104 for general matrices.
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2.9.2 Circulant Embedding

The circulant embedding method allows to simulate a stationary random field on a
grid which is equally spaced in each direction. The idea is to expand the covariance
matrix to a circulant matrix, i.e. to simulate from a torus. If this is feasible, the square
root of the expanded matrix can be calculated using the Fast Fourier Transform. This
approach was independently published by [23] and [13, 99]. [99] show that such
an expansion is always possible if the covariance function has compact support.
The algorithm is then exact in principle. In case negative eigenvalues appear in the
expanded matrix, [99] suggest an approximation by putting them to zero. However,
this can lead to deficient simulation results.

If n is the number of grid points and d the dimension, the number of flops is of
order 2dn log.2dn/, hence the simulation method is very fast unless the dimension
d is high.

Extensions to conditional simulation, to arbitrary locations [24], and to multi-
variate random fields [14] exist.

Further extensions are the intrinsic circulant embedding and the cut-off circulant
embedding [39, 91]. The idea is to replace a given covariance function by a
covariance function that equals or essentially equals the required covariance on the
given finite grid, but has finite range.

2.9.3 Approximations Through Markovian Fields

In a space-time setup, a field might be simulated on a few spatial points at arbitrary
locations, but at many instances in time on a grid. Instead of simulating all variables
at once, (approximating) Markov fields can be used in the temporal direction, using
a temporal neighbourhood of k instances. Namely, for each instance, Gaussian
variables are simulated simultaneously for all locations, conditioned on the previous
k instances and all locations.

[77] rigorously suggest to approximate Gaussian random fields through Markov
fields with a huge increase in speed for the simulations. In a recent paper, [56] relate
the Markov random fields to partial differential equations.

2.10 Space-Time Models

A current, important task is to find covariance functions that are useful for modelling
space-time data. In the following, let d be the dimension in space. Mathematically,
the set of space-time covariance functions cannot be distinguished from the set of
covariance functions in R

dC1. However, the sets of those covariance functions that
are of interest in practice differ. In the purely spatial context, an isotropic random
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field constitutes the standard model. In contrast, the temporal development of a
process differs in most cases from the spatial development, leading to anisotropies
between space and time. For example, geometrical anisotropy matrices A, see
remark 2.1, that have the form

A D
�
A0 �v
0 s

�

2 R
.dC1/�.dC1/

connect space and time through the vector v 2 R
d . The latter can be interpreted, for

instance, as wind speed in a meteorological context [43]. The matrix A0 2 R
d�d

gives the purely spatial anisotropy and s > 0 is a scaling factor for the temporal
axis.

To simulate space-time random fields, all the approaches presented in the
previous sections can be used if they are appropriate. For example, circulant
embedding will be useful if the space-time data lie on a grid. In the following, some
additional, specific methods are presented.

2.10.1 Separable Models

The simplest class of anisotropic space-time models are separable models. By
definition, a separable model has one of the following two forms

C..x; t/; .y; s// D CS .x; y/CCT .t; s/ or C..x; t/; .y; s// D CS .x; y/CT .t; s/;

where CS is a covariance function in R
d and CT is a covariance function in R

[75]. All other models are called non-separable. It is easy to see from the results
in Sect. 2.2 that separable models are covariance functions. A variogram is called
separable if

�.h; u/ D �S .h/C �T .u/

for two variograms �S .h/ and �T .u/ in R
d and R, respectively. Products of

variograms should not be considered, cf. remark 2.6. Random fields with separable
covariance function can easily be simulated. Namely, a spatial random field with
covariance CS that is constant in time is added (or multiplied, respectively) to a
temporal random process with auto-covarianceCT that is independent of the former
and is constant in space. The obtained field is not Gaussian and an approximation
can be obtained through the central limit theorem. Although separable models
are quite appealing, they have practical disadvantages [19, 54, 76] and theoretical
disadvantages [92].

Many non-separable models given in the literature are based on separable models
and general transformations of covariance functions and variograms as presented in
the preceding sections. An example that refers to the models discussed in Sect. 2.5



46 M. Schlather

is '.h; u/ D .1 C jhj� C juj�/�ı , cf. [21]. The function ' is positive definite on
R

d 	 R
d 0

for any dimensions d and d 0, if �; � 2 Œ0; 2
 and ı > 0. Another example
is '.h; u/ D Œ1 � 'S .h/'T .u/


�˛ ; where ˛ > 0 and 'S .0/'T .0/ < 1 [57].
Further models are obtained by means of scale mixtures of separable models. For

instance,

C.h; u/ D
Z 1

0

e�s�.h/ cos.sjuj/ds D �.h/

�.h/2 C juj2

is a covariance model in R
d 	 R for any strictly positive, conditionally negative

definite function � on R
d , cf. [22].

2.10.2 Gneiting’s Class

[35] has introduced an important class of space-time covariance functions general-
izing the findings in [19]. Let Q'S .r/, r � 0, be a bounded, completely monotone
function and

'.h; u/ D �.u/�d=2 Q'S

�khk2=�.u/
�
; .h; u/ 2 R

d 	 R:

[35] shows that ' is a positive definite function if �.u/ D  .juj2/ for some
strictly positive Bernstein function  . [100] show that ' is a positive definite
function if and only if � is a strictly positive, conditionally negative definite
function. Note that Gneiting’s model is fully symmetric [35], i.e. C..x; t/; .y; s// D
C..x;�t/; .y;�s//, restricting its ability to model correlations between space and
time.

[86] generalizes Gneiting’s model towards models that are not fully symmetric,
using the fact that exp.�u2�.h// is, for fixed u, a positive definite function in h, and,
for fixed h, the spectral density of the “Gaussian” model.

Remark 2.12. The ambivalency that a function is a positive definite function in
one argument and a spectral density in the other has been used previously by [94]
considering the function Œc1.a

2
1Ckhk2/˛1 Cc2.a

2
2Ckuk2/˛2 
�� . Here, h 2 R

d1 , u 2
R

d2 , a2
1Ca2

2 > 0 and c1; c2; �1; �2; ˛1; ˛2 > 0, such that d1=.˛1�/Cd2=.˛2�/ < 2.
If ˛1 D 1, then the corresponding positive definite function is given by

'.h; u/ D �d2=2W��d=2.f .kuk2/khk/
2��d2=2�1c�

2� .�/f .kuk2/2��d2
:

The functionf equals f .s/ D .a2
2Cc1c

�1
2 .a2

1Cs/˛1/1=2, s � 0, andW� denotes the
Whittle-Matérn model with parameter �. See [58] and [94] for further, sophisticated
models, and [93] for non-stationary covariance functions.
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2.10.3 Turning Layers

Space-time data typically consist of longer, regularly measured time series given
at several arbitrary locations in R

d . The turning layers method respects this fact
and is applicable for fully symmetric models that are isotropic in space. As for
the turning bands method, a non-ergodic random field that is isotropic in space
is obtained if a random field with translation invariant covariance function C1 is
simulated on a plane where one axis has a random direction in space and the other
axis equals the time axis. The random field in R

d 	 R is constant in perpendicular
direction to the plane, cf. [53]. Denote the covariance function of the latter by C .
Similar to the derivation of the turning bands relation we obtain a reverse formula
for C1..x1; t/; .y1; s// D Q'1.jx1 � y1j; jt � sj/ given C..x; t/; .y; s// D Q'.kx �
yk; jt � sj/:

Q'1.r; t/ D

8
ˆ̂
<̂

ˆ̂
:̂

@

@r
Œr Q'.r; t/
; d D 3

@

@r

Z r

0

s Q'.s; t/p
r2 � s2

ds; d D 2

: (2.25)

An approximation to a Gaussian random field is obtained through the central limit
theorem as in the case of the turning bands method. A realization on the plane
might be obtained by using circulant embedding, see Sect. 2.9.2. The turning layers
have the advantages of being an exact method in the temporal direction at any fixed
location. However, it exhibits the usual approximation error of the turning bands
method in space.

Remark 2.13. Assume that, for some functions f; g W R ! R and Q'S W Œ0;1/ !
R, the function '.r; t/ is of the form g.t/ Q'S .rf .t//, as it is the case for the Gneiting
class. Let Q'1;S be the function obtained for Q'S through (2.22) for d D 2; 3. Then
we get

Q'1.r; t/ D g.t/'1;S .rf .t//;

assuming that equality (2.23) holds if d D 2.

Naturally, the turning layers can be generalized to simulate random fields on
R

d 	R
n, n � 1, that are isotropic in both components. Namely, the two-dimensional

random field Y can be replaced by a higher dimensional one, or the turning bands
principle can be applied also to the second component of Y .

2.10.4 Spectral Turning Layers

A variant of the turning layers that corresponds to the spectral turning bands is useful
for covariance functions of the form

C.h; t/ D E Q'.kx � V tk2/: (2.26)
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Here, Q' is a bounded, completely monotone function and V is a d -dimensional
random vector that might be interpreted as wind speed in a meteorological context
[16]. A corresponding random field Z is obtained as

Z.x; t/ D p
2F.Œ0;1// cos.AhS; x � V ti C ˚/

whereA � F=F.Œ0;1//, F is the radial spectral measure for Q' given by (2.9),˚ �
U Œ0; 2�/, and S � USd�1 is uniformly distributed on the .d � 1/-dimensional
sphere Sd�1. All the random variables are independent. We call the method spectral
turning layers.

Let Q' be a bounded, completely monotone function and V � N .�;M=2/ for
some covariance matrixM . [86] shows that C has a closed form,

C.h; t/ D 1p
1 C t2M

Q' �.h � t�/>.1 C t2M/�1.h � t�/�

which is fully symmetric if and only if � D 0.

2.10.5 Models Related to PDEs

A challenging problem is to find closed-form covariance models that refer to
solutions of physical equations. Let B be the random orthogonal measure on R

2

such that B.I 	 J / � N .0; jI jjJ j/ for any bounded intervals I; J � R. [48] show
that the solution of

�
@2

@t2
� a

@

@x
� b2

�

Y.x; t/dx D B.d.x; t//; x; t 2 R;

has covariance function

C.h; u/D1

2

(

e�bjujerfc

 
2bjhj � cjuj
2
p
cjhj

!

C ebjujerfc

 
2bjhj C cjuj
2
p
cjhj

!)

; h; u � 0;

see also [53] and the references therein. [58] generalizes this covariance function
by showing that jhj on the right hand side can be replaced by

p
�.h/ for any

variogram � .

2.11 Multivariate Models

A commonly used model for a multivariate process Z D .Z1; : : : ; Zn/ is the
so-called linear model of coregionalization [41], where each component Zj is a
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linear combination
PK

iD1 aj iYi of independent, latent processes Yi . Assume Yi has
covariance function Ci . Then the matrix valued covariance function of Z,

Cij .x; y/ D cov.Zi .x/;Zj .y//; i; j D 1; : : : ; n; x; y 2 R
d ;

equals ACA> with A D .aij /jD1;:::;nIiD1;:::;K and C D diag.C1; : : : ; CK/.
Except for some further special constructions, see [96] and [86] for instance,

parametrized classes have been rare.
Recently, [37] introduced an extension of the Whittle-Matérn model W�

to the multivariate case. In the bivariate case, they show that Cij .h/ D
.bijW�ij

.aijh//i;jD1;2 with Cij D Cj i , �ij > 0, i; j D 1; 2 and bi i � 0, i D 1; 2,
is a matrix-valued positiv definite function if and only if

b2
ij � b11b22

� .�11 C d
2 /� .�22 C d

2 /� .�12/
2

� .�11/� .�22/� .�12 C d
2 /

2

a
2�11

11 a
2�22

2

a
4�12

12

inf
t�0

.a2
12 C t2/2�12Cd

Q2
iD1.a

2
i i

C t2/�iiCd=2
:

[70] derive multivariate models with compact support. [82] give both necessary and
sufficient conditions such that a matrix-valued covariance function is divergence
free or curl free. They also show that this property is inherited by the corresponding
Gaussian random field.

[14] present a multivariate version of the circulant embedding method,
Sect. 2.9.2. Nonetheless, further methods for simulating multivariate models need
to be developed.

2.12 Exercises

In the following, we give examples of covariance functions given in the literature
that can be derived from the assertions presented in Sects. 2.2–2.8.

Exercise 2.1. [72] show that certain quasi-arithmetic means of completely mono-
tone functions lead to positive definite functions. They give three examples for
classes of positive definite functions. Show the positive definiteness for two of their
examples:

1. Gumbel-Hougard family

'.h1; h2/ D exp.�.kh1k�1 C kh2k�2/ˇ /

for any ˇ 2 Œ0; 1
, �i 2 Œ0; 2
, hi 2 R
di , di 2 N, i D 1; 2.

2. Clayton family

'.h1; h2/ D Œ.1C kh1k/�1 C .1C kh2k/�2 
�ˇ

for any ˇ > 0, �i 2 Œ0; 1
, hi 2 R
di , di 2 N, i D 1; 2.
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Hint: show that ��1 is a covariance function for any strictly positive, condition-
ally negative definite function � , considering a suitable mixture of the functions
exp.�s�/, s � 0.

Exercise 2.2. [73] introduce the Dagum family

�.h/ D .1C khk�ˇ /�˛

and show that � is a variogram in R
3 if ˇ < .7 � ˛/=.1 C 5˛/ and ˛ < 7. [6]

present conditions so that the function r 7! .1C r�ˇ /�˛ is completely monotone.
Show that the Dagum family yields a variogram on R

d for d 2 N, ˛ 2 .0; 1
 and
ˇ 2 .0; 2
.

Hint: show that
 .0/�  .h/

1C  .0/ �  .h/

is a variogram for any positive definite function  , and conclude that �0=.1 C �0/

is a variogram for any variogram �0. See [63] for an alternative proof.

Exercise 2.3. Let Z be an intrinsically stationary random field on R
d with

variogram � and z be fixed. Show that the covariance function of Y with Y.x/ D
Z.x C z/ �Z.x/ equals

C.x; y/ D �.x � y C z/C �.x � y � z/ � 2�.x � y/; x; y 2 R
d

and conclude that

1. f .h; z/ D 2�.z/C 2�.h/ � �.hC z/ � �.h � z/ is a variogram for any fixed z.
See, for instance, Lemma 17 in [74] and Lemma 1 in [59] for proofs given in the
literature.

Show further that, although f .z; h/ D f .h; z/, the function f is not a
variogram in .h; z/, in general. To this end, consider �.h/ D jhj on R

1 and
verify that (2.2) is not satisfied.

2. The function '.h/ D 0:5.khC 1k˛ � 2khk˛ C kh� 1k˛/ is positive definite for
˛ 2 .0; 2
. The corresponding random field is called fractional Gaussian noise if
d D 1.
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25. Fasen, V., Klüppelberg, C., Schlather, M.: High-level dependence in time series models.
Extremes 13, 1–33 (2010)

26. Fouquet, C. d.: Simulation conditionnelle de fonctions aléatoires: cas gaussien stationnaire et
schéma linéaire. Technical Report Cours C-151, Ecole des Mines de Paris (1993)

27. Genton, M.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn.
Res. 2, 299–312 (2001)

28. Gneiting, T.: Normal scale mixtures and dual probability densities. J. Stat. Comput. Simul. 59,
375–384 (1997)

29. Gneiting, T.: Closed form solutions of the two-dimensional turning bands equation. Math.
Geol. 30, 379–390 (1998a)



52 M. Schlather

30. Gneiting, T.: The correlation bias for two-dimensional simulations by turning bands. Math.
Geol. 31, 195–211 (1998b).

31. Gneiting, T.: Correlation functions for atmospheric data analysis. Q. J. Roy. Meteor. Soc. 125,
2449–2464 (1999a)

32. Gneiting, T.: On the derivatives of radial positive definite functions. J. Math. Anal. Appl. 236,
86–93 (1999b)

33. Gneiting, T.: Radial positive definite functions generated by Euclid’s hat. J. Multivariate
Anal. 69, 88–119 (1999c)

34. Gneiting, T.: Compactly supported correlation functions. J. Multivariate Anal. 83, 493–508
(2002a)

35. Gneiting, T.: Nonseparable, stationary covariance functions for space-time data. J. Amer.
Statist. Assoc. 97, 590–600 (2002b)

36. Gneiting, T., Genton, M., Guttorp, P.: Geostatistical space-time models, stationarity,
separability and full symmetry. In B. Finkenstadt, L. Held, and V. Isham (Eds.), Statistical
Methods for Spatio-Temporal Systems, Chapter 4. Chapman & Hall/CRC, Boca Raton (2007)

37. Gneiting, T., Kleiber, W., Schlather, S.: Matérn cross-covariance functions for multivariate
random fields. J. Amer. Statist. Assoc. 105, 1167–1177 (2011)
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