Chapter 2

Basic Arrangements

We start with a formal definition of two-dimensional arrangements, and proceed with an intro-
duction to the data structure used to represent the incidence relations among features of two-
dimensional arrangements, namely, the doubly-connected edge list, or DCEL for short. Then we
describe the main class of the 2D Arrangements package and the functions it supports. This
chapter contains the basic material you need to know in order to use CGAL arrangements.

2.1 Representation of Arrangements: The DCEL

Given a set C of planar curves, the arrangement A(C) is the subdivision of the plane into zero-
dimensional, one-dimensional, and two-dimensional cells,' called vertices, edges, and faces, respec-
tively, induced by the curves in C.

The curves in C can intersect each other (a single curve may also be self-intersecting or may
comprise several disconnected branches) and are not necessarily z-monotone.? We construct in two
steps a collection C” of z-monotone subcurves that are pairwise disjoint in their interiors as follows.
First, we decompose each curve in C into maximal z-monotone subcurves and possibly isolated
points, obtaining the collection C’. Note that an z-monotone curve cannot be self-intersecting.
Then, we decompose each curve in C’ into maximal connected subcurves not intersecting any other
curve (or point) in C’ in its interior. The collection C” contains isolated points if the collection C’
contains such points. The arrangement induced by the collection C” can be conveniently embedded
as a planar graph, the vertices of which are associated with curve endpoints or with isolated points,
and the edges of which are associated with subcurves. It is easy to see that the faces of A(C) are
the same as the faces of A(C"”). There are possibly more vertices in A(C”) than in A(C)—the
vertices where curves were cut into z-monotone (non-intersecting) pieces; accordingly there may
also be more edges in A(C"”). This graph can be represented using a doubly-connected edge list
(DcEL) data structure, which consists of containers of vertices, edges, and faces and maintains the
incidence relations among these cells. It is one of a family of combinatorial data structures called
halfedge data structures (HDS), which are edge-centered data structures capable of maintaining
incidence relations among cells of, for example, planar subdivisions, polyhedra, or other orientable,
two-dimensional surfaces embedded in space of an arbitrary dimension. Geometric interpretation
is added by classes built on top of the halfedge data structure.

The DCEL data structure represents each edge using a pair of directed halfedges, one going
from the xy-lexicographically smaller (left) endpoint of the curve towards the xy-lexicographically

1We use the term cell to describe the various dimensional entities in the induced subdivision. Sometimes, the
term face is used for this purpose in the literature. However, in this book, we use the term face to describe a
two-dimensional cell.

2A continuous planar curve C is z-monotone if every vertical line intersects it at most once. For example, a
non-vertical line segment is always z-monotone, and so is the graph of any continuous function y = f(z). A circle
of radius r centered at (zo,yo) is not x-monotone, as the vertical line x = ¢ intersects it at (zo,yo — r) and at
(z0,yo + 7). For convenience, we always deal with weakly x-monotone curves, which include vertical linear curves.

E. Fogel et al., CGAL Arrangements and Their Applications, Geometry and Computing 7, 19
DOI 10.1007/978-3-642-17283-0 2, © Springer-Verlag Berlin Heidelberg 2012

20 2 Basic Arrangements

Fig. 2.1: An arrangement of interior-disjoint line-
segments with some of the DCEL records that represent
it. The unbounded face fy has a single connected compo-
nent that forms a hole inside it, and this hole consists of f2
several faces. The halfedge e is directed from its source Enext
vertex vy to its target vertex vo. This halfedge, together
with its twin ¢, corresponds to a line segment that con-
nects the points associated with v; and vo and separates
the face f; from fs. The predecessor eprey and successor
enext Of € are part of the chain that forms the bound-
ary of the face fo. The face f1 has a more complicated
structure, as it contains two holes in its interior: One hole
contains two faces f3 and f4, while the other hole consists
of just two edges. fi1 also contains two isolated vertices
wy and wuy in its interior.

larger (right) endpoint, and the other, known as its twin halfedge, going in the opposite direction.

As each halfedge is directed, it has a source vertex and a target vertex.

Halfedges are used to separate faces and to connect vertices, with the excep- \/E/
tion of isolated vertices (representing isolated points), which are disconnected. If ®

a vertex v is the target of a halfedge e, we say that v and e are incident to each /\/(
other. The halfedges incident to a vertex v form a circular list sorted in clockwise

order around this vertex; see the figure to the right. (An isolated vertex has no
incident halfedges.)

An edge of an arrangement is a maximal portion of a curve between two
vertices of the arrangement. Each edge is represented in the DCEL by a pair of ‘//
twin halfedges. Each halfedge e stores a pointer to its incident face, which is the @
face lying to its left. Moreover, every halfedge is followed by another halfedge x //
sharing the same incident face, such that the target vertex of the halfedge is the P ——
same as the source vertex of the next halfedge. The halfedges around faces form
circular chains, such that all halfedges of a chain are incident to the same face and wind along its
boundary; see the figure above. We call such a chain a connected component of the boundary, or
CcB for short.

The unique CcB of halfedges winding in a counterclockwise orientation along a face boundary
is referred to as the outer CcB of the face. For the time being, let us consider only arrangements
of bounded curves, such that exactly one unbounded face exists in every arrangement. The
unbounded face does not have an outer boundary. Any other connected component of the boundary
of the face is called a hole, or inner CCB, and can be represented as a circular chain of halfedges
winding in a clockwise orientation around it. Note that a hole does not necessarily correspond to
a face at all, as it may have no area, or alternatively it may contain several faces inside it. Every
face can have several holes in its interior, or may contain no holes at all. In addition, every face
may contain isolated vertices in its interior. See Figure 2.1 for an illustration of the various DCEL
features.

So much on the abstract description of the DCEL. This is the underlying data structure of the
CGAL arrangement class. Occasionally, this is the only data structure we need, especially when
we are only concerned with traversing the arrangement.

2.2 The Main Arrangement Class

The main component in the 2D Arrangements package is the Arrangement_2<Traits,Dcel>
class template. An instance of this template is used to represent planar arrangements. The
class template provides the interface needed to construct such arrangements, traverse them, and

2.2 The Main Arrangement Class 21

maintain them.

The design of the 2D Arrangements package is guided by two aspects of modularity as follows:

(i) the separation of the representation of the arrangements and the various geometric algorithms
that operate on them, and (ii) the separation of the topological and geometric aspects of the
planar subdivision. The latter separation is exhibited by the two template parameters of the
Arrangement_2 class template; their description follows.

e The Traits template parameter should be substituted with a model of one of the geometry

traits concepts, for example, the ArrangementBasicTraits 2 concept. A model of this traits
concept defines the types of z-monotone curves and two-dimensional points, X_monotone_
curve_2 and Point_2, respectively, and supports basic geometric predicates on them.

In this chapter we always use Arr_non_caching_segment_traits_2 as our traits-class
model in order to construct arrangements of line segments. In Chapter 3 we also use Arr_
segment_traits_2 as our traits-class model. In Chapter 4 we use Arr_linear_traits_2
to construct arrangements of linear curves (i.e., lines, rays, and line segments). The 2D
Arrangements package contains several other traits classes that can handle other types of
curves, such as polylines (continuous piecewise-linear curves), conic arcs, and arcs of rational
functions. We exemplify the usage of these traits classes in Chapter 5. A few additional
models have been developed by other groups of researchers.

The Dcel template parameter should be substituted with a class that models the Arrange-
mentDcel concept, which is used to represent the topological layout of the arrangement.
This parameter is substituted with Arr_default_dcel<Traits> by default, and we use this
default value in this and in the following three chapters. However, in many applications it
is necessary to extend the DCEL features. This is done by substituting the Dcel parameter
with a different type; see Section 6.2 for further explanation and examples.

The function template print_arrangement_size() listed below prints out quantitative mea-

sures of a given arrangement. While in what follows it is used only by examples, it demonstrates
well the use of the member functions number_of_vertices(), number_of_edges(), and number_
of_faces(), which return the number of vertices, edges, and faces of an arrangement, respectively.
The function template is defined in the header file Arr_print.h.

template <typename Arrangement>
void print_arrangement_size (const Arrangement& arr)

{

}

std::cout << "The_arrangement_size:" << std::endl

<< "__o|V] =" << arr.number of vertices ()
<< ", _U|E] =" << arr.number of edges()
<< " __|F| =" << arr.number of faces() << std::endl;

You can also obtain the number of halfedges of an arrangement using the member function number_
of_halfedges(). Recall that the number of halfedges is always twice the number of edges.

Example: The simple program listed below constructs an arrangement

of three connected line-segments forming a triangle. It uses the CGAL
Cartesian kernel (see Section 1.4.4) with an integral-number type to in-

D2

stantiate the Arr_segment_traits_2 class template. The resulting ar-

rangement consists of two faces, a bounded triangular face and the un-

bounded face. Constructing and maintaining arrangements using limited- 41 D3
precision numbers, such as int, works properly only under severe restric-

tions, which in many cases render the program not very useful. In this T \ \
example, however, the points are far apart, and constructions of new ge-

ometric objects do not occur. Thus, it is safe to use int after all. The program constructs an
arrangement induced by three line segments that are pairwise disjoint in their interior, prints out
the number of faces, and ends. It uses the insert() free-function, which inserts the segments into

22 2 Basic Arrangements

the arrangement; see Section 3.4. It uses the member function number_of_faces() to obtain the
number of faces (two in this case). We give more elaborate examples in the rest of this chapter.
The programs in those examples rely on computing with numbers of arbitrary precision, which
guarantees robust execution and correct results.

// File: ex_triangle.cpp
#include <CGAL/Cartesian.h>

#include <OGAL/Arr non caching segment traits 2.h>
#include <OGAL/Arrangement 2.h>

typedef int Number_type;
typedef CGAL:: Cartesian<Number type> Kernel;
typedef CGAL:: Arr_non_caching segment traits 2<Kernel> Traits;
typedef Traits::Point 2 Point ;
typedef Traits::X monotone curve 2 Segment ;
typedef OGAL:: Arrangement 2<Traits> Arrangement;

int main()

{
Point pl(1, 1), p2(1, 2), p3(2, 1);
Segment cv|[] = {Segment(pl, p2), Segment(p2, p3), Segment(p3, pl)};
Arrangement arr;
insert (arr, &cv|0], &cv[sizeof(cv)/sizeof(Segment)]);
std ::cout << "Number_of_faces:_ " << arr.number of faces() << std::endl;
return 0;

Try: Modify the program above so that it inserts the number of vertices and halfedges as well as
the number of faces into the standard output-stream.

2.2.1 Traversing the Arrangement

The simplest and most fundamental arrangement operations are the various traversal methods,
which allow you to systematically go over the relevant features of the arrangement at hand.

Since the arrangement is represented as a DCEL, which stores containers of vertices, halfedges,
and faces, the Arrangement_2 class template supplies iterators for these containers. For example,
if arr is an Arrangement_2 object, the calls arr.vertices_begin() and arr.vertices_end()
return iterators of the nested Arrangement_2: :Vertex_iterator type that define the valid range
of arrangement vertices. The value type of this iterator is Arrangement_2: :Vertex. Moreover, the
vertex-iterator type is convertible to Arrangement_2: :Vertex_handle, which serves as a pointer
to a vertex. As we show next, all functions related to arrangement features accept handle types
as input parameters and return handle types as their output. A handle models the STL concept
Triviallterator.?> Throughout this book, we use the identifiers v, he, and f to refer to a vertex
handle, a halfedge handle, and a face handle, respectively.

In addition to the iterators for arrangement vertices, halfedges, and faces, the Arrangement_2
class template also provides an iterator for edges, namely Arrangement_2: :Edge_iterator. The
value type of this iterator is Arrangement_2::Halfedge, which is used to represent one of the
twin halfedges associated with the edge. The calls arr.edges_begin() and arr.edges_end()
return iterators that define the valid range of arrangement edges.

All iterator, circulator,* and handle types also have non-mutable (const) counterparts. These
non-mutable iterators are useful for traversing an arrangement without changing it. For example,

3A handle is a lightweight object that behaves like a pointer; hence, it is more efficient to pass handles around.
4A circulator is used when traversing a circular list, such as the list of halfedges incident to a vertex.

2.2 The Main Arrangement Class 23

the arrangement has a mutable member-function called arr.vertices_begin() that returns an
Arrangement_2::Vertex_iterator object and another non-mutable member-function that re-
turns an Arrangement_2::Vertex_const_iterator object. In fact, all methods listed in this
section that return an iterator, a circulator, or a handle have non-mutable counterparts. It
should be noted that, for example, an Arrangement_2::Vertex_handle is convertible into an
Arrangement_2: :Vertex_const_handle, but not the other way around.

Conversions of non-mutable handles to the corresponding mutable handles are nevertheless
possible. They can be performed using the overloaded member-function non_const_handle().
There are three variants that accept a non-mutable handle to a vertex, a halfedge, or a face,
respectively. Only mutable objects of type Arrangement_2 can call the non_const_handle()
method; see, e.g., Section 3.1.1.

Traversal Methods for an Arrangement Vertex

A vertex v of an arrangement induced by bounded curves is always associated with a geometric
entity, namely, with a Point_2 object, which can be obtained by v->point(). Recall that v
identifies a vertex handle; hence, we treat it as a pointer.

The call v->is_isolated() determines whether the vertex v is isolated or not. Recall that
the halfedges incident to a non-isolated vertex, namely the halfedges that share a common target
vertex, form a circular list around this vertex. The call v->incident_halfedges() returns a cir-
culator of the nested type Arrangement_2: :Halfedge_around_vertex_circulator that enables
the traversal of this circular list around a given vertex v in a clockwise order. The value type of
this circulator is Arrangement_2: :Halfedge. By convention, the target of the halfedge is v. The
call v->degree() evaluates to the number of the halfedges incident to v.

Example: The function below prints all the halfedges incident to a given arrangement vertex
(assuming that the Point_2 type can be inserted into the standard output-stream using the << op-
erator). The arrangement type is the same as in the simple example (coded in ex_triangle.cpp)
above.

template <typename Arrangement>
void print incident halfedges (typename Arrangement:: Vertex const handle v)
{
if (v—>is_isolated ()) {
std ::cout << "The_vertex_(" << v—=>point() << ")_is_isolated" << std::endl;
return;
}
std::cout << "The_neighbors_of_the_vertex_(" << v—>point () << ")_are:";
typename Arrangement:: Halfedge around vertex const circulator first , curr;
first = curr = v—>incident halfedges();
do std::cout << "_(" << curr—ssource()—>point () << ")";
while (++curr != first);
std::cout << std::endl;

If v is an isolated vertex, the call v->face() obtains the face that contains v.

Traversal Methods for an Arrangement Halfedge

A halfedge e of an arrangement induced by bounded curves is associated with an X_monotone_
curve_2 object, which can be obtained by he->curve(), where he identifies a handle to e.

The calls he->source() and he->target() return handles to the halfedge source-vertex and
target-vertex, respectively. You can obtain a handle to the twin halfedge using he->twin(). Note
that from the definition of halfedges in the DCEL structure, the following invariants always hold:

e he->curve() is equivalent to he->twin()->curve(),

e he->source() is equivalent to he->twin()->target(), and

24 2 Basic Arrangements

e he->target() is equivalent to he->twin()->source().

Every halfedge has an incident face that lies to its left, which can be obtained by he->face().
Recall that a halfedge is always one link in a connected chain (CcB) of halfedges that share the
same incident face. The he->prev() and he->next() calls return handles to the previous and
next halfedges in the CcCB, respectively.

As the CcB is a circular list of halfedges, it is only natural to traverse it using a circulator. In-
deed, he->ccb () returns an Arrangement_2: :Ccb_halfedge_circulator object for traversing all
halfedges along the connected component of he. The value type of this circulator is Arrangement _
2::Halfedge.

Example: The function template print_ccb() listed below prints all z-monotone curves along a
given CcCB (assuming that the Point_2 and the X_monotone_curve_2 types can be inserted into
the standard output-stream using the << operator).

template <typename Arrangement>
void print ccb (typename Arrangement:: Ccb halfedge const circulator circ)
{
std::cout << "(" << circ—>source()—>point () << ")"
typename Arrangement:: Ccb halfedge const circulator curr = circ;
do {
typename Arrangement:: Halfedge const handle he = curr;
std::cout << "___[" << he—>curve() << "]__ "
<< "(" << he—target()—>point () << ")";
} while (++4curr != circ);
std ::cout << std::endl;

}

Traversal Methods for an Arrangement Face

An Arrangement_2 object arr that identifies an arrangement of bounded curves always has a
single unbounded face. The call arr.unbounded_face() returns a handle to this face. Note that
an empty arrangement contains nothing but the unbounded face.

Given a handle to a face f, you can issue the call £->is_unbounded() to determine whether the
face f is unbounded. Bounded faces have an outer CCB, and the outer_ccb() method returns a
circulator of type Arrangement_2::Ccb_halfedge_circulator for traversing the halfedges along
this CcB. Note that the halfedges along this CCcB wind in a counterclockwise order around the
outer boundary of the face.

A face can also contain disconnected components in its interior, namely, holes and isolated
vertices. You can access these components as follows:

e You can obtain a pair of Arrangement_2: :Hole_iterator iterators that define the range
of holes inside a face f by calling f->holes_begin() and f->holes_end().

The value type of this iterator is Arrangement_2: :Ccb_halfedge_circulator, defining the
CcB that winds in a clockwise order around a hole.

e The calls f->isolated_vertices_begin() and f->isolated_vertices_end() return
Arrangement_2::Isolated_vertex_iterator iterators that define the range of isolated
vertices inside the face f. The value type of this iterator is Arrangement_2: :Vertex.

Example: The function template print_face() listed below prints the outer and inner bound-
aries of a given face. It uses the function template print_ccb() listed above.

template <typename Arrangement>
void print face (typename Arrangement::Face const handle f)

{

// Print the outer boundary.

2.2 The Main Arrangement Class 25

if (f—is_unbounded()) std::cout << "Unbounded_face._" << std::endl;
else {

std :: cout << "Outer_boundary:_";

print ccb<Arrangement>(f—>outer ccb());

}

// Print the boundary of each of the holes.

int index = 1;

typename Arrangement:: Hole const iterator hole;

for (hole = f—>holes begin(); hole != f—>holes end(); ++thole, ++index) {
std::cout << "____Hole #" << index << ":_";
print _ccb<Arrangement>(xhole);

}

// Print the isolated wvertices.
typename Arrangement:: Isolated vertex const iterator iv;
for (iv = f—isolated vertices_begin(), index = 1;
iv 1= f—isolated vertices end (); +Hv, ++ndex)
std ::cout << "____Isolated_vertex #" << index << ":_"
<< "(" << iv—=point () << ")" << std::endl;

}

‘ Example: The function template print_arrangement () listed below prints the features of a
given arrangement. The file arr_print.h, includes the definitions of this function, as well as the
definitions of all other functions listed in this section. This concludes the preview of the various
traversal methods.

template <typename Arrangement>
void print arrangement(const Arrangement& arr)

{
CGAL_precondition(arr.is_valid());

// Print the arrangement vertices.

typename Arrangement:: Vertex const iterator vit;

std::cout << arr.number of vertices() << "_vertices:" << std::endl;

for (vit = arr.vertices begin(); vit != arr.vertices end(); ++vit) {
std::cout << "(" << vit—point () << ")"
if (vit—>is_ isolated()) std::cout << "_—_Isolated." << std::endl;
else std::cout << "_—_degree " << vit—>degree() << std::endl;

}

// Print the arrangement edges.

typename Arrangement:: Edge const iterator eit;

std::cout << arr.number of edges() << "_edges:" << std::endl;

for (eit = arr.edges begin(); eit != arr.edges end(); +teit)
std::cout << "[" << eit—>curve() << "|" << std::endl;

// Print the arrangement faces.

typename Arrangement:: Face const iterator fit;

std ::cout << arr.number of faces() << "_faces:" << std::endl;

for (fit = arr.faces begin(); fit != arr.faces end(); ++fit)
print face<Arrangement>(fit);

26 2 Basic Arrangements

ha

(a) (b)

Fig. 2.2: lllustrations of the various specialized insertion procedures. The inserted z-monotone curve
is drawn as a dashed line, surrounded by two solid arrows that represent the pair of twin halfedges
added to the DCEL. Existing vertices are drawn as dark discs, while new vertices are drawn as light
discs. Existing halfedges that are affected by the insertion operations are drawn as dashed arrows.
(a) Inserting a curve that induces a new hole inside the face f. (b) Inserting a curve from an existing
vertex u that corresponds to one of its endpoints. (c) Inserting an z-monotone curve, the endpoints
of which correspond to existing vertices u; and wz. In this case the new pair of halfedges close a new
face f’. The hole hy, which belonged to f before the insertion, becomes a hole in this new face.

2.2.2 Modifying the Arrangement

In this section we review the various member functions of the Arrangement_2 class template that
allow you to modify the topological structure of the arrangement through the introduction of new
edges or vertices or the modification or removal of existing edges or vertices.

The arrangement member-functions that insert new z-monotone curves into the arrangement,
thus enabling the construction of a planar subdivision, are rather specialized, as they assume
that the interior of the inserted curve is disjoint from all existing arrangement vertices and edges,
and in addition require a priori knowledge of the location of the inserted curve. Indeed, for
most purposes it is more convenient to construct an arrangement using the free (global) insertion
functions, which relax these restrictions. However, as these free functions are implemented in
terms of the specialized insertion functions, we start by describing the fundamental functionality
of the arrangement class, and describe the operation of the free functions in Chapter 3.

Inserting Non-Intersecting x-Monotone Curves

The most trivial functions that allow you to modify the arrangement are the specialized functions
for the insertion of an z-monotone curve the interior of which is disjoint from the interior of all
other curves in the existing arrangement and does not contain any point of the arrangement. In
addition, these functions require that the location of the curve in the arrangement be known.

The rather harsh restrictions on the inserted curves enable an efficient implementation. While
inserting an z-monotone curve, the interior of which is disjoint from all curves in the existing
arrangement, is quite straightforward, as we show next, (efficiently) inserting a curve that intersects
with the curves already in the arrangement is much more complicated and requires the application
of nontrivial geometric algorithms. The decoupling of the topological arrangement representation
from the various algorithms that operate on it dictates that the general insertion operations be
implemented as free functions that operate on the arrangement and the inserted curve(s); see
Section 3.4 for more details and examples.

When an z-monotone curve is inserted into an existing arrangement, such that the interior of
this curve is disjoint from the interior of all curves in the arrangement, only the following three
scenarios are possible, depending on the status of the endpoints of the inserted curve:

1. If both curve endpoints do not correspond to any existing arrangement vertex we have to
create two new vertices, corresponding to the curve endpoints, and connect them using a
pair of twin halfedges. This halfedge pair forms a new hole inside the face that contains the

2.2 The Main Arrangement Class 27

curve in its interior; see Figure 2.2a for an illustration.

If exactly one endpoint corresponds to an existing arrangement vertex (we distinguish be-
tween a vertex that corresponds to the left endpoint of the inserted curve and one that
corresponds to its right endpoint), we have to create a new vertex that corresponds to the
other endpoint of the curve and to connect the two vertices by a pair of twin halfedges that
form an “antenna” emanating from the boundary of an existing connected component; see
Figure 2.2b. (Note that if the existing vertex used to be isolated, this operation is actually
equivalent to forming a new hole inside the face that contains this vertex.)

If both endpoints correspond to existing arrangement vertices, we connect these vertices
using a pair of twin halfedges. (If one or both vertices are isolated, this case reduces to
case (2) or case (1), respectively.) The two following subcases may occur:

e Two disconnected components are merged into a single con-
nected component (as is the case with the segment s; in the
figure to the right).

e A new face is created, which is split from an existing arrange-
ment face. In this case we also have to examine the holes and
isolated vertices in the existing face and move the relevant ones
to belong to the new face (as is the case with the segment so in
the figure to the right); see also Figure 2.2c.

The Arrangement_2 class template offers insertion functions that perform the special insertion
procedures listed above, namely insert_in_face_interior(), insert_from_left_vertex(),
insert_from_right_vertex(), and insert_at_vertices(). The first function accepts an z-
monotone curve ¢ and a handle to an arrangement face f that contains this curve in its interior. The
other functions accept an xz-monotone curve ¢ and handles to the existing vertices that correspond
to the curve endpoint(s). Each of the four functions returns a handle to one of the twin halfedges
that have been created; more precisely:

insert_in_face_interior(c, f) returns a handle to the halfedge directed from the vertex
corresponding to the left endpoint of ¢ towards the vertex corresponding to its right endpoint.

insert_from_left_vertex(c, v) and insert_from_right_vertex(c, v) each returns a
handle to the halfedge, the source of which is the vertex v, and the target of which is the
new vertex that has just been created.

insert_at_vertices(c, v1, v2) returns a handle to the halfedge directed from vy to wvs.

Example: The program below demonstrates the usage of
the four specialized insertion functions. It creates an arrange-
ment of five line segments s, ..., s5, as depicted in the figure
to the right.> The first line segment s; is inserted in the in-
terior of the unbounded face, while the four succeeding line
segments So, ..., S5 are inserted using the vertices created by
the insertion of preceding segments. The arrows in the figure
mark the direction of the halfedges e, ..., e5 returned from
the insertion functions, to make it easier to follow the flow
of the program. The resulting arrangement consists of three
faces, where the two bounded faces form together a hole in
the unbounded face.

Two header files are included in the code, in order to
make this and the following examples more compact. The

V2

e
V] & 5 9 U3
S5

V4

5Notice that in all figures in this book the coordinate axes are drawn only for illustrative purposes and are not

part of the arrangement.

28 2 Basic Arrangements

file arr_inexact_construction_segments.h is listed immediately after the program. The file
arr_print.h is introduced in Section 2.2.1.

// File: ex_edge insertion.cpp

#include "arr inexact construction segments.h"
#include "arr print.h"

int main()

{

Point pl(1, 3), p2(3, 5), p3(5, 3), p4(3, 1);
Segment s1(pl, p2), s2(p2, p3), s3(p3, p4)7 s4(p4, pl), sb(pl, p3);
Arrangement arr;

Halfedge handle el = arr.insert in face interior(sl, arr.unbounded face());
Vertex handle vl = el—ssource();

Vertex handle v2 = el—target();

Halfedge handle e2 = arr.insert from left vertex(s2, v2);

Vertex handle v3 = e2—>target ();

Halfedge handle e3 = arr.insert from right vertex(s3, v3);

Vertex handle v4 = e3—>target();

Halfedge handle e4 = arr.insert at vertices(s4, v4, vl);

Halfedge handle e5 = arr.insert at vertices(sb, vl, v3);

print _arrangement(arr);
return 0;

As mentioned above, in all examples listed in this chapter and some of the examples listed in
the following chapter the Traits parameter of the Arrangement_2<Traits, Dcel> class template
is substituted with an instance of the Arr_segment_traits_2<Kernel> class template. In these
examples the Arr_segment_traits_2 class template is instantiated with the predefined CGAL
kernel that evaluates predicates in an exact manner, but constructs geometric objects in an inexact
manner, as none of these examples construct new geometric objects. In the remaining examples
listed in the next chapter, as well as in most other examples listed in the book, the traits class-
template is instantiated with a kernel that evaluates predicates and constructs geometric objects,
both in an exact manner; see Section 1.4.4 for more details about the various kernels. The
statements below define the types for arrangements of line segments common to all examples
that do not construct new geometric objects. They are kept in the header file arr_inexact_
construction_segments.h.

#include <OGAL/Exact predicates inexact constructions kernel.h>
#include <OGAL/Arr non caching segment traits 2.h>
#include <OGAL/Arrangement 2.h>

typedef CGAL:: Exact predicates inexact constructions kernel Kernel;

typedef Kernel::FT Number type;
typedef OGAL:: Arr non caching segment traits 2<Kernel> Traits;

typedef Traits::Point 2 Point ;

typedef Traits::X monotone curve 2 Segment;

typedef CGAL:: Arrangement 2<Traits> Arrangement;
typedef Arrangement:: Vertex handle Vertex handle;
typedef Arrangement:: Halfedge handle Halfedge handle;

typedef Arrangement::Face handle Face handle;

2.2 The Main Arrangement Class 29

Manipulating Isolated Vertices

Isolated points are in general simpler geometric entities than curves, and indeed the member
functions that manipulate them are easier to understand.

The call arr.insert_in_face_interior(p, f) inserts A
an isolated point p, located in the interior of a given face f, U2
. —_ e U2 e U3
into the arrangement and returns a handle to the arrangement
€1 €2

vertex associated with p it has created. Naturally, this func-
tion has the precondition that p is an isolated point; namely,
it does not coincide with any existing arrangement vertex and -+ Vs
does not lie on any edge. As mentioned in Section 2.2.1, it is
possible to obtain the face containing an isolated vertex v by
calling v->face(). The member function remove_isolated_
vertex(v) accepts a handle to an isolated vertex v as input V4

and removes it from the arrangement. | | | | | |
I I I I I I

Example: The program below demonstrates the usage of
the arrangement member-functions for manipulating isolated
vertices. It first inserts three isolated vertices, uy, us, and us, located inside the unbounded face
of the arrangement. Then it inserts four line segments, s1, ..., s4, that form a square hole inside
the unbounded face; see the figure above for an illustration. Finally, it traverses the vertices and
removes those isolated vertices that are still contained in the unbounded face (ug and wugz in this
case).

// File: ex_ isolated wertices.cpp

#include "arr inexact construction segments.h"
#include "arr print.h"

int main()

{
// Insert isolated points.
Arrangement arr;
Face handle uf = arr.unbounded face();
Vertex handle ul = arr.insert in_face interior(Point (3, 3), uf);
Vertex handle u2 = arr.insert in_face interior(Point(1, 5), uf);
Vertex handle u3 = arr.insert in face interior(Point (5, 5), uf);

// Insert four segments that form a square—shaped face.
Point pl(1, 3), p2(3, 5), p3(5, 3), p4(3, 1);
Segment s1(pl, p2), s2(p2, p3), s3(p3, pd), s4(p4, pl);

Halfedge handle el = arr.insert in face interior(sl, uf);
Vertex handle vl = el—>source();
Vertex handle v2 = el—target();

Halfedge handle e2 = arr.insert from left vertex(s2, v2);
Vertex handle v3 = e2—>target ();

Halfedge handle e3 = arr.insert from right vertex(s3, v3);
Vertex handle v4 = e3—>target ();

Halfedge handle e4 = arr.insert at vertices(s4, v4, vl);

// Remove the isolated wvertices located in the unbounded face.

Arrangement:: Vertex iterator curr, next = arr.vertices begin();

for (curr = next++; curr != arr.vertices end(); curr = next++) {
// Keep an iterator to the next vertexr, as curr might be deleted.

30 2 Basic Arrangements

if (curr—>is_isolated () && curr—face() = uf)
arr.remove isolated vertex (curr);
}

print _arrangement(arr);
return 0;

}

@ Try: A more efficient way to remove the isolated vertices that lie inside the unbounded face is
to obtain the unbounded face, and then traverse its isolated vertices, removing them as they are
visited. Replace the code in the program above that traverses all vertices and removes the isolated
ones with code that obtains the unbounded face and then traverses its isolated vertices, removing
them as they are visited.

Manipulating Halfedges

While reading the previous subsection you learned how to insert new points that induce isolated
vertices into the arrangement. You may wonder now how you can insert a new point that lies on
an z-monotone curve that is associated with an existing arrangement edge.

The introduction of a vertex, the geometric mapping of which is a point p that ______« €.y
lies on an z-monotone curve, requires the splitting of the curve in its interior at <——
p. The two resulting subcurves induce two new edges, respectively. In general, ()
the Arrangement_2 class template relies on the geometry traits to perform sucha _..SLy 25
split. As a matter of fact, it relies on the geometry traits to perform all geometric ~ p~

operations. To insert a point p that lies on an z-monotone curve associated with

an existing edge e into the arrangement 4, you must first construct the two curves ¢; and co,
which are the two subcurves that result from splitting the z-monotone curve associated with the
edge e at p. Then, you have to issue the call arr.split_edge(he, cl, c2), where arr identifies
the arrangement 4 and he is a handle to one of the two halfedges that represent the edge e. The
function splits the two halfedges that represent e into two pairs of halfedges, respectively. Two
new halfedges are incident to the new vertex v associated with p. The function returns a handle
to the new halfedge, the source of which is the source vertex of the halfedge handled by he, and
the target of which is the new vertex v. For example, if the halfedge drawn as a dashed line at
the top in the figure above is passed as input, the halfedge drawn as a dashed line at the bottom
is returned as output.

The reverse operation is also possible. Consider a vertex v of degree 2 that has two incident
edges e; and ey associated with two curves ¢; and ¢, respectively, such that the union of ¢; and ¢
results in a single continuous x-monotone curve c of the type supported by the traits class in use.
To merge the edges e; and ez into a single edge associated with the curve c, essentially removing the
vertex v from the arrangement identified by arr, you need to issue the call arr.merge_edge (hel,
he2, c), where hel and he2 are handles to halfedges representing e; and eq, respectively.

Finally, the call arr.remove_edge (he) removes the edge e from the arrangement, where he is
a handle to one of the two halfedges that represents e. Note that this operation is the reverse of an
insertion operation, so it may cause a connected component to split into two, or two faces to merge
into one, or a hole to disappear. By default, if the removal of e causes one of its end vertices to
become isolated, this vertex is removed as well. However, you can control this behavior and choose
to keep the isolated vertices by supplying additional Boolean flags to remove_edge () indicating

‘ whether the source or the target vertices are to be removed should they become isolated.

Example: The example program below shows how the edge-manipulation functions can be used.
The program works in three steps, as demonstrated in Figure 2.3. Note that the program uses
the fact that split_edge() returns one of the new halfedges (after the split) that has the same
direction as the original halfedge (the first parameter of the function) and is directed towards the
split point. Thus, it is easy to identify the vertices u; and ug associated with the split points.

2.2 The Main Arrangement Class 31

(a) (b) (©)

Fig. 2.3: The three steps of the example program ex_edge_manipulation.cpp. In Step (a) it
constructs an arrangement of four line segments. In Step (b) the edges e; and e are split, and the
split points are connected with a new segment s that is inserted into the arrangement. This operation
is undone in Step (c), where ¢ is removed from the arrangement, rendering its end vertices u; and wus
redundant. We therefore remove these vertices by merging their incident edges and go back to the
arrangement depicted in (a).

// File: ex edge_ manipulation . cpp

#include "arr inexact construction segments.h"
#include "arr print.h"

int main()

{

// Step (a) — construct a rectangular face.

Point al(l, 3), q2(3, 5), a3(5, 3), q4(3, 1);
Segment sd(ql, q2), sl(q2, q3), s3(q3, q4), s2(q4, ql);
Arrangement arr;

Halfedge handle el = arr.insert in_ face interior(sl, arr.unbounded face());
Halfedge handle e2 = arr.insert in_ face interior(s2, arr.unbounded face());

e2 = e2—>twin (); // as we wish e2 to be directed from right to left
arr.insert at_vertices(s3, el—target(), e2—>source());

arr.insert at_vertices(s4, e2—>target(), el—>source());

std::cout << "After_step_(a):" << std::endl;

print _arrangement(arr);

// Step (b) — split el and e2 and connect the split points with a segment.
Point pl(4,4), p2(2,2);
Segment sl _1(q2, pl), sl _2(pl, q3), s2_1(q4, p2), s2_2(p2, ql), s(pl, p2);

el = arr.split_edge(el, sl _1, sl 2);

e2 = arr.split_edge(e2, s2 1, s2 2);

Halfedge handle e = arr.insert at vertices(s, el—>target(), e2—>target());
std::cout << std::endl << "After_step_(b):" << std::endl;

print _arrangement(arr);

// Step (c) — remove the edge e and merge el and e2 with their successors.
arr.remove _edge(e);

32 2 Basic Arrangements

arr.merge edge(el, el—next(), sl);

arr.merge edge(e2, e2—next(), s2);

std::cout << std::endl << "After_step_(c):" << std::endl;
print _arrangement(arr);

return 0;

advanced

The member functions modify_vertex() and modify_edge() modify the geometric mappings
of existing features of the arrangement. The call arr.modify_vertex(v, p) accepts a handle to
a vertex v and a reference to a point p, and sets p to be the point associated with the vertex v. The
call arr.modify_edge(he, c) accepts a handle to one of the two halfedges that represent an edge
e and a reference to a curve ¢, and sets ¢ to be the z-monotone curve associated with e. (Note that
both halfedges are modified; that is, both expressions he->curve() and he->twin()->curve()
evaluate to ¢ after the modification.) These functions have preconditions that p is geometrically
equivalent to v->point () and c is equivalent to e->curve(), respectively.® If these preconditions
are not met, the corresponding operation may invalidate the structure of the arrangement. At first
glance it may seem as if these two functions are of little use. However, you should keep in mind
that there may be extraneous data (probably non-geometric) associated with the point objects or
with the curve objects, as defined by the traits class. With these two functions you can modify
this data; see more details in Section 5.5.

In addition, you can use these functions to replace a geometric object (a point or a curve)
with an equivalent object that has a more compact representation. For example, if we use some
simple rational-number type to represent the point coordinates, we can replace the point (%, %)
associated with some vertex v with an equivalent point with normalized coordinates, namely (%, 3).

|— advanced ———
Ii advanced ————

Advanced Insertion Functions

Assume that the specialized insertion function insert_from left_
vertex(c,V) is given a curve ¢, the left endpoint of which is already asso-
ciated with a non-isolated vertex v. Namely, v has already several incident \ €pred
halfedges. It is necessary in this case to locate the exact place for the v
new halfedge mapped to the newly inserted curve c in the circular list of
halfedges incident to v. More precisely, in order to complete the insertion, /
it is necessary to locate the halfedge epreq directed towards v such that c is
located between the curves associated with epr.q and the next halfedge in
the clockwise order in the circular list of halfedges around v; see the figure
to the right. This may take O(d) time, where d is the degree of the vertex v.” However, if the
halfedge epreq is known in advance, the insertion can be carried out in constant time, and without
performing any geometric comparisons.

The Arrangement_2 class template provides advanced versions of the specialized insertion func-
tions for a curve ¢, namely insert_from_left_vertex(c,he_pred) and insert_from_right_
vertex(c,he_pred). These functions accept a handle to the halfedge eprcq as specified above,

instead of a handle to the vertex v. They are more efficient, as they take constant time and do
not perform any geometric operations. Thus, you should use them when the halfedge epcq is

7

6Roughly speaking, two curves are equivalent iff they have the same graph. In Section 5.1.1 we give a formal
definition of curves and curve equivalence.

"We can store the handles to the halfedges incident to v in an efficient search structure to obtain O(logd)
access time. However, as d is usually very small, this may lead to a waste of storage space without a meaningful
improvement in running time in practice.

2.2 The Main Arrangement Class 33

known. In cases where the vertex v is isolated or the predecessor halfedge for the newly inserted
curve is not known, the simpler versions of these insertion functions should be used. Similarly, the
member function insert_at_vertices() is overloaded with two additional versions as follows.
One accepts two handles to the two predecessor halfedges around the two vertices v; and vs that
correspond to the curve endpoints. The other one accepts a handle to one vertex and a handle to
the predecessor halfedge around the other vertex.

Example: The program below shows how to construct an
arrangement of eight pairwise interior-disjoint line-segments
$1,-.--,8s, as depicted in the figure to the right, using the spe-
cialized insertion functions that accept predecessor halfedges.
The corresponding halfedges eq, ..., es are drawn as arrows.
Note that the point pg is initially inserted as an isolated point
and later on is connected to the other four vertices to form
the four bounded faces of the final arrangement.

// File: ex_special_edge_insertion .cpp

#include "arr inexact construction segments.h" \ \ \ \ \ \
#include "arr print.h"

int main()

{

Point p0(3, 3), pl(1, 3), p2(3, 5), p3(5, 3), p4(3, 1);
Segment s1(pl, p2), s2(p2, p3), s3(p3, p4d), s4(p4 pl)
Segment s5(pl, p0), s6(p0, p3), s7(p4, p0), s8(p0, p2);
Arrangement arr;

Vertex handle v0 = arr.insert in face interior(p0, arr.unbounded face());
Halfedge handle el = arr.insert in_face interior(sl, arr.unbounded face());
Halfedge handle e2 = arr.insert from left vertex(s2, el);

Halfedge handle e3 = arr.insert from right vertex(s3, e2);

Halfedge handle e4 = arr.insert at vertices(s4, e3, el—twin());

Halfedge handle e5 = arr.insert at vertices(s5, el—=>twin(), v0);

Halfedge handle e6 = arr.insert at_vertices(s6, eb, e3—>twin());

Halfedge handle e7 = arr.insert at_ vertices(s7, ed—twin(), e6—twin());
Halfedge handle e8 = arr.insert at_vertices(s8, eb, e2—>twin());

print _arrangement(arr);
return 0;

It is possible to perform even more refined operations on an Arrangement_2 object given
specific topological information. As most of these operations are very fragile and do not test
preconditions on their input in order to gain efficiency, they are not included in the public interface
of the Arrangement_2 class template. Instead, the Arr_accessor<Arrangement> class template
enables access to these internal arrangement operations; see more details in the Reference Manual.

|— advanced ———

2.2.3 Input/Output Functions

In some cases, you may like to save an arrangement object constructed by some application, so
that later on it can be restored. In other cases you may like to create nice drawings that represent
arrangements constructed by some application. These drawings can be printed or displayed on a

34 2 Basic Arrangements

computer screen and dynamically change as the arrangement itself changes.

Input/Output Stream

Consider an arrangement that represents a very complicated geographical map, and assume that
there are applications that need to answer various queries on this map. Naturally, you can store
the set of curves that induce the arrangement, but this implies that you would need to construct
the arrangement from scratch each time you wish to reuse it. A more efficient solution is to write
the arrangement to a file in a format that other applications can read.

The 2D Arrangements package provides an inserter operator (<<), which inserts an arrange-
ment object into an output stream, and an extractor operator (>>), which extracts an arrangement
object from an input stream. The arrangement is written using a simple predefined plain-text
format that encodes the arrangement topology, as well as all geometric entities associated with
vertices and edges.

The ability to use the input and output operators requires that the Point_2 type and the X_
monotone_curve_2 type defined by the traits class both support the << and >> operators. Only
traits classes that handle linear objects are guaranteed to provide these operators for the geometric
types they define. Thus, you can safely write and read arrangements of line segments, polylines,
or unbounded linear objects.?

Example: The example below constructs the arrangement depicted on Page 27 and writes it to
an output file. It also demonstrates how to reread the arrangement from a file.

// File: ex_ io.cpp
#include <fstream>

#include <CGAL/basic.h>
#include <CGAL/IO/Arr_iostream.h>

#include "arr inexact construction segments.h"
#include "arr print.h"

int main()

{

// Construct the arrangement.

Point pl(1, 3), p2(3, 5), p3(5, 3), p4(3, 1);
Segment s1(pl, p2), s2(p2, p3), s3(p3, pd), s4(p4, pl), s5(pl, p3);
Arrangement arrl;

Halfedge handle el = arrl.insert in face interior(sl,arrl.unbounded face());
Vertex handle vl = el—>source
Vertex handle v2 = el—target
Halfedge handle e2 = arrl.insert from left vertex(s2, v2);
Vertex handle v3 = e2—>target();

Halfedge handle e3 = arrl.insert from right vertex(s3, v3);
Vertex handle v4 = e3—>target ();

Halfedge handle e4 = arrl.insert at vertices(s4, v4, vl);
Halfedge handle e5 = arrl.insert at_vertices(sh, vl, v3);

0);
();

// Write the arrangement to a file.
std ::cout << "Writing" << std::endl;
print arrangement size (arrl);

8Traits classes that handle non-linear objects use algebraic-number types. The inserter (<<) and extractor (>>)
operators for these non-linear objects can be provided only if these operators are available for algebraic numbers.

2.2 The Main Arrangement Class 35

std::ofstream out_file("arr ex io.dat");
out file << arrl;
out _file.close ();

// Read the arrangement from the file.
Arrangement arr2;

std::ifstream in_file ("arr_ex io.dat");
in file >> arr2;

in_file.close ();

std ::cout << "Reading" << std::endl;

print _arrangement size(arr2);

return 0;

The inserter and extractor operators utilize the free functions write() and read(). These
functions use a formatter object, which defines the I/O format. Both read() and write() func-
tions use the Arr_text_formatter formatter class, which ignores auxiliary data that might be
attached to the arrangement features. If you wish to write or read arrangements extended with
auxiliary data, use other plain-text formats, such as Postscript, XML, and IPE,? or even use bi-
nary formats, you must call the read() and write() functions and pass an appropriate formatter.
Section 6.2 describes how you can write or read an arrangement with auxiliary data stored with
its features. The 2D Arrangements package also comes with formatters that write and read ar-
rangements that maintain cross-mappings between input curves and the arrangement edges they
induce, referred to as arrangements-with-history objects; see Section 6.4 for details.

Output QT-Widget Stream

The 2D Arrangements package includes an interactive program that demonstrates its features.
As mentioned in the preface of this book, this demonstration program is still based on QT 3, an
older version of QT, and like many other CGAL programs based on QT 3, it uses a QT stream
called Qt_widget. You can display the drawings of arrangements in a graphical window using
Qt_widget streams just like the demonstration program does. All you need to do is follow the
guidelines for handling Qt_widget objects, and apply the inserter, which inserts an arrangement
into a Qt_widget stream to complete the drawing. The ability to use this output operator requires
that the Point_2 and X_monotone_curve_2 types defined by the traits class both support the
inserter (<<) operator that inserts the respective geometric object into a Qt_widget stream. The
Arr_rational_arc_traits_2 class template (see Section 5.4.3) and the Arr_linear_traits_2
class template (see Section 5.2) currently do not provide this operator for the geometric types they
define. Thus, only arrangements of line segments, polylines, or conic arcs can be drawn this way
without additional code. The << operator for polylines and conic arcs is defined in CGAL/I0/Qt_
widget_Polyline_2.h and CGAL/IO/Qt_widget_Conic_arc_2.h, respectively. These files must
be explicitly included to insert polylines or conic arcs into Qt_widget streams.

All CcAL programs based on QT Version 3, including the arrangement demonstration-program,
were being ported to Version 4, the latest version of QT, at the time this book was written. In the
new setup the visualization of two-dimensional CGAL objects is done with the QT Graphics View
Framework. This framework enables managing and interacting with a large number of custom-
made 2D graphical items, and provides a view widget for visualizing the items, with support for
zooming and rotation.!®

9ht‘cp://tclab.kaist.ac.kr/ipe/.
10See http://doc.qt.nokia.com/latest/graphicsview.html for more information on this framework. The pack-
age “CaaL and the QT Graphics View Framework” [66] provides the means to integrate CcaL and the Graphics
View Framework.

http://tclab.kaist.ac.kr/ipe/
http://doc.qt.nokia.com/latest/graphicsview.html

36 2 Basic Arrangements

2.3 Application: Obtaining Silhouettes of Polytopes

We conclude this chapter with a small application that obtains the silhouettes of bounded convex
polyhedra in R3, commonly referred to as convex polytopes. Given a convex polytope P, the
program obtains the outline of the shadow of P cast on the xy-plane, where the scene is illuminated
by a light source at infinity directed along the negative z-axis. The silhouette is represented as an
arrangement that contains two faces—an unbounded face and a single hole inside the unbounded
face. The silhouette is the outer boundary of the latter.

The figure to the right shows an icosahedron and y
its silhouette. The corresponding input file located
in the example folder is called icosahedron.dat. -

The program first constructs the input convex g
polytope and stores the result in a temporary ob- ®
ject, the type of which is an instance of the CGAL \
Polyhedron_3 class template. Then, it traverses the
convex polytope facets. For each facet facing up- » /
wards (namely, whose outer normal has a positive z
component), it traverses the edges on the facet boundary. The traversal of the facets and the
traversal of the halfedges around each facet are done in a way similar to the traversals of arrange-
ment cells as described in Section 2.2.1; see the Reference Manual for the exact interface of the
Polyhedron_3 class template. (Notice that the positive normal z-coordinate requirement rules
out faces that are parallel to the z-axis.) Let e be the current polytope edge being processed, and
let ¢’ be the vertical projection of e (onto the zy-plane). The program inserts e’ into the arrange-
ment using one of the specialized insertion member-functions listed in Section 2.2.2. Once the
traversal of the temporary polytope is completed, it is discarded. Finally, the program traverses
the arrangement edges, and removes all edges that are not incident to the unbounded face.

We must ensure that each edge is inserted into the arrangement exactly once to avoid overlaps.
To this end, we maintain a set E of handles to polytope edges. It contains the edges of the
polytope, the projections of which have already been inserted into the arrangement. For each
edge e being processed, if e is not in F, we insert the projection of e into the arrangement and
we also insert e into . We use the std: :set data structure to maintain the set E. It requires
the provision of a model of the StrictWeakOrdering STL concept that compares handles. We use
the functor Less_than_handle listed below, and defined in the header file Less_than_handle.h.
The functor compares the addresses of the handled objects. Thus, (different) handles to the same
object are evaluated as equal. (The induced ordering is consistent, but arbitrary and irrelevant.)

struct Less than handle {
template <typename Type>
bool operator () (Type s1, Type s2) const { return (&(xsl) < &(xs2)); }

¥
advanced

An alternative technique to avoid duplicate insertion is to extend each record of the polyhedron
data structure that represents a halfedge with a Boolean value that indicates whether it has been
inserted into the arrangement. This technique is more efficient, as it does not use the set auxiliary
data structure. The technique used to extend the polyhedron data structure is similar to the
technique used to extend the arrangement data structure, as both are based on the same halfedge
data structure. The extending technique is discussed only in Chapter 6.

|— advanced

We must determine the appropriate insertion routines to insert the segments into the arrange-
ment. To this end, we use yet another auxiliary data structure, namely a map, which maps
polyhedron vertices to corresponding arrangement vertices. Before inserting a segment into the
arrangement we search the map for the arrangement vertices that correspond to the segment
endpoints, and dispatch the appropriate insertion routine.

2.3 Application: Obtaining Silhouettes of Polytopes 37

advanced

An alternative technique is to extend each record of the polyhedron data structure that repre-
sents a vertex with the handle to the corresponding arrangement vertex. This field is initialized
when the polyhedron vertex is processed for the first time, and is used during subsequent encoun-
ters with the vertex. Again, this technique is more efficient, as it does not use the map auxiliary
data structure, but also more advanced. Moreover, the processing can be expedited further using
the more efficient insertion methods that accept halfedges as operands.

|— advanced

The functor template Arr_inserter<Polyhedron, Arrangement> listed below, and defined
in the header file Arr_inserter.h, is used to insert a segment, which is the projection of a
polytope edge, into the arrangement. When it is instantiated its template parameters Polyhedron
and Arrangement must be substituted with instances of the polyhedron and arrangement types,
respectively. Its function operator accepts four parameters as follows: the target arrangement
object, the polytope edge, and the two points that are the projection of the endpoints of the
polytope edge onto the zy-plane.

#include <CGAL/basic.h>
#include "Less than handle.h"

template <typename Polyhedron, typename Arrangement> class Arr inserter {
private:
typedef typename Polyhedron :: Halfedge const handle
Polyhedron halfedge const handle;
typedef std::map<typename Polyhedron :: Vertex const handle,
typename Arrangement:: Vertex handle, Less than handle>
Vertex map;

typedef typename Vertex map::iterator Vertex map iterator;
typedef typename Arrangement::Point_ 2 Point_ 2;
typedef typename Arrangement::X monotone curve 2 X monotone curve 2;

Vertex map m_ vertex map;

std ::set<Polyhedron halfedge const handle, Less than handle> m edges;
const typename Arrangement:: Traits 2::Compare _xy 2 m_cmp xy;

const typename Arrangement:: Traits 2::Equal 2 m_equal;

public:
Arr_inserter(const typename Arrangement:: Traits 2& traits)
m_anp xy(traits.compare xy 2 object()),
m_equal(traits.equal_2_object ())

{}

void operator()(Arrangement& arr, Polyhedron halfedge const handle he,
Point_2& prev_arr point, Point 2& arr point)
{

// Avoid the insertion if he or its twin have already been inserted.
if ((m_edges.find (he) !'= m_ edges.end()) ||
(m_edges. find (he—>opposite()) != m_edges.end()))
return;

// Locate the arrangement vertices, which correspond to the projected
// polyhedron wvertices, and insert the segment corresponding to the
// projected—polyhedron edge using the proper specialized insertion

38 2 Basic Arrangements

// function.
m_ edges. insert (he);
X _monotone curve 2 curve(prev_arr point, arr point);
Vertex map iterator itl = m_ vertex map. find (he—opposite()—>vertex ());
Vertex map iterator it2 = m_vertex map. find (he—vertex ());
if (itl != m_vertex map.end()) {
if (it2 != m_vertex map.end())
arr.insert at_vertices(curve, (xitl).second, (*it2).second);
else {
typename Arrangement:: Halfedge handle arr _he =
(m_camp xy(prev_arr point, arr point) = OGAL::SMAILIER) ?
arr.insert from left vertex (curve, (xitl).second)
arr.insert from right vertex(curve, (xitl).second);
m_vertex map|he—>vertex ()] = arr_he—>target(); // map the new vertex

}
}

else if (it2 != m_vertex map.end()) {
typename Arrangement:: Halfedge handle arr he =
(m_anp xy(prev_arr point, arr point) = CGAL::LARGER) ?
arr.insert from left vertex(curve, (xit2).second)
arr.insert from right vertex(curve, (xit2).second);
// map the new vertex.
m_vertex map|he—>opposite()—>vertex ()] = arr_he—>target ();
}
else {
typename Arrangement:: Halfedge handle arr _he =
arr.insert in_face interior(curve, arr.unbounded face());
// map the new vertices.
if (m_equal(prev_arr point, arr he—source()—>point())) {

m_vertex map|[he—>opposite()—>vertex ()] = arr_he—>source ();
m_vertex map|[he—>vertex ()] = arr_he—>target ();
} else {

m_vertex_map|he—>opposite()—>vertex ()] = arr_he—>target();
m_vertex_map|he—>vertex ()] = arr_he—>source ();

}
}

}
b

As we are interested in focusing on the arrangement construction and manipulation, and not
on the polytope construction, we simplify the code that constructs the polytope, perhaps at the
account of its performance. The program reads only the boundary points of the input polytope
from a given input file and computes their convex hull instead of parsing an input file that contains
a complete representation of the input polytope as a polyhedral mesh, for example.!! In Chapter 8
we introduce a similar program that obtains the silhouettes of bounded polyhedra, which are not
necessarily convex. In this case we are compelled to parse complete representations of the input
polyhedra. Regardless of the construction technique, the normals to all facets are computed in
a separate loop using the functor template Normal_equation listed below, and defined in the
header file Normal_equation.h. An instance of the functor template is applied to each facet. It
computes the cross product of two vectors that correspond to two adjacent edges on the boundary
of the input facet, thus obtaining a normal to the facet underlying plane.

struct Normal equation {

1A polyhedral mesh representation consists of an array of boundary vertices and the set of boundary facets,
where each facet is described by an array of indices into the vertex array.

2.3 Application: Obtaining Silhouettes of Polytopes 39

template <typename Facet> typename Facet::Plane 3 operator()(Facet &) {
typename Facet:: Halfedge handle h = f.halfedge ();
return OGAL:: cross_product(h—>next()—>vertex()—>point () —
h—vertex()—>point (),
h—next()—>next()—>vertex()—>point () —
h—next()—>vertex()—>point ());
}
}s
By default, each record that represents a facet of the polytope is extended with the underlying
plane of the facet. The plane is defined with four coefficients. You can override the default and
store only the normal to the plane, which is defined by three coordinates instead of the plane four
coeflicients. In this application we are interested only in the normal to the plane. The listing of
the main function follows.

// File: ex_polytope projection.cpp

#include <set>
#include <map>

#include "arr inexact construction segments.h"
#include "read objects.h"

#include "arr print.h"

#include "Normal equation.h"

#include "Arr inserter.h"

#include <OGAL/convex hull 3.h>
#include <OGAL/Polyhedron traits with normals 3.h>

typedef OGAL:: Polyhedron traits with normals 3<Kernel> Polyhedron traits;
typedef OGAL:: Polyhedron 3<Polyhedron traits> Polyhedron
typedef Kernel::Point 3 Point 3;

int main(int argc, charx argv|])
{
// Read a sequence of 3D points.
const charx filename = (argec > 1) 7 argv[l] : "polytope.dat";
std::list <Point 3> points;
read objects<Point 3>(filename, std::back inserter(points));

// Construct the polyhedron.

Polyhedron polyhedron;

OGAL: : convex_hull 3(points.begin(), points.end(), polyhedron);

// Compute the normals to all polyhedron facets.

std :: transform (polyhedron. facets begin(), polyhedron.facets end(),
polyhedron.planes begin (), Normal equation());

// Construct the projection: go over all polyhedron facets.
Traits traits;
Arrangement arr(&traits);
Kernel kernel;
Kernel ::Compare z 3 cmp z = kernel.compare z 3 object();
Kernel :: Construct translated point 3 translate =
kernel.construct translated point 3 object();
Point 3 origin = kernel.construct point 3 object () (CGAL: :ORIGIN);

40 2 Basic Arrangements

Arr_inserter<Polyhedron, Arrangement> arr inserter(traits);
Polyhedron :: Facet const iterator it;
for (it = polyhedron.facets begin(); it != polyhedron.facets end(); ++it) {
// Discard facets whose mnormals have a non—positive z—components.
if (cmp z(translate(origin, it—>plane()), origin) != OGAL::LARGER)
continue;

// Traverse the halfedges along the boundary of the current facet.
Polyhedron :: Halfedge around facet const circulator hit=it—>facet begin ();
const Point 3& prev_point = hit—>vertex()—>point ();
Point prev_arr point = Point(prev_point.x(), prev_point.y());
for (++hit; hit != it—>facet_ begin (); ++hit) {
const Point 3& point = hit—>vertex()—>point ();
Point arr point = Point (point.x(), point.y());
arr _inserter(arr, hit, prev_arr point, arr_ point);
prev_arr point = arr point;
}
const Point 3& point = hit—>vertex()—>point ();
Point arr point = Point (point.x(), point.y());
arr_inserter(arr, hit, prev_arr point, arr point);
prev_arr point = arr_ point;

polyhedron. clear ();

// Remove internal edges.

Face handle unb face = arr.unbounded face();

Arrangement:: Edge iterator eit;

for (eit = arr.edges begin(); eit != arr.edges end(); ++eit) {
Halfedge handle he = eit;
if ((he—>face() != unb_face) && (he—twin()—>face() != unb_face))

arr.remove edge(eit);
}

print _arrangement(arr);
return 0;

The program described above can be optimized, but even in its current state it is relatively
efficient due to the good performance of the specialized insertion-functions. In addition, it is simple
and, like all other programs presented in this book, it is robust and it produces exact results. It
demonstrates well the use of the specialized insertion-functions.

As you might have noticed, the code above contains a call to an instance of a generic function-
template called read_objects(). It reads the description of geometric objects from a file and
constructs them. It accepts the name of an input file that contains the plain-text description of
the geometric objects and an output iterator for storing the newly constructed objects. When the
function is instantiated, the first template parameter, namely Type, must be substituted with the
type of objects to read. It is assumed that an extractor operator (>>) that extracts objects of
the given type from the input stream is available. The listing of the function template, which is
defined in the file read_objects.h, is omitted here.

2.4 Bibliographic Notes and Remarks

The doubly-connected edge list (DCEL) as we use it in the 2D Arrangements package enhances the
structure described by de Berg et al. [45, Chapter 2]. They, in turn describe a variant of a structure

2.5 Exercises 41

originally suggested by Muller and Preparata [163]. Many structures to describe two-dimensional
subdivisions were proposed over the years. The DCEL we use in particular is an evolution of the
halfedge data structure (HDS) designed and implemented by Kettner [129]. This implementation
of Hps is provided through the Halfedge Data Structures package of CGAL [131], and is directly
used by the 3D Polyhedral Surfaces package of CGAL [130]. We only use limited facilities provided
by the Halfedge Data Structures package. An overview and comparison of different data structures
together with a thorough description of the design of the HDS implemented in CGAL can be found
in [129]. These structures are generalized by a topological model, called combinatorial maps,
which enables the representation of subdivided objects in any fixed dimension; see, e.g., [146].

There is an alternative, very different, way to represent two-dimensional arrangements, via
trapezoidal decomposition (a.k.a., vertical decomposition). We study this alternative in Section 3.6.

The preliminary design of CGAL’s 2D Arrangements package is reported in [69,107,108]. Over
the years it has been significantly modified and enhanced. The major innovations in the current
design are described in [77,213].

2.5 Exercises

2.1 Write a function template that accepts a face (which is not necessarily convex) of an ar-
rangement induced by line segments, and returns a point located inside the face. Use the
following prototype:

template <typename Arrangement, typename Kernel>

typename Kernel :: Point 2

point _in_face (typename Arrangement::Face const handle f,
const Kernel& ker);

with the following preconditions: (i) The traits class used supports line segments, (ii) the
types Arrangement: :Traits_2::Point_2 and Kernel: :Point_2 are convertible to one an-
other, and (iii) the Kernel has a nested functor called Construct_midpoint_2, the function
operator of which accepts two points p and ¢ and returns the midpoint of the segment pq.

2.2 Optimize the program coded in the files polytope_projection.cpp and Arr_inserter.h
as much as possible. Use the specialized insertion-methods that accept handles to halfedges
as operands instead of the insertion methods that accept handles to vertices.

2.3 In this exercise you are asked to gradually develop an interactive system that creates and
modifies an arrangement. Optionally, equip the system with the ability to render the ar-
rangement in a dedicated window, adding visual capabilities.

(a) Write a function that accepts two positive integers m and A
n, and constructs a grid-like arrangement of m xn squared
faces in the first quadrant of the Cartesian plane. The
figure to the right depicts an arrangement of 3 x 2 squared
faces. Use the specialized insertion methods that accept
handles to vertices as operands to insert all the segments
except the first one.

(b) Apply an optimization to the function above, by using the specialized insertion methods
that accept handles to halfedges as operands to insert all the segments except the first
one.

(c) Complete the development of the interactive system that creates and modifies an ar-
rangement. When the system is ready to process a command, it prompts the user. The
user as a response may issue one of the following commands:

c m n — create an arrangement of m x n squared faces in the first quadrant of the
Cartesian plane.

42

24

2.5

2 Basic Arrangements

i m n — increase the number of columns by m and the number of rows by n.

d m n — decrease the number of columns by m and the number of rows by n.

m m n — multiply the number of columns and rows by m and n, respectively.

/ m n — divide the number of columns and rows by m and n, respectively.

t z y — translate the arrangement by the vector (z,y). Use the modify_vertex()
and modify_edge () methods to perform the operation.

s x y — scale the arrangement by the scaling factors x and y.

h x y — add the vector (iz, jy) to every grid point p; ;.

Given a set S of points in the plane such that no three of them lie on a common line, the
triangulation of S is created by adding a maximal set of pairwise interior-disjoint segments
connecting pairs of points in S. The result is an arrangement of segments whose vertices
are the points in S, and which subdivides the convex hull of S into triangles. Write a
program that reads an arrangement of line segments from a file and decides whether it is a
triangulation of the vertices of the arrangement.

Remark: After reading the arrangement file, check that no three vertices of the arrangement
lie on a line. You can do this naively in time that is cubic in the number of vertices. Carrying
out this test efficiently is not trivial, and you will learn how to do it when you read Chapter 4.

Develop a function that constructs an arrangement of five in-

terlocking rings that form the symbol of the Olympic Games,

as illustrated in the figure to the right. Each ring must be r)
represented as two polylines approximating the inner and \g.:

outer circles of the ring. The number of segments that com-

pose a polyline is [sr], where r is the radius and s is some

rational scale; two pairs, (s1,71) and (sa,72), are passed as

input parameters to the function for the two polylines.

Develop a program that renders the arrangement that represents the symbol of the Olympic
Games in a dedicated window with graphics. Assuming that the arrangement is displayed on
a raster screen with a specific pixel resolution, the program should accept the window width
and height, and the approximate length of a rendered segment that composes a polyline that
represents a circle, given in terms of pixels. (Essentially, this length determines the quality
of the rendered circles.)

Let r be the radius of a circle and let ¢ be the length of a segment of the polyline that
represents the circle in terms of pixels. Set the rational scale that governs the number of
segments that compose the polyline to s = 22~

2 Springer
http://www.springer.com/978-3-642-17282-3

CGAL Arrangements and Their Applications
& Step-by-Step Guide

Fogel, E.; Halperin, D.; Wein, R,

2012, XX, 293 p., Hardcover

ISBN: @78-3-642-17282-3

