Chapter 2
Simple equational specifications

A specification is an unambiguous description of a signature X and a class of X-
algebras. Because we model programs as algebras, a specification amounts to a
characterisation of a class of programs. Each of these programs is regarded as a
correct realisation of the specification.

Given a signature X (which, if finite, may be presented by simply listing its sort
names and its operation names with their arities and result sorts), there are two basic
techniques that may be used for describing a class of X-algebras. The first is to sim-
ply give a list of all the algebras in the class. Unfortunately, we are almost always
interested in infinite classes of algebras, where this technique is useless (although
sometimes this may be made to work if we can present a finite number of algebras
that in some precise way represent the entire class we want). The second is to de-
scribe the functional behaviour of the algebras in the class by listing the properties
(axioms) they are to satisfy. This is the fundamental specification technique used in
work on algebraic specification and the one that will be studied in this chapter. The
simplest and most common case is when the properties are expressed in the form
of universally quantified equations; in most of this chapter, we restrict attention to
this case. Section 2.7 indicates other forms of axioms that may be of use, along with
some possible variations on the definitions of Chapter 1, and further possibilities
will be discussed in Chapter 4. Since most of the results in this chapter are fairly
standard and proofs are readily available in the literature, most proofs are left as
exercises for the reader.

Chapters 5 and 8 will cover additional techniques for describing classes of alge-
bras. All of these involve taking a class of algebras and performing a simple opera-
tion to obtain another class of algebras, often over a different signature. Using such
methods, complex specifications of classes of complex algebras may be built from
small and easily understood units.

D. Sannella and A. Tarlecki, Foundations of Algebraic Specification and Formal Software 41
Development, Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-17336-3_2, © Springer-Verlag Berlin Heidelberg 2011

42 2 Simple equational specifications

2.1 Equations

Any given signature characterises the class of algebras over that signature. Although
this fixes the names of sorts and operations, it is an exceedingly limited form of de-
scription since each such class contains a wide range of different algebras. Any two
algebras taken from such a class may have carrier sets of different cardinalities and
containing different elements; even if both algebras happen to have “matching” car-
rier sets, the results produced by applying operations may differ. For most applica-
tions it is necessary to focus on a subclass of algebras, obtained by imposing axioms
which serve as constraints on the permitted behaviour of operations. One particu-
larly simple form of axioms is equations, which constrain behaviour by asserting
that two given terms have the same value. Equations have limited expressive power,
but this disadvantage is to some extent balanced by the simplicity and convenience
of reasoning in equational logic (see Sections 2.4 and 2.6).

Variables in equations will be taken from a fixed but arbitrary infinite set 2. We
require 2 to be closed under finite disjoint union: if (X;);e; is finite and X; C 2
forall i € I, then W(X;);e; C 2. We use variable names like x,y, z in examples, and
so we assume that these are all in .2". Throughout this section, let £ = (S, Q) be a
signature.

Definition 2.1.1 (Equation). A X-equation VX « t =t consists of:

e a finite S-sorted set X (of variables), such that X; C 2" for all s € S; and
e two Z-terms 7,¢' € |Tx(X)|; for some sort s € S.

A X-equation of the form V@ e t = ¢’ is called a ground (X-)equation, and will some-
times be written t =1¢'. O

The explicit quantification over X in a X-equation VX « = ¢ is essential, as will be-
come clear in Section 2.4. It is nevertheless common practice to leave quantification
implicit, writing ¢ = ¢’ in place of VFV(t) UFV(t')et =1, but we will not follow
this practice except for ground equations.

Definition 2.1.2 (Satisfaction). A X-algebra A satisfies (or is a model of) a X-
equation VX et = t/, written A =y VXet = ¢, if for every (S-sorted) function
viX = A, ta(v) =1, (v).

A satisfies (or is a model of) a set & of X-equations, written A =5 &, if A =5 e
for every equation e € &. A class &7 of X-algebras satisfies a X-equation e, written
o =5 e, if A =y e forevery A € o7 Finally, a class o of X-algebras satisfies a set
& of X-equations, written o =5 &, if A |5y & for every A € o/ (equivalently, if
of =y eforeverye € &,i.e. A=y eforevery A € o7 and e € &). O

Notation. We sometimes write = in place of =5 when Z is obvious. ad

Occasionally we will say that an equation e holds in an algebra A when A = ¢, and
similarly for sets of equations and classes of algebras.

Exercise 2.1.3. Recall X1 and Al from Example 1.2.4. Give some X1-equations
(both ground and non-ground) that are satisfied by Al. Give some X 1-equations
(both ground and non-ground) that are not satisfied by A1. a

2.1 Equations 43

Exercise 2.1.4. If VX ot =" is a X-equation and X C X’ (and X] C 2 for all s € S),
it follows from Definition 2.1.1 that VX'et = ¢’ is also a X-equation. Show that
Ay VXet =1 implies that A =5 VX'e t =1'. Give a counterexample showing that
the converse does not hold. (HINT: Consider X; = @ and |A|; = & for some s € S.)
Show that it does hold if X has only one sort. a

Exercise 2.1.5. Show that surjective X-homomorphisms preserve satisfaction of X-
equations: if 1A — B s a surjective X-homomorphism then A |=5 ¢ implies B =5 e
for any X-equation e. Show that injective X-homomorphisms reflect satisfaction
of X-equations: if 1A — B is an injective X-homomorphism then B =5 e implies
A [=x e for any X-equation e. Conclude that X-isomorphisms preserve and reflect
satisfaction of X-equations. a

Exercise 2.1.6. Give an alternative definition of A |=x VX et =1’ via the satisfac-
tion of t = ' viewed as a ground equation over an enlarged signature. HINT: Def-
inition 2.1.2 involves quantification over valuations v:X — |A|. Consider how this
might be replaced by quantification over algebras having a signature obtained from
X by adding a constant for each variable in X. a

A signature morphism 6: X — X' gives rise to a translation of X-equations to X'-
equations. This is essentially a simple matter of applying the translation on terms
induced by o to both sides of the equation.

Definition 2.1.7 (Equation translation). Let VX e = ¢’ be a X-equation, and let
0:X — X' be a signature morphism. Recall from Definition 1.5.10 that we then
have o(t),0(t") € | Ty (X")| where

X, = Lﬂ X, foreach s’ € §'.

o(s)=s

The translation of VXet =1t by o is then the X'-equation o(VXet =1¢') =
VX'e 0(t) = o(t'). (The fact that 2 is closed under finite disjoint union guaran-
tees that this is indeed a X’-equation.) a

An important result which brings together some of the main definitions above is the
following:

Lemma 2.1.8 (Satisfaction Lemma [BG80]). If 6:X — X’ is a signature mor-
phism, e is a X-equation and A’ is a X'-algebra, then A’ =51 6(e) iﬁ‘A/‘G Ere O

When e is a ground X-equation, it is easy to see that this follows directly from the
property established in Exercise 1.5.12. When o is injective (on both sort and op-
eration names), it seems intuitively clear that the Satisfaction Lemma should hold,
since the domain of quantification of variables is unchanged, the only difference
between e and & (e) is the names used for sorts and operations, and the only differ-
ence between A’ and A’ ‘g (apart from sort/operation names) is that A’ might provide
interpretations for sort and operation names which do not appear in o(e) and so
cannot affect its satisfaction. When o is non-injective the Satisfaction Lemma still
holds, but this is less intuitively obvious (particularly when & is non-injective on
sort names).

44 2 Simple equational specifications

Exercise 2.1.9. Take a signature morphism ¢: X — X’ which is non-injective on sort
and operation names, a X-equation involving the sort and operation names for which
o is not injective, and a X’-algebra, and check that the Satisfaction Lemma holds in
this case. ad

Exercise 2.1.10. Prove the Satisfaction Lemma, using Exercise 1.5.12. O

Exercise 2.1.11. Define the translation of a X-equation by a derived signature mor-
phism §: X — X', and convince yourself that the Satisfaction Lemma also holds for
this case. ad

The Satisfaction Lemma says that the translations of syntax (terms, equations) and
semantics (algebras) induced by signature morphisms are coherent with the defini-
tion of satisfaction. Said another way, the manner in which satisfaction of equations
by algebras varies according to the signature at hand fits exactly with these transla-
tions. Further discussion of the property embodied in the Satisfaction Lemma may
be found in Section 4.1.

2.2 Flat specifications

A signature together with a set of equations over that signature constitutes a simple
form of specification. We refer to these as flat (meaning unstructured) specifications
in order to distinguish them from the structured specifications to be introduced in
Chapter 5, formed from simpler specifications using specification-building opera-
tions. As we shall see later, it is possible in some (but not all) cases to “flatten”
a structured specification to yield a flat specification describing the same class of
algebras. Throughout this section, let X be a signature.

Definition 2.2.1 (Presentation). A presentation (also known as a flat specification)
is a pair (X,&) where & is a set of X-equations (called the axioms of (X,&)). A
presentation (X, &) is sometimes referred to as a X-presentation. O

The term “presentation” is chosen to emphasize the syntactic nature of the concept.
The idea is that a presentation denotes (or presents) a semantic object which is
inconvenient to describe directly. A reasonable objection to the definition above is
that it fails to include restrictions to ensure that presentations are truly syntactic
objects, namely that X and & are finite, or at least effectively presentable in some
other sense (e.g. recursive or recursively enumerable). Although it would be possible
to impose such a restriction, we refrain from doing so in order to avoid placing undue
emphasis on issues of this kind.

Definition 2.2.2 (Model of a presentation). A model of a presentation (X, &) is a
X-algebra A such that A =5 &. Mod[(X,&)] is the class of all models of (£,&). O

Taking (X, &) to denote the semantic object Mod[(Z, &’)] is sometimes called taking
its loose semantics. The word “loose” here refers to the fact that this is not always

2.2 Flat specifications 45

(in fact, hardly ever) an isomorphism class of algebras: A, B € Mod[(Z,&)] does not
imply that A = B. In Section 2.5 we will consider the so-called initial semantics
of presentations in which a further constraint is imposed on the models of a pre-
sentation, forcing every presentation to denote an isomorphism class of algebras.

Example 2.2.3. Let BOOL = (Zpoor, &Boos) be the presentation below. !

spec BooL = sorts Bool
ops true:Bool
false: Bool
—__:Bool — Bool
__A__:Bool x Bool — Bool
__= __:Bool x Bool — Bool
Vp,q:Bool
o —true = false
e —~false = true
e p/Ntrue =p
o p Nfalse = false
e pA—p = false
cr=q==(pAq)

Define Xpo.-algebras Al, A2 and A3 as follows:

‘A1|Bool = {*} |A2|Bool = {*7®a‘} ‘A3|Bool = {ttvﬁ}
trues; = x trues; = & trues3 = tt
falsey = falsey, =Q false,s = If
4l = {* — *} T4 = {& — Q?, A3 = {l‘l‘ Hﬁ,
O &, Vil
B}
Aat |x Na2||Q| M Aas|ttlff
* % & (OO i |telff
VERIVIIVIIV] Y
& 400
=a1|* =42||O|M =a3|ttlff
* % & |($Od i |tlff
Q||| VARG
& (hAd

I Here and in the sequel we use notation from OBJ [KKMS88] and CASL [Mos04] to introduce
infix, prefix and “mixfix” operations. We also follow CASL by itemizing axioms in specifications,
marking them with « and introducing universal quantification over the variables only once for the
entire list of axioms. Although the meaning of an axiom can be affected by adding quantification
over variables that it does not contain — see Exercise 2.1.4 — this pathology does not arise in any
of our examples.

46 2 Simple equational specifications

Each of these algebras is a model of BOOL. (NOTE: Reference will be made to
BooL and to its models A1, A2 and A3 in later sections of this chapter. The name
BooL has been chosen for the same reason as bool is used for the type of truth
values in programming languages; it is technically a misnomer since this is not a
specification of Boolean algebras; see Example 2.2.4 below.)

Exercise. Show that the models defined and in fact all the models of BOOL sat-
isfy Vp:Boole —~(p A —false) = —p. Define a model of BOOL that does not satisfy
Vp:Boole =—p = p. ad

Example 2.2.4. Let BA = (Zp A, B) be the following presentation.

spec BA = sorts Bool

ops true:Bool
false: Bool
—__:Bool — Bool
__V __:Bool x Bool — Bool
__A__:Bool x Bool — Bool
__=__:Bool x Bool — Bool

Vp,q,r: Bool
e pV(gVr)=(pVaq)Vr
s pA(gNAr)=(pAq) AT
e pVq=qVp
e PAG=qAPp
s pV(pPNG) =p
* PA(PVag)=p
s pV(gAr)=(pVq)A(pVr)
s pA(qVr)=(pAg)V(pAr)
e pV —p =true
o« pA—p =false
ep=q="pVgq

)=
)=

Models of BA are called Boolean algebras. One such model is the following two-
valued Boolean algebra B:

|B‘Bool = {ll‘,ﬁ},

trueg = 1t,
falsep = ff,
g = {1t ff ff — 1t}
and
Viltt|ff Al |ff =p|tt|ff
1 |tt|tt i |ttlff i |n|ff
1ol Nl ||t

This is essentially the same as A3 in Example 2.2.3. Note that A1 can be turned into
a (trivial) Boolean algebra in a similar way, but this is not the case with A2.

2.2 Flat specifications 47

Exercise. Given a Boolean algebra B, define a relation <g C |B| x |B| by a <p b iff
aVpb = b. Show that <p is a partial order with truep and falsep as its greatest and
least elements respectively, and with a Vp b yielding the least upper bound of a,b
and a Ap b yielding their greatest lower bound. (In fact, {|B|,<p) is a distributive
lattice with top and bottom elements and complement —p.) a

Exercise 2.2.5. Show that all Boolean algebras (the models of BA as introduced in
Exercise 2.2.4) satisfy the de Morgan laws:

Vp,q:Boole ~(pV q) = =pA—q
Vp,q:Boole ~(pNg) = —pV —q. O

The following characterisation of the expressive power of flat equational specifi-
cations is one of the classical theorems of universal algebra.

Definition 2.2.6 (Equationally definable class). A class .7 of X-algebras is equa-
tionally definable if o = Mod[(X,&)] for some set & of Z-equations. O

Definition 2.2.7 (Variety). A class o7 of X-algebras is closed under subalgebras
if for any A € o7 and subalgebra B of A, B € «/. Similarly, <7 is closed under
homomorphic images if for any A € o/ and Z-homomorphism h:A — B, h(A) € <,
and 7 is closed under products if for any family (A; € &);cr, [1{Ai)ier € &

A non-empty class of X-algebras which is closed under subalgebras, homomor-
phic images, and products is called a variety. ad

Proposition 2.2.8. Any equationally definable class <f of X-algebras is a variety.
O

Exercise 2.2.9. Prove Proposition 2.2.8: show that for any presentation (X,&),
Mod[(Z,&)] is closed under subalgebras, homomorphic images and products. For
example, formalise the following argument to show closure under subalgebras: if
A =5 e and B is a subalgebra of A then B =5 e since removing values from the
carriers of an algebra does not affect the truth of universally quantified assertions
about its behaviour. Closure under products and under homomorphic images are not
much more difficult to prove. a

Theorem 2.2.10 (Birkhoff’s Variety Theorem [Bir35]). If X is a signature with a
finite set of sort names then a class <7 of X-algebras is a variety iff & is equationally
definable. a

The “if” part of this theorem is (a special case of) Proposition 2.2.8. A complete
proof of the “only if” part is beyond the scope of this book; the curious reader
should consult [Wec92].

Example 2.2.11. Consider the signature

Y =sorts s
ops O:s
X __ISXS—>S§

48 2 Simple equational specifications

and the class &7 of X-algebras satisfying the familiar cancellation law:
ifa#0andaxb=axcthenb=c.

The X-algebra A such that |A| is the set of natural numbers and x4 is ordinary
multiplication is in 2. The Z-algebra B such that |B|; = {0,1,2,3} and X4 is mul-
tiplication modulo 4 is not in «7. (Exercise: Why not?) Since B is a homomorphic
image of A, this shows that <7 is not a variety and hence is not equationally defin-
able. a

Exercise 2.2.12. Formulate a definition of what it means for a class of X-algebras to
be closed under homomorphic coimages. Are varieties closed under homomorphic
coimages? a

Exercise 2.2.13. Formulate definitions of what it means for a class of X-algebras to
be closed under quotients and under isomorphisms. Show that closure under both
quotients and isomorphisms is equivalent to closure under homomorphic images.

O

The assumption in Theorem 2.2.10 that the set of sort names in X is finite cannot
easily be omitted:

Exercise 2.2.14. A family Z of X-algebras is directed if any two algebras By, B; €
9B are subalgebras of some B € 2. Define the union | JZ of such a family to be
the least X-algebra such that each B € Z is a subalgebra of |J# (the carrier of
(U & is the union of the carriers of all algebras in %, and the values of operations
on arguments are inherited from the algebras in %; this is well defined since Z is
directed). Prove that since we consider equations with finite sets of variables only,
then for any presentation (X, &), Mod[(X,&)] is closed under directed unions, that
is, given any directed family of algebras Z C Mod[(X,&)], its union |J 4 is also in
Mod[(X,&)].

A generalisation of Theorem 2.2.10 that we hint at here without a proof is that
for any signature X, a class of X-algebras is equationally definable iff it is a variety
that is closed under directed unions. a

Exercise 2.2.15. Consider a signature with an infinite set of sort names and no op-
erations. Let .o7;, be the class of all algebras over this signature that have non-empty
carriers for a finite set of sorts only, and let &7 be the closure of .«7;, under products
and subalgebras (this adds algebras where the carrier of each sort is either a single-
ton or empty). Check that <7 is a variety. Prove, however, that <7 is not definable by
any set of equations. HINT: Use Exercise 2.2.14. a

Exercise 2.2.16. Modify the definition of equation (Definition 2.1.1) so that infinite
sets of variables are allowed; it is enough to consider sets of variables that are finite
for each sort, but may be non-empty for infinitely many sorts. Extend the notion
of satisfaction (Definition 2.1.2) to such generalised equations in the obvious way.
Check that the class <7 defined in Exercise 2.2.15 is definable by such equations.

2.3 Theories 49

HINT: Consider all equations of the form VX U {x,y:s}ex =y, for all sorts s and sets
X of variables such that Xy # & for infinitely many sorts s’.

Another generalisation of Theorem 2.2.10 that we want to hint at here is that for
any signature X a class of X-algebras is definable by such generalised equations
iff it is a variety. The proof of the “if” part is as easy as for ordinary equations
(Proposition 2.2.8). The proof of the “only if” part is quite similar to that of the
finitary case. a

A final remark to clarify the nuances in the many-sorted versions of Theo-
rem 2.2.10 is that the theorem holds for any signature (also with an infinite set
of sort names) when we restrict attention to algebras with non-empty carriers of
all sorts: all varieties of such algebras (with closure under subalgebras limited to
subalgebras with non-empty carriers) are definable by equations with a finite set of
variables.

2.3 Theories

Any equationally definable class of algebras has many different presentations; in
practice the choice of presentation is determined by various factors, including the
need for simplicity and understandability and the desire for elegance. On the other
hand, such a class uniquely determines the largest set of equations that defines it,
called its theory. Since this is an infinite set, it is not a useful way of presenting
the class. However, it is a useful set to consider since it contains all axioms in all
presentations of the class, together with all their consequences.
Throughout this section, let X be a signature.

Definition 2.3.1 (Modx (&), Thy (), Clx(&), Clx(7)). Given any set & of X-
equations, Mody (&) (the models of &) denotes the class of all X-algebras satisfying
all the X-equations in &:

Mods (&) ={A|Aisa Z-algebraand A Ex &} (= Mod[(Z,8)]).

For any class &/ of X-algebras, Thy (/) (the theory of <7) denotes the set of all
X-equations satisfied by each X-algebra in <7:

Thy (/) = {e| eis a Z-equation and o =y e}.

A set & of X-equations is closed if & = Thy(Modyx(&)). The closure of a set & of
X-equations is the (closed) set Clx (&) = Thy(Modx(&')). Analogously, a class o7
of XZ-algebras is closed if o7 = Mods(Ths (<)), and the closure of < is Cly (/) =
MOdz(Thg(ﬂ)). O

Proposition 2.3.2. For any sets & and &' of X-equations and classes </ | B of X-
algebras:

1 If & C &' then Mody (&) 2 Modsx (&").

50 2 Simple equational specifications

2. If B 2 of then Thy(B) C Thy ().

3. & CThy(Mods(&)) and Mody (Thy (<)) 2 .

4. Mod; (@@) = Modz(Thz (Modz (éa))) and Thz (JZ{) = Thz(MOdz(Thz (,Qf)))
5. Cls (&) and Clg () are closed.

Proof. Exercise. HINT: Properties 4 and 5 follow from properties 1-3. ad

For any signature X, the functions Thy and Mody constitute what is known in lattice
theory as a Galois connection.

Definition 2.3.3 (Galois connection). A Galois connection is given by two partially
ordered sets A and M (in Proposition 2.3.2, A is the set of all sets of X-equations,
and M is the “set” of all classes of X-algebras, both ordered by inclusion) and maps
_*:A— M and _": M — A (here Mody and Thy) satisfying properties corresponding
t0 2.3.2(1)-2.3.2(3). An element a € A (or m € M) is called closed if a = (a*)™ (or
m= (m")"). 0

Some useful properties — including ones corresponding to 2.3.2(4) and 2.3.2(5) —
hold for any Galois connection.

Exercise 2.3.4. For any Galois connection and any a,b € A and m € M, show that
the following properties hold:

1. a <qm" iff a* >y m.
2. If a and b are closed then a <4 b iff a* >); b*. (Show that the “if” part fails if a
or b is not closed.)

Here, <4 and < are the orders on A and M respectively. O

Exercise 2.3.5. For any Galois connection such that A and M have binary least upper
bounds (La, L) and greatest lower bounds (M4, M), and for any a,b € A, show
that the following properties hold:

1. (auAb)* =a* My b*.
2. (aﬂAb)* >y a* Uy b*.

HINT: L4 satisfies the following properties for any a,b,c € A:

o a<pqallpgband b <4 allyb.
o Ifa<jqcandb <jpcthenallyb <4c.

And analogously for M4, Ll and M.

State and prove analogues to 1 and 2 for any m,n € M, and instantiate all these
general properties for the Galois connection between sets of X-equations and classes
of X-algebras. ad

Definition 2.3.6 (Semantic consequence). A X-equation e is a semantic conse-
quence of a set & of X-equations, written & =y e, if e € Cly(&) (equivalently,
ifMOdz((ga))ZZ e). O

Notation. We write & |= e instead of & |=x e when the signature X is obvious. 0O

2.3 Theories 51

The use of the double turnstile (=) here is the same as its use in logic: & |= e if the
equation e is satisfied in every algebra which satisfies all the equations in &. Here,
& is a set of assumptions and e is a conclusion which follows from &. We refer to
this as semantic (or model-theoretic) consequence to distinguish it from a similar
relation defined by means of “syntactic” inference rules in the next section.

Example 2.3.7. Recall Example 2.2.3. The exercise there shows the following:

EBooL FErpy.,. YP:Boole ~(p A —false) = —p
gBOOL I#ZBOOL Vp:BOOl- Tp=p

Then, referring to Example 2.2.4, Exercise 2.2.5 shows that the de Morgan laws are
semantical consequences of the set of axioms 4. O

Exercise 2.3.8. Prove that semantic consequence is preserved by translation along
signature morphisms: for any signature morphism 0: X — X', set & of X-equations,
and X-equation e,

if & =5 e then 6(&) =57 o(e).

Equivalently, 6(Clx (&) C Cly:/(0(&)). Show that neither the reverse implication
nor the reverse inclusion hold in general. a

Exercise 2.3.9. Let 0: X — X’ be a signature morphism and let &” be a closed set of
X'-equations. Show that 6! (&”) is a closed set of X-equations. ad

See Section 4.2 for some further results on semantic consequence and translation
along signature morphisms, presented in a more general context.

Definition 2.3.10 (Theory). A theory is a presentation (X, &) such that & is closed.
A presentation (X, &) (where & need not be closed) presents the theory (X, Clx(&)).
A theory (X, &) is sometimes referred to as a X-theory. O

A theory morphism between two theories is a signature morphism between their
signatures that maps the equations in the source theory to equations belonging to
the target theory.

Definition 2.3.11 (Theory morphism). For any theories (¥,&) and (X', &), a the-
ory morphism o:(X,8) — (X',&") is a signature morphism ¢:X — X’ such that
o(e) € & for every e € &; if, moreover, O is a signature inclusion 0: X < X' then
0:(X,&) — (X', &) is a theory inclusion. 0
Exercise 2.3.12. Let 0:(X,&) — (X£',&") and ¢': (X', &) — (£",&") be theory
morphisms. Show that 6;6": £ — X" is a theory morphism 6;6": (£, &) — (X", &").

O

Proposition 2.3.13. Let 6:X — X' be a signature morphism, & be a set of X-
equations and &' be a set of X'-equations. Then the following conditions are equiv-
alent:

1. 0 is a theory morphism ¢:(X,Clx (&)) — (X', Cls/(&")).

52 2 Simple equational specifications

2. 6(&) C Clygi(&).
3. For every A’ € Mody:(&"), A'|c € Modx(&).

Proof. Exercise. HINT: Use the Satisfaction Lemma, Lemma 2.1.8. a

The fact that 2.3.13(2) implies 2.3.13(1) gives a shortcut for checking if a signa-
ture morphism is a theory morphism: one need only check, for each axiom in some
presentation of the source theory, that the translation of that axiom is in the target
theory. The equivalence between 2.3.13(1) and 2.3.13(3) is similar in spirit to the
Satisfaction Lemma, demonstrating a perfect correspondence between translation
of syntax (axioms) along a signature morphism and translation of semantics (mod-
els) in the opposite direction. This equivalence shows that there is a model-level
alternative to the axiom-level phrasing of Definition 2.3.11; in fact, we will take
this alternative in the case of structured specifications (Chapter 5), where there is no
equivalent axiom-level characterisation (Exercise 5.5.4).

Example 2.3.14. Let X be the signature

X = sorts s, BBool
ops tttt: BBool
Hif: BBool
not: BBool — BBool
and: BBool x BBool — BBool
__<__:s Xs— BBool

and recall the presentation BOOL = (Xpoor, €Boor) from Example 2.2.3. Define a
signature morphism 0: X — XpooL by

Osor1s = {8 — Bool,BBool — Bool},
O¢ BBool = {1ttt — true fiff — false},
OBBool,BBool = {N0t > —},

GBBUUIBB()()I,BB()()Z = {Cll’ld — /\},
Oys5,BBool = {S — :}’

Let & be the set of X-equations
& = {Vxisex < x =tt1t, Vp:BBoole and(p, t11t) = p }.

Then Clz (&) includes Z-equations, such as Vp:BBool,x:se and(p,x < x) = p, that
were not in &. Similarly, by Example 2.3.7, Clxz, (EBoor) includes the Xpoor -
equation Vp:Boole =(p A —false) = —p, but it does not include Vp:Boole =—p =
p- The presentations (X, Clx(&)) and (Zgoor, Clrg,,, (6Boow)) are theories — the
latter is the theory presented by BOOL. The signature morphism 6: X — Yoo, is a
theory morphism o: (X, Cls (&) = (Zoor, Clrp,,, (EBool))-

Recalling Example 2.2.4, the theory presented by BA is (Zga,Clsy, (6BA)),
the theory of Boolean algebras, with Clyy , (éBa) including, for instance, the
de Morgan laws (Exercise 2.2.5). The obvious signature morphism t: Xgoo, — XA
is a theory morphism 1: (Xgoor, Clyy, ., (6Boor)) = (ZBA, Clrg , (6BA)).

These two theory morphisms can be composed, yielding the theory morphism
G;lZ<E,CZE(é‘7)>—><ZBA,CZEBA(éaBA)>. O

2.4 Equational calculus 53

Exercise 2.3.15. Give presentations (X,&) and (X’,&’) and a theory morphism
0:(X,Cly(&)) = (X',Cly/ (&) such that 6(&) € &”. Note that this does not con-
tradict the equivalence between 2.3.13(1) and 2.3.13(2). a

2.4 Equational calculus

As we have seen, each presentation (X, &) determines a theory (X, Clx(&)), where
Cly (&) contains & together with all of its semantic consequences. An obvious ques-
tion at this point is how to determine whether or not a given X-equation VX et = ¢/
belongs to the set Cixz(&), i.e. how to decide if & =5 VXer =¢. The defini-
tion of Clx(&) does not provide an effective method: according to this, testing
& |Ex VXet =1 involves constructing the (infinite!) class Mody (&) and check-
ing whether or not VX et = ¢’ is satisfied by each of the algebras in this class, that
is, checking for each algebra A € Modx (&) and function v:X — |A| (there may be
infinitely many such functions for a given A) that 74(v) = ¢} (v). An alternative is
to proceed “syntactically” by means of inference rules which allow the elements of
Clz (&) to be derived from the axioms in & via a sequence of formal proof steps.
Throughout this section, let X be a signature.

Definition 2.4.1 (Equational calculus). A X-equation e is a proof-theoretic conse-
quence of (or is provable from) a set & of X-equations, written & Fx e, if this can
be derived by application of the following inference rules:

. - L
(axiom) p e VXet=t €&
. - c
(reflexivity) rr VXel=1 X, C Z forallse S, andt € |Tx(X)|
(symmetry) EhsVXer=r
symmetry VX =
(t itivit) éa}_z: vX.t:t/ é()l_z \V/X.t/:[”
ransitivity p TR
(congruence) (gal—EVXol‘lzti gl—EVX.tn:z,’l f;slx...XSn%sinz’
g EbsVXe ftry..sty) = f(t],--- 1)) ti,t] € |Tx(X)|s, fori <n
ErsVXet =1
(instantiation) = 0:X — |Tx(Y)]

&z VY e1[6] =716] O

Exercise 2.4.2 (Admissibility of weakening and cut). Prove thatif & -y VX et =1
and & C &' then & 5y VX ot =¢'. (HINT: Simple induction on the structure of the

54 2 Simple equational specifications
derivation of & -y VX et = ') This shows that the following rule is admissible*:

EFsVXet =1
EUE FxVXet =1

(weakening)

Prove that if & -5 e and {e} U &' k5 ¢ then £UE’ 5 €. (HINT: Use induction
on the structure of the derivation of {e}U& "I5 ¢'; for the case of the axiom rule,
use the fact that weakening is admissible.) This shows that the following rule is
admissible:

Etse {e}U& x e

(cu) EUE by d

Check that your proof can be generalised to show that if & - ¢’ and &, - e for each
e € & then ,ep &) 1€ O

Exercise 2.4.3 (Consequence is preserved by translation). Show that for any sig-
nature morphism o: X — X/, set & of X-equations, and X-equation e, if & -y e then
o(&)Fyx ole). a

Example 2.4.4. Recall the presentation BOOL = (Zgoor, 8Boor) given in Exam-
ple 2.2.3. The following is a derivation of &goor, Fxg,,, Vp:Boole =(p A —false) =

—|p:

P

EBoor FEpee, VP:BoOLe EBoor F g, YP:BoOle p Atrue = p
—(p A —false) = —(p Atrue) EBoor Frp,, YP:Boole =(p Atrue) = —p

EBoor FEpee, VP:Boole =(p N —false) = —p

where P is the derivation

EBoor Frpe,, false = true

EBooL Frpy,, VP:Boole p=p EBooL Frpy,, VP:Boole —false = true
EBoor Frpy,, VP:Boole p N —false = p Ntrue

EBoor Frp,,, YP:Boole =(p A—false) = —(p Atrue)

Exercise. Tag each step above with the inference rule being applied. a

Exercise 2.4.5. Give a derivation of &goor, Fxg,,, VP:Boole p = p = true.

2 A rule is admissible in a formal system of rules if its conclusion is derivable in the system
provided that all its premises are derivable. This holds in particular if the rule is derivable in the
system, that is, if it can be obtained by composition of the rules in the system.

2.4 Equational calculus 55

A considerably more serious challenge is to give derivations for the de Morgan
laws from the axioms of Boolean algebra (see Example 2.2.4 and Exercise 2.2.5).
O

On its own, the equational calculus is nothing more than a game with symbols;
its importance lies in the correspondence between the two relations =y and Fy. As
we shall see, this correspondence is exact: b is both sound and complete for |=x.
Soundness (& by e implies & =5 e) is a vital property for any formal system: it
ensures that the inference rules cannot be used to derive an incorrect result.

Theorem 2.4.6 (Soundness of equational calculus). Let & be a set of X-equations
and let e be a X-equation. If & 5 e then & =5 e. a

Exercise 2.4.7. Prove Theorem 2.4.6. Use induction on the depth of the derivation
of & 5 e, showing that each rule in the system preserves the indicated property. O

Example 2.4.8. By Theorem 2.4.6, the formal derivation in Example 2.4.4 justifies
the claim in Example 2.3.7 that &goor. Frp,,,, VP:Boole =(p A—false) = —p. On
the other hand, since &Boor F&ZBOOL Vp:Boole =—p = p, there can be no proof in
the equational calculus for Epoor, Frg,,, VP:Boole ~—=p = p. O

It is a somewhat counterintuitive fact (see [GM85]) that simplifying the calculus
by omitting explicit quantifiers in equations yields an unsound system. This is due
to the fact that algebras may have empty carrier sets. Any equation that includes a
quantified variable x:s will be satisfied by any algebra having an empty carrier for s,
even if x appears on neither side of the equation. The instantiation rule is the only
one that can be used to change the set of quantified variables; it is designed to ensure
that quantified variables are eliminated only when it is sound to do so.

Exercise 2.4.9. Formulate a version of the equational calculus without explicit
quantifiers on equations and show that it is unsound. (HINT: Consider the signature
X with sorts s, s” and operations f:s — s, a:s', b:s', and set & = { f(x) = a, f(x) = b}
of X-equations. Show that & -y a = b in your version of the calculus. Then give a
Y-algebra A € Modyx (&) such that A 5 a = b.) Pinpoint where this proof of un-
soundness breaks down for the version of the equational calculus given in Defini-
tion 2.4.1. a

Exercise 2.4.10. Show that the equational calculus without explicit quantifiers is
sound when the definition of X-algebra is changed to require all carrier sets to be
non-empty, or when either of the following constraints on X is imposed:

1. X has only one sort.
2. All sorts in X are non-void: for each sort name s in Z, |Tx|; # @. O

Exercise 2.4.11. Give an example of a signature X which satisfies neither 2.4.10(1)
nor 2.4.10(2) for which the equational calculus without explicit quantifiers is sound.
O

56 2 Simple equational specifications

Completeness (& =5 e implies & |5 e) is typically more difficult to achieve than
soundness: it means that the rules in the system are powerful enough to derive all
correct results. It is not as important as soundness, in the sense that a complete
but unsound system is useless while (as we shall see in the sequel) a sound but
incomplete system is often the best that can be obtained. The equational calculus
happens to be complete for |=y:

Theorem 2.4.12 (Completeness of equational calculus). Let & be a set of X-
equations and let e be a X-equation. If & =5 e then & Fx e.

Proof sketch. Suppose & =5y VXet =1t'. Define = C |[Tx(X)| x |Tx(X)| by u =
u <= &ty VXeu=1/; then = is a X-congruence on Tx(X). Tx(X)/= E5 &,
soTx(X)/=FExVXer=t,and thust =7, ie. &by VXer =1 O

Exercise 2.4.13. Fill in the gaps in the proof of Theorem 2.4.12. ad

There are several different but equivalent versions of the equational calculus. The
following exercise considers various alternatives to the congruence and instantiation
rules.

Exercise 2.4.14. Show that the version of the equational calculus in Definition 2.4.1
is equivalent to the system obtained when the congruence and instantiation rules are
replaced by the following single rule:

ErsVXet =1t
foreachx € X, &y VY e 0(x) = 0'(x)

/.
&ty VYet[0] =1[0]] 0,0":X — [Tx(Y)]

(substitutivity)

Show that this is equivalent to the system having the following more restricted ver-
sion of the substitutivity rule:

Ers VX U{xistet =1 ErzsVYeu=u

/
é{’l—ZVXUYot[x»—)u}:t’[x._}u/] u,u' € [T (Y)ls

(substitutivity’)

(HINT: The equivalence relies on the fact that the set of quantified variables in an
equation is finite.) Finally, show that both of the following rules may be derived in
any of these systems:

) EryVXet =1
C
(abstraction) T VXUV =7 Y, C Z forallse S
g}f X : ol = !
(concretion) VX Uixis}et =t t,' € |Tx(X)| and [Tz (X)|s # @

ErsVXet =1 O

A consequence of the soundness and completeness theorems is that the equa-
tional calculus constitutes a semi-decision procedure for |=5x: enumerating all deriva-
tions will eventually produce a derivation for & b5 e if & =5 e holds, but if & [~y e
then this procedure will never terminate. This turns out to be the best we can achieve:

2.5 Initial models 57

Theorem 2.4.15. There is no decision procedure for |=yx.

Proof. Follows immediately from the undecidability of the word problem for semi-
groups [Pos47]. a

Mechanised proof search techniques can be applied with considerable success to the
discovery of derivations (and under certain conditions, discussed in Section 2.6, a
decision procedure is possible), but Theorem 2.4.15 shows that such techniques can
provide no more than a partial solution.

2.5 Initial models

The class of algebras given by the loose semantics of a X-presentation contains too
many algebras to be very useful in practice. In particular, Birkhoff’s Variety The-
orem guarantees that this class will always include degenerate X-algebras having
a single value of each sort in X, as well as (nearly always) X-algebras that are not
reachable. This unsatisfactory state of affairs is a consequence of the limited power
of equational axioms. A standard way out is to take the so-called initial semantics of
presentations, which selects a certain class of “best” models from among all those
satisfying the axioms. Various alternatives to this approach will be presented in the
sequel.
Throughout this section, let (X, &) be a presentation.

Exercise 2.5.1. Verify the above claim concerning Birkhoft’s Variety Theorem, be-
ing specific about the meaning of “nearly always”. a

There are two features that render certain models of presentations unfit for use in
practice. The mnemonic terms “junk” and “confusion” were coined in [BG81] to
characterise these:

Definition 2.5.2 (Junk and confusion). Let A be a model of (X,&). We say that
A contains junk if it is not reachable, and that A contains confusion if it satisfies a
ground Z-equation that is not in Clz(&). O

The intuition behind these terms should be readily apparent: “junk” refers to useless
values which could be discarded without being missed, and “confusion” refers to
the values of two ground terms being unnecessarily identified (confused).

Example 2.5.3. Recall the presentation BOOL = (Xpoor., EBoor) and its models A1,
A2 and A3 from Example 2.2.3. Al contains confusion (Al =5, true = false ¢
Clxy,.. (Boor)) but not junk; A2 contains junk (there is no ground Xgoq, -term ¢
such that 747 = @ € |A2|p,,) but not confusion; A3 contains neither junk nor con-
fusion. There are models of BOOL containing both junk and confusion. (Exercise:
Find one.) a

Exercise 2.5.4. Consider the following specification of the natural numbers with
addition:

58 2 Simple equational specifications

spec NAT = sorts Nat
ops 0:Nat
succ: Nat — Nat
__+__:Nat X Nat — Nat
Vm,n: Nat
eO0+n=n
o succ(m) +n = succ(m+n)

List some of the models of NAT. Which of these contain junk and/or confusion?
(NOTE: For reference later in this section, X, refers to the signature of NAT and
ENar refers to its axioms.) a

Exercise 2.5.5. According to Exercise 1.3.5, surjective homomorphisms reflect junk.
Show that injective homomorphisms preserve junk and reflect confusion, and that
all homomorphisms preserve confusion. It follows that isomorphisms preserve and
reflect junk and confusion. a

Examples like the ones above suggest that often the algebras of interest are those
which contain neither junk nor confusion. Recall Exercise 1.4.14, which charac-
terised reachable X-algebras as those which are isomorphic to a quotient of Tx.
Accordingly, the algebras we want are all isomorphic to quotients of Tx; by Exer-
cise 2.5.5 it is enough to consider just these quotient algebras themselves. Of course,
not all quotients Ty /= will be models of (X, &): this will only be the case when =
identifies enough terms that the equations in & are satisfied. But if = identifies “too
many” terms, Ty /= will contain confusion. There is exactly one X-congruence that
yields a model of (X, &) containing no confusion:

Definition 2.5.6 (Congruence generated by a set of equations). The relation
=g C |Tx| x |Tx| is defined by t =g t' <= & =zt =1/, for all 1,1’ € |Tx|. =¢
is called the X-congruence generated by &. a

Exercise 2.5.7. Prove that =, is a X-congruence on Tx. a

Theorem 2.5.8 (Quotient construction). Tx /=, is a model of (¥,&) containing
no junk and no confusion. a

Exercise 2.5.9. Prove Theorem 2.5.8. HINT: Note that Tx /=, contains no junk by
Exercise 1.4.14. Then show that for any term # € Tx(X) and substitution 6:X — Ty,
try)=, (0") = [t[0]]=, where 8'(x) = [0(x)]=, for x € X. Use this to show that
Tx /= satisfies all the equations in & and contains no confusion. a

Example 2.5.10. Recall again the presentation BOOL = (X0, EBoor) from Ex-
ample 2.2.3. The model Tx, /=3, of BOOL is defined as follows:

2.5 Initial models 59

|T2BOOL/EgBOOL |Bool = {[true]z‘gaBooL ’ [false]z(gﬁom }’
trueTZBOOL/E 3

l _
f(l SETEBOOL /=
_‘TZBOOL/EgBOOL - []EfBOOL
[false]EgBOOL

EgBOOL [false]EgBOOL

[false]= o5 [false]= o5 [false]= o5

TZBOOL/EgBOOL =¢BooL
[true)]

[false]

TZBOOL/EgBOOL =4BooL, =¢BooL
[U’ME]E&BOOL [true} EgBOOL [false] E5]30014
[false} E£BOOL [true} E£BOOL [true]ngOOL
where
[truel=, o= {true,—false,true A true, —(false A true),

Boo

—(false \—false),false = false, ...},
[false] S {false, —true,true A false, —~(true A true),

—(true \ —false), true = false, . ..}.

The carrier set |T);BOOL / =001 |Boot has just two elements since the axioms in &goor,
can be used to reduce each ground Xpoo..-term to true or false, and true s,
false. Note that the “syntactic” nature of Ty, is preservedin Txp /=gy, €8

for each x € [true|= , “—x” € [false]
L

gBoo EéBBOOL = ﬁTZBOOL/EgBOOL ([true]EgBOOL)

Exercise 2.5.11. Recall the presentation NAT = (Xnar, Enar) from Exercise 2.5.4.
Construct the model Ty /=4y, of NAT. O

Exercise 2.5.12. Show that =, is the only X-congruence making Theorem 2.5.8
hold. O

The special properties of Ty /=, described by Theorem 2.5.8 can be captured
very succinctly by saying that Ty /=g is a so-called initial model of (X,&).

Definition 2.5.13 (Initial model of a presentation). A X-algebra A is initial in
a class o/ of X-algebras if A € o/ and for every B € & there is a unique X-
homomorphism h:A — B. An initial model of (X,&) is a X-algebra that is initial in
Mod[(Z,8)]. IMod[(X,&)] is the class of all initial models of (X, &). O

In the next chapter we will see that this definition can be generalised to a much
wider context than that of algebras and homomorphisms.

Theorem 2.5.14 (Initial model theorem). Tx /= is an initial model of (£, &).

60 2 Simple equational specifications

Proof sketch. Ts /=g is a model of (X, &) by Theorem 2.5.8. For B € Mod[(X,&)],
let @*:Ts — B be the unique homomorphism from the algebra of ground Z-terms
to B. Since B =5 &, we have =¢ C ker(@ﬁ), and by Exercise 1.3.20 there is a
homomorphism /4: Ty /=# — B which is unique by Exercise 1.3.6. (Exercise: Fill
in the gaps in this proof.) d

Example 2.5.15. Recall the presentation BOOL = (X0, 6Boor) and its models
Al, A2 and A3 from Example 2.2.3, and its model TZBOOL/ =650, [TOm Exam-
ple 2.5.10, which is an initial model by Theorem 2.5.14. Xpc.,-homomorphisms
from TZBOOL/EgBOOL to A1, A2 and A3 are as follows:

hl: TZBOOL/EgBOOL — Al hlgyy = {[true]ngoo
h2:Tsg o /=6n00. — A2 h2poor = {[true]
h3:Tsp oo, /=6n00, — A3 h3poor = {[true]

ok [falsel=; = x],
— &, [false] — O},
— 1, [false] — 0}.

EéﬂBOOL EgBOOL

EgBOOL EgBOOL
(Exercise: Check uniqueness.)

Al is not an initial model: for example, there is no homomorphism from Al to
A2, nor from Al to A3. In general, models containing confusion cannot be initial
since homomorphisms preserve confusion (Exercise 2.5.5). Similarly, A2 is not an
initial model: for example, there is no homomorphism from A2 to A3, since there
is no value in |A3| gy to which such a homomorphism could map the “extra” value
@ € |A2|gy0- On the other hand, A3 is initial: for example, there is a unique homo-
morphism g1:A3 — Al (where glp,oi(1) = glpoei(0) = %), there is a unique homo-
morphism g2:A3 — A2 (where g2p,,(1) = & and g2g,,/(0) = ©), and there is a
unique homomorphism g:A3 — Ty /=5, (Where gpooi(1) = [true]= P

8Bool(0) = [false];(gBoOL). O

Exercise 2.5.16. Recall the model you constructed in Exercise 2.5.11 of the specifi-
cation NAT of natural numbers with addition. Show that there is a unique homomor-
phism from this model to each of the models you considered in Exercise 2.5.4. O

Exercise 2.5.17. Using Theorem 2.5.14, show that Ty is an initial model of (X, &).
Contemplate how this relates to Fact 1.4.4 and Definition 1.4.5. a

Exercise 2.5.18. Note that initial models of (X,&) may have empty carriers for
some sorts. Show that this is necessary: give an example of a presentation (X, &)
such that no algebra is initial in the class of its models that have non-empty carriers
of all sorts. Link this with Exercise 1.2.3. a

Taking a presentation (X,&) to denote the class IMod[(Z,&’)] of its initial
models is called taking its initial semantics. We know from Theorem 2.5.14 that
IMod[(Z,&)] is never empty. Although the motivation for wishing to exclude mod-
els containing junk and confusion was merely to weed out certain kinds of degener-
ate cases, the effect of this constraint is to restrict attention to an isomorphism class
of models:

Exercise 2.5.19. Show that any two initial models of a presentation are isomorphic.
Conclude that the initial models of a presentation are exactly those containing no
junk and no confusion. a

2.5 Initial models 61

For some purposes, restricting attention to an isomorphism class of models is clearly
inappropriate. The following exercise demonstrates what can go wrong.

Exercise 2.5.20. Consider the addition of a subtraction operation __— __:Nat X
Nat — Nat to the specification NAT in Exercise 2.5.4, with the axioms Vm:Nate m —
0 = m and Vm, n:Nate succ(m) — succ(n) = m —n. These axioms do not fix the value
of m —n when n > m; assume that we are willing to accept any value in this case,
perhaps because we are certain for some reason that it will never arise. Construct an
initial model of this specification. Why is this model unsatisfactory? Can you think
of a better model? What is the problem with restricting to an isomorphism class of
models of this specification? a

The phenomenon illustrated here arises in cases where operations are not defined
in a sufficiently complete way. Roughly speaking, a definition of an operation is
sufficiently complete when the value produced by the operation is defined for all
of the possible values of its arguments. See Definition 6.1.22 below for a proper
formulation of this property in a more general context.

One may argue that Exercise 2.5.20 is unconvincing, since the lack of sufficient
completeness arises there because we do not really need m — n to be defined as
a natural number when n > m, and that this can be dealt with using one of the
approaches to partial functions below (Sections 2.7.3, 2.7.4, or 2.7.5). However, the
same phenomenon arises in other cases as well:

Exercise 2.5.21. Give a specification of natural numbers with a function that for
each natural number n chooses an arbitrary number that is greater than n. HINT:
You may first extend the specification NAT of Exercise 2.5.4 with a sort Bool with
operations and axioms as in BOOL in Example 2.2.3, and add a binary operation
__< __:Nat x Nat — Bool with the following axioms:

Vn:Nate 0 < succ(n) = true
Vm:Nate succ(m) < 0 = false
Vm,n:Nate succ(m) < succ(n) =m <n

The required function ch: Nat — Nat may now be constrained by the obvious axiom
Vn:Nate n < ch(n) = true.

Clearly, the definition of ch cannot be sufficiently complete. Construct the initial
model of the resulting specification and check that it is not satisfactory. Referring
to other algebraic approaches presented in Sections 2.7.3, 2.7.4, and 2.7.5 below,
check that none of them offers a satisfactory solution either. a

The above exercise indicates one of the most compelling reasons for considering
alternatives to initial semantics: requiring specifications to define all operations in
a sufficiently complete way is much too restrictive in many practical cases. Such
a requirement is also undesirable for methodological reasons, since it forces the
specifier of a problem to make decisions which are more appropriately left to the
implementor.

The comments above notwithstanding, there are certain common situations in
which initial semantics is appropriate and useful. In particular, the implicit “no junk”

62 2 Simple equational specifications

constraint conveniently captures the “that’s all there is” condition which is needed
in inductive definitions of syntax.

Example 2.5.22. Consider the following specification of syntax for simple arith-
metic expressions:

spec EXPR = sorts Expr
ops x:Expr
v: Expr
0: Expr
plus: Expr x Expr — Expr
minus: Expr X Expr — Expr
Ve,e': Expr
e plus(e,e’) = plus(e’,e)

The axiom requires the syntax of addition to be commutative. In the initial seman-
tics of EXPR, the “no junk” condition ensures that the only expressions (values of
sort Expr) are those built from 0, x and y using plus and minus. The “no confusion”
condition ensures that no undesired identification of expressions occurs: for exam-
ple, the syntax of addition is not associative and the syntax of subtraction is not
commutative. O

Exercise 2.5.23. Write a specification of (finite) sets of natural numbers. The op-
erations should include @:NatSet, singleton: Nat — NatSet and __U __: NatSet X
NatSet — NatSet. O

The “no junk” condition is more powerful than it might appear to be at first
glance. Imposing the constraint that every value be expressible as a ground term
makes it possible to use induction on the structure of terms to prove properties of all
the values in an algebra. This means that for reasoning about models of specifica-
tions containing no junk, such as initial models, it is sound to add an induction rule
scheme to the equational calculus presented in the previous section. Since the form
of the induction rule scheme varies according to the signature of the specification at
hand, this is best illustrated by means of examples.

Example 2.5.24. Recall the presentation NAT = (XN ar, ENar) of natural numbers
with addition given in Exercise 2.5.4. To simplify notation, let x and y stand for
variable names such that x:Nat and y:Nat are not in X, and x:Nat does not appear
in the sorts(Enar)-sorted set of variables X used below. The following induction
rule scheme is sound for reachable models of NAT (and for reachable models of all
other Xy ,r-presentations):

A (1) EU{P(x)} Fry wUfeNary Psuce(x))
&U {P(X)J)(y)} l_ZNATU{x,y:Nat} P()C—I—y)
& Fry. Vx:Nate P(x)

Here, P(x) stands for a (Znar U {x:Nar})-equation, VX e 1 = ¢’; think of this as a
Xnar-equation with free variable x:Nat. Then P(0) stands for the Xy, r-equation

2.5 Initial models 63

VX et[x — 0] = '[x — 0], P(succ(x)) stands for the (Enar U {x:Nar})-equation
VX o t[x — succ(x)] = t'[x — succ(x)], and analogously for P(y) and P(x+y), and
Vx:Nate P(x) stands for the Zx.r-equation VX U {x:Nat}et = t'. The following
additional inference rule is needed to infer equations over Xy, U {x:Nat} and
Enar U{x,y:Nat} from Ey r-equations:

EFsVXet =1
EFsus VXet =1

Exercise. Show that adding the two inference rules above to the equational calculus
gives a system that is sound for reachable models of Xy r-presentations.

The inference rule scheme above can be used for proving theorems such as as-
sociativity and commutativity of +. But note that the axioms for + fully define it
in terms of 0 and succ: it is possible to prove by induction on the structure of terms
that for every ground Xy -term ¢ there is a ground Xy p-term ¢’ such that ¢’ does
not contain the + operation and &nar Fxy, t = t'. (Exercise: Prove it. Note that
this is a proof at the meta-level about 1=, not a derivation at the object level using |-.)
This shows that the third premise of the above induction rule scheme is redundant.
Eliminating it gives the following scheme, which is more obviously related to the
usual form of induction for natural numbers:

& UENr Fry, P(O) EUENAM U{P(x)} b S Uf:Nar} P(succ(x))
EUENar Fry ., Vx:Nate P(x)

Taking P(x) to be Vn, p:Natex+ (n+ p) = (x+n) + p, we have the following
derivation, which proves that addition is associative in initial models of NAT (Ex-
ercise: Supply the derivations P; and P):

P
Py
EnarU{Vn,p:Nate x+ (n+ p) = (x+n) + p}
ENar Fry.. VR, p:Nate Frn e UleNar) V1, p:Nat e
0+ (n+p) = (0+m)+p suce(x) + (n+ p) = (succ(x) + 1)+ p

ENar FZNAT Vx,n, p:Nate x + (n+p) = (x+n) +p

There are models of NAT containing junk which do not satisfy Vx,n, p:Nate x +
(n+p) = (x+n) + p. Hence, this equation is not in Clxy, (nar) and induction is
required for its derivation. O

Exercise 2.5.25. Recall again the presentation BOOL = (Xpoor, 6Boor) from Ex-
ample 2.2.3. Give an induction rule scheme that is sound for reachable models of
XBoow-presentations. (HINT: There will be five premises, one for each operation in
BooL.) Show that three of the premises are redundant (HINT: eliminate one opera-
tion at a time), which gives the following rule scheme:

64 2 Simple equational specifications

&' U EBoor Frpee, Plirue) & USBoor Frpe,, Plfalse)
EUBoor g, VXx:Boole P(x)

Use this to prove that Vp:Boole =—p = p holds in initial models of BOOL. Prove that
the axiom Vp:Booles p A —p = false is redundant for the initial semantics of BOOL,
that is:

EBoor \ {Vp:Boole p N—p = false} 5, . Vp:Boole p \N—p = false. O

Adding an induction rule scheme appropriate to the signature at hand to the equa-
tional calculus gives a system that is sound for reasoning about initial models of
specifications, and is more powerful than the equational calculus on its own. How-
ever, the resulting system is not always complete. In fact, it turns out that complete-
ness is unachievable in general: there is no sound proof system that is complete for
reasoning about initial models of arbitrary specifications. In order to prove that this
is the case, it is necessary to formalise what we mean by the term “proof system”.
For our purposes it will suffice to assume that any proof system has a recursively
enumerable set of theorems. See [Chu56] for a discussion of the philosophical con-
siderations (e.g. finiteness of proofs, decidability of the correctness of individual
proof steps) underlying this assumption.

Theorem 2.5.26 (Incompleteness for initial semantics). There is a presentation
(E,&) such that there is no proof system which is sound and complete with respect
to satisfaction of equations in the class of initial models of (X,8&).

Proof. As a consequence of Matiyasevich’s theorem, the set of equations which hold
in the standard model of the natural numbers (with 0, succ, 4+, x and —, such that
m—n = 0 when n > m) is not recursively enumerable [DMR76, Sect. 8]. There-
fore, this cannot be the set of theorems produced by any proof system. It is easy to
construct a (single-sorted) presentation having this as an initial model. (Exercise:
Construct it.) Since all the initial models of a presentation are isomorphic (Exer-
cise 2.5.19) and since isomorphisms preserve and reflect satisfaction of equations
(Exercise 2.1.5), this completes the proof. a

The fact that completeness cannot be achieved is of no real importance in practice:
the equational calculus together with induction is perfectly adequate for normal use.
But the failure of completeness does mean that care must be taken to distinguish
between semantic consequence (=) and provability () in theoretical work. It is
important to recognize that semantic consequence is the relation of primary impor-
tance, since it is based directly on satisfaction, which embodies truth. Provability is
merely an approximation to truth, albeit one that is of great importance for practical
use since it is based on mechanical syntactic manipulation. The failure of complete-
ness means that the approximation cannot be exact, but by being sound it errs on the
side of safety.

Exercise 2.5.27. Show that the equational calculus (without added induction rule
schemes) is complete with respect to satisfaction of ground equations in initial mod-
els of specifications. a

2.6 Term rewriting 65

The additional specification techniques introduced in Chapter 5 will lead to a widen-
ing of the gap between satisfaction and provability. In particular, even completeness
with respect to satisfaction of ground equations will be impossible to retain.

A generalisation of the concept of initial model is needed to give a fully satis-
factory specification of classes of models that are naturally parametric with respect
to some basic data. An example is the definition of terms in Section 1.4, which is
parametric in an S-sorted set of variables. Another is the specification of sets (see
Exercise 2.5.23): it should be possible to specify sets without building in a specifi-
cation of the kind of values in the sets (in this case, natural numbers).

Exercise 2.5.28. Suppose that all information about the natural numbers is removed
from the specification of sets you gave in Exercise 2.5.23, by deleting operations
on natural numbers like succ and changing the sort name Nat to Elem. Construct an
initial model of the resulting specification. Why is this model unsatisfactory? a

The required concept is that of a free model extending a given algebra, which cap-
tures the idea of initiality relative to a fixed part of the model. See Section 3.5 for
the details, Section 4.3 for the use of this concept in the context of specifications,
and Chapter 6 for much more on the general topic of parameterisation.

2.6 Term rewriting

Although there is no decision procedure for =y (Theorem 2.4.15), there is a class of
specifications for which consequence can be decided. The idea is similar to the one
behind the strategy used in mathematics for proving that an equation follows from a
set of equational axioms: one applies the axioms in an attempt to reduce both sides
of the equation to a common result, and if this is successful then the equation follows
from the axioms. An essential ingredient of this strategy is the use of equations as
directed simplification or rewrite rules.

Throughout this section, let £ = (S, Q) be a signature, and let X be an S-sorted
set of variables such that X; C 2" for all s € S.

Assumption. For simplicity of presentation, we assume throughout this section that
either X has only one sort, or all sorts in X are non-void (see Exercise 2.4.10). Under
this assumption, the version of the equational calculus without explicit quantifiers
is sound, and all references to the calculus below are to this version. See Exer-
cises 2.6.11 and 2.6.26 for hints on how to do away with this assumption. a

Definition 2.6.1 (Context). A X-context for sort s € Sisaterm C € |Tx (X W{D:s})|
containing one occurrence of the distinguished variable 0. We write C[O] to suggest
that C should be viewed as a term with a hole in it. Substitution of a term ¢ € |Tx (X)|,
in C[O] gives the term C[O:s —] € |Tx(X)|, written C[t]. O

Definition 2.6.2 (Rewrite rule). A X-rewrite rule r of sort s € S consists of two X-
terms ¢,t' € |Tx (X)|s, written t — t'. A X-rewrite rule r = ¢ — ¢’ of sort s determines

66 2 Simple equational specifications

a set of reduction steps Ct[0]] —, C[¢'[0]] for all Z-contexts C[O)] for sort s and
substitutions 6:X — |Tx(X)|; this defines the relation —, C |Tx (X)| x |Tx(X)|, the

one-step reduction relation generated by r. The inverse of one-step reduction —, is
one-step expansion, written ,<—. O

A reduction step u —, 1’ according to a rewrite rule r = ¢t — ¢’ is an application of
an instance t[0] — t'[0] of r to replace the subterm t[0] of u (corresponding to the
“hole” in C[O]) by #'[0]. The subterm 7[6] of u is called a redex (short for “reducible
expression”).

Definition 2.6.3 (Term rewriting system). A X-term rewriting system R is a set of
X-rewrite rules. The set of Z-equations determined by R is Eq(R) ={t =1t |t —
' € R}; by the assumption, we can dispense with explicit quantification of variables
in equations. The one-step reduction relation generated by R is the relation

—r == (CITX)|X|T=(X)]).

rer
The inverse of one-step reduction — g is one-step expansion, written g<—. a

Given a set & of X-equations, a X-term rewriting system R will be of greatest rele-
vance to & when Clx (&) = Clz(Eq(R)). One way to obtain such an R is to use the
equations themselves as rewrite rules by selecting an orientation for each equation
t =t eithert — ' ort’ — ¢. For reasons that will become clear below, the most use-
ful orientation is the one in which the right-hand side of the rule is “simpler” than
the left-hand side. It is not always obvious how to measure simplicity of terms — in
fact, this is a major issue in the theory of term rewriting — and sometimes there is
no satisfactory orientation, as in the case of an equation such as n+m = m+n.
In the rest of this section, let R be a X-term rewriting system.

Definition 2.6.4 (Reduction —% and convertibility ~g). The reduction relation
—% C|Tx(X)| % |Tx(X)| generated by R is the transitive reflexive closure of —¢. In
other words, t —5 t" if t =1’ or there exist terms #1, ... ,#, € [Tx(X)|, n > 0, such that
t —gpt —>g -+ —Rrty, —rt’; then we say that ¢ reduces to t'. The inverse of reduction
—% 1s expansion, written j<—. The convertibility relation ~g C |Tx(X)| % |T=(X)]
generated by R is the symmetric transitive reflexive closure of —g. In other words,
t ~gt'if t =1 or there exist terms t1,...,t, € |Tx(X)|, n > 0, such that r —g 1 or
trt,and t; =gty orty pe—ty,and ..., and t, —gt’ ort, g<1t'; then we say that ¢
convertstot'. O

Exercise 2.6.5. Check that ~p is a Z-congruence on Tx (X). ad

Example 2.6.6. Recall again the presentation BOOL = (Xpoor, 8Boor) from Exam-
ple 2.2.3. The following X0, -term rewriting system RBOOL obviously satisfies
ClZBOOL (éoBOOL) = ClEBOOL (Eq(RBOOL))Z

RBoOOL = {—true — false, —~false — true, p Ntrue — p, p A false — false,
pA—p — false,p=q— ~(pA—q)}.

2.6 Term rewriting 67

(Observe that in the rule p = ¢ — —(p A —¢q), the right-hand side is not obviously
simpler than the left-hand side.) For example, we have (the redex reduced by each
step is underlined)

=(p A (g = —false)) —RrRBoo. (P A —~(qA——false))
—RBooL (P (C] A ﬁtrue))
—RBooL ﬁ(p q/\false))
—RBoor ~(p A —false)
—RBoor ! ([)/\ true)

—RBooL P

so ~(p A (g = —false)) =} oo, —P» and

—(pA(q= false)) rBooL< —(pA(q = —true))

—RBoo. (P A—(gA——true))
—RBoo. (P A —(g A —false))
RBooL{ 7 (p A _‘((C] A tl"l/te) A —\false))
—RBoor (P A—((gAtrue) Atrue))
—RBoo. (PA—(qAtrue))
so =(p A (q = false)) ~rRBoor ~(p A (g Atrue)). 0

Exercise 2.6.7. Recall the presentation NAT = (Znr, ENar) from Exercise 2.5.4.
Looking at the equations in &xar, give a Xnap-term rewriting system RNAT such
that Cls . (Enar) = Clxy,.. (Eq(RNAT)), and practice reducing and converting
some X r-terms using RINAT. O

The convertibility relation generated by R coincides with equality provable from
Eq(R). This fact is captured by the following two theorems.

Theorem 2.6.8 (Soundness of convertibility). If ~g t' then Eq(R) bzt =1,

Proof sketch. Consider a reduction step C[t[0]] —x C[t'[8]]. This corresponds to a
derivation involving an application of the axiom rule, to derive Eq(R) ¢ =1¢'; an
application of instantiation, to derive Eq(R) I~ t[8] =1'[8]; and repeated applications
of reflexivity and congruence, to derive Eq(R) I C[t[6]] = C[t'[6]]. The definition
of ~r as the symmetric transitive reflexive closure of —¢ corresponds directly to
applications of the symmetry, transitivity and reflexivity rules. (Exercise: Fill in the
gaps in this proof.) a

Lemma 2.6.9. Suppose t,t' € |Ts(X)|s for s € S. If t ~g t' then

1. C[t] ~g C|t'] for any Z-context C[O] for sort s.
2. (6] ~g 1'[0] for any substitution 6:X — |Tx (X)|.

Proof. Exercise: Do it. m|

Theorem 2.6.10 (Completeness of convertibility). If Eq(R) Fx t =1t thent ~g .

68 2 Simple equational specifications

Proof sketch. By induction on the depth of the derivation of Eq(R) -y t =¢'. The
most interesting case is when the last step is an application of the congruence rule:

Eq(R)Fxti =1 Eq(R)Fxt,=t,
Eq(R)Fx f(t1,...,tn) = f(t],....1p)

where f:s1 X --- X 5, — s. By the inductive assumption, #; ~g t{ and ... and 1, ~p
t/. Then, by repeated application of Lemma 2.6.9(1), we have f(t1,t2...,1,) ~r
f(t],t2. oo ty) ~g -+ ~g f(t],85 ..., t,) (using first the context f(O:sy,22 ... 1), then
f(t],0:52,...,1,), then ..., then f({,5,...,0:s,)). When the last step of the deriva-
tion of Eq(R) Fx t =1’ is an application of the instantiation rule, the result follows
directly by Lemma 2.6.9(2). (Exercise: Complete the proof.) a

Exercise 2.6.11. Try to get rid of the need for the assumption on X made at the
beginning of this section in all the definitions and results above. This will involve
rewriting terms of the form (X)¢ using rewrite rules of the form VX e — ¢, in both
cases with explicit variable declarations. a

Given the exact correspondence between convertibility and provable equality, a
decision procedure for 7 ~ t' amounts to a decision procedure for & Fy t =¢', pro-
vided Clx (&) = Clx(Eq(R)). The problem with testing ¢ ~g ' by simply applying
the definition is that the “path” from ¢ to ¢ may include both reduction steps and
expansion steps, and may be of arbitrary length. But when R satisfies certain condi-
tions, it is sufficient to test just a single path having the special form t —} ¢ F<—1',

which yields a simple and efficient decision procedure for convertibility.

Definition 2.6.12 (Normal form). A X-term ¢ € Tx(X) is a normal form (for R) if
there is no term ¢’ such thatt —z ¢'. a

Definition 2.6.13 (Termination). A X-term rewriting system R is terminating (or
strongly normalising) if there is no infinite reduction sequence | —r) —g - ;
that is, whenever t; —g to —g --- , there is some (finite) n > 1 such that 7, is a
normal form. O

The usual way to show that a term rewriting system R is terminating is to demon-
strate that each rule in R reduces the complexity of terms according to some care-
fully chosen measure.

Definition 2.6.14 (Confluence). A X-term rewriting system R is confluent (or is
Church-Rosser) if whenever t — t{ and t —} , there is a term 73 such that #; = #3
and 1, —>}§ 3. O

Definition 2.6.15 (Completeness). A X-term rewriting system R is complete if it is
both terminating and confluent. a

Completeness of a term rewriting system should not be confused with completeness
of a proof system, as in for example Theorem 2.6.10 above.

2.6 Term rewriting 69

Exercise 2.6.16. Suppose that R is a complete X-term rewriting system, and let ¢ €
|7z (X)| be a X-term. Show that there is a unique normal form NFg(z) € |Tx(X)|
such that t —5 NFg(t).

HINT: An abstract reduction system consists of a set A together with a binary
relation — C A X A. A X-term rewriting system R is a particular example, where
A = |Tx(X)| and — is —g. Concepts such as normal form and confluence make
sense in the context of any abstract reduction system, and the required property
holds in this more abstract setting. ad

Example 2.6.17. The term rewriting system RBOOL from Example 2.6.6 is both
terminating and confluent, and is therefore complete. As the reduction sequence in
Example 2.6.6 shows, NFrpBoo.(—(p A (¢ = —false))) = —p.

The term rewriting system RBooL' = RBooLU {p A q — ¢ A p} is not termi-
nating: pAg =RrBoor’ 4\ P —RBoo.’ PNd ~RBoor’ 4/\P —*RBoor’ """ -

The term rewriting system RBooL” = RBooLU{(pAg)Ar— pA(gAr)}is
not confluent: (p A—p) Ag = rpoo false Ag and (p A=p) ANg = RrBoor” PN (P A
q), and both false A g and p A (—p A q) are normal forms. O

Exercise 2.6.18. Is your term rewriting system RNAT from Exercise 2.6.7 com-
plete? If not, find an alternative term rewriting system for NAT that is complete. O

Exercise 2.6.19. A X-term rewriting system R is weakly confluent if whenever
t =g t; and t —g tp, there is a term 3 such that 1 —% f3 and t, —} 3. Find a
term rewriting system that is weakly confluent but not confluent. (HINT: Weak con-
fluence plus termination implies confluence, so don’t bother looking at terminating
term rewriting systems.) Weak confluence is a much easier condition to check than
confluence, so the usual way to prove that a term rewriting system is confluent is to
show that it is weakly confluent and terminating. a

In view of the obvious analogy between reduction and computation, NFg(¢) can
be thought of as the value of t; since NFg(t) need not be a ground term, this is a
more general notion of computation than the usual one.

Exercise 2.6.20. Convince yourself that NFg:|Tx(X)| — |Tx(X)| is computable for
any finite complete term rewriting system R — perhaps try to implement it in your
favourite programming language. a

Theorem 2.6.21 (Decision procedure for convertibility). If R is complete, then
t ~g 1" iff NFg(t) = NFg(t)). a

Exercise 2.6.22. Prove Theorem 2.6.21. HINT: The proof does not depend on the
definition of —, but only on the assumption that R is complete. a

Since 1 ~g ¢’ iff Eq(R) Fx t =’ (by soundness and completeness of convertibility)
iff Eq(R) =5 t =1’ (by soundness and completeness of the equational calculus),
Theorem 2.6.21 constitutes a decision procedure for consequence:

Corollary 2.6.23 (Decision procedure for Eq(R) =5 t =t'). If R is complete, then
Eq(R) [=x t =1 iff NFg(t) = NFg(t'). U

70 2 Simple equational specifications

Example 2.6.24. Since the term rewriting system RBOOL from Example 2.6.6
is complete (see Example 2.6.17), Corollary 2.6.23 can be used to prove that
Eq(RBOOL) =5, ~(PA (g = —false)) = p = (p A —p): this follows since we
have NFrpoo.(—(p A (¢ = —false))) = =p = NFrBoo.(p = (p A —p)). Since
Clyy,.. (EBoor) = Clsg, ., (Eq(RBooOL)), this proves that oo Frg,,, (P A
(¢ = ~false)) = p = (p A—p).

Exercise. Give a derivation of &soor Frp,., (P A (¢ = ~false)) =p= (pA—p)
in the equational calculus. Compare this with the above proof. a

Exercise 2.6.25. Recall your complete term rewriting system for NAT from Ex-
ercise 2.6.18. Relying on Corollary 2.6.23, use this to prove that &xar |:2NAT
succ(succ(0)) + succ(n) = succ(succ(succ(n))), and that Exar Fry,, succ(m) +
suce(n) = succ(succ(m+n)). O

Exercise 2.6.26. Let t — t' be a X-rewrite rule of sort s. The following restrictions
are often imposed:

o t¢X;and
o FV(t') CFV(z).

Show that, if these restrictions are imposed on rewrite rules, then Corollary 2.6.23
holds even without the assumption on X made at the beginning of this section.
(These restrictions seem harmless since almost no complete term rewriting system
contains rules that violate them.) O

Exercise 2.6.27. Equality of terms in the equational theory of a rewriting systems is
also decidable under somewhat weaker requirements than those in Corollary 2.6.23.
A term rewriting system R is weakly normalising if for each term ¢ there is a finite
reduction sequence in R leading from ¢ to a normal form. R is semi-complete if it is
weakly normalising and confluent.

Generalising Exercise 2.6.16, show that if R is a semi-complete X-term rewriting
system, then for any X-term ¢ € |Tx(X)| there is a unique normal form NFg(t) €
|Tx(X)| such that + —5% NFg(t). Moreover, convince yourself that the function
NFg:|Tx(X)| — |Tx(X)] is then computable. Finally, show that the property cap-
tured by Corollary 2.6.23 holds for all semi-complete term rewriting systems R. [

By Corollary 2.6.23, the problem of deciding consequence & =y e is reduced to
the problem of finding a finite complete term rewriting system R such that Cly (&) =
Cls(Eq(R)). Clearly, by Theorem 2.4.15, this is not always possible. But the Knuth-
Bendix completion algorithm can sometimes be used to produce such an R given &
together with an order relation on terms. The algorithm works by pinpointing causes
of failure of (weak) confluence and adding rules to correct them, where the supplied
term ordering is used to orient these new rules. The algorithm is iterative and may
fail to terminate; it may also fail because the ordering supplied is inadequate.

The Knuth-Bendix completion algorithm can also be used to reason about ini-
tial models of specifications, using a method known as inductionless induction or
proof by consistency. This method is based on the observation that an equation ¢ = ¢/

2.7 Fiddling with the definitions 71

holds in the initial models of (X, &) iff there is no ground equation u = u’ such that
EW¥u=u and EU{t =1} E u=u. (Exercise: Prove this fact.) Given a com-
plete term rewriting system R such that Clx (&) = Clx(Eq(R)) (perhaps produced
using the Knuth-Bendix algorithm), the Knuth-Bendix algorithm is used to produce
a complete term rewriting system R’ for & U{t =’} by extending R. It is then pos-
sible to test if R and R’ have the same normal forms for ground X-terms; if so, then
t = ¢’ holds in the initial models of (X, &).

2.7 Fiddling with the definitions

In principle, the specification framework presented in the preceding sections is pow-
erful enough for any conceivable computational application. This is made precise
by a theorem in [BT87] (cf. [Vra88]) which states that for every reachable semi-
computable X-algebra A there is a presentation (X' &’) with finite & such that
A = A'|x for some initial model A" € IMod[(Z',&")]. (See [BT87] for the definition
of semi-computable algebra.) In spite of this fact, there are several reasons why this
framework is inconvenient for use in practice.

One deficiency becomes apparent as soon as one attempts to write specifications
that are somewhat larger than the examples we have seen so far. In order to be un-
derstandable and usable, large specifications must be built up incrementally from
smaller specifications. Specification mechanisms designed to cope with such prob-
lems of scale are presented in Chapter 5. These methods also solve the problem
illustrated by Exercise 2.5.20; see Exercise 5.1.11.

Another difficulty arises from the relatively low level of equational logic as a
language for describing constraints to be satisfied by the operations of an algebra.
When using equational axioms, it is often necessary to write a dozen equations to
express a property that can be formulated much more clearly using a single ax-
iom in some more powerful logic. Some properties that are easy to express in more
powerful systems are not expressible at all using equations. Similar awkwardness
is caused by the limitations of the type system used here, in comparison with the
polymorphic type systems of modern programming languages such as Standard ML
[Pau96]. Finally, the present framework is only able to cope conveniently with al-
gebras comprised of total and deterministic functions operating on data values built
by finitary compositions of such functions, a limitation which rules out its use for
very many programs of interest.

All these difficulties can be addressed by making appropriate modifications to the
standard framework presented in the preceding sections. An example was already
given in Section 1.5.2 where it was shown how signature morphisms could be re-
placed by derived signature morphisms. This section is devoted to a sketch of some
other possible modifications. The presentation is very brief and makes no attempt
to be truly comprehensive; the interested reader will find further details (and further
citations) in the cited references.

72 2 Simple equational specifications

2.7.1 Conditional equations

The most obvious kind of modification is to replace the use of equational axioms
by formulae in a more expressive language. Some care is required since a number
of the results presented above depend on the use of equational axioms. A relatively
unproblematic choice is to use equations that apply only when certain pre-conditions
(expressed as equations) are satisfied.

Let X = (S, Q) be a signature.

Definition 2.7.1 (Conditional equation). A conditional X-equation VX e t] = t{ A
...\t =1, = o = 1, consists of

e a finite S-sorted set X (of variables), such that X; C 2" for all s € S; and
e for each 0 < j < n (where n > 0), two X-terms tj,t} € |Tx (X)|sj for some sort
S eSs.

A X-algebra A satisfies a conditional Z-equation VXet; =] A... Aty =1, =1y =
1, if for every (S-sorted) function v:X — |A], if (11)a(v) = (#{)a(v) and ... and
(1n)a(4) = (1)a (), then (10)a (v) = (1)a (). 0

Note that variables in the conditions (t; =] A ... At, =1,) that do not appear in
the consequent (fp = ;) can be seen as existentially quantified: for example, the
conditional equation Va,b:tea x b =1 = a x a~' = 1 is equivalent to the formula
Va:ite (3b:iteax b=1)= axa ' =1 in ordinary first-order logic.

Exercise 2.7.2. Define the translation of conditional X-equations by a signature
morphism 6: X — X', O

The remaining definitions of Sections 2.1-2.5 require only superficial changes, and
most results go through with appropriate modifications.

Let (X,&) be a presentation, where & is a set of conditional X-equations.
Mod[{Z,&)] is not always a variety, as is (almost) shown by Example 2.2.11; in
this sense, the power of conditional equations is strictly greater than that of ordinary
equations.

Exercise 2.7.3. The cancellation law given in Example 2.2.11 is not a conditional
equation. Give a version of this example that uses only conditional equations. HINT:
Equality can be axiomatised as an operation eq:s X s — Bool. a

In spite of this increase in expressive power, there is a proof system that is sound
and complete with respect to conditional equational consequence [Sel72], and the
quotient construction can be used to construct an initial model of (X, &) [MT92] (cf.
Lemma 3.3.12 below). Term rewriting with conditional rewrite rules is possible, but
there are some complications; see [K1092] and [Mid93].

Exercise 2.7.4. [Sel72] gives a proof system that is sound and complete for condi-
tional equational consequence in the single-sorted case. Extend this to the many-
sorted case, where explicit quantifiers are required for the same reason as in the
equational calculus. a

2.7 Fiddling with the definitions 73

Exercise 2.7.5. Recall Exercise 2.5.21 concerning the specification of a function
ch: Nat — Nat that for each natural number n chooses an arbitrary number that is
greater than n. Modify this, using a conditional equation to make ch choose an arbi-
trary number that is /ess than n when 0 < n. O

Example 2.7.6. Let HA = (X, &) be the following presentation.’

spec HA = sorts Bool

ops true:Bool
false: Bool
—__:Bool — Bool
__V __:Bool x Bool — Bool
__N__:Bool x Bool — Bool
__=__:Bool x Bool — Bool

Vp,q,r:Bool
e pV(gVr)=(pVq)Vr
s PA(gAT)=(pAg) AT
e pVq=qVp
e PAg=qAp
«pV(PAg)=p
* PA(PVg)=p
e pVtrue = true
e pVfalse=p
s (pV(rAq)=p) = ((g=p)Vr=I(q9=p))
«((g=p)vr=(g=p) = (pV(rng) =p)
o —p = (p = false)

Models of HA are called Heyting algebras.

Exercise. Recall the presentation BA of Boolean algebras in Example 2.2.4. Show
that every Boolean algebra is a Heyting algebra. Then repeat the exercise in Ex-
ample 2.2.4, building for every Heyting algebra H a lattice (|H|, <p) with top and
bottom elements. Check that the conditional axioms concerning the implication =
can now be captured by requiring that r A g <p p is equivalent to r <p g = p. Show
that the lattice is distributive.

Give an example of a Heyting algebra that is not Boolean. Check which of the
axioms of the presentation BA do not follow from HA.

Prove that an equational presentation with the same models as HA can be given.
HINT: Use Theorem 2.2.10. Or consider the following properties of the implica-
tion: p= p=true,gA(q=p)=qAp,pV(g=p)=q=p,and g= (pAr) =
(g=p)N(g=r). 0

3 We use the same symbol = for implication in conditional equations and for an operation in the
presentation below — the usual symbols are used for other propositional connectives as well, as
in Example 2.2.4. We use extra space around the implication symbol in the conditional equations
below in order to make them easier to read.

74 2 Simple equational specifications

2.7.2 Reachable semantics

In Section 2.5, the motivation given for taking a presentation (X,&’) to denote the
class IMod[(X, &)] of its initial models was the desire to exclude models containing
junk and confusion. The need to exclude models containing confusion stems mainly
from the use of equational axioms, which make it impossible to rule out degenerate
models having a single value of each sort in X. If a more expressive language is used
for axioms, or if degenerate models are ruled out by some other means, then models
containing confusion need not be excluded.

Example 2.7.7. Consider the following specification of sets of natural numbers (a
variant of the one in Exercise 2.5.23):

spec SETNAT = sorts Bool, Nat, NatSet
ops true:Bool
false: Bool
__V __:Bool x Bool — Bool
0: Nat
succ:Nat — Nat
eq:Nat x Nat — Bool
&:NatSet
add: Nat x NatSet — NatSet
__€__:Nat x NatSet — Bool
Vp:Bool,m,n: Nat,S: NatSet
o pVirue = true
e pVfalse =p
e eq(n,n) = true
o ¢q(0,succ(n)) = false
o eq(succ(n),0) = false
o eq(succ(m),succ(n)) = eq(m,n)
o n € I =false
e m € add(n,S) = eq(m,n)Vme S

There are many different models of SETNAT, including algebras having a single
value of each sort. Suppose we restrict attention to algebras that do not satisfy the
equation true = false; this excludes such degenerate models (see the exercise below).
Consider the following two equations:

Commutativity of add:

Vm,n:Nat,S:NatSet s add(m,add(n,S)) = add(n,add(m,S))
Idempotency of add:

Vn:Nat,S:NatSete add(n,add(n,S)) = add(n,S)

The models of SETINAT that do not satisfy true = false may be classified according
to which of these two equations they satisfy:

“List-like” algebras: add is neither commutative nor idempotent.
“Set-like” algebras: add is both commutative and idempotent.

2.7 Fiddling with the definitions 75

“Multiset-like” algebras: add is commutative but not idempotent.
“List-like” algebras without repeated adjacent entries: add is idempotent but not
commutative.

There are also “hybrid” models of SETNAT, e.g. those in which add is commuta-
tive but is only idempotent for n # 0. The initial models of SETNAT are “list-like”
algebras. Adding the commutativity and idempotency requirements to SETNAT as
additional axioms would eliminate all but the “set-like” algebras.

Exercise. Show that restricting attention to models of SETINAT that do not satisfy

true = false eliminates all but “sensible” realisations of sets of natural numbers, by

forcing eq(succ™(0),succ(0)) = true iff m = n iff succ™(0) = succ™(0), and a €

add(ay,add(as,...,add(a,,D)...)) =trueiff eq(a,a1) =trueor ... oreq(a,ap,) =

true, for m,n, p > 0. Note that m,n and p are ordinary integers here, not values of

the sort Nat, and succ™(0) means succ(. ..succ(0)...). O
—————

m times

Consideration of examples like the one above suggests various alternatives to
taking the initial semantics of specifications. One choice is to require signatures to
include the sort Bool and the constants frue and false, and to exclude models satis-
fying true = false. This might be called taking the non-degenerate loose semantics
of specifications. Another choice is to additionally exclude models containing junk:

Definition 2.7.8 (Reachable semantics). Let £ = (S, Q) be a signature such that
Bool € S and true:Bool and false: Bool are in Q. A reachable non-degenerate
model of a presentation (X&) is a reachable X-algebra A such that A =y & and
A Wy true = false. RMod[(X,&)] is the class of all reachable non-degenerate mod-
els of (X£,&). Taking (£,&) to denote RMod[(X,&)] is called taking its reachable
semantics. a

The motivation for excluding models containing junk is the same as in the case of
initial semantics. RMod[(Z,&’)] is not always an isomorphism class of models, as
Example 2.7.7 demonstrates (the classification given there was for all models that
do not satisfy true = false, but it also applies to the reachable models in this class).
There is still a problem when operations are not defined in a sufficiently complete
way, although the problem is less severe than in the case of initial semantics.

Exercise 2.7.9. Reconsider the problem posed in Exercise 2.5.20, by writing a
reachable model specification of natural numbers including a subtraction opera-
tion __— __:Nat X Nat — Nat together with the axioms Vm:Nate m — 0 = m and
Vm,n:Nate succ(m) — succ(n) = m —n. Recall from Exercise 2.5.20 the assumption
that we are willing to accept any value for m —n when n > m, which is why the
axioms do not constrain the value of m — n in this case. List some of the reachable
non-degenerate models of this specification, and decide whether the models you
considered in Exercise 2.5.20 are reachable non-degenerate models (ignoring the
difference in signatures). From an intuitive point of view, is this an adequate class
of models for this specification? a

76 2 Simple equational specifications

Exercise 2.7.10. Definition 2.7.8 permits algebras A € RMod[(X,&’)] with values of
sort Bool other than trues and false,. This is ruled out if all operations delivering
results in sort Bool are defined in a sufficiently complete way to yield either true or
false on each argument that is definable by a ground term. Check that the specifi-
cation SETNAT in Example 2.7.7 ensures this property, and so all of its reachable
non-degenerate models have a two-element carrier of sort Bool. Give an example of
a specification for which this is not the case. a

The equational calculus is sound for reasoning about the reachable semantics of
presentations, since RMod[(X,&)] C Mod[(X,&)] for any presentation (X, &’). It is
sound to add induction rule schemes such as those given in Section 2.5; these are
sound for any class of reachable models. Completeness is unachievable, for exactly
the same reason as in the case of initial semantics; the proof of Theorem 2.5.26 can
be repeated in this context almost without change. Finally, the techniques of term
rewriting presented in Section 2.6 remain sound.

Initial semantics cannot be used for specifications with axioms that are more
expressive than (infinitary) conditional equations [Tar86b], in the sense that initial
models of such specifications are not guaranteed to exist. To illustrate the problem,
the following example shows what can go wrong when the language of axioms is
extended to permit disjunctions of equations.

Example 2.7.11. Consider the following specification:

spec STATUS = sorts Status
ops single: Status
married: Status
widowed: Status
o widowed = single \V widowed = married

where disjunction of equations has the obvious interpretation. There are three kinds
of algebras in Mod[STATUS]:

1. Those satistying single = widowed = married.
2. Those satisfying single = widowed # married.
3. Those satisfying single # widowed = married.

None of these is an initial model of STATUS: there are no homomorphisms from
algebras in the first class to algebras in either of the other two classes, and no homo-
morphisms in either direction between algebras in the second and third classes. O

In contrast, reachable semantics can be used for specifications with axioms of any
form (once a definition of satisfaction of such axioms by algebras has been given,
of course).

Another alternative to initial semantics deserves brief mention.

Definition 2.7.12 (Final semantics). Let £ = (S, Q) be a signature such that Bool €
S and true: Bool and false: Bool are in Q. A X-algebra A € RMod|[(X,&)] is a final
(or terminal) model of (X,&) if for every B € RMod[(Z,&)] there is a unique X-
homomorphism A: B — A. Taking (X,&’) to denote the class of its final models is
called taking its final semantics. a

2.7 Fiddling with the definitions 77

As in the case of initial semantics, the final models of a presentation form an iso-
morphism class. Recall that a model of a presentation is initial iff it contains no
junk and no confusion (Exercise 2.5.19). We can give a similar characterisation
of final models as the models containing no junk and maximal confusion: a final
model A satisfies as many ground equations as possible, subject to the restriction
that A £ true = false (imposed on all reachable non-degenerate models).

Example 2.7.13. Recall the specification SETNAT from Example 2.7.7, and the
classification of models of SETNAT according to the commutativity and idempo-
tence of add. The final models of SETNAT are in the class of “set-like” algebras, in
which add is both commutative and idempotent. (Exercise: Why?) ad

Not all presentations with equational axioms have final models, but it is possible to
impose conditions on the form of presentations that guarantee the existence of final
models [BDP179].

Exercise 2.7.14. Find a variation on the specification STATUS in Example 2.7.11
that has no final models. a

When reachable or final semantics of presentations is used with equational or
conditional equational axioms, sometimes more operations are required in specifi-
cations than in the case of initial semantics. These additional operations are needed
to provide ways of “observing” values of sorts other than Bool, in order to avoid
models that are degenerate on these other sorts. For example, the presence of the
operation eq in Example 2.7.7 ensures that succ™(0) = succ™(0) only if m = n in
all models that do not satisfy true = false; it would not be needed if we were in-
terested only in the initial models of SETNAT. Such operations are not required if
inequations are allowed as axioms.

Exercise 2.7.15. Recall the presentation NAT given in Exercise 2.5.4. Augment this
with the sort Bool and constants frue,false: Bool (to make reachable and final se-
mantics applicable), and show that final models of the resulting specification have
a single value of sort Nat. Add an operation even: Nat — Bool, with the following
axioms:

Vn:Nat
o even(succ(succ(n))) = even(n)
o even(succ(0)) = false
o even(0) = true

Show that final models of the resulting specification have exactly two values of sort
Nat. Replace even with __<__:Nat x Nat — Bool, with appropriate axioms, and
show that final models of the resulting specification satisfy succ™(0) = succ™(0) iff
m = n. (We have already seen that this is the case if eq: Nat x Nat — Bool is added
in place of <.) ad

Although the inclusion of additional operations tends to make specifications longer,
it is not an artificial device. In practice, one would expect each sort to come with
an assortment of operations for creating, manipulating and observing values of that
sort, so specifications such as NAT are less natural than NAT augmented with oper-
ations like < and/or eq.

78 2 Simple equational specifications

2.7.3 Dealing with partial functions: error algebras

An obvious inadequacy of the framework(s) presented above stems from the use
of total functions in algebras to interpret the operation names in a signature. Since
partial functions are not at all uncommon in computer science applications — a very
simple example being the predecessor function pred: Nat — Nat, which is undefined
on 0 — a great deal of work has gone into ways of lifting this restriction. Three main
approaches are discussed below:

Error algebras (this subsection): Predecessor is regarded as a total function, with
pred(0) specified to yield an error value.

Partial algebras (Section 2.7.4): Predecessor is regarded as a partial function.

Order-sorted algebras (Section 2.7.5): Predecessor is regarded as a total function
on a sub-domain that excludes the value 0.

A fourth approach is to use ordinary (total) algebras, leaving the value of pred(0)
unspecified. This is more an attempt to avoid the issue than a solution, and it is
workable only in frameworks that deal adequately with definitions that are not suf-
ficiently complete; see Exercises 2.5.20, 2.7.9, and 5.1.11.

The most obvious way of adding error values to algebras does not work, as the
following example demonstrates.

Example 2.7.16. Consider the following specification of the natural numbers, where
pred(0) is specified to yield an error:

spec NATPRED = sorts Nat
ops 0:Nat
succ:Nat — Nat
pred: Nat — Nat
error: Nat
-+ __:Nat x Nat — Nat
__X __:Nat X Nat — Nat
Vm,n: Nat
o pred(succ(n)) =n
o pred(0) = error

e O0+n=n
o succ(m) +n = succ(m+n)
e Oxn=0

o succ(m) xn=(mxn)+n

Initial models of NATPRED will have many “non-standard” values of sort Nat, in
addition to the intended one (error). For example, the axioms of NATPRED do not
force the ground terms pred(error) and pred(error) + 0 to be equal to any “normal”
value, or to error. (Exercise: Give an initial model of NATPRED.) A possible so-
lution to this is to add axioms that collapse these non-standard values to a single
point:

2.7 Fiddling with the definitions 79

spec NATPRED = sorts Nat
ops ...
Vm,n: Nat
e ...
. succ(error) = error
« pred(error) = error
e error +n = error
e N+ error = error
e error X n = error
e 1 X error = error

Unfortunately, NATPRED now has only trivial models: error = 0 X error = 0, and
so error = succ(error) = succ(0), error = succ(error) = succ(succ(0)), and so on.
O

The above example suggests that a more delicate treatment is required. A number
of approaches have been proposed; here we follow [GDLES84], which is fairly pow-
erful without sacrificing simplicity and elegance. The main ideas of this approach
are:

Error values are distinguished from non-error (“OK”) values.

In an error signature, operations that may produce errors when given OK ar-
guments (unsafe operations) are distinguished from those that always preserve
OK-ness (safe operations).

e In an error algebra, each carrier is partitioned into an error part and an OK part.
Safe operations are required to produce OK results for OK arguments, and ho-
momorphisms are required to preserve OK-ness.

e In equations, variables that can take OK values only (safe variables) are distin-
guished from variables that can take any value (unsafe variables). Assignments
of values to variables are required to map safe variables to OK values.

Definition 2.7.17 (Error signature). An error signature is a triple £ = (S, Q, safe)
where

e (S5,Q) is an ordinary signature; and
e safe is an S* x S-sorted set of functions (safe,, ;: Qs — {tt,ff })wes* ses-

An operation fis) X -+ X s, — s in X is safe if safe;, , ((f) = tt; otherwise it is
unsafe. a

Example 2.7.16 (revisited). An appropriate error signature for NATPRED would
be the following:

XNATPRED = sorts Nat
ops 0:Nat
succ: Nat — Nat
pred: Nat — Nat, unsafe
error: Nat, unsafe
__+__:Nat X Nat — Nat
__X __:Nat x Nat — Nat

80 2 Simple equational specifications

Obviously, error is unsafe, and pred is unsafe since it produces an error when ap-
plied to O; all the remaining operations are safe. (By convention, the safe operations
are those that are not explicitly marked as unsafe.) a

In the rest of this section, let X = (S, Q, safe) be an error signature.
Definition 2.7.18 (Error algebra). An error X-algebra A consists of

e an ordinary X-algebra A; and
e an S-sorted set of functions OK = (OK: |Al; — {tt,ff})ses

such that safe operations preserve OK-ness: for every f:s; X --- X s, — s in X such
that safe;, ((f) =t and aj € |Aly,...,a, € |A[;, such that OK; (a1) = -+ =
OK;, (ay) = tt, OKs(fa(a1,...,a,)) =1t. A value a € |A|; for s € S is an OK value
if OK(a) = tt; otherwise it is an error value. m]

Definition 2.7.19 (Error homomorphism). Let A and B be error X-algebras. An
error Z-homomorphism h:A — B is an S-sorted function h: |A| — |B| with the usual
homomorphism property (for all f:sy x --- x5, = sin X and a; € |Ay,,...,a, €
|Als,, hs(fa(ar,...,an)) = fa(hs, (a1),...,hs,(ay))) such that h preserves OK-ness:
forevery s € S and a € |A|, such that OK(a) =1t (in A), OK(hs(a)) =1t (in B). O

Definition 2.7.20 (Error variable set). An error S-sorted variable set X consists
of an S-sorted set X such that X; C 2" for all s € S, and an S-sorted set of functions
safe = (safe,: Xy — {1t,ff })ses. A variable x:s in X is safe if safe;(x) = tt; otherwise
it is unsafe. An assignment of values in an error X-algebra A to an error S-sorted
variable set X is an S-sorted function v: X — |A| assigning OK values to safe vari-
ables: for every x:s in X such that safe,(x) = tt, OK(vs(x)) = 1. O

Definition 2.7.21 (Error algebra of terms). Let X be an error S-sorted variable set.
The error X-algebra ETs (X) of terms with variables X is defined in an analogous
way to the ordinary term algebra Tx (X), with the following partition of the S-sorted
set of terms into OK and error values:

For all sorts s € S and X-terms ¢ € |[ETx (X)|s, if # contains an unsafe variable
or operation then OK(¢) = ff; otherwise OK(t) = .

We adopt the same notational conventions for terms as before, dropping sort deco-
rations, etc., when there is no danger of confusion. Let ETx denote ETx (). ad

The definitions of term evaluation, error equation, satisfaction of an error equation
by an error algebra, error presentation, model of an error presentation, semantic
consequence, and initial model are analogous to the definitions given earlier in the
standard many-sorted algebraic framework (Definitions 1.4.5, 2.1.1, 2.1.2, 2.2.1,
2.2.2,2.3.6 and 2.5.13 respectively). Because assignments are required to map safe
variables to OK values, an error equation may be satisfied by an error algebra even
if it is not satisfied when error values are substituted for safe variables.

Exercise 2.7.22. Spell out the details of these definitions. a

2.7 Fiddling with the definitions 81

As before, every error presentation has an isomorphism class of initial models,
and an analogous quotient construction gives an initial model.

Definition 2.7.23 (Congruence generated by a set of equations). Let & be a set of
error X-equations. The X-congruence =¢ on ETy is defined by t =¢ ' < & |=5
t=1"for all t,t' € |[ETx|. =¢ is called the X-congruence generated by &. (NOTE:
A X-congruence on an error X-algebra A is just an ordinary X-congruence on the
ordinary X-algebra underlying A.) a

Definition 2.7.24 (Quotient error algebra). Let A be an error X-algebra, and let
= be a X-congruence on A. The definition of A/=, the quotient error algebra of
A modulo =, is analogous to that of the ordinary quotient algebra A/=, with the
following partition of congruence classes into OK and error values:

For all sorts s € S and congruence classes [a]=, € |A/=],, if there is some b €
[a]=, such that OK(b) = tt (in A), then OK([a]=,) = #t (in A/=); otherwise

s

OK([al=,) =1 O

Note that if there are both OK and error values in a congruence class, the class is
regarded as an OK value in the quotient.

Theorem 2.7.25 (Initial model theorem). The error X-algebra ETy /= is an ini-
tial model of the error presentation (X,&). O

Exercise 2.7.26. Sketch a proof of Theorem 2.7.25. HINT: Take inspiration from the
proof of Theorem 2.5.14. ad

Exercise 2.7.27. Try to find conditions analogous to “no junk” and “no confusion”
that characterise the initial models of an error presentation. a

Example 2.7.16 (revisited). Using the approach outlined above, here is an im-
proved version of the specification NATPRED:

spec NATPRED = sorts Nat
ops 0:Nat
succ:Nat — Nat
pred: Nat — Nat, unsafe
error: Nat, unsafe
-+ __:Nat x Nat — Nat
__X __:Nat X Nat — Nat
Vm,n: Nat
o pred(succ(n)) =n
« pred(0) = error

e 0+n=n
o succ(m) +n = succ(m+n)
e Oxn=0

o succ(m) xn=(mxn)+n

82 2 Simple equational specifications

(By convention, variables in equations are safe unless otherwise indicated.) In initial
models of NATPRED, the error values of sort Nat correspond exactly to “error mes-
sages”, i.e. ground terms containing at least one occurrence of error. These terms
can be regarded as recording the sequence of events that took place since the error
occurred. The record is accurate since the initial models of NATPRED do nof satisfy
equations like 0 X error = 0, in contrast to the initial models of the earlier version. To
collapse the error values to a single point without affecting the OK values, axioms
can be added as follows:

spec NATPRED = sorts Nat
ops ...

Vm,n: Nat, k: Nat:unsafe

e ...
o pred(error) = error
o succ(error) = error
e error+k = error
o k+ error = error
e error X k = error
e k X error = error

It is also possible to specify error recovery using this approach:

spec NATPRED = sorts Nat
ops ...
recover: Nat — Nat
Vm,n: Nat, k: Nat:unsafe
e ...
e recover(error) =0
e recover(n) =n

In initial models of this version of NATPRED, recover is the identity on Nat except
that recover(error) gives the OK value 0. O

Although only initial semantics of error presentations has been mentioned above,
the alternatives of reachable and final semantics apply as in the standard case. The
key points of the standard framework not mentioned here (e.g. analogues to the
soundness, completeness and incompleteness theorems) carry over to the present
framework as well.

Exercise 2.7.28. Find a definition of error signature morphism which makes the
Satisfaction Lemma hold, taking the natural definition of the o-reduct A’|s of an

error X’-algebra A’ induced by an error signature morphism 6: X — X'. O

Although the approach to error specification presented above is quite attractive,
there are examples that cannot be treated in this framework.

Exercise 2.7.29. Consider the following specification of bounded natural numbers:

2.7 Fiddling with the definitions 83

spec BOUNDEDNAT = sorts Nat
ops 0:Nat
succ: Nat — Nat, unsafe
overflow: Nat, unsafe
o succ(succ(succ(succ(succ(succ(0)))))) = overflow

The intention is to specify a (very) restricted subset of the natural numbers, where an
attempt to compute a number larger than 5 results in overflow. Show that an initial
model of BOUNDEDNAT will have only one OK value. Change BOUNDEDNAT so
that its initial models have six OK values (corresponding to 0, succ(0), ..., succ’ (0)).
What if the bound is 232 rather than 5? O

2.7.4 Dealing with partial functions: partial algebras

An obvious way to deal with partial functions is to simply change the definition of

algebra to allow operation names to be interpreted as partial functions. But for many

of the basic notions in the framework that depend on the definition of algebra, be-

ginning with the concepts of subalgebra and homomorphism, there are several ways

to extend the usual definition to the partial case. Choosing a coherent combination

of these definitions is a delicate matter. Here we follow the approach of [BWS82b].
Throughout this section, let £ = (S, Q) be a signature.

Definition 2.7.30 (Partial algebra). A partial X-algebra A is like an ordinary X-
algebra, except that each f:s51 X --- X s, — sin X is interpreted as a partial function
(fis1x - X sp = 8)at|Als, X -+ % |Als, = |Als. The (total) X-algebra underlying
A is the X-algebra A | defined as follows:

o |A|;=|A|;W{L} forevery s € S; and

o (fisix- X8, —=5)a (ar,...,an) =
1y ifaj:Lijorsomelgjgn
(frs1 %= x8, = 8)alat,...,a) if this is defined
Ly otherwise
forevery fis1 X -+ xs, > sanda; €A |s,,...,an €|AL]s,- O

We employ the same notational conventions as before. Note that according to this
definition, the value of a constant need not be defined: a constant c: s is associated
in an algebra A with a partial function c4: {()} — |A|s, where {()} is the nullary
Cartesian product.

Definition 2.7.31 (Homomorphism). Let A and B be partial X-algebras. A weak
X-homomorphism h:A — B is an S-sorted (total) function &:|A| — |B| such that for
all fisyx---xs, >sinZ and a; € |A|,,...,a, € |A

Sn>

if fa(ai,...,ay)is defined then fg(hy, (a1),...,hy,(ay)) is defined, and
hS(fA(ala"'7an)):fB(hSI (a])?"'vhsn(an))-

84 2 Simple equational specifications

If moreover A satisfies the condition
if fg(hs (a1),...,hs,(an))is defined then fy(ai,...,a,)is defined
then 4 is called a strong X-homomorphism. a

Other possibilities would be generated by allowing homomorphisms to be partial
functions.

Exercise 2.7.32. Consider a partial X-algebra A and its underlying total X-algebra
A . Given any X-congruence = on A, removing all pairs involving L yields a
strong X-congruence on A. Check that such strong congruences are exactly kernels
of strong X-homomorphisms; cf. Exercises 1.3.14 and 1.3.18. Check that strong
congruences are equivalence relations that preserve and reflect definedness of oper-
ations and are closed under defined operations. Kernels of weak X-homomorphisms
are weak X-congruences: equivalence relations that are closed under defined oper-
ations. Spell out these definitions in detail. For any partial X-algebra A and weak
X-congruence = on A, generalise Definition 1.3.15 to define the quotient of A by
=, written A/=. Note that an operation is defined in A/= on a tuple of equivalence
classes provided that in A it is defined on at least one tuple of their respective ele-
ments. Check which of Exercises 1.3.18—1.3.23 carry over. g

Definition 2.7.33 (Term evaluation). Let X be an S-sorted set of variables, let A be
a partial X-algebra, and let v: X — |A| be a (total) S-sorted function assigning values
in A to variables in X. Since |A| C |A_ |, this is an S-sorted function v, : X — |A] |,
and by Fact 1.4.4 there is a unique (ordinary) X-homomorphism vi: Tx(X) > AL
which extends v, . Let s € S and let ¢ € |Tx(X)|s be a Z-term of sort s; the value of t
in A under the valuation v is v () if v¥ (¢) # Ly, and is undefined otherwise. ~ O

Satisfaction of an equation VX et = ¢/, where the values of ¢ and/or ' may be
undefined, can be defined in several different ways. Following [BW82b], we use
strong equality (also known as Kleene equality), whereby the equality holds if (for
any assignment of values to variables) the values of ¢ and ¢’ either are both defined
and equal, or are both undefined. The usual interpretation of definitional equations in
recursive function definitions (see for instance Example 4.1.25 and Exercise 4.1.30
below) makes them hold as strong equations. An alternative is existential equality
(where = is usually written =), whereby the equality holds only when the values of
t and ¢’ are defined and equal. When strong equality is used, there is a need for an
additional form of axiom called a definedness formula: VX e def (¢) holds if for any
assignment of values to variables, the value of ¢ is defined. These are superfluous
with existential equality since VX e def(¢) holds iff VX e ¢ < ¢ holds. Definedness
formulae with X = & are called ground and are often written without quantification

as def (1).

Exercise 2.7.34. Formalise the definitions of satisfaction of equations (using strong
equality) and of definedness formulae. a

Using both equations and definedness formulae as axioms, the definitions of pre-
sentation, model of a presentation, semantic consequence, isomorphism, and initial
model (with respect to weak homomorphisms) are analogous to those given earlier.

2.7 Fiddling with the definitions 85

Exercise 2.7.35. Spell out the details of these definitions. Note though that not all of
the properties of these notions carry over from the standard algebraic framework; for
instance, a (weak) bijective homomorphism need not be an isomorphism of partial
algebras. a

Theorem 2.7.36 (Initial model theorem). Any presentation (£,&) has an initial
model I, characterised by the following properties:

e [contains no junk;

e [is minimally defined, i.e. for all t € |Tx|, t; is defined only if & \=x def (t); and

e [contains no confusion, i.e. for all t,t' € |Tx|s,s € S, t; and 1} are defined and
equal only if & =x t =1

Proof sketch. Let X | be the signature obtained by adding a constant 1 :s to X for
each sort s € S. Define a congruence ~ C [Ty | x |Tx | as follows: for t;,1, € |Tx |
for some s € S, t; ~ 1, iff any of the following conditions holds:

1. #; contains Ly and 1, contains Ly for some s',s” € S;

2.t contains Ly for some s’ € S, 1, € |Tx|, (so £, does not contain Ly for any
s € 8) and & £ def (12), or vice versa;

3. 11,12 € |Tx|s, and either & [~ def (t1) and & [~ def (1) or & =11 = 1.

I is constructed by taking the quotient of Ty, by ~, and then regarding congruence
classes containing the constants L as undefined values. a

Exercise 2.7.37. Complete the above proof by showing that

e ~isacongruence on Ty ;

o [E&;

e [is an initial model of (¥,&); and

e [has the properties promised in Theorem 2.7.36.

Show that any model of (X, &) satisfying the properties in Theorem 2.7.36 is iso-
morphic to 7 and is therefore an initial model of (X, &). O

Exercise 2.7.38. Suppose that we modify Theorem 2.7.36 by replacing the phrase
“f; and #; are defined and equal” with “I |=x r =¢"”. Give a counterexample showing
that this version of the theorem is false. O

Exercise 2.7.39. A partial X-algebra A € Mod[(Z,&)] is a strongly initial model of
(X, &) if for every minimally defined B € Mod[(X,&)] containing no junk, there is a
unique strong X-homomorphism A:A — B. Show that / is an initial model of (X, &)
iff I is a strongly initial model of (X, &). O

Again, reachable and final semantics are applicable for partial algebras as well
as initial semantics, and the key points of the standard framework carry over with
appropriate changes (for instance, the equational calculus must be modified to deal
with definedness formulae as well as equations).

86 2 Simple equational specifications

Example 2.7.16 (revisited). Here is a version of the specification NATPRED in
which pred is specified to be a partial function:

spec NATPRED = sorts Nat
ops 0:Nat
succ: Nat — Nat
pred: Nat — Nat
-+ __:Nat X Nat — Nat
__X __:Nat X Nat — Nat
Vm,n: Nat
o def(0)
o def (succ(n))
o pred(succ(n)) =n

e0+n=n
o succ(m)+n = succ(m+n)
e Oxn=0

o succ(m) xn=(mxn)+n

In initial models of NATPRED, all operations behave as expected, and all are total
except for pred, which is undefined only on 0.

Exercise. Show that Vm,n:Nate def (m+ n) and VYm,n:Nat e def (m x n) are conse-
quences of the definedness axioms for 0 and succ and the equations defining + and
x in reachable models of NATPRED. You will need to use induction, so first for-
mulate an appropriate induction rule scheme and convince yourself that it is sound.

Exercise. Suppose that the axiom def(0) were removed from NATPRED. Describe
the initial models of the resulting presentation. a

2.7.5 Partial functions: order-sorted algebras

Any partial function amounts to a total function on a restricted domain. The idea of
order-sorted algebra is to avoid partial functions by enabling the domain of each
function to be specified exactly. This is done by introducing subsorts, which cor-
respond to subsets at the level of values, and requiring operations to behave in an
appropriate fashion when applied to a value of a subsort or when expected to deliver
a value of a supersort. A number of different approaches to order-sorted algebra have
been proposed, and their relative merits are a matter for debate. Here we follow the
approach of [GM92].

Definition 2.7.40 (Order-sorted signature). An order-sorted signature is a triple
X =(S,<,Q) where (S,€) is an ordinary signature and < is a partial order on the
set S of sort names, such that whenever f:s; X --- x s, — s and f:s] X --- X s, = s’
are operations (having the same name and same number of arguments) in £2 and
si <s}forall 1 <i<n,then s <s'. When s <y fors,s' €S, we say that s is a

2.7 Fiddling with the definitions 87

subsort of s’ (or equivalently, s is a supersort of s). The subsort ordering is extended
to sequences of sorts of equal length in the usual way: sy ...s, < s}...s], if 5; <
foralll <i<n. O

The restriction on £ ([GM92] calls this condition monotonicity) is a fairly natural
one, keeping in mind that the subsort ordering corresponds to subset on the value
level: restricting a function to a subset of its domain may diminish, but not enlarge,
its codomain. Note that an effect of this restriction is to rule out overloaded con-
stants.

Throughout the rest of this section, let X = (S, <, Q) be an order-sorted signature,
andlet £ = (S, Q) be the (ordinary) signature underlying X.

Definition 2.7.41 (Order-sorted algebra). An order-sorted X-algebra A is an or-
dinary X-algebra, such that:

e foralls<s'inZX,|Al; C |A|y; and

e whenever fis; X -+ X5, — s and fis] X --- X s}, — s are operations (having
the same name and same number of arguments) in Q and s;...s, < s’1 .. .s;l,
the function (f:s1 X -+ X s, = 5)a:|A[s, X -+ X |A]y, = |A] is the set-theoretic

restriction of the function (f:s} x - x5, = §")a:|Aly x - x [A]y = |Aly. O

An effect of the second restriction ([GM92] calls this condition monotonicity as
well) is to prevent ambiguity in the evaluation of terms; see below.

Definition 2.7.42 (Order-sorted homomorphism). Let A and B be ordAer-sorted X-
algebras. An order-sorted X-homomorphism h:A — B is an ordinary X-homomor-
phism such that hy(a) = hy(a) for all a € |A|; whenever s < s’. When & has an
inverse, it is an order-sorted X-isomorphism and we write A = B. a

Let X be an S-sorted set (of variables) such that X; and Xy are disjoint for s # s'.

Definition 2.7.43 (Order-sorted term algebra). The order-sorted X-algebra Ts (X)
of terms with variables X is just like T3 (X), except that for any term ¢ € |Tx (X)[s
such that s < s/, we also have ¢ € |[Tx(X)|y. Let Tz = Tx(9). O

Exercise 2.7.44. Check that 7x (X) is an order-sorted X-algebra. O

Example 2.7.45. One way of reformulating NATPRED as an order-sorted specifi-
cation (see below) will involve introducing a sort NzNat (non-zero natural numbers)
such that NzNat < Nat, with operations 0: Nat and succ: Nat — NzNat. According to
the definition of order-sorted term algebra, the term succ(0) has sort Nat as well as
NzNat, which means that succ(succ(0)) is well formed (and has sort Nat as well as
NzNat). a

As the above example demonstrates, a given term may appear in more than one
carrier of Tx(X). The following condition on X ensures that this does not lead to
ambiguity.

Definition 2.7.46 (Regular order-sorted signature). X is regular if for any f:s1 X
<X s, —sin X ands|...s), <s1...8,, thereis aleast s} ...s;s" such thats] ...s;, <
s7...spand fis]x--- X sy — s*isin X. 0

88 2 Simple equational specifications

Theorem 2.7.47 (Terms have least sorts). If X is regular, then for every term t €
|Tx (X)| there is a least sort s € S, written sort(t), such that t € |Tg(X)|s. O

Exercise 2.7.48. Prove Theorem 2.7.47. What happens when X is an arbitrary S-
sorted set, i.e. if we remove the restriction that X; and X are disjoint for s # s'? O

Now the definition of term evaluation is analogous to the usual one.

Fact 2.7.49. Suppose that X is regular. Then, for any order-sorted X-algebra A and
S-sorted function v:X — |A|, there is exactly one order-sorted X-homomorphism
v Ty (X) — A which extends v, i.e. such that v¥(x) = vy(x) forall s € S, x € X;. O

Exercise 2.7.50. Define term evaluation. O

Definition 2.7.51 (Order-sorted equation; satisfaction). Suppose that X is regu-
lar, and let the equivalence relation = be the symmetric transitive closure of <.
Order-sorted X-equations ¥X ot = t' are as usual, except that we require sort(t) =
sort(t") (in other words, sort(t) and sort(t') are in the same connected component of
(S, <)) instead of sort(r) = sort(t'). An order-sorted X-algebra A satisfies an order-
sorted X-equation VX et =1/, written A [=x VX ot =1/, if the value of ¢ in |A[,(
and the value of #' in |Al,,,() coincide for every S-sorted function v:X — |A]. O

A problem with this definition is that satisfaction of order-sorted X-equations is not
preserved by order-sorted X-isomorphisms (compare Exercise 2.1.5). The following
condition on X ensures that this anomaly does not arise.

Definition 2.7.52 (Coherent order-sorted signature). (S, <) is filtered if for any
s,5" € S there is some s” € S such that s < s and s’ < 5”. (S, <) is locally filtered if
each of its connected components is filtered. X is coherent if (S, <) is locally filtered
and X is regular. a

Exercise 2.7.53. Find X, A, B and e such that X is regular, A =y ¢ and A = B but
B [£5 e. Show that if X is coherent then this is impossible. O

The definitions of order-sorted presentation, model of an order-sorted presenta-
tion, semantic consequence, and initial model are analogous to those given earlier.
For every order-sorted presentation (X, &) such that X is coherent, an initial model
may be constructed as a quotient of Tx [GM92]. There is a version of the equational
calculus that is sound and complete for coherent signatures [GM92], and the use
of term rewriting for proof as discussed in Section 2.6 is sound, provided that each
rewrite rule t — ¢’ is sort decreasing, i.e. sort(t') < sort(t) [KKMS8S8].

Example 2.7.16 (revisited). Here is a version of the specification NATPRED in
which pred is specified to be a total function on the non-zero natural numbers:

2.7 Fiddling with the definitions 89

spec NATPRED = sorts NzNat < Nat
ops 0:Nat
succ:Nat — NzNat
pred: NzNat — Nat
__+4__:Nat X Nat — Nat
__X __:Nat X Nat — Nat

Vm,n: Nat
o pred(succ(n)) =n
e Ot+tn=n
o succ(m)+n = succ(m+n)
e Oxn=0

e succ(m) xn= (mxn)+n

In this version of NATPRED, there are terms that are not well formed in spite of the
fact that each operator application seems to be to a value in its domain. For example,
consider the following “term”:

pred(succ(0) + succ(0)).

According to the signature of NATPRED, succ(0) + succ(0) is a term of sort Nat;
it is not a term of sort NzNat in spite of the fact that its value is non-zero. In the
term algebra, pred applies only to terms of sort NzNat; thus the application of pred
to succ(0) + succ(0) is not defined. One way of getting around this problem might
be to add additional operators to the signature of NATPRED:

spec NATPRED = sorts NzNat < Nat
ops ...
__+ __:NzNat x Nat — NzNat
__+ __:Nat x NzNat — NzNat
__X __:NzNat x NzNat — NzNat

Then succ(0) + succ(0) is a term of sort NzNat, as desired. Unfortunately, this sig-
nature is not regular. (Exercise: Why not? What can be done to make it regular?)

An alternative is to use a so-called retract, an additional operation for converting
from a sort to one of its subsorts:

spec NATPRED = sorts NzNatr < Nat
ops ...

r:Nat — NzNat

Vm,n: Nat,k: NzNat

.r(k)=k

Now, the term pred(r(succ(0) + succ(0))) is well formed, and is equal to succ(0)
in all models of NATPRED. In the words of [GM92], inserting the retract r into
pred(r(succ(0) + succ(0))) gives it “the benefit of the doubt”, and the term is “vin-
dicated” by the fact that it is equal to a term that does not contain r. The term

90 2 Simple equational specifications

pred(r(0)) is also well formed, but in the initial model of NATPRED this term is
equal only to other terms containing the retract r, and can thus be regarded as an
error message. The use of retracts (which can be inserted automatically) is well
behaved under certain conditions on order-sorted presentations [GM92].

Another version of NATPRED is obtained by using an error supersort for the
codomain of pred rather than a subsort for its domain:

spec NATPRED = sorts Nat < Nat?
ops 0:Nat
succ: Nat — Nat
pred: Nat — Nat?
__+__:Nat X Nat — Nat
__X __:Nat X Nat — Nat

Vm,n: Nat
o pred(succ(n)) =n
eO+tn=n
o succ(m)+n = succ(m+n)
eOxn=0

o succ(m) xn=(mxn)+n

The sort Nat? may be thought of as Nat extended by the addition of an error value
corresponding to pred(0).

Here we have the same problem with ill-formed terms as before; an example
is the term succ(pred(succ(0))). Again, retracts solve the problem. In this case, the
required retract is the operation r: Nat? — Nat, defined by the axiom Vn:Nate r(n) =
n. a

Exercise 2.7.54. Try to view the error algebra approach presented in Section 2.7.3
as a special case of order-sorted algebra. a

2.7.6 Other options

The previous sections have mentioned only a few of the ways in which the standard
framework can be improved to make it more suitable for particular kinds of applica-
tions. A great many other variations are possible; a few of these are sketched below.

Example 2.7.55 (First-order predicate logic). Signatures may be modified to en-
able them to include (typed) predicate names in addition to operation names,
e.g. __<__:Nat x Nat. Atomic formulae are then formed by applying predicates
to terms; in first-order predicate logic with equality, the predicate __=__:5 X s is
implicitly available for any sort s. Formulae are built from atomic formulae using
logical connectives and quantifiers. Algebras are modified to include relations on
their carriers to interpret predicate names; the interpretation of the built-in equal-
ity predicate (if available) may be forced to be the underlying equality on values,

2.7 Fiddling with the definitions 91

or it may merely be required to be a congruence relation. Homomorphisms are re-
quired to respect predicates as well as operations. The satisfaction of a sentence (a
formula without free variables) by an algebra is as in first-order logic. See Exam-
ple 4.1.12 for details of the version of first-order predicate logic with equality we
will use. Presentations involving predicates and first-order axioms are appropriate
for the specification of programs in logic programming languages such as Prolog,
where the Horn clause fragment of first-order logic is used for writing the programs
themselves. Note that such presentations may have no models at all, but even if they
have some models, they may have no initial models (see Example 2.7.11) or no final
models (see Exercise 2.7.14), or even no reachable models. (Exercise: Give a spec-
ification with first-order axioms having some models but no reachable model.) O

Example 2.7.56 (Higher-order functions). Higher-order functions (taking func-
tions as parameters and/or returning functions as results) can be accommodated by
interpreting certain sort names as (subsets of) function spaces. Given a set S of
(base) sorts, let S be the closure of S under formation of function types: S is the
smallest set such that S C S~ and for all s1,...,5,,5s €S, 5| X -+ X5, > s ES.
Then a higher-order signature X is a pair (S,Q) where Q is an S~ -indexed
set of operation names. This determines an ordinary signature X~ comprised of
the sort names S~ and the operation names in Q together with operation names
apply: (51 X <+ X sy = §) X 8] X === X s, — s for every sy,...,s,,5 € S~. Note
that, except for the various instances of apply, all the operations in X~ are con-
stants, albeit possibly of “functional” sort. A higher-order X-algebra is just an
ordinary (total) X~ -algebra, and analogously for the definitions of higher-order
X-homomorphism, reachable higher-order X-algebra, higher-order X-term, higher-
order X-equation, satisfaction of a higher-order X-equation by a higher-order X-
algebra, and higher-order presentation. A higher-order X-algebra A is extensional if
for all sorts 51 x -+ x5, — s € S~ and values f,g € |Al, x...xs,—s» f = & Whenever
apply,(f,ai,...,an) = apply,(g,ai,...,a,) for all a; € |Als,,...,a, € |Al;,. Any
extensional higher-order algebra is isomorphic to an (extensional) algebra A, where
every carrier |Ay, x...xs,—ss 1S a subset of the function space |A[s, X -+ X |A[s, = |A[s
and all the operations apply, are the usual function application. A higher-order X-
algebra A is a model of a presentation (X,&) if A =5 &, A is extensional, and A
is reachable. The reachability requirement (no junk) means that |A[s, x...xs,—s Will
almost never be the full function space |A[s, X --- X |As, — |Als: only the functions
that are denotable by ground terms will be present in |Aly, x...xs,—s. Higher-order
(equational) presentations always have initial models [MTWS88]. ad

Example 2.7.57 (Polymorphic types). Standard ML [Pau96] and some other pro-
gramming languages define polymorphic types such as a 1ist (instances of which
include bool 1ist and (bool list)list) and polymorphic values of those types,
such as head:Vore 0t 1ist — o (which is then applicable to values of types such as
bool list and (bool 1list)list, yielding results of types bool and bool 1ist,
respectively). To specify such types and functions, signatures are modified to con-
tain type constructors in place of sort names; for example, 1ist is a unary type
constructor and bool is a nullary type constructor. Terms built using these type

92 2 Simple equational specifications

constructors and type variables (such as o above) are the polymorphic types of
the signature. The set £ of operation names is then indexed by non-empty se-
quences of polymorphic types, where f € £, , means f: VEV(t;)U...UFV(t,)U
FV(t)et; X --- X t, — t. There are various choices for algebras over such signatures.
Perhaps the most straightforward choice is to require each algebra A to incorporate a
(single-sorted) algebra of carriers Carr(A), having sets interpreting types as values
and with an operation to interpret each type constructor. Then, for each operation
f € &y, .4, and for each instantiation of type variables i:V — |Carr(A)|, A has to
provide a function fy ;:i*(t;) x - -+ x i (t,) — i*(¢). Various conditions may be im-
posed to ensure that the interpretation of polymorphic operations is parametric in
the sense of [Str67], by requiring f4 ; and f s to be appropriately related for differ-
ent type variable instantiations i,i’; see Exercise 3.4.40 for a hint in this direction.
Another choice would be to interpret each type as the set of equivalence classes of
a partial equivalence relation on a model of the untyped A-calculus [BC88]. Ax-
ioms contain (universal) quantifiers for type variables in addition to quantifiers for
ordinary variables, as in System F [Gir89]; alternatively, type variable quantification
may be left implicit, as in Extended ML [KST97]. a

Example 2.7.58 (Non-deterministic functions). Non-deterministic functions may
be handled by interpreting operation names in algebras as relations, or equivalently
as set-valued functions. Homomorphisms are required to preserve possible values
of functions: for any homomorphism 4:A — B and operation f:sy X --- X s, —
s, if a is a possible value of f4(ai,...,a,) then hg(a) is a possible value of
f8(hg,(a1),...,hs,(an)). Universally quantified inclusions between sets of possible
values may be used as axioms: ¢ C ' means that every possible value of ¢ is a possi-
ble value of ¢’ 0

Example 2.7.59 (Recursive definitions). Following [Sco76], partial functions may
be specified as least solutions of recursive equations, where “least” is with respect to
an ordering on the space of functions of a given type. To accommodate this, we can
use continuous algebras, i.e. ordinary (total) X-algebras with carriers that are com-
plete partially ordered sets (so-called cpos) and with operation names interpreted as
continuous functions on these sets. See Example 3.3.14. The “bottom” element _L
of the carrier for a sort, if it exists, represents the completely undefined value of that
sort. The order on carriers induces an order on (continuous) functions in the usual
fashion. A homomorphism between continuous algebras is required to be continu-
ous as a function between cpos. It is possible to define a language of axioms that
allows direct reference to least upper bounds of chains (see Example 4.1.22), and/or
to the order relation itself. Such techniques may also be used to specify infinite data
types such as streams. O

2.8 Bibliographical remarks 93

2.8 Bibliographical remarks

Much of the material presented here is well known, at least in its single-sorted
version, in universal algebra as a branch of mathematics. Standard references are
[Grd79] and [Coh65]. We approach this material from the direction of computer
science — see [Wec92] and [MT92] — and present the fundamentals of equa-
tional specifications as developed in the 1970s ([Zil74], [Gut75], [GTW76]); see
also [EMS85] for an extended monograph-style presentation.

The simplest and most limited form of a specification is a “bare” signature,
and this is what is used to characterise classes of algebras (program modules)
in modularisation systems for programming languages — see, e.g., Standard ML
[MTHMO7], [Pau96], where such characterisations are in fact called signatures, type
classes in Haskell [Pey03] and concepts in C++ [C++09]. Presentations correspond
to Extended ML signatures [ST85] and to C++ concepts containing axioms.

The first appearance of the Satisfaction Lemma (Lemma 2.1.8) in the algebraic
specification literature was in [BG80], echoing the semantic consequences of the
definition of (theory) interpretations in logic [End72]. This fundamental link be-
tween syntax and semantics will become one of the cornerstones of later develop-
ment starting in Chapter 4.

One topic that is only touched upon here (see, e.g., Theorem 2.2.10) is the ex-
pressive power of specifications. See [BT87] for a comprehensive survey of what is
known about the expressive power of the framework presented in this chapter. The
main theorem is the one mentioned at the beginning of Section 2.7.

We make a distinction between presentations and theories that is not present in
some other work. This distinction surfaces in the definition of theory morphisms
(Definition 2.3.11). For two presentations (not necessarily theories) (X,&) and
(X',&"), [Gan83] takes a signature morphism o: X — X’ to be a specification mor-
phism 0:(X,&) — (X',&") if (&) C &'. Such a o is referred to as an “axiom-
preserving theory morphism” in [Mes89]. Exercise 2.3.15 shows that this is not
equivalent to our definition of theory morphism between the theories presented by
those presentations. Another possibility is to require ¢ to map only the ground equa-
tions in & to equations in Cly/ (&), as in [Ehr82]. These alternative definitions seem
unsatisfactory since they make little or no sense on the level of models, in contrast
to the relationship between theory and model levels for theory morphisms given by
Proposition 2.3.13. We will later (Definition 5.5.1) define specification morphisms,
as a generalisation of morphisms between presentations, relying on this relationship.

The many-sorted equational calculus is presented in [GM85] together with a
proof that it is sound and complete. This builds on the standard equational calculus
[Bir35], but the modifications needed to deal with empty carriers in the many-sorted
context came as a surprise at the time. Our choice of rules in Section 2.4 is different
from this standard version but the two systems are equivalent (Exercise 2.4.14) and
the proofs of soundness and completeness are analogous.

The initial algebra approach to specification (Section 2.5) is the classical one. It
originated with the seminal paper [GTW76], and was further developed by Hartmut
Ehrig and his group; see [EM85] for a comprehensive account.

94 2 Simple equational specifications

Example 2.5.24 and Exercise 2.5.25 point at useful ways to make inductive
proofs easier by providing derived induction rule schemes, as possible, for instance,
in the logics of Larch [GH93] and CASL [Mos04] and their proof support systems
(LP [GG89] and HETS [MMLO7], respectively); see also Chapter 6 of [Far92].

The proof of the incompleteness theorem for initial semantics (Theorem 2.5.26)
from [MS85] follows [Nou81] where it was used to show that the equational calcu-
lus with a specific induction rule scheme is not complete. An alternative to adding
induction rules to the equational calculus is to restrict attention to so-called -
complete presentations; these are presentations (X,&’) for which the equational
calculus itself yields all of the X-equations that hold in initial models of (X,&’)
[Hee86]. Then the problem becomes one of finding an w-complete presentation
corresponding to a given presentation. By the incompleteness theorem, this is not
always possible.

There is a substantial body of theory on term rewriting systems; Section 2.6 is
only the tip of the iceberg. For much more on the topic, and for the details of the
Knuth-Bendix completion algorithm [KB70] that have been omitted in Section 2.6,
see [DJ90], [Klo92], [BN98], [Kir99] and [Ter03]. See [KM8&7] or [DJ90] for a
discussion of proof by consistency, which originated with [Mus80]. Like most work
in this area, all these restrict attention to the single-sorted case. See [EM85] for a
treatment of the many-sorted case, up to the soundness and completeness theorems
for conversion, without our simplifying assumption (cf. Exercise 2.6.11).

In the case of reachable and final semantics, it is usual to look at reachable or
final extensions of algebras (alternative terminology: hierarchical specifications),
rather than at the reachable or final interpretation of a completed specification. See
[BDP"79] or [WB82] for reachable semantics, and [GGM76] or [Wan79] for fi-
nal semantics. Under appropriate conditions, the reachable models of a presentation
form a complete lattice, with the initial model at one extreme and the final model
at the other; see [GGM76] and [BWP84]. For such hierarchical specifications, an
incompleteness theorem that is even stronger than Theorem 2.5.26 may be proved:
no sound proof system can derive all ground equational consequences of such spec-
ifications; see [MS85].

The first attempt to specify errors by distinguishing error values from OK values
was [Gog78]. More details of the approach outlined in Section 2.7.3 can be found in
[GDLES84]. The final semantics of error presentations is discussed in [Gog85]. See
[BBC86] for an alternative approach which is able to deal with examples like the
one discussed in Exercise 2.7.29.

More details of the approach to partial algebras outlined in Section 2.7.4 can
be found in [BW82b]. Weak X-homomorphisms are called total X-homomorphisms
there. Alternative approaches to the specification of partial algebras are presented in
[Rei87] and [Kre87], and more recently in [Mos04]. See [Bur86] for a comprehen-
sive analysis of the various alternative definitions of the basic notions.

See [GM92], further refined in [Mes09], for more on the approach to order-
sorted algebra in Section 2.7.5. Alternative approaches include [Gog84], [Poi90]
and [Smo86], which is sometimes referred to as “universal” order-sorted algebra
to distinguish it from “overloaded” order-sorted algebra as presented here. A uni-

2.8 Bibliographical remarks 95

versal order-sorted algebra contains a single universe of values, where a sort cor-
responds to a subset of the universe and each operation name identifies a (single)
function on the universe. A compromise is in rewriting logic [Mes92] as imple-
mented in Maude [CDET02]. See [Mo0s93] and [GD94a] for surveys comparing the
different approaches. [GD94a] discusses how some of the definitions and results
in Section 2.7.5 can be generalised by dropping or weakening the monotonicity
requirements on order-sorted signatures and order-sorted algebras. Yet a different
approach to subsorting is taken in CASL [Mos04] where subsort coercions may be
arbitrary injective functions rather than merely inclusions.

First-order predicate logic has been used as a framework for algebraic specifica-
tion in various approaches; see for instance CIP-L [BBB"85] and CASL [Mos04].
See [Poi86], [MTWS88], [Mei92] and [Qia93] for different approaches to the alge-
braic specification of higher-order functions. Frameworks that cater for the spec-
ification of polymorphic types and functions are described in [Mos89], [MSS90]
and [KST97]. See [Nip86] for more on algebras with non-deterministic operations;
for a different approach using relation algebra, see [BS93]. See [WM97] for a
comprehensive overview. Soundness and completeness of term rewriting for non-
deterministic specifications is studied in [Hus92]. Continuous algebras and the use
of Scott-style domain-theoretic techniques in algebraic specification were first dis-
cussed in [GTWW77]. See [Sch86] or [GS90] for much more on domain theory
itself. Although these and other extensions to the standard framework have been ex-
plored separately, the few attempts that have been made to combine such extensions
(see, e.g., [AC89] and [Mos04]) have tended to reveal new problems.

2 Springer
http://www.springer.com/978-3-642-17335-6

Foundations of Algebraic Specification and Formal
Software Development

sannella, D.; Tarlecki, A

2012, XV, 584 p., Hardcover

ISBN: 978-3-642-17335-6

	Chapter 2 Simple equational specifications

	2.1 Equations
	2.2 Flat specifications
	2.3 Theories
	2.4 Equational calculus
	2.5 Initial models
	2.6 Term rewriting
	2.7 Fiddling with the definitions
	2.7.1 Conditional equations
	2.7.2 Reachable semantics
	2.7.3 Dealing with partial functions: error algebras
	2.7.4 Dealing with partial functions: partial algebras
	2.7.5 Partial functions: order-sorted algebras
	2.7.6 Other options

	2.8 Bibliographical remarks

