Preface

As its title promises, this book provides foundations for software specification and
formal software development from the perspective of work on algebraic specifica-
tion. It concentrates on developing basic concepts and studying their fundamental
properties rather than on demonstrating how these concepts may be used in the prac-
tice of software construction, which is a separate topic.

The foundations are built on a solid mathematical basis, using elements of uni-
versal algebra, category theory and logic. This mathematical toolbox provides a
convenient language for precisely formulating the concepts involved in software
specification and development. Once formally defined, these notions become sub-
ject to mathematical investigation in their own right. The interplay between mathe-
matics and software engineering yields results that are mathematically interesting,
conceptually revealing, and practically useful, as we try to show.

Some of the key questions that we address are: What is a specification? What
does a specification mean? When does a software system satisfy a specification?
When does a specification guarantee a property that it does not state explicitly? How
does one prove this? How are specifications structured? How does the structure of
specifications relate to the modular structure of software systems? When does one
specification correctly refine another specification? How does one prove correctness
of refinement steps? When can refinement steps be composed? What is the role of
information hiding? We offer answers that are simple, elegant and general while at
the same time reflecting software engineering principles.

The theory we present has its origins in work on algebraic specifications starting
in the early 1970s. We depart from and go far beyond this starting point in order to
overcome its limitations, retaining two prominent characteristics.

The first is the use of many-sorted algebras consisting of a collection of sets of
data values together with functions over those sets, or similar structures, as models
of software systems. This level of abstraction fits with the view that the correctness
of the input/output behaviour of a software system takes precedence over all its other
properties. Certain fundamental software engineering concepts, such as information
hiding, have direct counterparts on the level of such models.

vii



viii Preface

The second is the use of logical axioms, usually in a logical system in which
equality has a prominent role, to describe the properties that the functions are re-
quired to satisfy. This property-oriented approach allows the use of formal systems
of rules to reason about specifications and the relationship between specifications
and software systems. Still, the theory we present is semantics-oriented, regarding
models as representations of reality. The level of syntax and its manipulation, in-
cluding axioms and formal proof rules, merely provide convenient means of dealing
with properties of (classes of) such models.

Our primary source of software engineering intuition is the relatively simple
world of first-order functional programming, and in particular functional program-
ming with modules as in Standard ML. It is simpler than most other programming
paradigms, it offers the most straightforward fit with the kinds of models we use,
and it provides syntax (“functors”) that directly supports a methodology of software
development by stepwise refinement. Even though some aspects of more elaborate
programming paradigms are not directly reflected, the fundamental concepts we
study are universal and are relevant in such contexts as well.

This book contains five kinds of material.

The requisite mathematical underpinnings:
Chapters 1 and 3 are devoted to the basic concepts of universal algebra and cate-
gory theory, respectively. This material finds application in many different areas
of theoretical computer science and these chapters may be independently used
for teaching these subjects. Our aim is to provide a generally accessible sum-
mary rather than an expository introduction. We omit many standard concepts
and results that are not needed for our purposes and include refinements to clas-
sical universal algebra that are required for its use in modelling software. Most
of the proofs are left to the reader as exercises.

Traditional algebraic specifications:
Chapter 2 presents the standard material that forms the basis of work on algebraic
specifications. From the point of view of an algebraist, much of this would be
viewed as part of universal algebra. Additionally, Section 2.7 explores some of
the ways in which these basics may be modified to cope with different aspects
of software systems. Again, this chapter is a summary rather than an expository
introduction, and many proofs are omitted.

Elements of the theory of institutions:
In Chapter 4 we introduce the notion of an institution, developed as a formalisa-
tion of the concept of a logical system. This provides a suitable basis for a general
theory of formal software specification and development. Chapter 10 contains
some more advanced developments in the theory of institutions.

Formal specification and development:
Chapters 5-8 constitute the core of this book. Chapter 5 develops a theory of
specification in an arbitrary institution. Special attention is paid to the issue of
structure in specifications. Chapter 6 is devoted to the topic of parameterisation,
both of algebras and of specifications themselves. Chapter 7 presents a theory of
formal software development by stepwise refinement of specifications. Chapter 8



Preface ix

introduces the concept of behavioural equivalence and studies its role in software
specification and development.

Proof methods:
Chapter 9 complements the model-theoretic picture from the previous chapters
by giving the corresponding proof methods, including calculi for proving conse-
quences of specifications and correctness of refinement steps.

The dependency between chapters and sections is more or less linear, except that
Chapter 10 does not depend on Chapter 9. This dependency is not at all strict. This
is particularly relevant to Chapter 3 on category theory: anyone who is familiar with
the concepts of category, functor and pushout may omit this chapter, returning to
it if necessary to follow some of the details of later chapters. On first reading one
may safely omit the following sections, which are peripheral to the main topic of the
book or contain particularly advanced or speculative material: 2.6, 2.7, 3.5 except
for3.5.1,4.1.2,4.4.2,45,6.3,6.4,6.5,8.2.3, 8.5.3,9.5, 9.6 and Chapter 10.

This book is self-contained, although mathematical maturity and some acquain-
tance with the problems of software engineering would be an advantage. In the
mathematical material, we assume a very basic knowledge of set theory (set, mem-
bership, Cartesian product, function, etc. — see for instance [Hal70]), but we recall
all of the set-theoretic notation we use in Section 1.1. Likewise, we assume a basic
knowledge of the notation and concepts of first-order logic and proof calculi; see for
instance [End72]. In the examples that directly relate to programming, we assume
some acquaintance with simple concepts of functional programming. No advanced
features are used and so these examples should be self-explanatory to anyone with
experience using a programming language with types and recursion.

In an attempt to give a complete treatment of the topics covered without going on
at much greater length, quite a few important results are relegated to exercises with
the details left for the reader to fill in. Fairly detailed hints are provided in many
cases, and in the subsequent text there is no dependence on details of the solutions
that are not explicitly given in these hints.

This book is primarily a monograph, with researchers and advanced students as
its target audience. Even though it is not intended as a textbook, we have success-
fully used some parts of it for teaching, as follows:

Universal algebra and category theory:
A one-semester course based on Chapters 1 and 3.
Basic algebraic specifications:
A one-semester course for undergraduates based on Chapters 1 and 2.
Advanced algebraic specifications:
An advanced course that follows on from the one above based on Chapters 4-7.
Institutions:
A graduate course with follow-up seminar on abstract model theory based on
most of Chapter 4 and parts of Chapter 10.

The material in this book has roots in the work of the entire algebraic specifica-
tion community. The basis for the core chapters is our own research papers, which
are here expanded, unified and taken further. We attempt to indicate the origins of



X Preface

the most important concepts and results, and to provide appropriate bibliographi-
cal references and pointers to further reading, in the final section of each chapter.
The literature on algebraic specification and related topics is vast, and we make no
claim of completeness. We apologize in advance for possible omissions and mis-
attributions.

Acknowledgements

All of this material has been used in some form in courses at the University of
Edinburgh, the University of Warsaw, and elsewhere, including summer schools and
industrially oriented training courses. We are grateful to all of our students in these
courses for their attention and feedback.

This book was written while we were employed by the University of Edinburgh,
the University of Warsaw, and the Institute of Computer Science of the Polish
Academy of Sciences. We are grateful to our colleagues there for numerous dis-
cussions and for the atmosphere and facilities which supported our work. The un-
derlying research and travel was partly supported by grants from the British Council,
the Committee for Scientific Research (Poland), the Engineering and Physical Sci-
ences Research Council (UK), the European Commission, the Ministry of Science
and Higher Education (Poland), the Scottish Informatics and Computer Science Al-
liance and the Wolfson Foundation.

We are grateful to the entire algebraic specification community, which has pro-
vided much intellectual stimulation and feedback over the years. We will not attempt
to list the numerous members of that community who have been particularly influ-
ential on our thinking, but we give special credit to our closest collaborators on
these topics, and in particular to Michel Bidoit, Till Mossakowski and Martin Wirs-
ing. Our Ph.D. students contributed to the development of our ideas on some of the
topics here, and we particularly acknowledge the contributions of David Aspinall,
Tomasz Borzyszkowski, Jordi Farrés-Casals and Wiestaw Pawlowski.

We are grateful for discussion and helpful comments on the material in this book
and the research on which it is based. In addition to the people mentioned above, we
would like to acknowledge Jifi Adamek, Jorge Adriano Branco Aires, Thorsten Al-
tenkirch, Egidio Astesiano, Hubert Baumeister, Jan Bergstra, Pascal Bernard, Gilles
Bernot, Didier Bert, Julian Bradfield, Victoria Cengarle, Maura Cerioli, Rocco De
Nicola, Rdzvan Diaconescu, Luis Dominguez, Hans-Dieter Ehrich, Hartmut Ehrig,
John Fitzgerald, Michael Fourman, Harald Ganzinger, Marie-Claude Gaudel, Leslie
Ann Goldberg, Joseph Goguen, Jo Erskine Hannay, Robert Harley, Bob Harper,
Rolf Hennicker, Claudio Hermida, Piotr Hoffman, Martin Hofmann, Furio Honsell,
CIiff Jones, Jan Jiirjens, Shin-ya Katsumata, Ed Kazmierczak, Yoshiki Kinoshita,
Spyros Komninos, Bernd Krieg-Briickner, Stawomir Lasota, Jacek Leszczylowski,
John Longley, David MacQueen, Tom Maibaum, Lambert Meertens, José Meseguer,
Robin Milner, Eugenio Moggi, Bernhard Mdller, Brian Monahan, Peter Mosses,
Tobias Nipkow, Fernando Orejas, Marius Petria, Gordon Plotkin, Axel Poigné,



Preface xi

John Power, Horst Reichel, Grigore Rosu, David Rydeheard, Oliver Schoett, Lutz
Schréder, Douglas Smith, Stefan Sokotowski, Thomas Streicher, Eric Wagner, Lin-
coln Wallen and Marek Zawadowski. We apologize for any omissions. We are grate-
ful to Stefan Kahrs, Bartek Klin and Till Mossakowski for their thoughtful and de-
tailed comments on a nearly final version which led to many improvements, to Mihai
Codescu for helpfully checking examples for errors, to Ronan Nugent of Springer
and to Springer’s copyeditor.

Finally, we would like to express our very special appreciation to Rod Burstall
and Andrzej Blikle, our teachers, supervisors, and friends, who introduced us to this
exciting area, brought us to scientific maturity, and generously supported us in our
early careers.

Edinburgh and Warsaw, Don Sannella
September 2011 Andrzej Tarlecki






2 Springer
http://www.springer.com/978-3-642-17335-6

Foundations of Algebraic Specification and Formal
Software Development

sannella, D.; Tarlecki, A

2012, XV, 584 p., Hardcover

ISBN: 978-3-642-17335-6



	Preface



