Preface

Compilers for programming languages should translate source-language programs
correctly into target-language programs, often programs of a machine language.
But not only that; they should often generate target-machine code that is as effi-
cient as possible. This book deals with this problem, namely the methods to
improve the efficiency of target programs by a compiler.

The history of this particular subarea of compilation dates back to the early days
of computer science. In the 1950s, a team at IBM led by John Backus implemented
a first compiler for the programming language FORTRAN. The target machine
was the IBM 704, which was, according to today’s standards, an incredibly small
and incredibly slow machine. This motivated the team to think about a translation
that would efficiently exploit the very modest machine resources. This was the
birth of “optimizing compilers”.

FORTRAN is an imperative programming language designed for numerical
computations. It offers arrays as data structures to store mathematical objects such
as vectors and matrices, and it offers loops to formulate iterative algorithms on
these objects. Arrays in FORTRAN, as well as in ALGOL 60, are very close to the
mathematical objects that are to be stored in them.

The descriptional comfort enjoyed by the numerical analyst was at odds with
the requirement of run-time efficiency of generated target programs. Several
sources for this clash were recognized, and methods to deal with them were
discovered. Elements of a multidimensional array are selected through sequences
of integer-valued expressions, which may lead to complex and expensive com-
putations. Some numerical computations use the same or similar index expressions
at different places in the program. Translating them naively may lead to repeatedly
computing the same values. Loops often step through arrays with a constant
increment or decrement. This may allow us to improve the efficiency by com-
puting the next address using the address used in the last step instead of computing
the address anew. By now, it should be clear that arrays and loops represent many
challenges if the compiler is to improve a program’s efficiency compared to a
straightforward translation.



vi Preface

Already the first FORTRAN compiler implemented several efficiency
improving program transformations, called optimizing transformations. They
should, however, be carefully applied. Otherwise, they would change the
semantics of the program. Most such transformations have applicability condi-
tions, which when satisfied guarantee the preservation of the semantics. These
conditions, in general, depend on nonlocal properties of the program, which have
to be determined by a static analysis of the program performed by the compiler.

This led to the development of data-flow analysis. This name was probably
chosen to express that it determines the flow of properties of program variables
through programs. The underlying theory was developed in the 1970s when the
semantics of programming languages had been put on a solid mathematical basis.
Two doctoral dissertations had the greatest impact on this field; they were written
by Gary A. Kildall (1972) and by Patrick Cousot (1978). Kildall clarified the
lattice-theoretic foundations of data-flow analysis. Cousot established the relation
between the semantics of a programming language and static analyses of programs
written in this language. He therefore called such a semantics-based program
analysis abstract interpretation. This relation to the language semantics allows for
a correctness proof of static analyses and even for the design of analyses that are
correct by construction. Static program analysis in this book always means sound
static analysis. This means that the results of such a static analysis can be trusted.
A property of a program determined by a static analysis holds for all executions of
the program.

The origins of data-flow analysis and abstract interpretation thus lie in the area
of compilation. However, static analysis has emancipated itself from its origins and
has become an important verification method. Static analyses are routinely used in
industry to prove safety properties of programs such as the absence of run-time
errors. Soundness of the analyses is mandatory here as well. If a sound static
analysis determines that a certain run-time error will never occur at a program
point, this holds for all executions of the program. However, it may be that a
certain run-time error can never happen at a program point, but the analysis is
unable to determine this fact. Such analyses thus are sound, but may be incom-
plete. This is in contrast with bug-chasing static analysis, which may fail to detect
some errors and may warn about errors that will never occur. These analyses may
be unsound and incomplete.

Static analyses are also used to prove partial correctness of programs and to
check synchronization properties of concurrent programs. Finally, they are used to
determine execution-time bounds for embedded real-time systems. Static analyses
have become an indispensable tool for the development of reliable software.

This book treats the compilation phase that attempts to improve the efficiency
of programs by semantics-preserving transformations. It introduces the necessary
theory of static program analysis and describes in a precise way both particular
static analyses and program transformations. The basis for both is a simple pro-
gramming language, for which an operational semantics is presented.

The volume Wilhelm and Seidl: Compiler Design: Virtual Machines treats
several programming paradigms. This volume, therefore, describes analyses and



Preface vii

transformations for imperative and functional programs. Functional languages are
based on the A-calculus and are equipped with a highly developed theory of
program transformation.

Several colleagues and students contributed to the improvement of this book.
We would particularly like to mention Jorg Herter and Iskren Chernev, who
carefully read a draft of this translation and pointed out quite a number of
problems.

We wish the reader an enjoyable and profitable reading.

Miinchen and Saarbriicken, November 2011 Helmut Seidl
Reinhard Wilhelm
Sebastian Hack



2 Springer
http://www.springer.com/978-3-642-17547-3

Compiler Design

Analysis and Transformation
Seidl, H.; Wilhelm, R.; Hack, S,
2012, X, 177 p., Hardcowver
ISBN: @78-3-642-17547-3



