Chapter 2
Dynamics of Open Classical Systems

2.1 Introduction

Traditionally, in classical mechanics conservative forces derivable from interaction
potentials—and therefore dependent on particle positions—have received much more
attention than dissipative or damping ones. The latter have been postulated to follow
apower law of the velocity, to be dependent on accelerations or even to be nonlocal in
space and time. However, the corresponding nonconservative systems, i.e., systems
that lose energy as motion takes place, are ubiquitous in Nature. Therefore, despite
of dealing with them is not exempt from difficulties, they are becoming more and
more attractive from a theoretical viewpoint in recent years. Nowadays classical
dissipation constitutes a very active field of research. For example, in a relatively
recent monograph, Razavy [1] surveys the very extensive literature on the subject,
paying special attention to the quantization of simple, solvable classical systems.
Open classical systems are usually defined as those where the system of interest
is surrounded by an environment. When the environment is constituted by many
degrees of freedom, characterized by a certain temperature (a measure of its internal
energy), it is called a bath (heat bath) or reservoir. In this sense, open systems can
also be defined as systems exchanging or dissipating energy with another one. The
dissipative forces leading to such energy transfers can be derived from a conservative
many-body problem. In this case, the full conservative system is typically split up
into two interacting parts or subsystems: the subsystem of interest or dissipating
system and the heat bath. Because the bath is usually an extended system with many
degrees of freedom, according to its definition, energy will not flow equally in both
directions. Eventually the system relaxes, losing its energy as time goes on. Hence,
dissipation is seen as an irreversible process. This fact is in apparent contradiction
with the time-symmetry exhibited by the equations of motion of classical mechanics.
To understand it, one has to consider that the concept of irreversibility is related to
the so-called Poincaré recurrence time, which is extremely large for an extended
system and, therefore, any process will appear to be irreversible. Of course, relaxation
processes may also display recurrences if energy flows in both directions, which
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48 2 Dynamics of Open Classical Systems

usually happens when the environment has a few degrees of freedom. If bath noise
or fluctuations influence importantly the dynamics of the dissipative system, then
stochasticity will play a fundamental role. In this Chapter, only white noise will
be considered, for which the noise autocorrelation function is governed by a Dirac
8-function. This is also called a Markovian regimen. Detailed discussions of the
action of colored noise on dynamical systems can be found in [2], for example.

In this context, space—time correlation functions (as defined in Sect. 1.4.2) play
a fundamental role since they are measurable quantities. These functions provide
a rather complete information about the decay of spontaneous thermal fluctua-
tions through thermodynamic averages of the product of two dynamical variables.
Different theoretical approaches have been developed for their calculation at finite
wavenumbers and frequencies. These approaches range from continuum descrip-
tion (very low wavenumbers and frequencies) in terms of hydrodynamic equations
to molecular dynamics simulations; in between, molecular hydrodynamic descrip-
tions are usually preferred. Irreversible time-dependent nonequilibrium properties are
very often analyzed within the so-called linear response theory, where systems are
supposed to be close to equilibrium. The cornerstone of this theory is the fluctuation—
dissipation theorem [3] and one of its important consequences: Onsager’s regression
hypothesis. As has already been mentioned in Chap. 1, this hypothesis states that
the relaxation of macroscopic nonequilibrium perturbations is also governed by the
regression law of spontaneous microscopic fluctuations in systems at equilibrium. A
direct evaluation of such correlation functions is a very difficult task when dealing
with many-body system. Thus, the most general formalism starts with the Liou-
ville equation for a dynamical variable—in general, depending on all the system
coordinates and momenta. Then, by means of the projection-operator technique, one
reaches a generalized Langevin equation for such a dynamical variable. This equation
is given in terms of a random force and its autocorrelation or memory function (some-
times it is also called delayed function). A similar equation can also be obtained for
its normalized space—time autocorrelation function without the random force term,
known as the equation of the memory function. Modelling memory functions is a very
standard procedure to obtain correlation functions. Nonetheless, there are other alter-
native, well-known approaches to calculate correlation functions, such as the kinetic
theory based on the linearization of the Boltzmann equation (in phase space), the so-
called mode-coupling theory, or the short-time (sum rules) and long-time behavior
(transport coefficients). A detailed presentation and discussion of these interesting
and important topics, which can be found in the more specialized literature [4—6],
are out of the scope of this monograph.

In dissipative dynamics, there are several oscillator models considered para-
digmatic, which can describe phenomenologically many elementary classical and
quantum processes. This is the case, for example, of the damped and driven harmonic
oscillator, typically considered in applications involving linear damping. This oscil-
lator obeys a differential equation of motion in configuration space given by

G+Yq+wiqg=FQ), 2.1)
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where w is the natural or harmonic frequency of the oscillator, Y is the friction
parameter and F(¢) is the force acting on it. Analogously, there is the so-called
parametric driven harmonic oscillator, which arises originally from the study of
electric circuits. This oscillator is described by the differential equation

G+Y(1)§ + (g =0, 2.2)

where Y and w( depend only on time and not on the state of the oscillator. In general,
the dependence on time is assumed to be periodic with the same period. Moreover, an
extradriving force, F (t),can also be added. By assuming Ohmic damping, or constant
friction, and substituting the position ¢ by ge™?/? into (2.2), the damping can be
formally removed. This yields the equation of motion of an undamped oscillator
evolving under the action of a modified potential,

G+ [wg(t) - v2/4] g=0. 2.3)

For periodic forces or functions, Floquet’s theorem can be applied to this second-
order differential equation to find the corresponding periodic solutions (for certain
cases, some of them become unstable). Mathieu’s oscillator is a special case of
this oscillator, where w(z)(t) = a)(z) + € cos(£2t). This oscillator has been used to
interpret several experiments. For example, parametric resonances take place when
the external excitation frequency of a given parameter is equal to twice the oscillator
natural frequency.

Among the different nonlinear differential equations describing the motion of
a classical system, the so-called van der Pol and Duffing equations play a special
role. The van der Pol equation is a second order differential equation original from
self-sustained electric circuits that displays nonlinear damping. In one-dimension,
its general form reads as

FHYO? -y +y=F@), (2.4)

with ¥ and « real. In a similar vein, the Duffing equation describes the damping
motion of an oscillator subject to the influence of a nonharmonic force (Hooke’s law
is not obeyed). This equation, given by

y—i-Y)'f—i-ay—i-,Bf = Acos(wt + ¢), (2.5)

with ¥, &, and f real, leads to chaotic dynamics. These important topics, nonlinear
damping [1] or chaotic dissipative motion [7] are also out of the scope of this mono-
graph.

The literature about the four oscillator models mentioned above and their applica-
tions is very extensive. The reader interested in a more detailed analysis is addressed
to any standard textbook dealing with linear and nonlinear dynamical systems. This
Chapter focuses on a general and simple introduction to dissipative and stochastic
dynamics in classical mechanics, with the purpose of supplying the means for a better
understanding of the dynamics of open quantum systems later on in Chap.5.
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2.2 Dissipative Dynamics

Forces are usually assumed as conservative and derivable from interaction poten-
tials. As it was shown in Chap. 1, the canonical formulations of classical mechanics
for conservative systems are essentially the Lagrangian, Hamiltonian and Hamilton—
Jacobi formulations. These formalisms have been developed and extended to find
quantum analogues of conservative systems. However, for nonconservative systems
this extension is much more troublesome. One of the most important issues in analyt-
ical dynamics is the so-called inverse problem, i.e., the problem of determining the
Lagrangian and Hamiltonian functions from the equations of motion (see Sect. 1.2.1).
This problem has been widely studied due to the non-uniqueness implicit in those
formulations. The conditions for the existence of a Lagrangian function are called
the Helmholtz conditions, which provide a way to construct Lagrangians. However,
not all of them are acceptable because of the violation of some physical require-
ment. Moreover, when the number of degrees of freedom is equal or greater than
two, not always a Lagrangian can be found for a given classical system. The connec-
tion between invariance or symmetry properties and conserved quantities is given
by Nother’s theorem [8]. This theorem allows to determine constants of motion, if
they exist, from the equations of motion in those cases where the problem cannot
be formulated in terms of the variational principle. This issue becomes critical when
dealing with dissipation, for dissipative systems cannot always be described by means
of a Lagrangian or a Hamiltonian. Hence finding an appropriate quantum description
for these systems is not exempt from difficulties and controversy.

Even when not all forces acting on a system can be derived from a potential
function, the Lagrange equations (1.3) can still be written [8] as

aL d oL
— — ——=0;, i=12,...,N, (2.6)
dq;  dt dq;

where the Lagrangian L contains the potential of the conservative forces and Q;
represents the remaining forces. The simplest way to include dissipation within
the Lagrangian formulation is by adding the so-called dissipation function to the
Lagrange equations,

0F
0= 30 (2.7
qi

This idea, due to Rayleigh, is based on considering that the gradient of Q; with
respect to the velocity just gives the dissipative force. In order to include nonlinear
damping forces, this Rayleigh function has been generalized by Lur’e [1]. Dissipative
dynamics can be considered by following different routes, which will be briefly
analyzed below.
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2.2.1 Effective Hamiltonians. The Caldirola—Kanai Model

One of the simpler ways to incorporate environment effects is by considering time-
dependent Lagrangian and/or Hamiltonian functions, thus avoiding to deal explicitly
with the environment degrees of freedom. This approach allows to preserve the
canonical formalism, which can be a good starting point to find out the quantum
analogue of the corresponding dissipative dynamics.

The paradigm of the dissipative dynamics is the damped harmonic oscillator
model, where the damping force is linear with the velocity. In a one-dimensional
configuration space, its equation of motion is (for m = 1)

G+Vq+alqg=0, 2.8)

where Y is the damping constant or friction. Physically, this equation describes a
classical dissipative system losing energy at a constant rate Y as time increases. The
Hamiltonian model associated with this simple system is the so-called Caldirola—
Kanai (CK) Hamiltonian [1, 9, 10],

2
Hek = éie—yf + Vg, 2.9)
m

which was initially considered for a particle with time-dependent mass. In this Hamil-
tonian,

1
Vig) = Emwgqyz (2.10)

is the potential for a harmonic oscillator with frequency wp and mass m. As shown
below, this Hamiltonian has also been considered extensively for damping motion.
The corresponding Lagrangian is

1 1
Lok = (quz - Ema)éqz) eVl (2.11)

As mentioned above, different Hamiltonians and Lagrangians from those given
respectively by (2.9) and (2.11) may also lead to the same equation of motion (2.8) in
configuration space. Actually, the correct equation of motion in phase space cannot
be obtained from the CK Hamiltonian.

From (2.9), the associated CK Hamilton—Jacobi equation now reads as

S 1 (85

2
1
s = -Vt - 2 2 VIZO' 2.12
ot ¥ om Bq) ¢ Tapmende 12)
Following the usual procedure of separation of variables (see Sect. 1.2.2), S can be

expressed as
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S(q: 1) = W(q) — at. (2.13)

After some algebraic manipulations, one obtains the solution of (2.8),

q(t) = ,/2;“2(”/2 sinfo (1 + )1, (2.14)
maw

where 8 = 9S/0a and the oscillation frequency is

®=,lwj——. (2.15)

In the case of a charged particle moving in an external electromagnetic field and
subject to a conservative force, the Lorentz force can be added to the equation of
motion. Alternatively, using the principle of minimal coupling [1], the canonical
momentum can be replaced by a momentum involving the vector potential—adding
to the corresponding Hamiltonian a term with the scalar potential. For conservative
systems, since H represents the total energy of the particle both formulations lead to
the same result. However, for dissipative systems, such as the problem of radiation
damping, the minimum coupling scenario does not apply, for it does not lead to the
correct equation of motion. On the other hand, the classical equation of motion for
a harmonically bound electron coupled to an electromagnetic field gives rise to the
classical theory of line widths. As mentioned above, other very well-known models
can also be found in the literature, such as the driven damped oscillator, Raleigh’s
oscillator or the variable mass oscillator.

The previous examples are all formulated in real space. However, the discussion
can be extended to a complex coordinate formulation. In this sense, the so-called
Dekker Hamiltonian [11] plays a special role. From the damped harmonic oscillator,
complex coordinates are introduced according to the change of variable

1
g:ﬁ[p—l—(;—/—iw)q]. (2.16)

Then, given the Lagrangian

L=§[§S—E§]—(w—7)§f, (2.17)

the complex Hamiltonian that arises from it reads as
. Y
H=- lw+§ &, (2.18)

wherer = dL/ 9. In terms of the physical (real-valued) variables, this Hamiltonian
can also be expressed as
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(2.19)

SIS

1 Y 1 y?
Heop2yY Yo YN 2 .
P +2(pq+qp)+2(w+4)q i

2.2.2 Lagrangians for Dissipative Systems
and Diffusion Equations

An alternative way to tackle the problem of the Lagrangian formulation for dissipative
systems is as follows. Consider the equation of motion (2.8) for the damped harmonic
oscillator. As mentioned above, in principle this equation cannot be derived from
any Lagrangian, since there is no stationary solution. In order to find out a suitable
Lagrangian, one can assume that the energy lost by the system goes into another
system, namely a mirror—image system, which absorbs it [12]. That is, if the energy
of the oscillator described by (2.8) is lost at a rate V, it will be gained at the same rate
(with negative friction, — V) by the mirror—image system, here denoted by ¢. This
implies a zero total energy balance and, more importantly, that stationary (extremal)
solutions for the larger system can be found. Thus, consider the Lagrangian describing
these coupled systems is

L=m4q = 5mv(@q —49) - maqq, (2.20)

where m is the system mass. Applying variations [13] with respect to g and ¢, one
obtains (2.8) as well as its homologous for g,

G§—Yq+wig=0. (2.21)

By further proceeding, it is possible to extract the Hamiltonian equations of motion.
Thus, applying the expression corresponding to the calculation of generalized
momenta from Lagrangian mechanics (see Chap. 1),

oL | d
— = = g — -vt/2 2 —Yt/2 =
p= 0 mq Zqu me T (e q) , (2.22a)
aL 1 d
P=e = mg — Smyq =me "2 (e—”ﬂq) . (2.22b)

Taking into account the functional form displayed by the last equalities in each
equation, a new set of generalized coordinates and momenta can be defined,

Qze_yt/zq, Pze_yt/zp, Qze_yt/zq, PEe_yt/zﬁ, (2.23)

such that (2.22) become
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P=m0, P=mo. (2.24)
These relations somehow show the energetic balance in the full system described
by the Lagrangian (2.20), where the energy loss due to dissipation in the system

of interest is balanced with an energy increase, at the same rate, in its image. The
associated Hamiltonian is then given by

. _ = Pla 1 _ -
H=pj+pqg—L=">+5VGp—qp)+ mw?qq, (2.25)

where w is given by (2.15). With this change of variables, the Hamiltonian equations
of motion now read as

. p 1
g=——-Yq, (2.262)
m 2
. 1
p=-mw'q— 5 YP. (2.26b)
- )4 1 _
q=—+ =Yg, (2.26¢)
m 2
1
p=-—-mwg+ S VP (2.26d)

In these equations, the intertwining between coordinates is very apparent—in the
pairs (g, p) and (g, p). This intertwining eventually leads to the system energy
dissipation and its absorption by the image system. This can also be noticed
from the eigenvalues of the matrix associated with the system of equations (2.26),
when the latter as expressed in symplectic notation. These eigenvalues are N
—Y/2+wand AE=vy /2 + w, where A% describes the system damping and Af the
image-system energy absorption (at the same rate that the system losses it).

The mirror—image method thus allows to apply the variational techniques to dissi-
pative problems, since a Lagrangian density can be defined for them. In other words,
whenever one deals with dissipative problems with a gradual energy loss at a constant
rate and there is no knowledge on the bath dynamics (neither it is necessary), this
technique can be used to derive the corresponding equations of motion. This is the
case, for example, of the heat equation, which describes the time-evolution of temper-
ature (heat distribution) in a certain space region. In this case, one can construct a
Lagrangian density for this diffusion equation [12], which reads as

L L i W N
L= (w o wa:) DV -V, (2.27)

where  represents the density of the diffusing heat (1 represents the mirror—image
of ¥r) and D is the so-called diffusion constant or diffusion coefficient. Proceeding as
before, one finds the Euler-Lagrange equations
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DV%y = %, (2.28a)
ot
25
DV = ——=, (2.28b)

where (2.28a) is the heat equation and (2.28b) is an equation describing the absorption
of the heat flux leaving the system. Equation (2.28a) can also be regarded as the
diffusion equation with constant D for a swarm of identical, noninteracting particles.
In this case, ¥ = P is the probability density function describing the position
of one of such particles, which move pursuing random trajectories. This type of
motion is called Brownian motion. If all particles start at fo = 0 and rp = 0 (with

q =r = (x, Y, 7)), the subsequent time-evolution of the ensemble will be described
(see Sect.2.3.2) by

3/2 )
P(r,t):( ) e TT/4DE (2.29)

47 Dt

2.2.3 The Many-Body Problem

Dissipative forces can also be derivable from conservative many-body problems. In
general, any system of N interacting particles can be split up into two interacting
parts or subsystems, S7 and S>. This splitting is introduced on purpose to analyze the
time-evolution of one of these subsystems, say S, while the other one (S, in this
case) is regarded to play the role of an environment. If both subsystems have a few
degrees of freedom, the energy exchange goes in both directions, from S; to S, and
vice versa, as seen in Sect. 1.5.1. However, if one of them has a very large number
of degrees of freedom, say S>, and its dynamics becomes rather complex, the energy
will only flow in one direction, from S; to S>. The dynamics of S; then becomes
dissipative, and the corresponding force is determined by the nature of the coupling
with the extended system S;. For example, well-known models exhibiting this type
of dynamics are [1]:

e The Schrodinger chain, formed by an infinite number of mass points coupled by
elastic springs. Here the decay law of any of its constituents is non-exponential.

* The Rubin model, where a massive particle is coupled to a semi-infinite chain of
oscillators.

e The dynamics of a nonuniform chain (different masses and elastic spring
couplings), where the decay law for a given particle is exponential.

A special case arises when a collection of harmonic oscillators is analyzed, all
of them linearly coupled to a given system, e.g., a particle or a harmonic oscillator.
For example, the van Kampen model describes an electron harmonically coupled to
an electromagnetic field expressed in terms of confined waves in a large but finite
sphere. Another example is Sollfrey’s model, which describes an oscillator coupled
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to a string of finite or infinite length. Among these models, the most celebrated one
is the Ullersma Hamiltonian model [14-17],

2

1
2M + V() +Z( + Smiofq; +Klq,q) (2.30)

where k; stands for the system-environment coupling coefficients. Usually, it is
assumed that the masses of all oscillators are equal. At ¢+ = 0, all of them are at
rest at their equilibrium positions. The formal solution for each g; is

. t
qi(1) = —ﬁ/ sinfw; (t —1')]q(t")dt’, (2.31)
wi Jo
while the equation of motion for g reads as
.. aV ! 4 / /
g+ 50 + Kt —1t)q@)dt =0. (2.32)
q 0

In the latter equation, the kernel K (¢ — ¢’) has the general form

N 2
K —1) =3 “Csinfor(c — 1)1, (2.33)
wi

i=1

although other different forms can also be envisaged, for example, K(r — t') =
2y38(¢t — '), which is widely used. Thus, by extending to infinity the upper limit of
the integral in (2.32) and assuming that V(g) is harmonic, this equation reduces to
the damped harmonic oscillator equation of motion (2.8). In this particular case, the
Hamiltonian (2.30) becomes a quadratic function of the coordinates and momenta.
As is well known, this type of Hamiltonian can be diagonalized exactly by means of
a canonical transformation. The resulting Hamiltonian is also harmonic and consists
of N + 1 independent oscillators with renormalized frequencies or normal mode
frequencies [1].

Another interesting case arises when V(g) describes a potential barrier, so that only
tunneling allows a particle to pass through. In classical mechanics the momentum
becomes imaginary and therefore an imaginary time formulation for the particle
motion can be used. The corresponding Lagrangian (Euclidean Lagrangian) is
expressed as

72

q2 s i .
L=L 1y A
>+ (q)+j§ 5

where the time derivatives are taken with respect to the imaginary time 7 = it (Wick
rotation). Now, the classical dynamics occurs in the inverted potential, with the
equation of motion for ¢ being

1
2 ,‘1] +qu]q) (2.34)
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A% oo
j—— +/ Kt —1t)q()dt =0, (2.35)

g  J-
where the explicit form of the kernel is

N2
Kr—t)==> L@l Tl (2.36)

2w;
j=t "

2.3 Stochastic Dynamics

As mentioned at the beginning of Sect. 1.3, when dealing with many-body systems
described by Hamiltonian functions like (1.38), dynamics may exhibit stochastic
features. This is a “coarse-grained” effect arising when one only focuses on the
dynamics of the system of interest, neglecting details about the environment
dynamics. At present there are high performance numerical techniques (e.g., the
so-called Molecular Dynamics methods [18]), which carry out sophisticated simula-
tions of many degree-of-freedom classical systems. Relatively large sets of Hamil-
tonian or Newtonian coupled differential equations can be solved provided there
is a complete information of the initial conditions for all the degrees of freedom
involved. To some extent, these simulations mimic the own experiment (of course, at
the level of accuracy of the model employed). Indeed, in those cases where no exper-
iment is available, they play the role of an experiment itself. This is a very important
advantage, although there are also some disadvantages. For example, among the
main disadvantages, one finds that in these approaches some physical insight is
unavoidably lost, for statistical methods have to be eventually considered in order
to understand the underlying physics—the study of isolated trajectories in systems
described by a large number of degrees of freedom is useless. This flaw can be
surmounted through the use of some theoretical model devised within the frame-
work of the theory of open classical systems. From this viewpoint, N-body problems
can be replaced by simpler single-body ones, where an effective (phenomenolog-
ical) interaction between the system of interest and the environment is assumed. In
general, the effective interaction is introduced by means of a noise or fluctuating
force coming from the bath and whose intensity is accounted for by a friction coef-
ficient, and typically linear with temperature. The case where the friction coefficient
is constant in space and time, as in (2.8), is called Ohmic friction. The drastic reduc-
tion of dimensionality of the original problem arising when stochastic models are
assumed is very advantageous computationally, since the specific dynamics of the
environment—with dimensions typically much larger than those associated with the
subsystem of interest—is neglected. Furthermore, more importantly, this allows us
to apply analytical statistical treatments to study the subsystem of interest, so that its
dissipation mechanisms can be better characterized and understood.

The stochastization or randomization of a general physical process thus consists of
carrying out a sort of coarse-graining in space and time [3]. The degree of “crudeness”
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required by a stochastization is directly related to the level of accuracy required by
the spatial and temporal measurements of dynamical variables. A stochastic physical
process is called Markovian if its time evolution is determined by the present and
not its past (see AppendixB), losing very quickly any memory of its past. As a
consequence, Markovian laws of motion are first-order differential equations with
respect to time. Delayed effects and nonlocal properties are therefore not taken into
account. The paradigm of stochastic processes is the Brownian motion, i.e., the
seemingly random movement of particles suspended in a fluid, but also, in a more
modern conception, the mathematical model used to describe similar random motions
in other systems [19-21]. The random-walk problem is often considered as a model
for such a motion. Brownian motion is not only Markovian, but also Gaussian,
since the central limit theorem applies for sufficiently long times, at least longer
than the system correlation time, so that the system has lost memory of its initial
conditions. If the number of particles is not too large and the particularities of the
interactions among them can be ignored, Brownian particles are governed by the
standard diffusion equation. The mean time between collisions of Brownian particles
and their surrounding is of the same order of magnitude or even slightly shorter than
the average period of the environment fluctuating force.

There are mainly three ways to introduce stochasticity. First, phenomenologi-
cally, describing Brownian-like motions by means of the standard Langevin equation,
where the system-environment interaction is governed by two parameters: temper-
ature and friction [6, 22]. Second, starting from the Liouville equation, which is
satisfied by any dynamical variable. Within this approach, Fokker—Planck-type equa-
tions can be easily reached. Actually, projection-operator techniques are very often
used to obtain a generalized Langevin equation [4], where its kernel or memory func-
tion also fulfills a given integro-differential equation written in terms of its corre-
sponding time-correlation function [S]. And third, as shown in Sect. 1.2.2, following
the Ullersma model [14-17] or the so-called Caldeira—Leggett Hamiltonian model
[23], the equations of motion can be expressed in terms of a generalized Langevin
equation whenever the oscillators are not assumed to be at rest at ) = 0. The trajecto-
ries issued from solving such equations are called (classical) stochastic trajectories.
Notice that this stochasticity is due to an external noise source, quite different from
the inherent or intrinsic stochasticity related to chaotic dynamics (see Sect. 1.3).

A central issue which is not going to be treated here is the role played by external
noise in nonequilibrium phase transitions, also called noise-induced transitions [24].

2.3.1 Brownian Motion and the Langevin Equation

Stochastic dynamics deals with random or stochastic variables and stochastic
processes (see Appendix B), Brownian motion being a paradigm of this type of
dynamics. This singular motion was formerly described by Ingen-Housz [25] in 1785
as an irregular motion of coal dust on a surface of alcohol—similar conclusions were
drawn by Bywater [26] in 1819—and later on by Brown [27, 28] in 1827 when
studying pollen particles suspended on water. Some of the mathematics behind the
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Brownian motion are already incipient in Thiele’s works on the least-square method
in the 1880s [29]. However, it was not until 1880 when the first stochastic model to
describe the stock option market as a Brownian motion was proposed by Bachelier
[30]. Then, shortly after, independent physical solutions to the problem of Brownian
motion were given by Einstein [31, 32], in 1905, and Smoluchowski [33], in 1906,
who used this type of motion as an indirect proof of the existence of atoms and
molecules. According to Einstein, the MSD of a Brownian particle is proportional
to the first power of time—a result reminiscent of the random-walk problem—, this
being the main feature defining Brownian motion.

For simplicity, a one-dimensional description of Brownian motion is going to
be considered, since the essential physics is well contained in this simple case.
This motion, for example, takes place when a particle is adsorbed on a flat surface.
Due to the fact the particle—surface interaction is zero, no direction is privileged.
Furthermore, this dynamics will be the starting point to discuss simple physical
processes in terms of quantum stochastic trajectories in Volume 2. The equation of
motion describing a Brownian particle of mass m embedded in a fluid, proposed by
Langevin [34] in 1908, is given by

mv = —mYv + mRg (1), (2.37)

or, in the form of a stochastic differential equation, as

mdv = —mYvdt + mdW (t), (2.38)

where dW (t) = Rg(t)dt is a Wiener process [35, 36] (see Appendix B). The right-
hand side of this equation can be split up into two contributions:

1. A deterministic part, characterized by the friction force —mYv, with Y being the
friction coefficient depending on the fluid viscosity.
2. A random part, governed by the random force m R (t) or Gaussian white noise.

Since the random force is described by a Wiener process, it satisfies the two conditions
of a typical Gaussian white noise:

1. The stochastic process Rg () is Gaussian with zero mean, i.e.,
(Rg(1)) = 0.
2. The force—force time-correlation function is infinitely short, i.e.,
m*(RG(0)RG(v)) = AS(2),

with A being a constant giving the strength of the coupling between particle and
environment and determined by the energy equipartition theorem.
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Fig.2.1 As an example of 12000
Brownian motion driven by a
Gaussian white noise, as in
Fig. 1.2, the classical
stochastic trajectory pursued
by a Na atom is also
displayed here at 7 = 300
K, though on a flat surface
(V = 0). The friction
constantis Y = 0.5ps™
the evolution is up to

t = 20,000 ps

vy (A)

land

4000

x(A)

The validity of this model relies on the fact that the Brownian particle is much
heavier than the environmental ones. This implies that the kicks received by the
particle, although relatively weak, they are very effective when considered in a very
large number—the central limit theorem holds and, therefore, the noise becomes
Gaussian. Actually, these kicks can be seen as coming from thermal fluctuations
of the surroundings. Remember that the detailed time-evolution of the environment
degrees of freedom is not taken into account because their correlations decay faster
than those of the particle (Markovian approximation), as expressed by the property 2.
Thus, they are accounted for by assuming the presence of fluctuations that perturb the
free evolution of the particle. In Fig.2.1 one classical stochastic trajectory driven by
a Gaussian white noise is plotted, which simulates a realization of a two-dimensional
Brownian motion. In order to obtain information about the diffusion process, a swarm
of these trajectories (i.e., a sampling over many Brownian realizations) should be
considered.

The relationship between the friction in the Langevin equation and the fluctua-
tions of the random force is given by the fluctuation—dissipation theorem [3], which
reads as

o]

V() = % | _(BRG(0) 5Rg (1) el (2.39)
where
SRG(t) = Rg(t) — (R (1)) (2.40)

is the fluctuation due to the random noise function Rg () and kg is the Boltzmann
constant. Whenever properties 1 and 2 for a Gaussian white noise apply, the friction
coefficient becomes independent of the frequency
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V) = ———, (2.41)

with 7 being the heat bath temperature. Thus, the frequency spectrum of the friction
force is flat or white, in the sense that all frequencies contribute equally to it, in
analogy to white light, i.e.,

Y(w) =Y. (2.42)

The strength of the coupling between the Brownian particle and the environment
will be

A = 2mYkgT, (2.43)

and the Gaussian white noise correlation function

2VkpT
m

g6 (1) = (R (0) 8Rg(1)) =

8(7). (2.44)

Physically, this dynamics implies that, at thermal equilibrium, the equipartition
theorem holds.

In general, there exists an interaction between the particle and the surface (for
example, if the surface is corrugated). Thus, (2.37) can be rewritten as

G(t) =—vq@"dt' + F(q(t)) + SR (1), (2.45)

where g represents the particle position and F = —VV is the deterministic force per
mass unit derived from the interaction or external potential, V. The solution of this
equation can be readily obtained by formal integration, to yield

t t
v(t) = vge " + / e VIO F(x(d))dt + / e VISR ()dl,  (2.46a)
0 0

t
q(t)=qo + % (I—e)+ %/0 [1 - e_y(’_’/)]F(q(t’))dt/

1 /
+5 / [1 —e*W*”]SRG(t’)dt’, (2.46b)
0

where vg = v(0) and gg = ¢(0). As can be seen, for R = 0, (2.46) are the formal
solutions of purely deterministic equations of motion. Therefore, without loss of
generality, they can be expressed as

v(t) = vg(t) + v (1), (2.47a)
qt) = qa(t) +qs(1), (2.47b)

where d refers to the deterministic terms of the solutions and s to those associated
with the stochastic force. Nevertheless, note that when § R () # 0 the deterministic
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part will also present some stochastic features due to the evaluation of F(q) along
the trajectory ¢ (¢), which is a stochastic process.

Taking advantage of properties 1 and 2 for a Gaussian white noise, the main
average quantities can be written as (see Appendix B)

(v() = 4(1), (2.48a)
(W2(1)) = D5(0) + (v2(1)), (2.48b)
(g@®) =qu(1), (2.48¢)
(q*(1) = g3() + (g2 (), (2.48d)

where the “barred” magnitudes indicate the respective averages of the deterministic
part of the solution and

!

t r—t
WX(1) = e 2! / dre?V" / ¢'"Gg (1) dr, (2.49a)
0

—t/

r—

(g7 () = i / v [1 — e*WH’)] / ' [1 — e*W*”*’)] Gg (1) dt. (2.49b)
yz 0 -t
The final form of these expressions thus reads as
(W2()) = % (1 _ e*”f) , (2.50a)
2 1 —yn2
@ 0) = 55 [2w Fl-(2—e ) ] (2.50b)

witha = /m/kpT. For example, if V = 0, the system is initially thermalized (i.e.,
it follows a Maxwell-Boltzmann velocity distribution) and has a uniform probability
distribution in positions around g = 0, then vy = 0, 68 =kpT/m, and go = 0. This
leads to

(v(@®)) =0, (2.51a)

w20y = XL, (2.51b)
m

() =0, (2.51c)
_ kgT V)

(g*(0)) =q§+m—y2[2w+l— -1y, 2.51d)

as it was found by Wiener in his description of Brownian motion [35].

From (2.51), two dynamical regimes can be clearly distinguished depending on
the value of vz. For Yt < 1, collision events are rare and the particle shows an almost
free motion with relatively long mean free paths. This is the ballistic or free-diffusion
regime, characterized by the MSD
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(g% () ~ kT 1o (2.52)
m

On the other hand, for Yz > 1, there is no free diffusion, since the effects of the
stochastic force (collisions) are dominant. This is the diffusive regime, where the
MSD is linear with time,

(G2 (1) ~ 2k by, (2.53)
my

This is the so-called FEinstein’s law for diffusion. As can be inferred from (2.53),

by lowering the friction Y acting on the particle, a faster diffusion takes place

(the diffusion coefficient D increases). Transport processes characterized by a MSD

violating Einstein’s law are generically called anomalous transport processes [37]

(see Sect. 1.3.2).

2.3.2 Brownian Motion and the Liouville Equation

Asmentioned above, one can also seek for a statistical description of the dynamics and
study the evolution of (statistical) ensembles of stochastic trajectories. In Sect. 1.4.1,
it was already briefly discussed how classical dynamics generate probability densi-
ties in phase space. This settled down the basis to define statistical ensembles. The
time-evolution of these probability densities is governed by the Liouville equation.
Similarly, the time-evolution of any general dynamical variable A, which is a function
of the phase—space point at any time, is given by an analogous equation,

dA
= _[A. (2.54)
at

In order to describe experimental macroscopic quantities, a coarse graining in time
or time-average of the dynamical variable of interest should be carried out. As seen
in Sect. 1.3.1, if the equations of motion are fully deterministic (as it happens, for
example, in Molecular Dynamics simulations), the cause leading to make time-
averages equivalent to phase—space averages (ergodic hypothesis) and then justifying
the calculation of thermodynamic properties, is the intrinsic dynamical instability or
chaos. However, when talking about transport properties, the key element is the decay
of correlation functions with time, where the Green—Kubo relations constitutes the
ordinary link between Liouvillian dynamics and transport coefficients. Although
ergodicity is an important condition, it is not very useful, since one cannot define a
timescale based only on this property. Again, the intrinsic relaxation times of corre-
lation functions are ruled by the dynamical instability, which also allows to obtain
transport coefficients from it. Time-correlation functions are also of experimental
relevance, since the spectra measured by various spectroscopic techniques are the
power spectra of well-defined dynamical variables. As mentioned in Chap. 1, reso-
nant behavior can be extracted from the complex frequency spectrum of such spectral
functions.
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The evolution of a Brownian particle can be described (in a Cartesian three-
dimensional configuration space) by a dynamical equation [3]

F=v(), (2.55)

where v(¢) is a velocity associated with the particle displacement r(¢). Now, due to the
type of motion, v(¢) is a stochastic process and, therefore, r(¢) will also be a stochastic
process, which is obtained from r(¢) (of course, not in the usual way how the concept
of time-derivative is understood). Thus, consider the microscopic density distribution
function (or, more specifically, the probability density) is p(r, ¢). This quantity gives
the probability that a Brownian particle can be found within a volume element dr of
the configuration space at a time #. By invoking the probability conservation property,
it can be shown that p(r, r) obeys a stochastic Liouville equation,

% — —Lp(r, 1), (2.56)

where the differential operator Lo (r,t) = —V - {v(¢)p(r, 1)} is itself a stochastic
operator because v(¢) is a stochastic process. In the reciprocal k-space, (2.56)
becomes

dp(k, 1)

o = —ik-v(t)p(k, 1), (2.57)

where p(k, t) is the Fourier transform of p(r, t). The solution of (2.57) is readily
obtained to yield

Gk, 1) = j(k, 0)e~ Jokv@)dr’ (2.58)

Since v(#) is a stochastic process, the probability distribution in Fourier space is
given by averaging over all possible paths,

I(k. 1) = (5(k, )k, 0)) oc (e~ Jokviar'y, (2.59)

This is the definition of the characteristic function (see Appendix B) for the stochastic
variable or stochastic trajectory v(¢), also called intermediate scattering function
within the context of diffusion processes [38]. In the same context, the time Fourier
transform of (2.59) is the so-called scattering law or dynamic structure factor (except
for some normalization factor),

S(w, 1) = / e I (k, 1)dt, (2.60)

which is directly related to the observable in diffusion experiments.
Assuming that the position stochastic variable is Gaussian, (2.59) can be reex-
pressed as
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1k, 1) = e K00 [ t—D9@adr 2.61)

where ¢ (¢) is the normalized velocity autocorrelation function and vk stands for the
velocity vector projected along k. According to the discussion above, for the motion
of the physical particle to behave as a Gaussian, Markovian process, a coarse graining
in time should be imposed by taking the long-time limit. Now, if the correlation time
is defined as

Tc =/ ¢(t)dr, (2.62)
0

equation (2.61) is approximated by
I(k, 1) ~ e ¥R ts, (2.63)

with § = k2 fooo ¢ (t)dt. The intermediate scattering function (2.63) is the solution
of the differential equation

31(81;, D _ —K*(v)t 1 (k, 7). (2.64)

If this equation is Fourier-transformed back to the configuration space, one obtains

the standard diffusion equation,
dP(r,t
% = DV?P(r,1). (2.65)

In this equation, P (r, ¢) is the normalized autocorrelation function of the microscopic
number density p(r, t), with initial condition

P(r,0) = 8(r —ro), (2.66)

and D = rc(v]%) is the diffusion coefficient. The solution of the diffusion equation
(2.65) is given by

32
P(r,t) = (4 lDt) e*(rfr0)2/4Df, (2.67)
TT

which means that, as time goes on, the probability distribution gradually broadens,
leading to an irreversible motion.

So far diffusion has been described in the configuration space. Obviously, it also
admits a description in the velocity space or in the phase space. In the velocity space,
the diffusion equation is described by the Fokker—Planck equation [39-41],

dP(v,t kpT
D vy e o+ 2LV P, (2.68)
m
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with Y and D = YkpT /m being the drift and diffusion coefficients, respectively.
The probability density is again sharply peaked at v and, asymptotically in time,
it approaches the stationary Maxwellian distribution at temperature 7. Regarding
the phase—space description, the corresponding diffusion equation is the so-called
Kramers—Chandrasekhar equation [6, 42, 43]. Within a more general context, it can
be shown [44] that all these diffusion equations can be obtained from the reduced
Liouville equation for one particle.

In 1940, Kramers [42] proposed a one-dimensional diffusion model for chemical
reactions based on the motion of a Brownian particle under the action of an external
potential V. In particular, originally V had the form of an asymmetric double well
potential. Within this model, the Langevin equation describing the evolution of the
reaction coordinate reads as

dq = vdt, (2.692)
dv

mdv = — (d— + va) dt +2mYkgT dW (t). (2.69b)
q

Kramers was interested in the escape rate of the particle from a well. Two different
regimes were thus considered for the rate:

1. Strong friction, where the friction coefficient is greater than the barrier frequency
and the rate is limited by a spatial diffusion, decreasing as Y~!.

2. Weak friction, where, on the contrary, the rate is limited by an energy diffusion
process and increases linearly with V.

These two extreme behaviors imply a maximum in between, namely the Kramers
turnover problem [45]. For example, in the strong friction regime, after a time of the
order of Y~! all inertial effects have died out. This means that the left-hand side of
(2.69b) is equal to zero (i.e., dv = 0) and therefore (2.69a) can be approximated by

1 dV 2kpT
dg = ———dt dw (1). 2.70
q v dg + 4/ oy () (2.70)

The corresponding Fokker—Planck or Smoluchowski equation can then be
expressed as

at aq

mya

2
0P(q.1) _ 9 [ 1 dVP( ’t)] 19 [ZkBT

+__
mY

2507 P(q, z)] . 2.71)

In general, solving numerically the Langevin set of equations (2.69) turns out to
be easier at any regime than dealing with partial differential equations, such as the
Fokker—Planck equation (2.71). In general, the Fokker—Planck equation can be solved
as an eigenvalue problem [21]. A quantum and classical theory of surface diffusion
based on Kramers’ theory of activated escape over one-dimensional potential barriers
was developed by Pollak et al. [46—48] and Mel’nikov [49, 50]. Applications to Na
atom diffusion on (corrugated) Cu surfaces can be found in the literature [51-53].
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In this case, the stochastic trajectories issued from the numerical resolution of
Langevin equations similar to the system constituted by (2.69) were used to build
the corresponding intermediate scattering function (2.59) and scattering law (2.60).

2.3.3 The System-plus-Bath Approach

The system-plus-bath approach is perhaps the most successful and useful way to
deal with stochastic dynamics, since it starts from a total system (system-plus-bath)
which is conservative. In the particular case of open quantum systems, it seems to be
the most natural approach. Notice that the passage from the classical system to the
quantum-mechanical one, i.e., the quantization of the classical system, can be done
in a straightforward way, applying different standard methods available in quantum
mechanics (e.g., via quantum-classical correspondence).

Within the system-plus-bath approach, the corresponding dynamics is commonly
described by a total Hamiltonian which is split up into three different parts,

H = Hs + Hp + Hgp, 2.72)

where Hy is the system Hamiltonian, Hp is the bath Hamiltonian, and Hgp is the term
describing the system-bath interaction or coupling. As mentioned above, the system
usually consists of a few degrees of freedom, while the environment is formed by a
huge number of them (even infinity). Moreover, it is reasonable to assume that the
coupling between them is a linear function of the bath coordinates. This property of
linearity is very convenient, since it is then very easy to eliminate the bath coordinates
in an exact way. In this regard, for extensive systems, like a reservoir, it is very
common to assume a set of N harmonic oscillators,

N 7 >
1 Di 22
Hp = 3 Z(—’ +miwiqt ), (2.73)

where g; and p; are the position and momentum of the ith oscillator, and m; and wj its
mass and frequency, respectively (this one-dimensional Hamiltonian can be extended
straightforwardly to three dimensions). Very often, the dissipation mechanism is
independent of the choice of this type of bath.

This kind of approach is widely used to describe stochastic processes where dissi-
pation and damping play a fundamental role. Without loss of generality, consider
the system is formed by only one degree of freedom and its Hamiltonian is
written as

P2

Hg = M + V(0), (2.74)
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where M is the particle mass and V (Q) is an external potential acting on the particle.
The coupling between system and bath is generally expressed as a linear interaction
term with the following expression

N 2
Hsp = Z(mf;z 0% — 2¢iq; Q), (2.75)

i=1 Kt

¢; being the strength of the linear coupling. The classical equations of motion for a
global system described by the total Hamiltonian H, which in the field of condensed
matter physics is known as the Caldeira—Leggett model Hamiltonian [46-48, 54],
leads to a generalized Langevin equation for Q (),

. ! . av
MQ(t)+M/ dt'y(t —thOo) + B(Q) = Rg(1). (2.76)
0
Here, the memory kernel or time-dependent friction reads as
c?
1 = ! it 2.77
Y(0) Z o cos(wit) 2.77)
and the external force Rg (1) as
ci pi(0) .
Ro(t) =— > ¢ 1| 4i(0) + ——Q(0) | cos(w;t) + ———sin(wit) t . (2.78)
i miwl‘ m;wj

Given a suitably defined thermal distribution of initial conditions, denoted by
(Q(0), P(0)) and (g;(0), p;i(0)), the external force is Gaussian distributed with zero
mean, obeying the classical fluctuation—dissipation theorem. The bath or reservoir
at a given temperature 7 is thus a source of noise displaying memory effects. The
friction, in this case, is not a constant, but a time-dependent function. Nonetheless, in
many physical situations, the memory kernel is a §-function of time, which leads to a
constant (Ohmic) friction. Then, as mentioned above, the system dynamics becomes
Markovian, losing track of its past. As can be noticed, the generalized Langevin
equation (2.76) is equivalent to (2.32) when all initial conditions are set to zero (no
temperature) and the kernel (2.77) is similar to (2.33). Moreover, (2.76) reduces to a
standard Langevin equation in the Markovian approximation,

6+ _y0=Ro, (2.79)
90
with R (1) =2VY4(1).

Nonlinear functions in (2.75) can also be envisaged [23]. In such a case, the
open classical system becomes a state-dependent dissipation process and the random
force exhibits multiplicative noise (see Appendix B). This leads to noise-induced
transitions. This situation will not be considered in this monograph, although it is
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worth mentioning that nonlinear environments are the subject of intensive research
at present, since many important physical processes are better described in this way.

Very recently, some of the classical scattering singularities (rainbow, glory and
skipping effects) mentioned in Chap. 1 have been considered under a stochastic view-
point. The corresponding analysis has been carried out for adsorbate diffusion [53]
on surfaces as well as atom-surface scattering [55]. This analysis could be easily
extended to any type of scattering. The main features observed and interpreted in
terms of a stochastic analysis lead to broadenings and shiftings as a function of the
surface temperature. Friction-induced energy loss spectra have also been predicted
in atom-surface scattering [56].

2.4 The Stochastic Hamilton-Jacobi Equation

Even if the overall dynamics observed is conservative, one could consider the
possibility to understand this “regularity” as the result of an underlying stochastic
dynamics. The theory of open classical systems could be then applied to describe this
underlying motion. Specifically, assuming the corresponding motions are Brownian-
like, they could be described in terms of an /16 stochastic differential equation (see
Appendix B). In this case, the associated Itd stochastic equation reads [36,57, 58] as

dr(t) = ay(r,t)dt +bdW(1), (2.80)

where a is the mean forward derivative of the particle position or displacement,
and b accounts for the strength of the stochastic force. The diffusion equation for the
corresponding probability distribution is described by the Fokker—Planck equation

AP (r, 1) b _,
Sarven =—V-lap(r,t)P(r,1)] + ?V P(r,1). (2.81)
Under time-inversion, this Fokker—Planck equation can also be written as

AP (r, 1) b _,
= —V . la_(r,t)P(r,1)] — 7v P(r, 1), (2.82)

where a_ now denotes the mean backward derivative of the particle position.
From the definitions for two mean derivatives, the particle mean derivative is now
defined as

v(r, 1) = % (ay +a_). (2.83)

This allows to express the continuity equation for this process as

AP(r, 1)

57 + V. [vr, )P, )] =0 (2.84)
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after adding the Fokker—Planck equations (2.81) and (2.82). On the other hand, after
substraction of the two Fokker—Planck equations, an additional vector field can be
defined, namely the osmotic velocity,

1 b?
u(r, 1) = 3 (a, —a_) = 7Vln P(r,1), (2.85)
with its time-derivative being
ou _ b2V(v V) — V(v -u) (2.86)
a2 ' ’

It can be shown [36] that a mean acceleration in this kind of processes can also be
defined as

! a( + )+1 \% +l \% b2V2( ). (2.87)
a—=——@a a_ —ay - va_ —a_ - vay — — aL —a_). .
20t 27" 2 T *

Hence, taking into account the definitions given above for the mean velocity (2.83)
and the osmotic velocity (2.86), the time-derivative resulting for v reads as

2
a—V=a—V-VV—i—u~Vu—i—b—Vzu. (2.88)
ot 2

The above elements provide a full general hydrodynamic description of Brownian
motion. For an overall conservative dynamics—i.e., as arisen from a conserva-
tive Markovian diffusion process—, it is assumed that the Brownian particle is
moving in an external potential V (r) and the stochastic mean acceleration is given
asa = —VV(r)/m. Then the time-derivative of the mean velocity field (2.88) can
be expressed as

v 1 b _,

— =——VV({@)—v-Vv+u-Vu+ —V-u (2.89)

at m 2
This equation provides now a complete general description of the hydrodynamics
of Brownian motion under the action of an external potential V. Actually, one can
further proceed. Thus, if the probability density is defined by a scalarfield R(r, ) as

P(r, 1) = *R™0, (2.90)
then the osmotic velocity (2.85) is given by
u(r, 1) = b>°VR(r, 1). (2.91)

Similarly, the velocity field can also be defined in terms of the gradient of another
scalar field S(r, 1),

VS(r, 1)
—

v(r, 1) = (2.92)
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As it can be noticed (see Chap. 1), this equation is analogous to the corresponding
one for (classical) conservative systems, which establishes a relationship between
the particle velocity and its associated action. Taking this into account, (2.84) and
(2.89) can also be rewritten as

AR V2Ss 1
— 4+ —+—VR-VS=0, (2.93a)
ot 2m m
3S  (VS)? mb* Y en
— + +V - —[(VR>+ V?’R]=0. (2.93b)
ot 2m 2

The fields R and S can be determined except for a time-dependent phase. Equa-
tions(2.93) can be regarded as the hydrodynamic formulation of Newtonian
mechanics and constitute respectively the stochastic mechanic counterpart of the
classical continuity and Hamilton—Jacobi equations seen in Chap. 1. Note that (2.93b)
reduces to the classical Hamilton—Jacobi equation (1.15) for » = 0. Furthermore, it
is worth stressing that, within this framework, a conservative diffusion process has
been generated. As will be seen in Chap. 6, similar coupled equations are also found
in Bohmian mechanics.
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