Preface

Trajectory-based formalisms used to describe non-relativistic quantum processes
are being continuously developed. Perhaps with increased emphasis in the last 15
years or so, since dealing with “classical” concepts is very appealing owing to the
physical insight or intuition one gains into the process under study. The three main
theoretical frameworks in use nowadays—apart from classical mechanics—but
with significant advances since their initial formulation are, in chronological order,
the Jeffreys—Wentzel-Kramers—Brillouin (JWKB) approach (1926), the Feynman
path integral approach (1948) based on earlier remarks by Dirac (1935), and the
Bohmian approach (1952) with its roots in the pioneering works of Madelung’s
hydrodynamic formulation of quantum mechanics (1926) and de Broglie’s pilot
wave theory (1927). Since then, many hybrid methods combining classical and
quantum mechanics have been developed, mainly to tackle an accurate description
of many—degrees-of-freedom systems.

The semiclassical JWKB approximation is a short-wavelength description of
quantum mechanics. The idea behind this approach is to build wave functions from
classical trajectories and, in a more pictorial way, to “sew quantum mechanical
flesh onto classical bones”, quoting Berry and Mount (1972). From a mathematical
viewpoint, this treatment is based on asymptotic series. For simple bound systems,
quantization schemes are usually based on the JWKB method, the Bohr-Som-
merfeld quantization rule, or the multidimensional generalization of the latter,
namely the Einstein-Brillouin-Keller quantization rule. Near turning points this
approximation breaks down, giving rise to caustics or coalescence of classical
trajectories. In order to solve this problem, uniform approximations were devel-
oped by linearizing the interaction potential in the vicinity of turning points.
Taking into account this theoretical scheme, one of the processes that has been
more intensively studied is that of tunneling through a barrier. In classically for-
bidden regions, trajectories are analytically continued in the complex plane in
order to account for a quantum problem (for example, tunneling) that has no
classical analog. Furthermore, this approach has also been exploited within
semiclassical scattering, starting with Ford and Wheeler (1959), who explained the
rainbow effect observed in the gas phase. Nonetheless, from a practical point of
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view, it is easier to solve an initial-value problem than a boundary-value one. This
is the reason why real-time propagators are usually based on the so-called initial-
value representation in phase space. Alternatively, a very powerful and elegant
route to the semiclassical approach is Feynman’s path integral, which is another
formulation of quantum mechanics. In this formulation, the time propagator
arising from the integral representation of the Schrodinger equation is written in
terms of a path integral—or sum over classical paths—which is dominated by
those trajectories extremalizing the action. At present, one of the most important
applications of this approach is the calculation of the density matrix for many-
body (or many—degrees-of-freedom) systems—actually, the path-integral Monte
Carlo method used to deal with particle clusters is based on it.

Bohmian mechanics mainly arose as a result of the unsatisfactory interpretation
of standard quantum mechanics, which claimed that the wave function provides
the most general and complete physical information about a quantum system. This
led to a very exciting, never-ending debate focused on the completeness of the
wave function and the quantum theory of measurement. Within Bohmian
mechanics, a quantum system is described by a well-defined (in space and time)
trajectory, namely a quantum or Bohmian trajectory; the evolution of this trajec-
tory is determined by the wave function associated with the system. Quite recently,
a revival of the debate about the role played by this mechanics in quantum physics
can be found in the specialized literature. There are several groups for whom this
theory constitutes the natural framework of quantum mechanics, whereas other
groups consider it as an alternative and exact formulation that enables us to
characterize, interpret and predict quantum processes, standing on equal footing
with the standard theory. The central topic of this monograph is Bohmian
mechanics. This formulation has also received an important impulse over the last
15 years from different communities, which translates into an impressive and
fruitful theoretical development.

At present, there are several books on Bohmian mechanics, which somehow
summarize the trends mentioned above. The Quantum Theory of Motion (1993) by
Holland, The Undivided Universe: an Ontological Interpretation of Quantum
Theory (1993) by Bohm and Hiley, and Bohmsche Mechanik als Grundlage der
Quantenmechanik (2001) by Diirr—with its recently published English’s version,
Bohmian Mechanics (2009), in collaboration with Teufel—mainly deal with the
conceptual grounds and foundations of this theory as well as epistemological
problems. On the other hand, Wyatt’s monograph, Quantum Dynamics with Tra-
Jjectories (2005), tackles a more practical side of this theory, dealing with the
potential application of quantum trajectories in applied problems and stressing
their computational aspect as a means of solving the time-dependent Schrodinger
equation. A collection of chapters published very recently in two monographs,
Quantum Trajectories (2010) edited by Chattaraj and Applied Bohmian Mechan-
ics: From Nanoscale Systems to Cosmology (2012) edited by Oriols and Mompart,
give an ample overview of Bohmian mechanics in which the corresponding theory
has been successfully applied. However, in spite of the wide range of applications
within Bohmian mechanics covered by these books, from the foundations to
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computation, its interpretational importance is, somehow, lacking. It is missing in
the sense that one cannot find many applications and discussions of this trajectory-
based viewpoint within the context of realistic quantum phenomena, that are of
broad interest to different scientific communities.

Moreover, explaining the dynamics of quantum phenomena in terms of tra-
jectories has always attracted many physicists and chemists. The interpretations
arising from Bohmian mechanics are very intuitive, powerful, and simpler than
those provided by the standard version of quantum mechanics. Taking this into
account, the main purpose of this monograph, and what justifies its publication is
to provide and promote the interpretational aspects of Bohmian mechanics as an
alternative way of understanding quantum physics and gaining more physical
intuition, in particular, with regard to the visualization of the evolution of indi-
vidual systems (at the same level as Newtonian mechanics with respect to classical
statistical mechanics). Furthermore, and from our own longstanding experience in
the field, Bohmian mechanics can tackle any quantum problem that standard
quantum mechanics does, providing an alternative way of interpreting the phe-
nomenon under analysis. Obviously, the effort invested by many researchers in
standard quantum mechanics completely outweighs that invested in Bohmian
mechanics. However, we think that this situation will be corrected in the near
future owing to the fact that this theory appears in more and more modern quantum
mechanics textbooks at the introductory level (indeed, as John Bell suggested,
quantum mechanics should be studied from a Bohmian perspective in order to
make clear the most striking and strange features of that theory).

With this goal, and in order to be as self-contained as possible, this monograph
has been divided into two volumes. The first volume is focused on the classical and
quantum theoretical background, whereas the second volume is devoted to simple
and basic quantum processes to provide a new and alternative interpretation in
terms of quantum trajectories. The chapters of this first volume, which are intended
to be as self-conatined as possible, are organized as follows.

In Chap. 1, a brief survey of classical mechanics is presented ranging from
trajectories to ensembles of trajectories, paying attention to the dynamics or time
evolution of micro-objects when interacting with other micro-particles or with
some external potential function. Newtonian physics is based on the idea of a first
cause behind the motion of objects. However, perhaps one of the most elegant
ways of rationalizing physical laws arises through the calculus of variations, from
which such laws emerge as a consequence of the application of a variational
principle (in this sense, Appendix A reminds the reader of the essentials of the
calculus of variations for variables and fields). The three main formulations of
classical mechanics, that is, Lagrangian, Hamiltonian, and Hamilton—Jacobi for-
mulations, are briefly set out, since they represent the fundamental building blocks
of any dynamical theory in terms of time or energy as primary parameters. Very
often a first classical approach to a given quantum problem provides us with a
complementary understanding of the corresponding dynamics, which results in a
considerable gain in intuition—in particular, if the phase-space formulation is
used. When dealing with ensembles of trajectories, we expect a natural transition
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from regular to chaotic motion owing to the underlying stochasticity present in
dynamical (Hamiltonian) problems with two or higher dimensions. Furthermore,
the extension to classical statistical mechanics, where the motion is deterministic
but unpredictable, is analyzed in terms of the Liouville equation and a field theory.
Several important aspects of continuum mechanics are very briefly commented on
owing to its basic importance in quantum fluid dynamics.

In Chap. 2, the dynamics of open classical systems are introduced. Open
classical systems are usually defined as those where the system of interest is
surrounded by an environment at a certain temperature (heat bath or reservoir),
exchanging energy in both directions. Strictly speaking real physical systems do
not exist in complete isolation in Nature; all physical systems are open systems
since the interaction with their environment can never be totally neglected. The
mathematics required to understand this dynamics is the theory of probability and
stochastic processes. This theory is briefly described in Appendix B since it plays a
fundamental role in any classical or quantum dynamics. When a “coarse-grained”
description is used, where we focus only on the dynamics of the system of interest,
neglecting the details of the time evolution of the environment, two types of
mechanics arise naturally: the dissipative and stochastic mechanics. In both types
of mechanics, there are three standard routes to introduce dissipation and/or sto-
chasticiy. First, from a phenomenological viewpoint, empirical equations are
introduced, such as the standard Langevin equation, where a few parameters are
required to describe the system—environment interaction. Second, starting from the
Liouville equation, which is satisfied by any dynamical variable in phase space,
projection operator techniques are applied until a generalized Langevin equation is
finally reached. Third, when the starting point is a conservative many-body
problem (system plus environment is an isolated system), dissipative forces can be
obtained as well as an external stochasticity owing to the fluctuations or noise of
the heat bath. A clear distinction between the two mechanics and some links
between these three different approaches are presented and discussed.

In Chap. 3, some elements of quantum mechanics are presented. Time-inde-
pendent and time-dependent Schrédinger equations are derived from the so-called
Hamiltonian analogy through the calculus of variation together with de Broglie’s
ideas of associating a wavelength with matter particles. Some basic notions of
wave mechanics, current densities, ensemble distributions and density matrix in
phase space are also reviewed. Special emphasis is placed on some approaches to
quantum mechanics in which classical concepts and/or trajectories are the main
ingredients such as the path integral formulation, semiclassical mechanics and, the
eikonal approach.

Chapter 4 is devoted to wave optics in connection to quantum mechanics. The
issues covered in this chapter are almost entirely based on the physics described by
the wave equation. This allows us to understand and offer an alternative optical
perspective of many of the basic elements and concepts found in quantum
mechanics within the context of any wave theory, and not as something purely
specific to quantum physics. According to Ballentine, quantum phenomena can be
illustrated by means of three traits: discreteness, diffraction, and coherence. Thus,
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the chapter is organized in such a way that shows how such features and related
concepts are already present in wave optics, though in a general way. Thus,
starting from the main ingredients of wave optics, namely Maxwell’s equations
and the wave equation, we will move into the superposition or Huygens—Fresnel
principle, very closely connected to the notion of coherence and the appearance of
interference and diffraction phenomena. Regarding discreteness, it is not necessary
to go as far as the photoelectric effect, but we already find it in optical waveguides,
which are the optical analogs of quantum “bound” systems. In order to cover the
full spectrum of phenomena that can be found in quantum mechanics, we also
revisit the Goos—Hdnchen effect or the Hartman effect, which are good examples
related to optical tunneling. Furthermore, a direct link to the language of quantum
mechanics can be established through the hydrodynamical formulation of elec-
tromagnetism, a generalized formulation based on the so-called Riemann—Silber-
Sstein vector.

The dynamics of open quantum systems is briefly treated in Chap. 5. The
system-plus-reservoir model used in the classical context is also followed here in
quantum mechanics, and dissipation and stochasticity are easier to tackle and
understand. Both system and reservoir are in continuous interaction and the
effects—coherence loss or decoherence, population transfer, and/or (system—
environment) energy exchange—arising from that interaction will depend to a
greater or lesser extent on the coupling strength and its intrinsic nature. The system
time-evolution is not unitary and therefore cannot be described in terms of the
Schrodinger equation. In these cases, it is then necessary to resort to statistical
quantum methods invoking, for example, the density matrix and Langevin for-
malisms and/or introducing, in general, quantum stochasticity into the time-evo-
lution equations: the Linblad equation, quantum Langevin-type equations, and so
on. The energy transfer from the system to the environment is termed quantum
relaxation or damping. If there is no chance for the energy to move backwards into
the system, the unidirectional energy flow into the reservoir is then called quantum
dissipation. On short time scales, the distinction between quantum relaxation and
dissipation is obviously unclear. Under certain conditions the duration of the
reservoir correlations is very short compared to the dynamical evolution of the
system. This leads to a total memory loss of the bath dynamics, which gives rise to
a subsequent irreversible loss of coherence and energy (or population) relaxation
in the system. This is called a Markovian regime. Within this regime, the time
evolution of the system depends only on the present state of the system; this is
called a Markovian process. As will be seen, when this happens, the system
dynamics can be characterized by (relatively) simple Markovian master equations,
where one does not need to take into account the reservoir dynamics, and its effects
on the system are described by means of certain operators. In analogy to open
classical systems, there are also three main different approaches to dealing with
quantum dissipative dynamics: (i) effective time-dependent Hamiltonians, (ii) the
nonlinear Schroédinger equation, and (iii) the system-plus-reservoir model within a
conservative scenario. In particular, the so-called stochastic Schrédinger equation,
written in terms of an It6 differential equation, gives rise to quantum trajectories,
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not to be confused with those coming from Bohmian mechanics. Finally, in this
chapter as well as in Appendix B the measurement process is also very briefly
discussed through the introduction of the so-called weak measurement due to
Aharonov, Albert and Vaidman, in distinction to the more standard von Neumann
strong measurement, since observing very weak effects is becoming more and
more important at present.

Chapter 6 can be considered the main chapter of this monograph; to some
extent, the previous chapters have been written for the purpose of providing the
reader, as far as possible, with the background necessary to better understand the
approach developed by David Bohm, nowadays known as Bohmian mechanics. He
essentially based his theory on the assumption that a quantum system consists, at
the same time, of a wave and a particle. The wave evolves according to Schro-
dinger’s equation and the particle moves according to a certain guidance condition
(quantum trajectories), which makes the particle motion dependent on the wave
evolution. Although Bohmian mechanics is usually regarded as a “reinterpreta-
tion” or an alternative picture of standard quantum mechanics, it is also common
to refer to it as a “theory” in order to stress the conceptual difference between the
two approaches to the microscopic world. Bohm’s ideas were applied to different
prototypical models of quantum mechanics during the late 1970s and, particularly,
the 1980s and early 1990s, and the attention paid by the scientific community was
not very great. However, in the last ten years or so, Bohmian mechanics has passed
from being merely a way to formulate a quantum mechanics “without observers”
to become a well-known (and increasingly accepted) theoretical framework used
as a source of new quantum computational methods as well as new quantum
interpretations. This chapter ends by considering open quantum systems from this
point of view.

Finally, Chap. 7 has been organized to take into account a gradual transition
from simple (light) rays to hydrodynamic (photon) trajectories/paths, i.e., from
geometric optics to what we shall denote as hydrodynamic optics. This trajectory-
based description is analyzed for the propagation of plane waves and Young-type
experiments with polarized light, the latter being intimately related to the so-called
Arago-Fresnel laws of diffraction for polarized light. Afterwards, a brief account
on the relation between hydrodynamic optics and the formulation based on the
Riemann-Silberstein vector is given. The reported diffraction pattern for the two-
slit experiment has been very recently inferred and explained in terms of photon
paths from experiment. The weak measurement of an observable (position and/or
momentum) for a quantum system is preselected in an initial state and postselected
by a strong measurement in a final different state. Experiments of this kind have
also led to a direct measurement of the photon quantum wave function. In our
opinion, Bohmian mechanics can again undergo a new revival thanks to these
experiments (where weak measurements are carried out), which can provide
information on quantum trajectories of the underlying dynamics of any quantum
process.

This monograph is the result of more than 15 years working on trajectory-based
formalisms, in particular, on Bohmian mechanics. Concerning citations, we have
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tried to furnish a historical development of the different topics presented here.
However, to provide a selection of the very last references in very active fields is
really difficult. We apologize to those who think they should be cited and are not.
During this long but exciting time, we have benefitted from discussions with many
colleagues from abroad and from Spain. In this sense, we would like to
acknowledge fruitful discussions and collaborations with J. A. Beswick, J.
M. Bofill, F. Borondo, M. Bozié, P. Brumer, J. Campos-Martinez, P. K. Chattaraj,
C. C. Chou, M. Davidovi¢, D. Diirr, E. R. Floyd, X. Giménez, S. Goldstein, T.
Gonzélez-Lezana, B. J. Hiley, B. K. Kendrick, J. Margalef-Roig, B. Poirier, E.
Pollak, O. Roncero, J. S. Sdnchez-Gémez, D. J. Tannor, T. Uzer and R. E. Wyatt.
Also, we would like to thank all members (past and present) of the Departamento
de Fisica Atomica, Molecular y de Agregados of the Instituto de Fisica Funda-
mental (CSIC) in Madrid, where this work has been carried out from its inception,
benefiting support from the projects FIS2007-62006, FIS2010-18132, FIS2010-
22082 and FIS2011-29596-C02-01 from the Ministerio de Ciencia e Innovacién
(Spain), a “Ramén y Cajal” Research Fellowship (A. S. S.), and the COST Action
MP1006 “Fundamental Problems in Quantum Physics”. Special thanks go to
Gerardo Delgado-Barrio and Pablo Villarreal, founding fathers of this department,
for their continuous support of and enthusiasm for our work. Finally, we thank A.
Lahee, our Editor, for her enthusiasm when we proposed the monograph to her, as
well as her patience and for extending —several times— the deadline for finishing
this project.

Madrid, October 2011 Angel S. Sanz
Salvador Miret-Artés
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