
Chapter 22

More on Duality

This final chapter is devoted to duality, the dual variety and the conormal
scheme of an embedded projective variety are given as applications. Reflexiv-
ity and biduality are studied, in particular duality of hyperplane sections and
projections. An application we present here is a very nice theorem of Hefez
and Kleiman. Finally we give a brief presentation of some further results on
duality and reflexivity.

22.1 The Dual Variety and the Conormal Scheme

Let P
N = P(V ) denote projective N -space, V being an N + 1-dimensional

vector space over k. PN∨ = P(V ∗) denotes the dual projective space, whose
k-points are identified with the hyperplanes in P

N :

P
N∨ = {H

∣
∣H ⊂ P

N hyperplane
}

.

Let X ↪→ P
N be a projective, closed subscheme of PN . By definition the dual

variety is the (reduced) closure of the set of hyperplanes which are tangent
to X at some smooth point:

X∨ =

{

H ∈ PN∨
∣
∣
∣
∣

H tangent to X
at a smooth point x ∈X

}

.

The condition in the above definition can be expressed as

H ⊃ TX,x for some x ∈Xsm.

By definition X∨ is reduced, but it need neither be irreducible nor of pure
dimension. While the definition does make sense for non reduced subvarieties
X , the nilpotent components do not contribute to X∨, and in particular
X∨ = ∅ if and only if X has no reduced components.
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To understand X∨ better, we look at the following diagram:

Z(X)⊂ P
N × P

N∨

X ⊂ P
N X∨ ⊂ P

N∨
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Here

Z(X) =

{

(x,H) ∈Xsm × PN∨
∣
∣
∣
∣

H tangent to X
at the smooth point x ∈X

}

.

By definition X∨ is the image of Z(X) under the projection pr2, thus the
morphism λ is induced. Also, pr1 induces a morphism p.

Assume for the moment that X is smooth. Then we have the following
key diagram, where

NX/PN = (IX/PN /I2X/PN )∨

and where i : X ↪→ P
N is the embedding of X into P

N . Moreover, P1(X)
denotes the locally free sheaf of principal parts of X :

0 0
↓ ↓

0→ N∨
X/PN (1)→ i∗Ω1

PN (1)→ Ω1
X(1)→ 0

|| ↓ ↓
0→ N∨

X/PN (1)→ ON+1
X → P1(X)→ 0

↓ ↓
OX(1) = OX(1)

↓ ↓
0 0

(22.1)

The left injective map in the lower exact sequence induces a surjective

ON+1
X −→→NX/PN (−1)

which gives the closed embedding

Z(X) = P(NX/PN (−1)) ↪→ P(ON+1
X ) =X × P

N .

The twist by −1 ensures that the tautological line bundle (i.e., the invertible
sheaf) OP(NX/PN (−1))(1) is the restriction of the invertible sheaf pr∗2(OPN∨(1)).
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We now assume only that X is a reduced, projective scheme of pure di-

mension n. Letting Xsm denote the open subset of X consisting of smooth

points, we have

Z(X) = P(NXsm/PN−Sing(X)(−1)).

Much information about X∨ is contained in the Chow cohomology class

[Z(X)] ∈A∗(PN × P
N∨) =Z[s, t]

where A∗(S) denotes the Chow (cohomology) ring of the smooth, projective

variety S, s = pr∗1([H]), t = pr∗2([H
′]) and H , H ′ denote hyperplanes in P

N

and P
N∨, respectively.

If n= dim(X), then clearly

dim(Z(X)) = n+ (N − n− 1) =N − 1

and hence, since Z(X) maps onto X∨ by λ,

dim(X∨)≤N − 1.

We have the following expression, where the δj(X) are integers for all j:

[Z(X)] = δ0(X)sN t+ δ1(X)sN−1t2 + · · ·+ δn(X)sN−ntn+1

+ δn+1(X)sN−n−1tn+2 + · · ·+ δN−1(X)stN . (22.2)

It follows easily, and will be shown in the next sections, that

Δ= δn+1(X)sN−n−1tn+2 + · · ·+ δN−1(X)stN

is actually equal to zero.



346 22 More on Duality

22.2 Reflexivity and Biduality

Suppose that we construct the basic diagram for X , Z(X) and X∨, but this
time with X∨ instead of X :

Z(X∨)⊂ P
N∨ × P

N∨∨

X∨ ⊂ P
N∨ X∨∨ ⊂ P

N∨∨

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
���

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

p∨ pr1 pr2λ∨

If we make the canonical identification P
N = P

N∨∨, then we have P
N∨ ×

P
N∨∨ ∼= P

N ×P
N∨, where the isomorphism is the canonical one interchanging

the two copies of projective space P
N and P

N∨. Thus we can compare the
subschemes Z(X∨) and Z(X). In the “good” cases these two subschemes are
equal:

Definition 22.1 The embedded, reduced projective variety X ↪→ P
N is said

to be reflexive if

Z(X∨) = Z(X).

If X =X∨∨, then we say that biduality holds for X.

It is clear that reflexivity implies biduality. But the converse is false, for
this there are counterexamples. The following classical result is an important
fact, it implies in particular that reflexivity and hence biduality always holds
in characteristic zero:

Theorem 22.1 The embedded, reduced projective variety X ↪→ P
N is reflexive

if and only if the morphism λ : Z(X)−→X∨ is generically smooth.

For the history of this theorem, as well as modern proof using Lagrangian
geometry, we refer to Kleiman’s article [32]. As a corollary we obtain the
following geometric criterion:

Corollary 22.2 X is reflexive if and only if the contact locus Cont(H,X) with
X of the generic tangent hyperplane H to X is a linear subspace of PN .

Proof of the Corollary Evidently Cont(H,X) = Z(X)h = λ−1(h), where
h is the point of X∨ which corresponds to the tangent hyperplane H .
Thus reflexivity implies that Cont(H,X) equals the fiber λ−1(h) =
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P(NX∨
sm/PN∨−Sing(X∨)(−1))h, provided that H corresponds to a smooth

point h of X∨. Conversely, assume that Cont(H,X) = Z(X)h = λ−1(h) is
linear, hence in particular equidimensional and geometrically regular, for all
h ∈ U where U ⊂ X∨ is an open dense subset. Then making U smaller if
necessary we may assume that λ is flat over U . Hence λ is smooth over U by
standard facts on smooth morphisms, say [18], Chap. III Theorem 10.2. 
�

In the next section we shall give a numerical criterion for reflexivity. At
this point we note the following fact, which was noted in [39]:

Theorem 22.3 (T. Urabe) If X is reflexive, then

δj(X
∨) = δN−1−j(X).

Proof By the identifications above and the assumption of reflexivity it is clear
that

δ0(X)sN t+ · · ·+ δi(X)sN−iti+1 + · · ·

= δ0(X
∨)stN + · · ·+ δi(X

∨)sj+1tN−j + · · ·

The claim is immediate from this. 
�

22.3 Duality of Projective Varieties

If X is smooth, then it is easily seen from diagram (22.1) that we have the
following formulas for the numerical invariants occurring in formula (22.2):

For all i≥ 0, δi(X) =

n∑

j=i

(−1)n−j

(
j + 1
i+ 1

)

deg(cn−j(X)). (22.3)

To prove this, we use a general fact which is referred to as Scott’s Formula:
Let

0 −→ E −→ F −→ G −→ 0

be an exact sequence of locally free sheaves of the finite ranks e, f and g,
respectively, on the (smooth projective) scheme S. Then there is a canonical
closed embedding

P(G) ↪→ P(F)

so that we get a class

[P(G)] ∈A(P(F)) =A(S)[ξF ]
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where ξF ∈A(P(F)) denotes c1(OP(F)(1)). Letting p : P(F)−→ S denote the
canonical projection, we then have Scott’s Formula

[P(G)] =
∑

i≥0

p∗(ce−i(E
∨))ξiF .

A proof of this can be found in [12], p. 61 or in Sect. 2 of the Appendix
to [22]. Now a straightforward computation applying this formula to the
exact sequence on X

0 −→ P1(X)∨ −→ ON+1
X −→ NX/PN (−1) −→ 0

where the Chern classes of P1(X) are computed by means of the exact se-
quence

0 −→ ΩX(1) −→ P1(X)−→ OX(1) −→ 0

yields (22.3).
Formula (22.3) has been generalized to the singular case by R. Piene

in [37]. In fact this paper was an important contribution to the theory of
duality in the presence of singularities, making it possible to understand the
relation between singular Chern- or Segre classes on one hand and the Polar
classes which have the delta–invariants as their degrees, on the other.

Here we confine ourselves to some simple observations, which in certain
situations can be quite useful as we shall see later.

Before we state the result, we recall some background:
Nevertheless, we have some information in the singular case as well, and

in certain situations this can be quite useful, as we shall see later. Before we
state the result, we recall some background:

Let Z denote a smooth, quasi-projective scheme of pure dimension n, em-
bedded as a (locally closed) subscheme of a projective space i : Z ↪→ P

N .
Let Z ⊂ P

N denote the closure of Z in P
N , so Z ⊂ Z is an open subset,

and denote the codimension of S = Z − Z in Z by r. Finally let A∗(Y ) and
A∗(Y ) be the Chow cohomology ring, respectively the Chow homology mod-
ule, of the singular quasi-projective scheme Y , in the sense of Chap. 18 or
Fulton [12]. Recall that A∗(Y ) is a commutative, graded ring with 1, and
A∗(Y ) is a graded module over A∗(Y ). Both multiplications will be denoted
by · or by ∧. We then have the graded homomorphism

ΨY :A∗(Y )−→A∗(Y )

which sends the element α ∈ A∗(Y ) to the element α ∧ [Y ] ∈ A∗(Y ). Since
A∗(Y ) is graded by codimension and A∗(Y ) by dimension, we have

ΨY j :A
j(Y )−→Adim(Y )−j(Y ).

This homomorphism is compatible with the standard properties of the co-
variant pair

(A∗( ),A∗( )),



22.3 Duality of Projective Varieties 349

in particular it is functorial, and whenever Y is smooth, it is an isomorphism
which only introduces a shift in the grading. Finally, the open embedding i
above induces a Gysin map i∗ : A∗(Z) −→ A∗(Z), which fits into the exact
sequence below, where j : S ↪→ Z is the canonical closed embedding:

A∗(S)
j∗−→A∗(Z)

i∗−→A∗(Z)−→ 0.

It follows that for all integers α ≤ n − r − 1 the above maps will induce
isomorphisms

Aα(Z)
≈−→Aα(Z)

≈−→An−α(Z)).

We now take X =X − S, where S = Sing(X), thus X = Z. We make the
following

Definition 22.2 Let X be a projective scheme, of pure dimension n, and
with singular locus S = Sing(X) which is of dimension m. Then for all
α≤ n−m− 1, the Chern class cα(X) ∈Aα(X) is defined as the Chern class
cα(X − S) ∈ Aα(X − S) where Aα(X − S) is identified with Aα(X) by the
isomorphism given above.

We are now ready for a partial extension of (22.3) to the singular case:

Theorem 22.4 Assume that the singular locus of X is of dimension m. Then
the formula (22.3) above holds for all i≥m+ 1.

Remark 22.5 It follows from this that the formula (22.3) holds for all i≥m+1
for any functorial theory of singular Chern-classes which coincides with the
usual Chern-classes in the smooth case.

Proof Let U =X − Sing(X), and let V= P
N − Sing(X). Then U is a closed

subscheme of V, and

p−1(U) = P(NU/V(−1)).

Moreover, we have the exact sequence

0 −→ P1(X)∨|U −→ ON+1
U −→ NU/V(−1) −→ 0.

As in the case when X is smooth, we now proceed by Scott’s Formula,
where as before the Chern classes of P1(X)|U = P1(U) are computed by
means of the exact sequence

0 −→ Ω1
U (1) −→ P1(U)−→ OU (1) −→ 0.

The claim follows from this. 
�

Corollary 22.6 δn(X) is equal to the degree of X , and for j ≥ n+1, δj(X) = 0.
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Proof Immediate from (22.3). 
�

The invariants δj determine the dimension of the dual scheme X∨, and if
X is reflexive, then the degree of X∨ is also given by these invariants: This
was proved by R. Piene in [37].

In the following theorem we give a stronger version of this result, which
gives a numerical criterion for reflexivity.

Theorem 22.7 (i) X∨ is of dimension N − 1− r if

δ0(X) = · · ·= δr−1(X) = 0, δr(X) �= 0.

(ii) With r as in (i), X is reflexive if and only if

δr(X) = deg(X∨).

Proof (i): We have the following sequence of biimplications, where P r
generic

denotes a linear r-space in P
N∨ in general position:

dim(X∨)≤N − 1− r
�

X∨ ∩ P r
generic = ∅
�

Z(X)∩ pr−1
2 (P r

generic) = ∅
�

[Z(X)] · tN−r = δ0s
N tN−r+1 + · · ·+ δr−1s

N−rtN = 0
�

δ0 = · · ·= δr−1 = 0.

(ii): Let P r+1
generic be a linear subspace of PN∨ in general position, as above.

It intersects X∨ in exactly deg(X∨) smooth points. Letting ε denote the
degree of the general fiber of λ, we then have the formula

ε · deg(X∨) = δr(X).

See the definition of f∗([V ]) in Sect. 18.2. In the proof of Theorem 22.9 we
show ε= 1. The claim follows from this, together with Corollary 22.2. 
�

22.4 Duality of Hyperplane Sections and Projections

A basic observation in the study of projective duality is that the operation
of embedding a projective space as a linear subspace of another, is dual to
the operation of projecting a larger space onto a smaller projective space
with a linear center: In order to make this correspondence precise, we have
to resolve a conflict of notation: Namely, if L ↪→ P

N is a linear subspace,
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then the notation L∨ could mean either the dual variety of L considered as
a subvariety of PN , or the dual space of the linear space L itself. Normally
there is no need to distinguish between these two concepts in the notation,
since the situation will be clear from the context. But whenever there is a
possibility of confusion, we shall denote the dual of the projective space L
itself by L∗. We then have the following elementary observation, the proof of
which is immediate:

Proposition 22.8 (i) Let L ↪→ P
N be a linear subspace of dimension r. Then

L∨ ↪→ P
N∨ consists of those hyperplanes in P

N which are tangent to L, i.e.
they contain L.

(ii) Let prL : PN−−→P
N−r−1 be the projection with center in the linear

r-dimensional subspace L. The pullback of a hyperplane in P
N−r+1 yields a

hyperplane in P
N which contains L, thus a point in L∨. This correspondence

is bijective, and establishes an embedding

P
N−r−1∨ ↪→ P

N∨

which identifies P
N−r−1 with L∨.

We next give a simple proof of the theorem below, which is shown in [37].

Theorem 22.9 (R. Piene) Let X be a reduced scheme of pure dimension n.

(1) Assume that X is not a hypersurface in P
N . If prP : PN−−→P

N−1 is a
generic projection with center in the point P , then

δi(X) = δi(prP (X))

for all i = 0, . . . , n.
(2) Let H ⊂ P

N be a generic hyperplane. Then

δi(X ∩H) = δi+1(X)

for all i = 0, . . . , n− 1.

Proof We first show (1). By the proposition we have that in the set up

prP : PN−−→P
N−1

P∨ is identified with P
N−1∨. Under this identification, we find

Z(prP (X)) = (prP × idPN∨)(Z(X))∩ (PN−1 × P
N−1∨).

A proof of this observation is given in Sect. 6 of [26] as Proposition 6.3, (2).
Letting

j : PN−1 × P
N−1∨ ↪→ P

N−1 × P
N∨
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be the canonical embedding, we thus find

ε[Z(prP (X))] = j∗((prP × idPN∨)∗([Z(X)]))

where ε is an integer, we will show shortly that ε = 1. The symbol
(prP × idPN∨)∗ does of course represent an abuse of notation, since prP is
not defined at P . The pushdown is defined by the standard diagram ex-
tended to P

N∨:

˜PN × P
N∨

P
N × P

N∨
P
N−1 × P

N∨

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
���

�
�

�
�

�
�

��

�
�

�
�

�
�

��

πP×id
PN∨ λ×id

PN∨

−−−−−−−− →
prP×id

PN∨

Here πP denotes the blowing up with center P , and λ is the corresponding
bundle map on to P

N−1.
As usual we write

A(PN × P
N∨) =Z[s, t]

where s and t are the pullbacks of the hyperplane classes from P
N and P

N∨,
respectively. Similarly

A(PN × P
N−1∨) =Z[s, t]

A(PN−1 × P
N∨) =Z[s, t]

and

A(PN−1 × P
N−1∨) =Z[s, t].

For i≥ 1 we have prP∗(s
i) = si−1 (where prP∗ is defined in the obvious way

via the blowing up with center P ), and for all i and j

j∗(sitj) = sit
j
.

Thus the expressions

[Z(X)] = δ0(X)sN t+ δ1(X)sN−1t2 + · · ·+ δn(X)sN−ntn+1

and

[Z(prP (X))] = δ0(prP (X))sN−1t+ δ1(prP (X))sN−2t
2

+ · · ·+ δn(prP (X))sN−1−nt
n+1
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immediately yield the claim, since δn(X) = δn(prP (X)) = deg(X) so that
ε= 1.

(2) is shown in an analogous way: Let

iH : PN−1 ↪→ P
N

prH : PN∨−−→P
N−1∨

denote the embedding with image H , and dually the projection with center
H regarded as a point of PN∨. We then have the relation

Z(X ∩H) = (idPN−1 × prH)(Z(X)∩ (PN−1 × P
N∨))

which again is shown in Sect. 6. Here PN−1 is identified with H via iH . Thus

[Z(X ∩H)] = (idPN−1 × prH)∗((iH × idPN∨)∗([Z(X)]).

Now we have

[Z(X ∩H)] = δ0(X ∩H)sN−1t+ δ1(X ∩H)sN−2t
2

+ · · ·+ δn−1(X ∩H)sN−1−(n−1)t
n

and since

(idPN−1 × prH)∗((iH × idPN∨)∗(sutv) = sut
v−1

we also have

(idPN−1 × prH)∗((iH × idPN∨)∗([Z(X)])

= δ1(X)sN−1t+ δ2(X)sN−2t
2
+ · · ·+ δn(X)sN−1−(n−1)t

n

where again a multiplicity ε turns out to be 1 since δn(X) = δn−1(X ∩H) =
deg(X). This gives the claim. 
�

22.5 A Theorem of Hefez-Kleiman

In this section we prove a theorem by Hefez and Kleiman [32] in the following
form:

Theorem 22.10 Let X be a reduced, projective scheme of pure dimension n,
and let r be the integer such that

δ0(X) = · · ·= δr−1(X) = 0, δr(X) �= 0.

Then for all i ∈ [r,n],

δi(X)≥ 1.
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In characteristic zero, this can be strengthened to

δi(X)≥ 2

provided that X is not a linear subspace of PN .

Proof Replacing X by the intersection with an appropriate generic linear
subspace if necessary, we may assume that r = 0, i.e., that X∨ is a hyper-
surface. The claim then amounts to showing the theorem below, which is
classical in spirit, but was first discovered by A. Wallace in [40] (Theorem 1
on p. 7, as well as the lemmas d and e):

Theorem 22.11 (Wallace) If X∨ is a hypersurface in P
N , then (X ∩ H)∨

is a hypersurface in P
N−1∨, provided H is a hyperplane in general position.

More generally, if X is cut by an r-dimensional linear subspace L in general
position, then the dual of the linear section is a hypersurface in L∗ ∼= P

r∨.

Proof We give Wallace’s proof, slightly reformulated: The dual of X ∩H in
P
N∨ is the closure of all points which correspond to hyperplanes H ′ which

contain TX,x ∩H for some smooth point x ∈X . Thus letting T (X,X ∩H)
denote the subvariety of PN∨ which corresponds to (the closure of the set of)
hyperplanes tangent to X at some (smooth) point of X ∩H , we find that the
dual of the hyperplane section in P

N∨ is the cone over T (X,X ∩H). Since
X∨ is a hypersurface by assumption, the map λ is generically finite, thus
T (X,X ∩H) is of codimension 1 in X∨ whenever H is sufficiently general,
hence (X ∩H)∨ in P

N∨ is a hypersurface as well, and a cone with vertex H .
But since the correspondence between points in P

N∨ and points in H∗ =
P
N−1∨ is given by projection with center H ∈ P

N∨, this means that the dual
of (X ∩H)∨ is a hypersurface in P

N−1∨.
Next, assume that the characteristic is zero. Replacing X by its intersec-

tion with a generic linear subspace of PN if necessary, we may assume that
X∨ is a hypersurface. Then cutting X∨ with a generic linear 2-space P2⊂ P

N

and using the duality of the delta-invariants, we have from Piene’s theorem
in the previous section

[Z(X∨ ∩ P
2)] = δ0(X)s2t+ δ1(X)st

2

where s and t ∈A(P2×P
2∨) are the pullbacks of line-classes from P

2 and P
2∨,

respectively. In particular, if X∨ is a hypersurface, then X∨ ∩ P
2 must be

a planar curve, of degree δ0(X) ≥ 2: If it were of degree 1, then it would
be a line, thus X∨ would be linear, hence X would be linear by biduality.
Moreover, δ1(X) is the degree of the curve (X∨ ∩ P

2)∨. Hence we also have
δ1(X)≥ 2. Thus we have shown the claim for i= 0 and 1. To proceed, we cut
X with one hyperplane more and repeat the argument. 
�

A further sharpening is given by the
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Proposition 22.12 Assume that the characteristic of the ground field is zero,
and that X ⊂ P

N is irreducible and is not a hypersurface in some linear
subspace. Then the inequality in the theorem can be strengthened to

δi(X)≥ 3.

Proof By the same argument as in the last part of the proof of the theorem:
Assume that δi(X) = 2 for some i. Then we may assume that i = r = 0, if
necessary after cutting X with an appropriate generic linear subspace of PN .
Thus if P2 is a generic linear subspace of dimension 2, then X∨ ∩ P

2 is an
irreducible curve of degree 2, hence a smooth conic, thus X∨ is either smooth
or a cone of degree 2. But it can not be a cone, as biduality holds and X is
not contained in a hypersurface. Hence X∨ is smooth of degree 2, so X is
also of degree 2. We are thus finished by observing that a variety of degree 2
is necessarily a hypersurface in some linear subspace of the ambient space. 
�

The number r referred to in the theorem above is called the duality defect
of the embedded variety X . The concept is important for the classification
of embedded projective varieties.

But here, with a view into a vast and very interesting field of research, is
where our Royal Road ends.
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