
Chapter 2

Curves in A
2
k and in P

2
k

In this chapter we introduce the first interesting class of planar curves, namely
the conic sections. This leads to a first discussion of singular and non sin-
gular points. Closely tied to these concepts is the notion of the tangent at
a point on a curve. We then move on to a discussion of curves of higher de-
grees, and introduce the concepts of tangent lines, the tangent cone and the
multiplicity of a point on a curve which may have singularities. A number of
important examples of higher order curves are discussed. Elliptic curves are
briefly discussed, this class of curves (which are certainly not ellipses) played
an important role for the fruitful interplay between geometry and function
theory, so central in the pathbreaking work of Niels Henrik Abel.

2.1 Conic Sections

A conic section1 is a curve in the affine plane A
2
k of degree 2, over a field

which we shall assume to be of characteristic �= 2. The general form of the
equation is usually written as

q(x, y) =Ax2 + 2Bxy+Cy2 + 2Dx+ 2Ey+ F = 0.

In [27] these curves are treated with k = R in some detail, and we refer the
reader who is unfamiliar to the basics of this subject to the treatment there,
as a suitable basis for reading the present chapter. In particular, this refer-
ence gives the proof that all such curves can be obtained as the intersection
between a fixed double circular cone and a varying plane, in the case when
k =R.

The non-degenerate conics are the ellipses, the parabolas and the hyper-
bolas. In addition to these, we have the degenerate cases. In the three non-
degenerate cases the equation can be brought on one of the three canonical
forms. We refer to [27] for more information on this.

1We also say conic curve or just a conic.
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In [27] we consider the following problem: There is given 5 distinct points
in A

2
k, (x1, y1), (x2, y2), . . . , (x5, y5). If these points are in sufficiently general

position, then there is a unique, non-degenerate conic curve, in other words a
non-degenerate curve of degree 2, passing through them. The condition that
the points be in sufficiently general position, here amounts to the requirement
that no three of them be collinear. The equation for the conic in question is
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= 0.

2.2 Singular and Non-singular Points

We need the notion of a non-singular point of a plane curve, we return to a
refined treatment of this important concept in Sect. 2.8.

We define the derivative of a polynomial with coefficients form a field k
formally as follows:

Definition 2.1 Let P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 be a polynomial
in x with coefficients from k. We define the derivative of P (x) with respect
to x as

P ′(x) =
dP

dx
= nanx

n−1 + (n− 1)an−1x
n−2 + · · ·+ a1.

If F (x, y,u, . . .) ∈ k[x, y,u, . . .], then the partial derivatives are defined analo-
gously in a formal manner.

The basic properties of derivatives still hold: The derivative of a constant
is zero, the formulas for the derivatives of sums and products of polynomials
hold, as does the chain rule.

In characteristic 0 we still have the Taylor formula in its usual form in
one and several variables, and may proceed as for k = R. In characteristic
p > 0 the procedure is somewhat modified, this is omitted here. All these
observations only apply to polynomials, of course.

We note the following result, which was shown in Sect. 12.7 in [27] for
k =R. It will be given a different proof in Sect. 2.3.

Theorem 2.1 The equation

q(x, y) =Ax2 + 2Bxy+Cy2 + 2Dx+ 2Ey+ F = 0
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yields a non-degenerate conic curve if and only if the following determinantal
criterion is satisfied:
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�= 0.

We now make the following important definition:

Definition 2.2 Let Z be an affine plane curve given by the equation

f(x, y) = 0.

Let (x0, y0) be a point on the curve such that the two partial derivatives do
not both vanish,

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)

�= (0,0).

Such a point is called a non-singular point on the curve. At all non-singular
points we define the tangent line2 by the equation

∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y− y0) = 0.

A point which is not non-singular is called a singular point.

We next turn to the tangents of non-degenerate conics in A
2
k, as well as

the related concepts of pole and polar line.
Let P = (x0, y0) be a point on the non-singular conic curve given by the

equation

q(x, y) =Ax2 + 2Bxy+Cy2 + 2Dx+ 2Ey+ F = 0,

the tangent at P is given by

(Ax0 +By0 +D)(x− x0) + (Bx0 +Cy0 +E)(y− y0) = 0,

which after a short calculation takes the form

Ax0x+B(y0x+ x0y) +Cy0y+D(x+ x0) +E(y+ y0) + F = 0.

This equation is also of interest when the point is not on C. We have the
following result:

2This concept will be explained in more detail in Sect. 2.9.
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Fig. 2.1 The line joining

the two points of tangency

Proposition 2.2 Let P = (x0, y0) be a point and let C be the conic given by
the equation

q(x, y) =Ax2 + 2Bxy+Cy2 + 2Dx+ 2Ey+ F = 0.

There are two tangent lines to C passing through P , coinciding if P is on C.
Let the two points of tangency be Q1 and Q2. Then the line p passing through
Q1 and Q2 is given by the equation

Ax0x+B(y0x+ x0y) +Cy0y+D(x+ x0) +E(y+ y0) + F = 0.

Proof The situation is shown in Fig. 2.1.
Let Q1 = (x1, y1) and Q2 = (x2, y2), then the two tangents in question will

have equations

Ax1x+B(y1x+ x1y) +Cy1y+D(x+ x1) +E(y+ y1) + F = 0,

Ax2x+B(y2x+ x2y) +Cy2y+D(x+ x2) +E(y+ y2) + F = 0.

These lines pass through P = (x0, y0), thus

Ax1x0 +B(y1x0 + x1y0) +Cy1y0 +D(x0 + x1) +E(y0 + y1) + F = 0,

Ax2x0 +B(y2x0 + x2y0) +Cy2y0 +D(x0 + x2) +E(y0 + y2) + F = 0.

But this demonstrates that the line whose equation is given in the assertion of
the proposition, does indeed pass through the two points Q1 and Q2. Hence
the claim follows. ��

Definition 2.3 The point P and the line p in Proposition 2.2 are called the
pole and the polar line corresponding to each other.

In the case when the field k is not algebraically closed, such as when
k =R, we encounter some apparently puzzling phenomena. For example, are
the “conic sections” given by the equations x2 + y2 + 1 = 0 and x2 + y2 = 0
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really curves? The former has no points in A
2
R
, while the latter has only the

origin as a point on it. According to Theorem 2.1 the former is non-degenerate
while the latter is degenerate. An explanation for this apparent paradox is
that we need to consider not only points over k, but also points over the
algebraic closure k in order to understand an algebro-geometric object such
as an affine curve.

Moreover, if we take a point inside an ellipse, then there will be no real
points of tangency, even though we get a well defined polar line using the
equation we have derived in Proposition 2.2. But if we compute the com-
plex points of tangency, we find that corresponding coordinates are complex
conjugates, and we get a real line joining them.

Finally, if we choose the center of the unit circle, say, then the “line” given
by the formula is just 0 = 1, which has no points on it. The explanation for
this is that the polar of the center is the line at infinity. Thus we see here
both the need for computing complex points as well as for considering points
at infinity in order to understand algebraic curves over R.

2.3 Conics in the Projective Plane

We shall now consider the so-called projective closure of the conics in A
2
k. We

substitute

x=
X1

X0
, y =

X2

X0

into the equation of the conic C,

q(x, y) =Ax2 + 2Bxy+Cy2 + 2Dx+ 2Ey+ F = 0,

which yields the following homogeneous equation

Q(X0,X1,X2)

=AX2
1 + 2BX1X2 +CX2

2 + 2DX0X1 + 2EX0X2 + FX2
0 = 0.

Hence we get the equation of a curve C in P
2
k, which we refer to as the

projective closure of C. When intersected with D+(X0) = A
2
k it gives back

the original curve.
We first wish to determine its points at infinity. Those are the points

C ∩ V+(X0). The point (u : v : 0) is in C if

Au2 + 2Buv+Cv2 = 0,

and we immediately get the following information:
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Proposition 2.3 1. C has no real points at infinity if B2 −AC < 0.
2. C has one real point at infinity if B2 −AC = 0.
3. C has two points at infinity if B2 −AC > 0.
Thus 1. corresponds to a possibly degenerate ellipse, 2. to a possibly degen-

erate parabola and 3. to a possibly degenerate hyperbola.

In general, let C be the curve in P
2
k defined by

F (X0,X1,X2) = 0.

Let P = (a0 : a1 : a2) be a point on it. In Chap. 3, Sect. 3.4 we show that the
equation

∂F

∂X0
(a0, a1, a2)X0 +

∂F

∂X1
(a0, a1, a2)X1 +

∂F

∂X2
(a0, a1, a2)X2 = 0

yields the tangent line to C at P , provided that the coefficients involved do
not all vanish.

Definition 2.4 If the partial derivatives involved in the equation above all
vanish at some point on the curve, then the point is said to be a singular
point. If they do not all vanish, the point is called non-singular.

The equation for the tangent to the conic curve in P
2
k given by the equation

Q(X0,X1,X2) = 0 at the point P = (x0, x1, x2) is

(Ax1 +Bx2 +Dx0)X1 + (Bx1 +Cx2 +Ex0)X2

+ (Dx1 +Ex2 + Fx0)X0 = 0

or written on a more appealing form

Ax1X1 +B(x1X2 + x2X1) +Cx2X2

+D(x0X1 + x1X0) +E(x0X2 + x2X0) + Fx0X0 = 0.

This is similar to what we found in the affine case.
If the point P is singular, then its projective coordinates constitute a non-

trivial solution of the following homogeneous system of equations:

Au+Bv+Dw = 0

Bu+Cv+Ew = 0

Du+Ev+ Fw = 0

and thus we have in this case
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But the argument works both ways, thus the determinant above vanishes if
and only if the conic section has a singular point, at least over k. On the other
hand, if the conic section has such a singular point, then passing to k and
switching to a suitable projective coordinate system, we may assume that
the singular point is (1 : 0 : 0). But then D =E = F = 0, thus the equation of
the conic curve is Ax2 +Bxy +Cy2 in D+(X0) =A

2
k. Since this polynomial

splits as a product of linear forms in x and y, we have proved the theorem
stated below:

Theorem 2.4 Assume that k = k. The following are equivalent:

1. The equation

q(x, y) =Ax2 + 2Bxy+Cy2 + 2Dx+ 2Ey+ F = 0

yields a non-degenerate conic section.
2. The projective closure in P

2
k of the curve in A

2
k given by q(x, y) = 0 is

non-singular.
3.
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We finally note the following result:

Theorem 2.5 Let k = k. Assume that AX2
1 + 2BX1X2 +CX2

2 + 2DX0X1 +
2EX0X2 + FX2

0 = 0 is the equation of a non singular conic in P
2
k. Then we

may choose the projective coordinate system such that B = D = E = 0 and
A=C =E = 1.

Proof By Proposition 1.1 we may assume that the following two points lie
on the conic:

(0 : i : 1) and (0 :−i : 1)

where i=
√
−1 ∈ k, as k = k. Thus

−A+ 2Bi+C = 0 and −A− 2Bi+C = 0

from which it follows that B = 0, hence A = C. Since the conic is non-
degenerate, we must have A = C �= 0 so we may assume A = C = 1, and
the equation becomes

X2
1 +X2

2 + 2DX0X1 + 2EX0X2 + FX2
0 = 0.

Evidently this is transformed as follows by completing two squares:

(X1 +DX0)
2 + (X2 +EX0)

2 + (F −D2 −E2)X2
0 = 0.
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Changing projective coordinate system again if necessary we obtain

X2
1 +X2

2 +GX2
0 = 0

where G �= 0 since otherwise the conic would be degenerate. A final change
of projective coordinate system yields

X2
1 +X2

2 +X2
0 = 0

and the proof is complete. ��

For more on conics, including elementary proofs of the theorems of Pappus
and Pascal, which we will not include here, we refer to Sects. 12.8 and 12.9
in [27] or Sects. 13.8 and 13.9 in [28].

2.4 The Cubic Curves in A
2
k

The simplest curve of higher degree, by which we mean degree higher than 2,
is the curve known as the cubic parabola. The parabola has the equation
y = x2, after a suitable change of coordinate system in A

2
k. Classically the

term parabola was used in a wider sense, as the name of a curve whose graph
would lie “parallel” to the y-axis.

Thus curves with an equation of the form y = xm, m being a positive
integer or a rational number, would be called parabolas as well. Accordingly,
a curve which may be brought on the from y = x3 is referred to as a cubic
parabola.

The next step in complexity is a curve which may be brought on the
form y2 = x3. It is called a semi-cubic parabola. It has the graph displayed in
Fig. 2.2.

The concept of degenerate curves and the related process of degeneration
of a family of curves are important.

A curve is said to be degenerate if it decomposes into the union of two or
more curves of lower degrees. For a cubic curve this means that it is a union
of a conic curve and a line, or of three lines (some possibly coinciding).

Planar curves of degree 3 already constitute a much richer and interesting
group of geometrical objects than the ones of degree 2.

The simplest example of a degenerate cubic curve would be the y-axis with
multiplicity 3. Its equation is x3 = 0. We have not yet made the notion of
curves with multiplicity precise, this comes in Sect. 2.7. But we may already
at this point consider a family of semi-cubic parabolas, degenerating to the
triple y-axis. Namely, consider the curves depending on the parameter t, as
t→ 0: ty2 = x3.

We show some members of this family in Fig. 2.2. The values of t in the
plots are t= 10,4,1,0.1.
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Fig. 2.2 The semi-cubic parabola given by y2 = x3 to the left, to the right we show the

degeneration ty2 = x3 of the semi-cubic parabola to the triple y-axis

Fig. 2.3 The Folium of

Descartes, with a= 1, the
curve is generally given by

the equation
x3 + y3 = 3axy, it then
turns out that the curve

approaches the line
x+ y+ a= 0 as an

asymptote

Note also that when t→∞, then the limit is the x-axis with multiplicity 2,
since this degeneration is equivalent to letting u tend to 0 for the family given
by the equation y2 = ux3.

The term degeneration is used rather loosely, without a formal definition.
The idea we intend to convey by this, is to have one curve, say the semi-
cubic parabola y2 = x3, be a member of a family of curves depending on a
parameter, all but a finite number of which are of the same type. Then the
exceptional members are understood as degenerate cases. This is, of course,
the way we may view two intersecting lines as a degenerate hyperbola, or a
double line as a degenerate hyperbola or a degenerate parabola, and so on.

Two more types of non-degenerate curves of degree three exist, up to a
projective change of coordinate system. We will explain this projective equiv-
alence for curves in P

2
R

(and in A
2
R
) later, in Sect. 3.5. The simple affine
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Fig. 2.4 Réné Descartes.

Illustration by the author

Fig. 2.5 Pierre de Fermat.

Illustration by the author

equivalence for two curves means that one may be obtained from the other
by a suitable affine transformation, or a change of coordinate system in A

2
R
.

This kind of equivalence is more complicated than the projective equiv-
alence, there are more equivalence classes of affine cubic curves under this
affine equivalence. But from our point of view, the projective equivalence is
more interesting than the affine one.

The first of the remaining classes of cubic curves is represented by the
Folium of Descartes. The French mathematician René Descartes, 1596–1650,
is credited by some historians of mathematics as being the founder of alge-
braic geometry. However, this is disputed by others.

Descartes was the first to systematically introduce coordinates and equa-
tions into geometry, and our usual coordinate system in the plane is named
after him, a Cartesian coordinate system. His name was originally Cartes,
and when he was knighted it changed into Des Cartes. Descartes was for
some time engaged in a bitter feud with another great French mathemati-
cian, Pierre de Fermat, 1601–1665. One of the issues they could not agree on
was the proper way to define the tangent to a curve at a given point.



2.4 The Cubic Curves in A2
k 23

Fig. 2.6 The usual nodal

cubic

We also give another curve, belonging to the same class as the Folium under
projective equivalence, but to a separate class under the affine equivalence.
It is often referred to as the usual nodal cubic. It is given by the equation
y2 − x3 − x2 = 0. It looks somewhat similar to the semi-cubic parabola. In
fact, the latter may be obtained by deforming the former. At this time the
tools from calculus needed for what we regard as the proper solution to this
question had not yet been sufficiently developed, and to us the methods of
both Descartes and Fermat would look strange and clumsy. The curve was
given as an example by Descartes in this argument with Fermat.

We also give another curve, belonging to the same class as the Folium under
projective equivalence, but to a separate class under the affine equivalence. It
looks somewhat similar to the semi-cubic parabola. In fact, the latter may be
obtained by deforming the former. This is the simplest and most used example
of a nodal cubic curve in A

2
R
. It is shown in Fig. 2.6. The deformation referred

to is obtained from the family y2 − x3 − tx2 = 0.
To the left in Fig. 2.7 we see some of the corresponding plots, for t =

0,0.5,2, degenerating the usual nodal cubic given by y2 − x3 − x2 = 0 to the
semi-cubic parabola with equation y2−x3 = 0. To the right an unusual “nodal
cubic” given by y2 − x3 + x2 = 0. Actually, the origin is on the curve, but
that point appears to be isolated from the main part of it.

But there are complex points, invisible in A
2
R
, which establish the connec-

tion.
We have now come to a very interesting class of curves. These curves

are tied to a real leap forward in mathematics which occurred in the 19th
century, and is tied to such mathematical giants as Niels Henrik Abel and Carl
Gustav Jacob Jacobi. The ground had been prepared by mathematicians like
Leonhard Euler and Adrien-Marie Legendre, who had studied the mysterious
so called elliptic integrals, occurring when one wanted to compute arc lengths
of segments of ellipses and of the lemniscate. We have arrived at the concept
of an elliptic curve.
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Fig. 2.7 A family of nodal cubics and an unusual one

Fig. 2.8 Gustav Jacob Jacobi to the left, Niels Henrik Abel to the right. Illustration by the
author

2.5 Elliptic Integrals and the Elliptic Transcendentals

The reason for the name elliptic curve is that such curves come up when one
attempts to compute arc length for ellipses. The corresponding problem for
a circle is quite simple: We represent the circle by the equation x2+ y2 =R2.

We then have to compute the integral L=
∫ β

α

√

1 + y′2dx.

Then as y =
√
R2 − x2 we find y′ = − x√

R2−x2
and thus to find the arc

length of the circle between two given points corresponding to x1 and x2 in



2.5 Elliptic Integrals and the Elliptic Transcendentals 25

the first or second quadrant, say, we have to compute the integral

L=

∫ x2

x1

√

1 + y′2dx=

∫ x2

x1

Rdx√
R2 − x2

.

In this case we may introduce polar coordinates, x = R cos(ϕ) and y =
R sin(ϕ). Then the integral becomes

L=R

∫ ϕ2

ϕ1

− sin(ϕ)
√

1− cos2(ϕ)
dϕ=−R

∫ ϕ2

ϕ1

dϕ=R(ϕ1 −ϕ2).

However, consider the corresponding problem for the ellipse

(
x

a

)2

+

(
y

b

)2

= 1

where a > b. Then the same method applied to x= a cos(ϕ), y = b sin(ϕ) leads
to the integral

L= a

∫
√

1− k2 cos2(ϕ)dϕ,

where k =
√
a2−b2

a is the eccentricity of the ellipse. Putting t = cos(ϕ), this
integral is reduced to

I2 =

∫ x

0

√
1− k2t2√
1− t2

dt,

referred to as an elliptic integral of the second kind. An elliptic integral of the
first kind is of the form

I1 =

∫ x

0

1
√

(1− t2)(1− k2t2)
dt,

while an elliptic integral of the third kind is

I3 =

∫ x

0

1

(1 + nt2)
√

(1− xt2)(1− k2t2)
dt.

These three forms are referred to as Legendre’s standard forms for elliptic
integrals. Before Abel’s (and Jacobi’s) time these integrals, as functions of
the upper limit x, were considered as the elliptic functions, the so-called
elliptic transcendentals. Abel, and later on Jacobi, turned this around and
defined the elliptic functions as the inverse of these integral-functions. Thus,
as for instance

I2 =

∫ x

0

dt√
1− t2

=Arcsin(x),
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Fig. 2.9 Elliptic cubic,

given by y2 − x3 + x= 0

we find the elliptic function associated to an elliptic integral of the second
kind with k = 0 to be the function y = sin(x). So elliptic functions are vast
generalizations of the trigonometric functions.

In general an elliptic integral is an integral of the form
∫ x

a
dt

f(t,
√
R)

where

f is a rational expression in two variables and R is a cubic or biquadratic
expression in t. Legendre succeeded in expressing all such integrals in terms
of his normal forms above.

Today one uses the Weierstrass Normal Form,

u=

∫ x

a

dt
√

4t3 − g1t− g2

and we note that the denominator with g1 = 4 and g2 = 0 gives rise to the
equation

y2 = 4x(x2 − 1),

giving a curve which is equivalent to the elliptic curve displayed in Fig. 2.9.
We explain this in more detail in Sect. 4.12.

2.6 More Curves in A
2
R

Before proceeding with the general theory, we shall look at some other exam-
ples of curves in A

2
R
. Some of them have interesting histories, here we shall

just present a curve which is due to Colin Maclaurin.
The Trisectrix of Maclaurin is given by the equation

x3 + xy2 + y2 − 3x2 = 0.
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Fig. 2.10 Colin Maclaurin.

Illustration by the author

Fig. 2.11 The Trisectrix of

Maclaurin

Suppose there is given an angle u= ∠ABC. Then the two lines AB and
BC are extended to s and t, respectively, as shown in Fig. 2.11. A Cartesian
coordinate system is introduced, so that t becomes the x-axis and the origin
is located on t to the left of B at a distance of 2. We then plot the curve given
by x3 + xy2 + y2 − 3x2 = 0. This curve intersects the line s in the point P,
and we draw the line OP between the origin O and P. We claim that if
v =∠POC , then u= 3v. Indeed, it suffices to show that sin(u) = sin(3v), in
other words that sin(u) = 3sin(v)− 4 sin3(v). Now we have sin(u) = PD

PB and

sin(v) = PD
PO . Moreover, PD = y, PO =

√

x2 + y2 and PB =
√

(x− 2)2 + y2.
Thus we need to verify the following identity:

y
√

(x− 2)2 + y2
= 3

y
√

x2 + y2
− 4

(
y

√

x2 + y2

)3
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Fig. 2.12 The Clover Leaf

Curve has equation
(x2 + y2)2 + 3x2y− y3 = 0

in the presence of the relation x3 + xy2 + y2 − 3x2 = 0, or equivalently

√

x2 + y2

(x− 2)2 + y2
= 3− 4

y2

x2 + y2

i.e.

(x2 + y2)3 = ((x− 2)2 + y2)(3x2 − y2)2.

An evaluation finally yields

(x2 + y2)3 − ((x− 2)2 + y2)(3x2 − y2)2

=−4(−2y2x+ y2 − 3x2 + 2x3)(y2x+ y2 − 3x2 + x3)

from which the claim follows.
Another curve looks like a clover leaf. It has equation (x2 + y2)2 +3x2y−

y3 = 0 and is shown in Fig. 2.12. According to the picture, the curve is smooth
except at the origin. There this curve displays a more complicated behavior,
and gives the appearance of being the shadow, or the projection of a knot-like
space curve. We shall make these features precise later.

Our first curve of degree higher than three was the Clover Leaf Curve
above. Another such interesting curve is the famous Airplane Wing Curve.
Amazingly it looks very similar to a section through the wing of an airplane.

We now have a sufficient base of examples to appreciate some more gen-
eral theory. We already mentioned the need to incorporate complex points
in connection with elliptic cubic curves above. In addition to this, a curve
may consist of several components. That is to say, it may consist of several
curves taken together. And some of these components may also occur with a
multiplicity. Thus for instance, a double line is a different curve from a single
line. We now take a closer look.
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Fig. 2.13 The Airplane Wing Curve to the left, to the right the curve with equation
2x4 − 3x2y+ y4 − 2y3 + y2 = 0. It has two singular points

2.7 General Affine Algebraic Curves

Let the curve C be given by the equation f(x, y) = 0. We then study the set
of pairs (u, v) of complex numbers such that f(u, v) = 0. So we consider the
zero locus of f(x, y) = 0 in A

2
C
. We may denote this set by C(C), and the

curve considered as a subset of A2
R
we may denote by C(R). If we identify

A
2
C
with A

4
R
, this locus is identified with a surface defined by two equations.

Namely, writing

u= x1 + ix2, v = x3 + ix4

and

f(u, v) = f1(x1, x2, x3, x4) + if2(x1, x2, x3, x4)

then f1 and f2 are polynomials with real coefficients in four variables, and
the set of all complex points on the curve is given as

C(C) =

{

(a1, a2, a3, a4) ∈A
4
R

∣
∣
∣
∣

f1(a1, a2, a3, a4) = 0
f2(a1, a2, a3, a4) = 0

}

.

This is a surface in four-space, in A
4
R
, defined by two polynomials. In many

situations we really need to include all complex points of a curve, although
we usually still confine ourselves to sketch the real points only. And even if
the complex points form a surface in A

4
R
, it is important to keep in mind that

we really are studying a curve in the plane, and not a surface in four space.
Indeed, of we switch to regard our object under study as a surface in A

4
R
,

then it will also have complex points, thus yielding a fourfold in A
8
R
, and so

on. Thus we have to remember that we are studying complex points on a
curve in the plane, rather than the real points of a surface in four space.

The further important extension is to include the points at infinity of
a curve. This is a somewhat more technical matter, which we come to in
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Chap. 3, where we study projective curves. But first we give more details on
the affine case.

We are given a curve in the plane R
2 as the set of zeroes of the equation

f(x, y) = 0

where f(x, y) is a polynomial in the variables x and y:

f(x, y) = a0,0 + xa1,0 + ya0,1 + x2a2,0 + xya1,1 + y2a0,2

+ · · ·+ xdad,0 + xd−1yad−1,1 + · · ·+ yda0,d.

Some, but not all, of the coefficients may be zero. The largest integer d
such that not all ad−i,i are zero is the degree of the polynomial, and this
is by definition the degree of the curve. But here we have a problem, best
elucidated by an example.

The equation

y = 0

defines the x-axis. But so does the equation

y2 = 0

at least as a point-set. But algebraically we need to distinguish between these
two cases. The former equation defines the x-axis as a line, whereas the latter
defines a double line along the x-axis: Informally speaking, it defines twice
the x-axis.

The situation becomes even more difficult when we consider complicated
polynomials. Thus for example we may consider the curve defined by the
equation

(y2 − x3 − x2)(y2 − x2) = 0.

When we are given the equation on this partly factored form, it is not difficult
to see what we get: It is the nodal cubic curve displayed in Fig. 2.6 together
with the two lines defined by y = ±x. But suppose that we are given the
following equation, on expanded form

3y2x4 − 3y4x2 + y6 − x7 + 2x5y2 − x3y4 − x6 = 0

then it is not so easy to understand the situation. Using some PC-program
to plot this curve, we should get the same picture as above. But this result
is quite deceptive. Indeed, if we factor the left hand side of the equation, say
again by some PC-program, we find that the equation becomes

(x3 + x2 − y2)(x+ y)2(x− y)2 = 0

which certainly defines the same point set, but reveals that this time the two
lines occurring should be counted with multiplicity 2.
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Recall that an irreducible polynomial in x and y is a polynomial p(x, y)
which may not be factored as a product of two polynomials, both non-
constants. Thus for instance p(x, y) = x3 + x2 − y2 is irreducible, as is
r(x, y) = x+ y and s(x, y) = x− y. A special case of an important theorem is
the following:

Theorem 2.6 (Unique Factorization of Polynomials) Any polynomial in x and
y with real (respectively complex) coefficients, may be factored as a product of
powers of irreducible polynomials with real (respectively complex) coefficients.
These irreducible polynomials are unique except for possibly being proportional
by constant factors.

We make the following definition:

Definition 2.5 (The factorization in irreducible polynomials) The irreducible
factorization of f(x, y) is defined as an expression

f(x, y) = p1(x, y)
n1 · · ·pr(x, y)nr

where ni are positive integers and all pi(x, y) are irreducible and no two are
proportional by a constant factor.

This factorization is unique up to constant factors, by the theorem.

Corollary 2.7 Theorem 2.6 also holds for a polynomial in a number of vari-
ables, 1 up to any N . Definition 2.5 is also unchanged in the general case.

A polynomial may be irreducible as a polynomial with real coefficients, but
reducible when considered as a polynomial with complex coefficients. This is
the case for the polynomial

g(x, y) = x2 + y2,

which may not be factored as a polynomial with real coefficients, while

x2 + y2 = (x+ iy)(x− iy).

The curve given by this polynomial has another interesting feature: As a
curve in A

2
R
it consists only of the origin, while it consists of two (complex)

lines in A
2
C
, with equations y =±ix. They have only one real point on them,

namely their point of intersection which is the origin. We would consider this
as a degenerate case, say as a member of a family of circles, where the radius
has shrunk to zero.

Definition 2.6 (Real Affine Curve) A real affine plane curve C is the set
of points (a, b) ∈ A

2
R
which are zeroes of a polynomial f(x, y) with real co-

efficients. The irreducible polynomials pi(x, y) occurring in the irreducible
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factorization of f(x, y) referred to in Definition 2.5 define subsets Ci of C
called the irreducible components of C. The exponent ni of pi(x, y) in the
factorization of f(x, y) is called the multiplicity of the irreducible component.

In other words, Ci occurs with multiplicity ni in C.

Remark This definition suffices as a first approximation, but it should not
be concealed that it does represent a simplification. Indeed, according to the
definition the “real affine curve” defined by x2 + y2 = 0 is the same as the
one defined by x2 +2y2 = 0. For a variety of reasons this is undesirable. One
solution is to simply define a curve in A

2
R
as being an equivalence class of

polynomials, two polynomials being regarded as equivalent if one is a non-
zero constant multiple of the other. This is mathematically sound, but only
applies to a special geometric situation, where one geometric object, here
the curve, is contained in another geometric object of one dimension higher,
here the plane, and is defined by one “equation”. The final clarification of
this concept will come when we explain the notion of a scheme, which was
introduced by Alexander Grothendieck.

After a change of variables, which corresponds to a change of coordinate
system,

x= a+ α1,1x+ α1,2y

y = b+ α2,1x+ α2,2y

the curve given by f(x, y) = 0 is expressed by the equation f(x, y) = 0, where
f(x, y) is obtained by substituting the expressions obtained by solving for x
and y,

x= a+ β1,1x+ β1,2y

y = b+ β2,1x+ β2,2y

into f(x, y).
There are curves in the affine plane A

2
R
which are not affine algebraic, but

nevertheless form an important subject in geometry. The Archimedean spiral
and the quadratrix of Hippias are such curves. They both were invented to
solve some of the Classical Problems. They are not defined by a polynomial
equation. Some other simple examples are the curves defined by y = sin(x)
or by y = ex. This class of curves is called the Transcendental Curves. In this
book we will confine the general theory to treating the algebraic curves, that
is to say the ones defined by a polynomial equation.

2.8 Singularities and Multiplicities

We now return to some general concepts introduced in Sect. 2.2, where we
needed it to understand the degeneracy of conics. Consider an algebraic affine
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curve K with equation

f(x, y) = 0.

Furthermore, let (a, b) be a point on the curve, i.e., f(a, b) = 0. We note that
the following definition relies heavily on the equation of the curve, not just
the curve as a subset of A2

R
:

Definition 2.7 (a, b) is said to be a smooth, or a non-singular, point on K if

(
∂f

∂x
(a, b),

∂f

∂y
(a, b)

)

�= (0,0).

Otherwise (a, b) is called a singular point on K. A curve all of whose points
are non-singular is referred to as a non-singular curve.

The vector (∂f∂x ,
∂f
∂y ) is referred to as the Jacobian vector (for short, the

Jacobian) of the polynomial f(x, y). Thus by definition a singular point is a
point on the curve at which the Jacobian evaluates to the zero vector.

In Sect. 2.2 we saw that a non-degenerate conic curve is a non-singular
curve. We look at the situation in more detail by the examples below.

It is time to turn to some examples.

(1) We first look at simple conics, and start out with a circle of radius
R> 0, which has the equation

x2 + y2 =R2.

Here f(x, y) = x2 + y2 −R2, and

(
∂f

∂x
,
∂f

∂y

)

= (2x,2y).

Evidently no point outside the origin can be a singular point of the circle,
and as R> 0, every point on the circle is therefore smooth. We note that the
same proof shows that an ellipse on standard form,

(x

a

)2

+
(y

b

)2

= 1

is smooth everywhere as well.
A (non-degenerate) hyperbola on standard form, which is given as

(x

a

)2

−
(y

b

)2

= 1

similarly has Jacobian
(

2

a2
x,− 2

b2
y

)
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which also does not vanish outside the origin, showing that a hyperbola is
smooth.

A degenerate hyperbola is one which has collapsed to the asymptotes,
hence a curve with equation

(x

a

)2

−
(y

b

)2

= 0.

This curve has the same Jacobian as in the non-degenerate case, but now
the origin actually lies on the curve, which therefore has the origin as its
only singular point. Of course this degenerate hyperbola consists of two irre-
ducible components which are lines intersecting at the origin, and that point
is singular.

Our final conic curve is the parabola with equation

ay− x2 = 0

where a �= 0. The Jacobian is (−2x,a), so the only possibility of getting
the zero vector at a point would be to have x = 0 and a = 0. For a �= 0 we
therefore have no singular points. If a= 0, then the equation yields the y-axis
with multiplicity 2, and we see that then all points on the curve are singular.

(2) We next turn to the nodal cubic curve with equation

y2 − x3 − x2 = 0

which is plotted in Fig. 2.6. The Jacobian is

(−3x2 − 2x,2y)

and thus (x, y) is a singular point if and only if the two additional equations
below are satisfied:

−3x2 − 2x = 0

2y = 0.

Thus (x, y) = (0,0) or (x, y) = (−2
3 ,0), and only the former lies on the curve,

so the only singular point is (0,0).

(3) If f(x, y) is a polynomial, then all points on the curve given by
f(x, y)n = 0 for n an integer greater than 1, will have all its points singu-
lar. This follows at once, since the Jacobian is

(

nf(x, y)n−1 ∂f

∂x
,nf(x, y)n−1 ∂f

∂y

)

.

It is highly recommended that the reader examines the curves plotted in
Sect. 2.4, and determines their singular points.
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2.9 Tangency

Let (a, b) be a smooth point on the curve K. Then we may find the equation
for the tangent line at that point as follows. We first consider the parametric

form for a line through (a, b) with direction given by the vector (u, v):

L=

{

(x, y)

∣
∣
∣
∣

x= a+ ut
y = b+ vt

where t ∈R

}

.

This line will have the point (a, b) in common with K. We wish to determine

other points of intersection. To do so we substitute the expressions for x and

y in the parametric form for L into the equation for K, and get

f(a+ ut, b+ vt) = 0.

Expanding the left hand side in a Taylor series we obtain

f(a, b) + t

(

u
∂f

∂x
(a, b) + v

∂f

∂y
(a, b)

)

+ t2
(

u2 ∂
2f

∂x2
(a, b) + 2uv

∂2f

∂x∂y
(a, b) + v2

∂2f

∂y2
(a, b)

)

+ · · ·= 0.

which since f(a, b) = 0 gives the following equation for t:

t

(

u
∂f

∂x
(a, b) + v

∂f

∂y
(a, b)

)

+ t2
(

u2 ∂
2f

∂x2
(a, b) + 2uv

∂2f

∂x∂y
(a, b) + v2

∂2f

∂y2
(a, b)

)

+ · · ·= 0. (2.1)

The points of intersection between the curve and the line are found by solving
this equation for t. Of course we have t= 0 as one solution, and we see that

this solution will occur with multiplicity 1 if and only if

u
∂f

∂x
(a, b) + v

∂f

∂y
(a, b) �= 0.

Such values of u, v exist if and only if (a, b) is a smooth point on the curve. In

that case there is exactly one line through P = (a, b) which does not intersect

the curve with multiplicity 1, namely the line corresponding to u and v such
that

u
∂f

∂x
(a, b) + v

∂f

∂y
(a, b) = 0.
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By substituting

ut= x− a

vt= y− b

in this equation, we recover the equation for the tangent line to the curve at
the point (a, b)

(x− a)
∂f

∂x
(a, b) + (y− b)

∂f

∂x
(a, b) = 0.

Earlier we used this equation to define the tangent line to a curve C at a
point P = (a, b), but at that stage without a geometric justification. Now we
see the geometric meaning of this definition.

Definition 2.8 We denote the multiplicity of the solution t = 0 of (2.1) by
mK,P (L). This number is referred to as the multiplicity with which the line
L intersects the curve K in the point P .

To sum up what we have so far, the point P is a smooth point on K
provided there is exactly one line L intersecting K in P with multiplicity >1,
and L is then called the tangent to K in P . The normal situation is that the
multiplicity is 2, if it is ≥3 then P is referred to as a flex (or an inflection
point), if mK,P (L) = 3 the flex is said to be an ordinary flex. The term
inflection point is also used for curves in A

2
R
as a point where the sign of

the curvature changes. A smooth point with this property is an inflection
point in our sense, but not conversely. The tangent line at a flex is called an
inflectional tangent.

We next turn to the question of what happens at a singular point. So let
P = (a, b) be a singular point on the curve K. Since the situation is more
complicated than in the case when P is smooth, we introduce new variables
by

x= x− a, y = y− b.

In other words, we shift the variables so that the new origin falls in P ,
P = (0,0). We then find a new polynomial g such that

f(x, y) = g(x, y)

by substituting x= x+ a and y = y + b into f(x, y). The curve is also given
by the equation

g(x, y) = 0.

Since the origin is a point on the curve given by g(x, y) = 0, it is clear that
the polynomial g(x, y) has no constant term. We now collect the terms of
g(x, y) which are of lowest total degree, and denote the sum of those terms
by h(x, y).
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Thus for example, if

g(x, y) = 2xy2 − 5x2y+ 10x9y2 + 15x2y12,

then

h(x, y) = 2xy2 − 5x2y.

The sum of all terms of lowest total degree of the polynomial g is called the
initial part of the polynomial, and denoted by in(g). If the point P = (a, b)
is smooth, then the Taylor expansion around the point (a, b) immediately
shows that the polynomial h(x, y) is nothing but

∂g

∂x
(0,0)x+

∂g

∂y
(0,0)y =

∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y− b).

Thus the concept introduced below generalizes the tangent at a smooth
point, to a concept which applies to singular points as well.

With notations as above the polynomial h(x, y) defines a curve which is a
finite union of lines through the point (0,0). In terms of x and y, the equation

h(x− a, y− b) = 0

defines a finite union of lines through P = (a, b), some of them occurring with
multiplicity >1. Indeed, we have

h(x, y) = a0x
m + a1x

m−1y+ · · ·+ aix
m−iyi + · · ·+ amym

where not all ai vanish. If (α0, β0) satisfies h(α0, β0) = 0, then we also have
h(sα0, sβ0) = 0 for all real numbers s, as one immediately verifies since all
the monomials of h are of the same total degree m.

These lines are called the lines of tangency at the point P = (a, b). If P
happens to be smooth, then there is only one line, occurring with multiplic-
ity 1.

Definition 2.9 The curve given by h(x − a, y − b) = 0 is referred to as the
(affine) tangent cone of K at P .

Any line through P = (a, b) may, as we have seen, be written on parametric
form as

x− a= ut, y− b= vt

and its intersections with the curve is determined by the equation

f(a+ ut, b+ vt) = g(ut, vt) = 0.

The multiplicity of the root t= 0 in this equation is referred to as the multi-
plicity of intersection between the curve and the line at the point P = (a, b).
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All lines through P = (a, b) which do not coincide with one of the lines of
tangency, intersect the curve with multiplicity equal to the number m. This
number m is of course only dependent upon the polynomial f(x, y) and the
point P = (a, b).

In fact, we may assume that P = (0,0). An arbitrary line through (0,0)
has the parametric form

L=

{

(x, y)

∣
∣
∣
∣

x= ut
y = vt

where t ∈R

}

.

To find all points of intersection between this line and the curve K, we sub-
stitute the expressions for x and y into f(x, y) and get

f(a+ ut, b+ vt) = 0.

This gives

h(ut, vt) +R(ut, vt) = 0

where R(x, y) denotes f(x, y)− h(x, y). Thus the points of intersection are
given by the roots of the equation

tm(h(u, v) + tϕ(t)) = 0.

One of the roots is t= 0, and this solution will occur with multiplicity ≥m,
where equality holds if and only if

h(u, v) �= 0

thus if and only if L is not one of the lines of tangency.
We conclude with the

Definition 2.10 (Multiplicity of a point on a curve) The number m referred
to above is called the multiplicity of the point P at K.

We thus have the observation

Proposition 2.8 A point on an affine algebraic curve is smooth if and only if
it has multiplicity 1.
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