Chapter 22
More on Duality

This final chapter is devoted to duality, the dual variety and the conormal
scheme of an embedded projective variety are given as applications. Reflexiv-
ity and biduality are studied, in particular duality of hyperplane sections and
projections. An application we present here is a very nice theorem of Hefez
and Kleiman. Finally we give a brief presentation of some further results on
duality and reflexivity.

22.1 The Dual Variety and the Conormal Scheme

Let PV =P(V) denote projective N-space, V being an N + 1-dimensional
vector space over k. PNV =P(V*) denotes the dual projective space, whose
k-points are identified with the hyperplanes in PV:

PNV ={H | H CP" hyperplane}.

Let X < PV be a projective, closed subscheme of PY. By definition the dual
variety is the (reduced) closure of the set of hyperplanes which are tangent
to X at some smooth point:

XV—{HG]P’NV

H tangent to X
at a smooth point x € X [~

The condition in the above definition can be expressed as
H>Tx, for somez € Xy,

By definition XV is reduced, but it need neither be irreducible nor of pure
dimension. While the definition does make sense for non reduced subvarieties
X, the nilpotent components do not contribute to XV, and in particular
XV =0 if and only if X has no reduced components.
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To understand XV better, we look at the following diagram:

Z(X) CPN x PNV

p pry A T

X c PN XV c PNV

Here

H tangent to X
_ NV
2(X)= {(x,H) € Xom x P at the smooth point z € X }
By definition XV is the image of Z(X) under the projection pr,, thus the
morphism A is induced. Also, pr; induces a morphism p.
Assume for the moment that X is smooth. Then we have the following

key diagram, where
Nxspv = (Ix /v /T5 pn)Y

and where i : X < PV is the embedding of X into PY¥. Moreover, P!(X)
denotes the locally free sheaf of principal parts of X:

0 0
} )
0= NY /pn (1) = " 2x (1) = 2% (1) = 0
I \ )
0= N pn(1) = O = PH(X) =0 (22.1)
i )
Ox(1) = 0x(1)
\J )
0 0

The left injective map in the lower exact sequence induces a surjective
OXT —» Nx/pv(—1)
which gives the closed embedding
Z(X) =P(Ny/pn (1)) = P(OY ) = X x PV,

The twist by —1 ensures that the tautological line bundle (i.e., the invertible
sheaf) OB(N v (-1)) (1) is the restriction of the invertible sheaf pr3(Opn~v (1)).
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We now assume only that X is a reduced, projective scheme of pure di-
mension n. Letting X, denote the open subset of X consisting of smooth
points, we have

Z(X)=P(Nx_, /b~ _Sing(x)(—1))-

Much information about XV is contained in the Chow cohomology class

[Z(X)] € A* (PN x PNV) = Z[s,1]

where A*(S) denotes the Chow (cohomology) ring of the smooth, projective
variety S, s = pri([H]), t = pr3([H']) and H, H' denote hyperplanes in PV
and PVV| respectively.

If n =dim(X), then clearly

dim(Z(X))=n+(N—-n—-1)=N -1

and hence, since Z(X) maps onto X" by A,

dim(XY)< N — 1.

We have the following expression, where the §;(X) are integers for all j:

[Z(X)] = 60(X)sNt + 61 (X)s™N 12 - 45, (X)sN g
A+ St (X)) N2 o g (X)) st (22.2)

It follows easily, and will be shown in the next sections, that

A=, 4 (X)sN 12 4y G (X) st

is actually equal to zero.
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22.2 Reflexivity and Biduality

Suppose that we construct the basic diagram for X, Z(X) and XV, but this
time with XV instead of X:

Z(XV) PNV x PNVV

p pry AV ry

XV C PNV XVV C PN\/\/

If we make the canonical identification PN =PNVV then we have PV x
PNVV = PN PNV where the isomorphism is the canonical one interchanging
the two copies of projective space PV and PVV. Thus we can compare the
subschemes Z(X"V) and Z(X). In the “good” cases these two subschemes are
equal:

Definition 22.1 The embedded, reduced projective variety X — PV is said
to be reflexive if

Z(XY)=2Z(X).
If X =XV, then we say that biduality holds for X.

It is clear that reflexivity implies biduality. But the converse is false, for
this there are counterexamples. The following classical result is an important
fact, it implies in particular that reflexivity and hence biduality always holds
in characteristic zero:

Theorem 22.1 The embedded, reduced projective variety X < PN is reflexive
if and only if the morphism \: Z(X) — XV is generically smooth.

For the history of this theorem, as well as modern proof using Lagrangian
geometry, we refer to Kleiman’s article [32]. As a corollary we obtain the
following geometric criterion:

Corollary 22.2 X is reflexive if and only if the contact locus Cont(H, X) with
X of the generic tangent hyperplane H to X is a linear subspace of PV,

Proof of the Corollary Evidently Cont(H,X) = Z(X), = A~!(h), where
h is the point of XV which corresponds to the tangent hyperplane H.
Thus reflexivity implies that Cont(H,X) equals the fiber A71(h) =
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P(Nxv._,. /pNv_sing(xv)(—1))n, provided that H corresponds to a smooth
point h of XV. Conversely, assume that Cont(H,X) = Z(X);, = A"1(h) is
linear, hence in particular equidimensional and geometrically regular, for all
h €U where U C XV is an open dense subset. Then making U smaller if
necessary we may assume that A is flat over U. Hence A is smooth over U by
standard facts on smooth morphisms, say [18], Chap. IIT Theorem 10.2. O

In the next section we shall give a numerical criterion for reflexivity. At
this point we note the following fact, which was noted in [39]:

Theorem 22.3 (T. Urabe) If X is reflexive, then
(X)) = dn-1-5(X).

Proof By the identifications above and the assumption of reflexivity it is clear
that

50(X)3Nt_|__.. +5i(X)sN—iti+1 .
= 50(XV)5tN 4o +5z’(XV)5j+1tN*j ‘.

The claim is immediate from this. O

22.3 Duality of Projective Varieties

If X is smooth, then it is easily seen from diagram (22.1) that we have the
following formulas for the numerical invariants occurring in formula (22.2):

For all i >0, 6,(X)= Zn:(_nn*j (Zii) deg(en_j;(X)).  (223)

To prove this, we use a general fact which is referred to as Scott’s Formula:
Let
0 —¢& —3F—GG —0

be an exact sequence of locally free sheaves of the finite ranks e, f and g,
respectively, on the (smooth projective) scheme S. Then there is a canonical
closed embedding

P(S) — P(F)

so that we get a class

[P(9)] € A(P(T)) = A(S)[EF]
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where {r € A(P(F)) denotes c1(Ops)(1)). Letting p: P(F) — S denote the
canonical projection, we then have Scott’s Formula

P(G)] = p*(ce—i(€V))ER

i>0

A proof of this can be found in [12], p. 61 or in Sect. 2 of the Appendix
to [22]. Now a straightforward computation applying this formula to the
exact sequence on X

0 — PHX)Y — OFT — Nypn(-1) — 0

where the Chern classes of P1(X) are computed by means of the exact se-
quence

0 — 2x(1) — PHX)— Ox(1) — 0

yields (22.3).

Formula (22.3) has been generalized to the singular case by R. Piene
in [37]. In fact this paper was an important contribution to the theory of
duality in the presence of singularities, making it possible to understand the
relation between singular Chern- or Segre classes on one hand and the Polar
classes which have the delta—invariants as their degrees, on the other.

Here we confine ourselves to some simple observations, which in certain
situations can be quite useful as we shall see later.

Before we state the result, we recall some background:

Nevertheless, we have some information in the singular case as well, and
in certain situations this can be quite useful, as we shall see later. Before we
state the result, we recall some background:

Let Z denote a smooth, quasi-projective scheme of pure dimension n, em-
bedded as a (locally closed) subscheme of a projective space i: Z < PV,
Let Z C PV denote the closure of Z in PV, so Z C Z is an open subset,
and denote the codimension of S =Z — Z in Z by r. Finally let A*(Y)) and
A4 (Y) be the Chow cohomology ring, respectively the Chow homology mod-
ule, of the singular quasi-projective scheme Y, in the sense of Chap. 18 or
Fulton [12]. Recall that A*(Y) is a commutative, graded ring with 1, and
A, (Y) is a graded module over A*(Y'). Both multiplications will be denoted
by - or by A. We then have the graded homomorphism

Wy A*(Y) — A, (Y)

which sends the element o € A*(Y) to the element o A [Y] € A.(Y). Since
A*(Y) is graded by codimension and A, (Y') by dimension, we have

Wyj : Aj (Y) — Adim(Y)—j (Y)

This homomorphism is compatible with the standard properties of the co-
variant pair

(A7(), 4.()),



22.3 Duality of Projective Varieties 349

in particular it is functorial, and whenever Y is smooth, it is an isomorphism
which only introduces a shift in the grading. Finally, the open embedding 4
above induces a Gysin map i* : A.(Z) — A.(Z), which fits into the exact
sequence below, where j : S < Z is the canonical closed embedding:

A (S) L5 A(Z) 5 A(Z2) — 0.

It follows that for all integers @ <mn —r — 1 the above maps will induce
isomorphisms

AX(Z) =5 A%(2) 25 An_a(2)).
We now take X = X — S, where S = Sing(X), thus X = Z. We make the

following

Definition 22.2 Let X be a projective scheme, of pure dimension n, and
with singular locus S = Sing(X) which is of dimension m. Then for all
a<n—m—1, the Chern class ¢, (X) € A%(X) is defined as the Chern class
ca(X —8) € A%(X — S) where A%(X — S) is identified with A*(X) by the
isomorphism given above.

We are now ready for a partial extension of (22.3) to the singular case:

Theorem 22.4 Assume that the singular locus of X is of dimension m. Then
the formula (22.3) above holds for all i >m + 1.

Remark 22.5 Tt follows from this that the formula (22.3) holds for all 4 > m+1
for any functorial theory of singular Chern-classes which coincides with the
usual Chern-classes in the smooth case.

Proof Let U= X — Sing(X), and let V=P — Sing(X). Then U is a closed
subscheme of V, and

pH(U) =P(Ny v(-1)).

Moreover, we have the exact sequence
0 — PHX)|v — Ot — Nyv(-1) — 0.

As in the case when X is smooth, we now proceed by Scott’s Formula,
where as before the Chern classes of P!(X)|y = P (U) are computed by
means of the exact sequence

0 — 2H(1) — PHU) — Oy(1) — 0.
The claim follows from this. O

Corollary 22.6 §,,(X) is equal to the degree of X, and for j > n+1, 6;(X) =0.
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Proof Immediate from (22.3). O

The invariants ¢; determine the dimension of the dual scheme XV, and if
X is reflexive, then the degree of XV is also given by these invariants: This
was proved by R. Piene in [37].

In the following theorem we give a stronger version of this result, which
gives a numerical criterion for reflexivity.

Theorem 22.7 (i) XV is of dimension N —1—r if
So(X) =+ =6, 1(X) =0, 5,(X)£0.
(i1) With r as in (i), X is reflexive if and only if
5.(X) = deg(XV).

Proof (i): We have the following sequence of biimplications, where Py, . ;.

denotes a linear r-space in PV in general position:
dim(XV)<N—-1—r

XVnpy

generic = @

Z(X) N prgl(PgTeneric) = (Z)
[Z(X)]) - N7 =0psNtN =T 4o 4 5,V =0

v

So==06,_1=0.

(ii): Let Pgrc';iric be a linear subspace of PV in general position, as above.

It intersects XV in exactly deg(X") smooth points. Letting ¢ denote the
degree of the general fiber of A\, we then have the formula

e-deg(XY)=65,(X).

See the definition of f,([V]) in Sect. 18.2. In the proof of Theorem 22.9 we
show € = 1. The claim follows from this, together with Corollary 22.2. O

22.4 Duality of Hyperplane Sections and Projections

A basic observation in the study of projective duality is that the operation
of embedding a projective space as a linear subspace of another, is dual to
the operation of projecting a larger space onto a smaller projective space
with a linear center: In order to make this correspondence precise, we have
to resolve a conflict of notation: Namely, if L < PV is a linear subspace,
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then the notation LY could mean either the dual variety of L considered as
a subvariety of PV, or the dual space of the linear space L itself. Normally
there is no need to distinguish between these two concepts in the notation,
since the situation will be clear from the context. But whenever there is a
possibility of confusion, we shall denote the dual of the projective space L
itself by L*. We then have the following elementary observation, the proof of
which is immediate:

Proposition 22.8 (i) Let L < PV be a linear subspace of dimension r. Then
LY < PNV consists of those hyperplanes in PN which are tangent to L, i.e.
they contain L.

(ii) Let pry :PN—— = PN="=1 be the projection with center in the linear
r-dimensional subspace L. The pullback of a hyperplane in PN="1 yields a
hyperplane in PN which contains L, thus a point in LY. This correspondence
is bijective, and establishes an embedding

H])N—’r‘—l\/ N ]P)NV
which identifies PN =1 with LY.
We next give a simple proof of the theorem below, which is shown in [37].

Theorem 22.9 (R. Piene) Let X be a reduced scheme of pure dimension n.

(1) Assume that X is not a hypersurface in PN. If prp : PV — — = PN=1 js g
generic projection with center in the point P, then

3;(X) = di(prp(X))

foralli=0,...,n.
(2) Let HCPY be a generic hyperplane. Then

6i(XNH)=0i11(X)
foralli=0,...,n—1.
Proof We first show (1). By the proposition we have that in the set up
prp:PN— — L pN-1
PV is identified with PN=1V. Under this identification, we find
Z(prp(X)) = (prp x idpw ) (Z(X)) 0 PV x PN-1Y),

A proof of this observation is given in Sect. 6 of [26] as Proposition 6.3, (2).
Letting

j:]:P)N—l ><IP)JV—I\/ L>]P)]\f—l XPNV
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be the canonical embedding, we thus find

e[Z(prp(X))] = 5" ((prp x idpav ). ([Z(X)]))

where ¢ is an integer, we will show shortly that ¢ = 1. The symbol
(prp x idpnv )4 does of course represent an abuse of notation, since prp is
not defined at P. The pushdown is defined by the standard diagram ex-
tended to PVV:

PN x PNV

‘n’pXidPN\/ >\><id]pN\/

prpXidpny
PN xPNV — PN-1 x PNV

Here wp denotes the blowing up with center P, and A is the corresponding
bundle map on to PV-1.
As usual we write

A(PN x PNV) = Z[s,1]

where s and ¢ are the pullbacks of the hyperplane classes from PV and PNV,
respectively. Similarly

APN x PV7IY) = Z[s, 1]
APV x PVY) = Z[5,1]
and
APV x PV = Z[5,1).

For i > 1 we have prp,(s*) =5'~! (where prp, is defined in the obvious way
via the blowing up with center P), and for all ¢ and j

J () =5
Thus the expressions
[Z(X)] = 00(X)s™Vt + 61 (X)sV 12 4 - 4 6, (X) sV g H
and
[Z(prp(X))] = b0 (prp(X))5V 7 4+ 81 (prp (X))5" 27
o B (prp (X))
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immediately yield the claim, since 6, (X) = 0,(prp(X)) = deg(X) so that
e=1.
(2) is shown in an analogous way: Let

ig PN PV
pPry PNV - PN

denote the embedding with image H, and dually the projection with center
H regarded as a point of PVV. We then have the relation

Z(X (VH) = (idp x pryg)(Z(X) N (BN=1 x BVY))
which again is shown in Sect. 6. Here PV 1 is identified with H via iz. Thus
Z(X 1 H)] = (iden—1 % prgg)o (i1 % i) ([Z(X))]).
Now we have
[Z(X N H)] = 6(X NH)FN "+ 6,(X N H)sV 2
44 O (X N H)FN (g
and since

(idpn—1 % pryg)e((ig x idpav )*(s™47) = 542"

we also have
(o1 x pryg)e (i  idgv ) ((Z(X)))
=01 (X)FN T 4 0 (X)FN 2 4 4 5, (X)FV (D

where again a multiplicity £ turns out to be 1 since 6,(X)=d,-1(XNH) =
deg(X). This gives the claim. O

22.5 A Theorem of Hefez-Kleiman

In this section we prove a theorem by Hefez and Kleiman [32] in the following
form:

Theorem 22.10 Let X be a reduced, projective scheme of pure dimension n,
and let r be the integer such that

50(X):”':5r71(X):03 5T(X)7AO

Then for all i € [r,n],
6i(X) = 1.
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In characteristic zero, this can be strengthened to
5i(X)>2
provided that X is not a linear subspace of PN .

Proof Replacing X by the intersection with an appropriate generic linear
subspace if necessary, we may assume that r =0, i.e., that XV is a hyper-
surface. The claim then amounts to showing the theorem below, which is
classical in spirit, but was first discovered by A. Wallace in [40] (Theorem 1
on p. 7, as well as the lemmas d and e):

Theorem 22.11 (Wallace) If XV is a hypersurface in PV, then (X N H)Y
is a hypersurface in PN~ provided H is a hyperplane in general position.
More generally, if X is cut by an r-dimensional linear subspace L in general
position, then the dual of the linear section is a hypersurface in L* =PV,

Proof We give Wallace’s proof, slightly reformulated: The dual of X N H in
PNV is the closure of all points which correspond to hyperplanes H’ which
contain T'x , N H for some smooth point x € X. Thus letting T'(X,X N H)
denote the subvariety of PV which corresponds to (the closure of the set of)
hyperplanes tangent to X at some (smooth) point of X N H, we find that the
dual of the hyperplane section in PVV is the cone over T(X,X N H). Since
XV is a hypersurface by assumption, the map A is generically finite, thus
T(X,X N H) is of codimension 1 in X" whenever H is sufficiently general,
hence (X N H)Y in PVV is a hypersurface as well, and a cone with vertex H.
But since the correspondence between points in PYY and points in H* =
PN—1V is given by projection with center H € PVV, this means that the dual
of (XN H)V is a hypersurface in PV -1V,

Next, assume that the characteristic is zero. Replacing X by its intersec-
tion with a generic linear subspace of PV if necessary, we may assume that
XV is a hypersurface. Then cutting X with a generic linear 2-space P2 C PV
and using the duality of the delta-invariants, we have from Piene’s theorem
in the previous section

[Z(XY NP?)] = 6o(X)5%E + 61 (X)SE

where 5 and £ € A(P? x P2V) are the pullbacks of line-classes from P? and P2,
respectively. In particular, if XV is a hypersurface, then X NP2 must be
a planar curve, of degree do(X) > 2: If it were of degree 1, then it would
be a line, thus XV would be linear, hence X would be linear by biduality.
Moreover, d1(X) is the degree of the curve (XY NP?)V. Hence we also have
91(X) > 2. Thus we have shown the claim for ¢ =0 and 1. To proceed, we cut
X with one hyperplane more and repeat the argument. a

A further sharpening is given by the
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Proposition 22.12 Assume that the characteristic of the ground field is zero,
and that X C PN is irreducible and is not a hypersurface in some linear
subspace. Then the inequality in the theorem can be strengthened to

8;(X) > 3.

Proof By the same argument as in the last part of the proof of the theorem:
Assume that 6;(X) =2 for some i. Then we may assume that i =r =0, if
necessary after cutting X with an appropriate generic linear subspace of P
Thus if P? is a generic linear subspace of dimension 2, then XV NP? is an
irreducible curve of degree 2, hence a smooth conic, thus XV is either smooth
or a cone of degree 2. But it can not be a cone, as biduality holds and X is
not contained in a hypersurface. Hence XV is smooth of degree 2, so X is
also of degree 2. We are thus finished by observing that a variety of degree 2
is necessarily a hypersurface in some linear subspace of the ambient space. O

The number r referred to in the theorem above is called the duality defect
of the embedded variety X. The concept is important for the classification
of embedded projective varieties.

But here, with a view into a vast and very interesting field of research, is
where our Royal Road ends.
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