
Chapter 2
Spontaneous Symmetry Breaking
and the Goldstone Theorem

2.1 Degenerate Ground States

Before discussing the case of a continuous symmetry, we will first have a look at a
field theory with a discrete internal symmetry. This will allow us to distinguish
between two possibilities: a dynamical system with a unique ground state or a
system with a finite number of distinct degenerate ground states. In particular, we
will see how, for the second case, an infinitesimal perturbation selects a particular
vacuum state.

To that end we consider the Lagrangian of a real scalar field UðxÞ [8]

LðU; olUÞ ¼
1
2
olUolU� m2

2
U2 � k

4
U4; ð2:1Þ

which is invariant under the discrete transformation R : U 7! �U: The corre-
sponding classical energy density reads

H ¼ P _U�L ¼ 1
2

_U2 þ 1
2
ðr~UÞ2 þ m2

2
U2 þ k

4
U4

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�VðUÞ

; ð2:2Þ

where one chooses k [ 0 so that H is bounded from below. The field U0 which
minimizes the Hamilton density H must be constant and uniform since in that
case the first two terms take their minimum values of zero everywhere. It must also
minimize the ‘‘potential’’ V since VðUðxÞÞ�VðU0Þ; from which we obtain the
condition

V0ðUÞ ¼ Uðm2 þ kU2Þ ¼ 0:

We now distinguish two different cases:
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1. m2 [ 0 (see Fig. 2.1): In this case the potential V has its minimum for U ¼ 0:
In the quantized theory we associate a unique ground state j0i with this min-
imum. Later on, in the case of a continuous symmetry, this situation will be
referred to as the Wigner-Weyl realization of the symmetry.

2. m2\0 (see Fig. 2.2): Now the potential exhibits two distinct minima. (In the
continuous symmetry case this will be referred to as the Nambu-Goldstone
realization of the symmetry.)

We will concentrate on the second situation, because this is the one which we
would like to generalize to a continuous symmetry and which ultimately leads to
the appearance of Goldstone bosons. In the present case, VðUÞ has a local
maximum for U ¼ 0 and two minima for

U� ¼ �
ffiffiffiffiffiffiffiffiffiffi

�m2

k

r

� �U0: ð2:3Þ

As will be explained below, the quantized theory develops two degenerate vacua
j0;þi and j0;�i which are distinguished through their vacuum expectation values
of the field UðxÞ:1

h0;þjUðxÞj0;þi ¼ h0;þjeiP�xUð0Þe�iP�xj0;þi ¼ h0;þjUð0Þj0;þi � U0;

h0;�jUðxÞj0;�i ¼ �U0:
ð2:4Þ

We made use of translational invariance, UðxÞ ¼ eiP�xUð0Þe�iP�x; and the fact that
the ground state is an eigenstate of energy and momentum. We associate with the
transformation R : U 7!U0 ¼ �U a unitary operator R acting on the Hilbert space
of our model, with the properties

–1 1
x

1

3

5

V(x)Fig. 2.1
VðxÞ ¼ x2=2þ x4=4
(Wigner-Weyl mode)

1 The case of a quantum field theory with an infinite volume V has to be distinguished from, say,
a nonrelativistic particle in a one-dimensional potential of a shape similar to the function of
Fig. 2.2. For example, in the case of a symmetric double-well potential, the solutions with
positive parity always have lower energy eigenvalues than those with negative parity (see, e.g.,
Ref. [11]).
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R2 ¼ I; R ¼ R�1 ¼ Ry:

In accord with Eq. 2.4 the action of the operator R on the ground states is given by

Rj0;�i ¼ j0;�i: ð2:5Þ

For the moment we select one of the two expectation values and expand the
Lagrangian about �U0:2

U ¼ �U0 þ U0;

olU ¼ olU
0:

ð2:6Þ

Exercise 2.1 Show that

VðUÞ ¼ ~VðU0Þ ¼ �k
4
U4

0 þ
1
2
ð�2m2ÞU02 � kU0U

03 þ k
4

U04:

Thus, the Lagrangian in terms of the shifted dynamical variable reads

L0ðU0; olU
0Þ ¼ 1

2
olU

0olU0 � 1
2
ð�2m2ÞU02 � kU0U

03 � k
4

U04 þ k
4

U4
0: ð2:7Þ

In terms of the new dynamical variable U0; the symmetry R is no longer manifest,
i.e., it is hidden. Selecting one of the ground states has led to a spontaneous
symmetry breaking which is always related to the existence of several degenerate
vacua.

At this stage it is not clear why the ground state of the quantum system should
be one or the other of j0;�i and not a superposition of both. For example, the
linear combination

1
ffiffiffi

2
p j0;þi þ j0;�ið Þ

–1 1 x
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V(x)Fig. 2.2
VðxÞ ¼ �x2=2þ x4=4
(Nambu-Goldstone mode)

2 The field U0 instead of U is assumed to vanish at infinity.
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is invariant under R as is the original Lagrangian of Eq. 2.1. However, this
superposition is not stable against any infinitesimal external perturbation which is
odd in U (see Fig. 2.3),

ReH0Ry ¼ �eH0:

Any such perturbation will drive the ground state into the vicinity of either
j0;þi or j0;�i rather than 1

ffiffi

2
p ðj0;þi � j0;�iÞ: This can easily be seen in the

framework of perturbation theory for degenerate states. Consider

j1i ¼ 1
ffiffiffi

2
p ðj0;þi þ j0;�iÞ; j2i ¼ 1

ffiffiffi

2
p ðj0;þi � j0;�iÞ;

such that

Rj1i ¼ j1i Rj2i ¼ �j2i:

The condition for the energy eigenvalues of the ground state, E ¼ Eð0Þ þ eEð1Þ þ � � � ;
to first order in e results from

det h1jH
0j1i � Eð1Þ h1jH0j2i
h2jH0j1i h2jH0j2i � Eð1Þ

� �

¼ 0:

Due to the symmetry properties of Eq. 2.5, we obtain

h1jH0j1i ¼ h1jR�1RH0R�1Rj1i ¼ h1j � H0j1i ¼ 0

and similarly h2jH0j2i ¼ 0: Setting h1jH0j2i ¼ a [ 0; which can always be
achieved by multiplication of one of the two states by an appropriate phase, one
finds

h2jH0j1i ¼H0¼ H0yh1jH0j2i� ¼ a� ¼ a ¼ h1jH0j2i;

resulting in

det �Eð1Þ a
a �Eð1Þ

� �

¼ Eð1Þ
2 � a2 ¼ 0: ) Eð1Þ ¼ �a:
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x
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V(x)Fig. 2.3 Potential with a
small odd component:
VðxÞ ¼ x=10� x2=2þ x4=4
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In other words, the degeneracy has been lifted and we get for the energy
eigenvalues

E ¼ Eð0Þ � eaþ � � � : ð2:8Þ

The corresponding eigenstates of zeroth order in e are j0;þi and j0;�i; respec-
tively. We thus conclude that an arbitrarily small external perturbation which is
odd with respect to R will push the ground state to either j0;þi or j0;�i:

In the above discussion, we have tacitly assumed that the Hamiltonian and the
field UðxÞ can simultaneously be diagonalized in the vacuum sector, i.e.,
h0;þj0;�i ¼ 0: Following Ref. [18], we will justify this assumption which will
also be crucial for the continuous case to be discussed later.

For an infinite volume, a general vacuum state jvi is defined as a state with

momentum eigenvalue 0~;

P~jvi ¼ 0~;

where 0~ is a discrete eigenvalue as opposed to an eigenvalue of single- or many-

particle states for which p~¼ 0~ is an element of a continuous spectrum (see
Fig. 2.4). We deal with the situation of several degenerate ground states3 which
will be denoted by jui; jvi; etc., and start from the identity

0 ¼ huj½H;UðxÞ	jvi 8 x; ð2:9Þ

from which we obtain for t ¼ 0
Z

d3y hujHðy~; 0ÞUðx~; 0Þjvi ¼
Z

d3y hujUðx~; 0ÞHðy~; 0Þjvi: ð2:10Þ

Let us consider the left-hand side,

1 1
px

0.5

1.5

EFig. 2.4 Dispersion relation
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
x

p

and asymptote
E ¼ j pxj

3 For continuous symmetry groups one may have a non-countably infinite number of ground
states.
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Z

d3y hujHðy~; 0ÞUðx~; 0Þjvi ¼
X

w

hujHjwihwjUð0Þjvi

þ
Z

d3y

Z

d3p
X

n

hujHðy~; 0Þjn; p~ihn; p~jUð0Þjvie�ip~�x~;

where we inserted a complete set of states which we split into the vacuum con-
tribution and the remainder, and made use of translational invariance. We now
define

fnðy~; p~Þ ¼ hujHðy~; 0Þjn; p~ihn; p~jUð0Þjvi

and assume fn to be reasonably behaved such that one can apply the lemma of
Riemann and Lebesgue,

lim
jx~j!1

Z

d3p f ðp~Þe�ip~�x~ ¼ 0:

At this point the assumption of an infinite volume, jx~j ! 1; is crucial. Repeating
the argument for the right-hand side and taking the limit jx~j ! 1; only the
vacuum contributions survive in Eq. 2.10 and we obtain

X

w

hujHjwihwjUð0Þjvi ¼
X

w

hujUð0ÞjwihwjHjvi

for arbitrary ground states jui and jvi: In other words, the matrices ðHuvÞ �
ðhujHjviÞ and ðUuvÞ � ðhujUð0ÞjviÞ commute and can be diagonalized simulta-
neously. Choosing an appropriate basis, one can write

hujUð0Þjvi ¼ duvv; v 2 R;

where v denotes the expectation value of U in the state jvi:
In the above example, the ground states j0;þi and j0;�i with vacuum

expectation values �U0 are thus indeed orthogonal and satisfy

h0;þjHj0;�i ¼ h0;�jHj0;þi ¼ 0:

2.2 Spontaneous Breakdown of a Global, Continuous,
Non-Abelian Symmetry

Using the example of the O(3) sigma model we recall a few aspects relevant to our
subsequent discussion of spontaneous symmetry breaking [16].4 To that end, we
consider the Lagrangian

4 The linear sigma model [6, 7, 17] is constructed in terms of the O(4) multiplet ðr; p1; p2; p3Þ:
Since the group O(4) is locally isomorphic to SU(2) 
 SU(2), the linear sigma model is a
popular framework for illustrating the spontaneous symmetry breaking in two-flavor QCD.
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LðU~; olU~Þ ¼LðU1;U2;U3; olU1; olU2; olU3Þ

¼ 1
2
olUio

lUi �
m2

2
UiUi �

k
4
ðUiUiÞ2; ð2:11Þ

where m2\0; k[ 0; with Hermitian fields Ui: By choosing m2\0; the symmetry
is realized in the Nambu-Goldstone mode [9, 13].5

The Lagrangian of Eq. 2.11 is invariant under a global ‘‘isospin’’ rotation,6

g 2 SO(3) : Ui 7!U0i ¼ DijðgÞUj ¼ e�iakTk
� �

ij
Uj: ð2:12Þ

For the U0i to also be Hermitian, the Hermitian Tk must be purely imaginary and
thus antisymmetric (see Eqs. 1.69). The iTk provide the basis of a representation of
the so(3) Lie algebra and satisfy the commutation relations ½Ti; Tj	 ¼ ieijkTk: We
use the representation of Eqs. 1.69, i.e., the matrix elements are given by ti;jk ¼
�ieijk: We now look for a minimum of the potential which does not depend on x:

Exercise 2.2 Determine the minimum of the potential

VðU1;U2;U3Þ ¼
m2

2
UiUi þ

k
4
ðUiUiÞ2:

We find

jU~minj ¼
ffiffiffiffiffiffiffiffiffiffi

�m2

k

r

� v; jU~j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
1 þ U2

2 þ U2
3

q

: ð2:13Þ

Since U~min can point in any direction in isospin space we have a non-countably
infinite number of degenerate vacua. Any infinitesimal external perturbation that is
not invariant under SO(3) will select a particular direction which, by an appro-
priate orientation of the internal coordinate frame, we denote as the 3 direction in
our convention,

U~min ¼ vê3: ð2:14Þ

Clearly, U~min of Eq. 2.14 is not invariant under the full group G ¼ SO(3) since

rotations about the 1 and 2 axes change U~min:
7 To be specific, if

5 In the beginning, the discussion of spontaneous symmetry breaking in field theories [9, 13–15]
was driven by an analogy with the theory of superconductivity [1, 2, 4, 5].
6 The Lagrangian is invariant under the full group O(3) which can be decomposed into its two
components: the proper rotations connected to the identity, SO(3), and the rotation-reflections.
For our purposes it is sufficient to discuss SO(3).
7 We say, somewhat loosely, that T1 and T2 do not annihilate the ground state or, equivalently,
finite group elements generated by T1 and T2 do not leave the ground state invariant. This
should become clearer later on.
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U~min ¼ v
0
0
1

0

@

1

A;

we obtain

T1U~min ¼ v
0
�i
0

0

@

1

A; T2U~min ¼ v
i
0
0

0

@

1

A; T3U~min ¼ 0: ð2:15Þ

Note that the set of transformations which do not leave U~min invariant does not

form a group, because it does not contain the identity. On the other hand, U~min is
invariant under a subgroup H of G; namely, the rotations about the 3 axis:

h 2 H : U~
0 ¼ DðhÞU~ ¼ e�ia3T3U~; DðhÞU~min ¼ U~min: ð2:16Þ

Exercise 2.3 Write U3 as

U3ðxÞ ¼ vþ gðxÞ; ð2:17Þ

where gðxÞ is a new field replacing U3ðxÞ; and express the Lagrangian in terms of

the fields U1;U2; and g; where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�m2=k
p

:

The new expression for the potential is given by

~V ¼ 1
2
�2m2
� �

g2 þ kvg U2
1 þ U2

2 þ g2
� �

þ k
4

U2
1 þ U2

2 þ g2
� �2� k

4
v4: ð2:18Þ

Upon inspection of the terms quadratic in the fields, one finds after spontaneous
symmetry breaking two massless Goldstone bosons and one massive boson:

m2
U1
¼ m2

U2
¼ 0;

m2
g ¼ �2m2:

ð2:19Þ

The model-independent feature of the above example is given by the fact that for
each of the two generators T1 and T2 which do not annihilate the ground state one
obtains a massless Goldstone boson. By means of a two-dimensional simplification
(see the ‘‘Mexican hat’’ potential shown in Fig. 2.5) the mechanism at hand can
easily be visualized. Infinitesimal variations orthogonal to the circle of the mini-
mum of the potential generate quadratic terms, i.e., ‘‘restoring forces’’ linear in the
displacement, whereas tangential variations experience restoring forces only of
higher orders.
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Now let us generalize the model to the case of an arbitrary compact Lie group G
of order nG resulting in nG infinitesimal generators.8 Once again, we start from a
Lagrangian of the form [10]

L U~; olU~
� 	

¼ 1
2
olU~ � olU~�V U~

� 	

; ð2:20Þ

where U~ is a multiplet of scalar (or pseudoscalar) Hermitian fields. The Lagrangian
L and thus also V are supposed to be globally invariant under G; where the
infinitesimal transformations of the fields are given by

g 2 G : Ui 7!Ui þ dUi; dUi ¼ �ieata;ijUj: ð2:21Þ

The Hermitian representation matrices Ta ¼ ðta;ijÞ are again antisymmetric and
purely imaginary. We now assume that, by choosing an appropriate form of V; the
Lagrangian generates a spontaneous symmetry breaking resulting in a ground state

with a vacuum expectation value U~min ¼ hU~i which is invariant under a contin-

uous subgroup H of G: We expand V about U~min; jU~minj ¼ v; i.e., U~ ¼ U~min þ v~;

V U~
� 	

¼V U~min

� 	

þ
oV U~min

� 	

oUi
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼ 0

vi þ
1
2

o2V U~min

� 	

oUioUj
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

� m2
ij

vivj þ � � � : ð2:22Þ
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Fig. 2.5 Two-dimensional
rotationally invariant
potential:
Vðx; yÞ ¼ �ðx2 þ y2Þþ
ðx2þy2Þ2

4

8 The restriction to compact groups allows for a complete decomposition into finite-dimensional
irreducible unitary representations.
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The matrix M2 ¼ ðm2
ijÞ must be symmetric and, since one is expanding about a

minimum, positive semidefinite, i.e.,

X

i;j

m2
ijxixj� 0 8 x~: ð2:23Þ

In that case, all eigenvalues of M2 are nonnegative. Making use of the invariance
of V under the symmetry group G;

V U~min

� 	

¼V DðgÞU~min

� 	

¼V U~min þ dU~min

� 	

¼ð2:22Þ
V U~min

� 	

þ 1
2

m2
ijdUmin;idUmin;j þ � � � ; ð2:24Þ

one obtains, by comparing coefficients,

m2
ijdUmin;idUmin;j ¼ 0: ð2:25Þ

Differentiating Eq. 2.25 with respect to dUmin;k and using m2
ij ¼ m2

ji results in the
matrix equation

M2dU~min ¼ 0~: ð2:26Þ

Inserting the variations of Eq. 2.21 for arbitrary ea; dU~min ¼ �ieaTaU~min; we
conclude

M2TaU~min ¼ 0~: ð2:27Þ

Recall that the Ta represent generators of the symmetry transformations of the
Lagrangian of Eq. 2.20. The solutions of Eq. 2.27 can be classified into two
categories:

1. Ta; a ¼ 1; . . .; nH ; is a representation of an element of the Lie algebra
belonging to the subgroup H of G; leaving the selected ground state invariant.
Therefore, invariance under the subgroup H corresponds to

TaU~min ¼ 0~; a ¼ 1; . . .; nH ;

such that Eq. 2.27 is automatically satisfied without any knowledge of M2:
2. Ta; a ¼ nH þ 1; . . .; nG; is not a representation of an element of the Lie algebra

belonging to the subgroup H: In that case TaU~min 6¼ 0~; and TaU~min is an
eigenvector of M2 with eigenvalue 0. To each such eigenvector corresponds a

massless Goldstone boson. In particular, the different TaU~min 6¼ 0~ are linearly
independent, resulting in nG � nH independent Goldstone bosons. (If they were
not linearly independent, there would exist a nontrivial linear combination
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0~¼
X
nG

a¼nHþ1

ca TaU~min

� 	

¼
X
nG

a¼nHþ1

caTa

 !

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

� T

U~min;

such that T is an element of the Lie algebra of H in contradiction to our
assumption.)

Remark It may be necessary to perform a similarity transformation on the fields in
order to diagonalize the mass matrix.

Let us check these results by reconsidering the example of Eq. 2.11. In that case
nG ¼ 3 and nH ¼ 1; generating two Goldstone bosons (see Eq. 2.19).

We conclude this section with two remarks.

1. The number of Goldstone bosons is determined by the structure of the
symmetry groups. Let G denote the symmetry group of the Lagrangian with nG

generators, and H the subgroup with nH generators which leaves the ground
state invariant after spontaneous symmetry breaking. For each generator which
does not annihilate the vacuum one obtains a massless Goldstone boson, i.e.,
the total number of Goldstone bosons equals nG � nH :

2. The Lagrangians used in motivating the phenomenon of a spontaneous sym-
metry breakdown are typically constructed in such a fashion that the degen-
eracy of the ground states is built into the potential at the classical level (the
prototype being the ‘‘Mexican hat’’ potential of Fig. 2.5). As in the above case,
it is then argued that an elementary Hermitian field of a multiplet transforming
nontrivially under the symmetry group G acquires a vacuum expectation value
signaling a spontaneous symmetry breakdown. However, there also exist the-
ories such as QCD where one cannot infer from inspection of the Lagrangian
whether the theory exhibits spontaneous symmetry breaking. Rather, the cri-
terion for spontaneous symmetry breaking is a nonvanishing vacuum expec-
tation value of some Hermitian operator, not an elementary field, which is
generated through the dynamics of the underlying theory. In particular, we will
see that the quantities developing a vacuum expectation value may also be
local Hermitian operators composed of more fundamental degrees of freedom
of the theory. Such a possibility was already emphasized in the derivation of
Goldstone’s theorem in Ref. [10].

2.3 Goldstone Theorem

By means of the above example, we motivate another approach to Goldstone’s
theorem without delving into all the subtleties of a quantum field-theoretical
approach (for further reading, see Sect. 2 of Ref. [3]). Given a Hamilton operator
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with a global symmetry group G ¼ SO(3); let U~ðxÞ ¼ ðU1ðxÞ;U2ðxÞ;U3ðxÞÞ
denote a triplet of local Hermitian operators transforming as a vector under G;

g 2 G : U~ðxÞ 7!U~
0ðxÞ ¼ ei

P3

k¼1
akQkU~ðxÞe�i

P3

l¼1
alQl ¼ e�i

P3

k¼1
akTkU~ðxÞ; ð2:28Þ

where the Qi are the generators of the SO(3) transformations on the Hilbert space
satisfying ½Qi;Qj	 ¼ ieijkQk and the Ti ¼ ðti;jkÞ are the matrices of the three-
dimensional representation satisfying ti;jk ¼ �ieijk: We assume that one component
of the multiplet acquires a nonvanishing vacuum expectation value:

h0jU1ðxÞj0i ¼ h0jU2ðxÞj0i ¼ 0; h0jU3ðxÞj0i ¼ v 6¼ 0: ð2:29Þ

Then the two generators Q1 and Q2 do not annihilate the ground state, and to each
such generator corresponds a massless Goldstone boson.

In order to prove these two statements, let us expand Eq. 2.28 to first order in
the ak :

U~
0 ¼ U~þ i

X
3

k¼1

ak½Qk;U~	 ¼ 1� i
X

3

k¼1

akTk

 !

U~ ¼ U~þ a~
 U~:

Comparing the terms linear in the ak;

i½akQk;Ul	 ¼ elkmakUm;

and noting that all three ak can be chosen independently, we obtain

i½Qk;Ul	 ¼ �eklmUm;

which expresses the fact that the field operators Ui transform as a vector.9 Using
eklmekln ¼ 2dmn; we find

� i

2
ekln½Qk;Ul	 ¼ dmnUm ¼ Un:

In particular,

U3 ¼ �
i

2
ð½Q1;U2	 � ½Q2;U1	Þ; ð2:30Þ

with cyclic permutations for the other two cases.
In order to prove that Q1 and Q2 do not annihilate the ground state, let us

consider Eq. 2.28 for a~¼ ð0; p=2; 0Þ;

e�ip2T2U~ ¼
cos p

2

� �

0 sin p
2

� �

0 1 0
� sin p

2

� �

0 cos p
2

� �

0

@

1

A

U1

U2

U3

0

@

1

A ¼
U3

U2

�U1

0

@

1

A ¼ eip2Q2

U1

U2

U3

0

@

1

Ae�ip2Q2 :

9 Using the replacements Qk ! l̂k and Ul ! x̂l; note the analogy with i½̂lk; x̂l	 ¼ �eklmx̂m:

60 2 Spontaneous Symmetry Breaking



From the first row we obtain

U3 ¼ eip2Q2U1e�ip2Q2 :

Taking the vacuum expectation value

v ¼ 0 eip2Q2U1e�ip2Q2










0
� �

and using Eq. 2.29, clearly Q2j0i 6¼ 0; since otherwise the exponential operator
could be replaced by unity and the right-hand side would vanish. A similar
argument shows Q1j0i 6¼ 0:

At this point let us make two remarks.

1. The ‘‘states’’ Q1ð2Þj0i cannot be normalized. In a more rigorous derivation one
makes use of integrals of the form

Z

d3x h0j½J0
k ðt; x~Þ;Ulð0Þ	j0i;

and first determines the commutator before evaluating the integral [3].
2. Some derivations of Goldstone’s theorem right away start by assuming

Q1ð2Þj0i 6¼ 0: However, for the discussion of spontaneous symmetry breaking in
the framework of QCD it is advantageous to establish the connection between
the existence of Goldstone bosons and a nonvanishing expectation value (see
Sect. 3.2).

Let us now turn to the existence of Goldstone bosons, taking the vacuum
expectation value of Eq. 2.30:

0 6¼ v ¼ h0jU3ð0Þj0i ¼ �
i

2
h0j ½Q1;U2ð0Þ	 � ½Q2;U1ð0Þ	ð Þj0i � � i

2
ðA� BÞ:

We will first show A ¼ �B: To that end we perform a rotation of the fields as well
as the generators by p=2 about the 3 axis [see Eq. 2.28 with a~¼ ð0; 0; p=2Þ]:

e�ip2T3U~ ¼
�U2

U1

U3

0

@

1

A ¼ eip2Q3

U1

U2

U3

0

@

1

Ae�ip2Q3 ;

and analogously for the charge operators

�Q2

Q1

Q3

0

@

1

A ¼ eip2Q3

Q1

Q2

Q3

0

@

1

Ae�ip2Q3 :

We thus obtain
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B ¼ h0j½Q2;U1ð0Þ	j0i ¼ h0j
�

eip2Q3ð�Q1Þ e�ip2Q3 eip2Q3

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼ 1

U2ð0Þe�ip2Q3

� eip2Q3U2ð0Þe�ip2Q3 eip2Q3ð�Q1Þe�ip2Q3

	

j0i

¼ �h0j½Q1;U2ð0Þ	j0i ¼ �A;

where we made use of Q3j0i ¼ 0; i.e., the vacuum is invariant under rotations
about the 3 axis. In other words, the nonvanishing vacuum expectation value v can
also be written as

0 6¼ v ¼ h0jU3ð0Þj0i ¼ �ih0j½Q1;U2ð0Þ	j0i ¼ �i

Z

d3x h0j½J0
1ðt; x~Þ;U2ð0Þ	j0i:

ð2:31Þ

We insert a complete set of states 1 ¼
X
Z

n
jnihnj into the commutator10

v ¼ �i
X
Z

n

Z

d3x h0jJ0
1ðt; x~ÞjnihnjU2ð0Þj0i � h0jU2ð0ÞjnihnjJ0

1ðt; x~Þj0i
� �

;

and make use of translational invariance

¼ �i
X
Z

n

Z

d3x e�iPn�xh0jJ0
1ð0ÞjnihnjU2ð0Þj0i � � � �

� �

¼ �i
X
Z

n
ð2pÞ3d3ðP~nÞ e�iEnth0jJ0

1ð0ÞjnihnjU2ð0Þj0i � eiEnth0jU2ð0ÞjnihnjJ0
1ð0Þj0i

� �

:

Integration with respect to the momentum of the inserted intermediate states yields
an expression of the form

¼ �ið2pÞ3
X

n

0
e�iEnt � � � � eiEnt � � �
� �

;

where the prime indicates that only states with p~¼ 0~need to be considered. Due to
the Hermiticity of the symmetry current operators Jl

k as well as the Ul; we have

cn � h0jJ0
1ð0ÞjnihnjU2ð0Þj0i ¼ hnjJ0

1ð0Þj0i
�h0jU2ð0Þjni�;

such that

v ¼ �ið2pÞ3
X

n

0
cne�iEnt � c�neiEnt
� �

: ð2:32Þ

10 The abbreviation
X
Z

n
jnihnj includes an integral over the total momentum p~ as well as all

other quantum numbers necessary to fully specify the states.
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From Eq. 2.32 we draw the following conclusions.

1. Due to our assumption of a nonvanishing vacuum expectation value v; there must
exist states jni for which both h0jJ0

1ð2Þð0Þjni and hnjU1ð2Þð0Þj0i do not vanish. The

vacuum itself cannot contribute to Eq. 2.32 because h0jU1ð2Þð0Þj0i ¼ 0:
2. States with En [ 0 contribute (un is the phase of cn)

1
i

cne�iEnt � c�neiEnt
� �

¼ 1
i
jcnj eiun e�iEnt � e�iun eiEnt
� �

¼ 2jcnj sinðun � EntÞ

to the sum. However, v is time independent and therefore the sum over states

with ðE; p~Þ ¼ ðEn [ 0; 0~Þ must vanish.
3. The right-hand side of Eq. 2.32 must therefore contain the contribution from

states with zero energy as well as zero momentum thus zero mass. These zero-
mass states are the Goldstone bosons.

2.4 Explicit Symmetry Breaking: A First Look

Finally, let us illustrate the consequences of adding a small perturbation to our
Lagrangian of Eq. 2.11 which explicitly breaks the symmetry. To that end, we
modify the potential of Eq. 2.11 by adding a term aU3;

VðU1;U2;U3Þ ¼
m2

2
UiUi þ

k
4
ðUiUiÞ2 þ aU3; ð2:33Þ

where m2\0; k[ 0; and a [ 0; with Hermitian fields Ui: Clearly, the potential no
longer has the original O(3) symmetry but is only invariant under O(2). The

conditions for the new minimum, obtained from r~UV ¼ 0; read

U1 ¼ U2 ¼ 0; kU3
3 þ m2U3 þ a ¼ 0:

Exercise 2.4 Solve the cubic equation for U3 using the perturbative ansatz

hU3i ¼ Uð0Þ3 þ aUð1Þ3 þ Oða2Þ: ð2:34Þ

The solution reads

Uð0Þ3 ¼ �
ffiffiffiffiffiffiffiffiffiffi

�m2

k

r

; Uð1Þ3 ¼
1

2m2
:

As expected, Uð0Þ3 corresponds to our result without explicit perturbation. The

condition for a minimum (see Eq. 2.23) excludes Uð0Þ3 ¼ þ
ffiffiffiffiffiffiffiffiffi

� m2

k

q

: Expanding the

potential with U3 ¼ hU3i þ g we obtain, after a short calculation, for the masses
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m2
U1
¼ m2

U2
¼ a

ffiffiffiffiffiffiffiffiffiffi

k
�m2

r

;

m2
g ¼ �2m2 þ 3a

ffiffiffiffiffiffiffiffiffiffi

k
�m2

r

:

ð2:35Þ

The important feature here is that the original Goldstone bosons of Eq. 2.19 are
now massive. The squared masses are proportional to the symmetry breaking
parameter a: Calculating quantum corrections to observables in terms of
Goldstone-boson loop diagrams will generate corrections which are nonanalytic in
the symmetry breaking parameter such as a lnðaÞ [12]. Such so-called chiral
logarithms originate from the mass terms in the Goldstone-boson propagators
entering the calculation of loop integrals. We will come back to this point in the
next chapter when we discuss the masses of the pseudoscalar octet in terms of
the quark masses which, in QCD, represent the analogue to the parameter a in the
above example.
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