Chapter 2
Spontaneous Symmetry Breaking
and the Goldstone Theorem

2.1 Degenerate Ground States

Before discussing the case of a continuous symmetry, we will first have a look at a
field theory with a discrete internal symmetry. This will allow us to distinguish
between two possibilities: a dynamical system with a unique ground state or a
system with a finite number of distinct degenerate ground states. In particular, we
will see how, for the second case, an infinitesimal perturbation selects a particular
vacuum state.

To that end we consider the Lagrangian of a real scalar field ®(x) [8]

1 i m? s Ay
2(®,0,0) = 50,00'0 - Z-0? — L0, (2.1)

which is invariant under the discrete transformation R : ®+— —®. The corre-
sponding classical energy density reads
: 1 ) 1 - 2 l"’l2 ) ;L 4
%:H(D—,?ZECD +§(VCD) —l—?(l) +Z(D’ (2.2)
~—_———
=77(D)

where one chooses A > 0 so that J# is bounded from below. The field ®; which
minimizes the Hamilton density 2 must be constant and uniform since in that
case the first two terms take their minimum values of zero everywhere. It must also
minimize the “potential” ¥ since ¥ (®(x)) > ¥ (dy), from which we obtain the
condition

7 (@) = O(m* + 1D?) = 0.

We now distinguish two different cases:
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Fig. 2.1 V(x)

Y (x) = x2/2 + x4 /4

(Wigner-Weyl mode) 5t
3 L

1. m?> > 0 (see Fig. 2.1): In this case the potential ¥ has its minimum for ® = 0.
In the quantized theory we associate a unique ground state |0) with this min-
imum. Later on, in the case of a continuous symmetry, this situation will be
referred to as the Wigner-Weyl realization of the symmetry.

2. m*><0 (see Fig. 2.2): Now the potential exhibits two distinct minima. (In the
continuous symmetry case this will be referred to as the Nambu-Goldstone
realization of the symmetry.)

We will concentrate on the second situation, because this is the one which we
would like to generalize to a continuous symmetry and which ultimately leads to
the appearance of Goldstone bosons. In the present case, ¥ (®) has a local
maximum for ® = 0 and rwo minima for

—m2
D, = +) /Tm = £, (2.3)

As will be explained below, the quantized theory develops two degenerate vacua
|0,+) and |0, —) which are distinguished through their vacuum expectation values
of the field ®(x):'

(0, +[®@(x)[0, +) = (0, +‘eip‘xq)(0)e_ipx|o7 +) = (0, +[®(0)|0, +) = Do,

(0, —|®(x)|0, =) = —Dy. (2.4)

We made use of translational invariance, ®(x) = ¢*®(0)e "~ and the fact that
the ground state is an eigenstate of energy and momentum. We associate with the
transformation R : ® — @' = —® a unitary operator # acting on the Hilbert space
of our model, with the properties

! The case of a quantum field theory with an infinite volume V has to be distinguished from, say,
a nonrelativistic particle in a one-dimensional potential of a shape similar to the function of
Fig. 2.2. For example, in the case of a symmetric double-well potential, the solutions with
positive parity always have lower energy eigenvalues than those with negative parity (see, e.g.,
Ref. [11]).
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Fig. 2.2 V(x)
Y (x) = —x2/2 +x*/4
(Nambu-Goldstone mode)
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B =1, B=R"="
In accord with Eq. 2.4 the action of the operator # on the ground states is given by
2|0,+) = |0, F). (2.5)

For the moment we select one of the two expectation values and expand the
Lagrangian about +®j:*

O =+Py + P,
0,0 =0,0". (2:6)
Exercise 2.1 Show that
V(D) = 7 (V) = _g o+ %(—2m2)q>/2 + 2D, ®" + %@’4.
Thus, the Lagrangian in terms of the shifted dynamical variable reads
Z'(D',0,0') = %6#(1)’6‘@’ — %(—2m2)(])’2 T 100" — 2@’4 + j—;CDg. (2.7)

In terms of the new dynamical variable @', the symmetry R is no longer manifest,
i.e., it is hidden. Selecting one of the ground states has led to a spontaneous
symmetry breaking which is always related to the existence of several degenerate
vacua.

At this stage it is not clear why the ground state of the quantum system should
be one or the other of |0, +) and not a superposition of both. For example, the
linear combination

1

\/j(|07 +)+10,-))

2 The field @ instead of ® is assumed to vanish at infinity.
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Fig. 2.3 Potential with a V(x)
small odd component:
Y (x) = x/10 — x2 /2 + x* /4
05 ¢
\__1/ ! '
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is invariant under # as is the original Lagrangian of Eq. 2.1. However, this
superposition is not stable against any infinitesimal external perturbation which is
odd in @ (see Fig. 2.3),

ReH' R = —cH' .

Any such perturbation will drive the ground state into the vicinity of either
|0,+) or |0, —) rather than \/%(|(), +) £]0,—)). This can easily be seen in the

framework of perturbation theory for degenerate states. Consider

1 1
= - —

ﬁ(|0’ +)+10,-),  12) /3

(|0a +> - |Oa _>)a
such that
A1) =|1) R|2) =—|2).

The condition for the energy eigenvalues of the ground state, E = E(©) 4+ ¢£(1) 4 ...
to first order in ¢ results from

W) —EO ) )
det( QIE) <2H’|2>—E<1>>

Due to the symmetry properties of Eq. 2.5, we obtain
(1H'|1) = (1|2 '2H' %' %|1) = (1| —H'|1) =0

and similarly (2|H’|2) = 0. Setting (1|H’|2) =a >0, which can always be
achieved by multiplication of one of the two states by an appropriate phase, one
finds

1 ot
QHTZT(1H2) = a* =a = (11H']2),

resulting in

_EM
det( i gm) —EV =0 =EV=1a
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Fig. 2.4 Dispersion relation E
E = /1 + p? and asymptote
E = |p:|
1.5}
0.5r
Py

In other words, the degeneracy has been lifted and we get for the energy
eigenvalues

E=E9 +eq+---. (2.8)

The corresponding eigenstates of zeroth order in ¢ are |0,+) and |0, —), respec-
tively. We thus conclude that an arbitrarily small external perturbation which is
odd with respect to R will push the ground state to either |0,+) or |0, —).

In the above discussion, we have tacitly assumed that the Hamiltonian and the
field ®(x) can simultaneously be diagonalized in the vacuum sector, i.e.,
(0,40, —) = 0. Following Ref. [18], we will justify this assumption which will
also be crucial for the continuous case to be discussed later.

For an infinite volume, a general vacuum state |v) is defined as a state with

momentum eigenvalue 0,
Plv) =0,

where 0 is a discrete eigenvalue as opposed to an eigenvalue of single- or many-

particle states for which p = 0 is an element of a continuous spectrum (see
Fig. 2.4). We deal with the situation of several degenerate ground states® which
will be denoted by |u), |v), etc., and start from the identity

0= (ul[H,ox)]lv) V x, (2.9)
from which we obtain for t = 0

/d3y (ulA(¥,0)0(%,0)|v) = /d3y (u|®(X,0)7 (5, 0)[v). (2.10)

Let us consider the left-hand side,

3 For continuous symmetry groups one may have a non-countably infinite number of ground
states.



54 2 Spontaneous Symmetry Breaking

/d3y (ul A (7,0)D(%, 0) [v) = > (ulH|w) {w|®(0)|v)

+/d3y /d3p Z<M|Jf()_", O)|n,ﬁ><n’p"q)(0)‘v>e_iﬁ.g7

where we inserted a complete set of states which we split into the vacuum con-
tribution and the remainder, and made use of translational invariance. We now
define

Jo(3,P) = (ul A (Y, 0)|n, p) (n, p|©(0) )

and assume f, to be reasonably behaved such that one can apply the lemma of
Riemann and Lebesgue,

lim [ dpf(p)e ¥ =0.

[%]—o0

At this point the assumption of an infinite volume, |¥| — oo, is crucial. Repeating
the argument for the right-hand side and taking the limit |¥| — oo, only the
vacuum contributions survive in Eq. 2.10 and we obtain

> (ulHw) (w]®(0)|v) = >~ (ul®(0)|w) {w|H]v)

for arbitrary ground states |u) and |v). In other words, the matrices (H,,) =
((u|H|v)) and (®,,) = ((u|®(0)|v)) commute and can be diagonalized simulta-
neously. Choosing an appropriate basis, one can write

(u|®(0)|v) = oy, vER,

where v denotes the expectation value of @ in the state |v).
In the above example, the ground states |0,4) and |0,—) with vacuum
expectation values £®, are thus indeed orthogonal and satisfy

<07 +|H|Oa _> = <07 _|H|Oa +> =0.

2.2 Spontaneous Breakdown of a Global, Continuous,
Non-Abelian Symmetry

Using the example of the O(3) sigma model we recall a few aspects relevant to our
subsequent discussion of spontaneous symmetry breaking [16].* To that end, we
consider the Lagrangian

* The linear sigma model [6, 7, 17] is constructed in terms of the O(4) multiplet (o, 7|, 7, 73).
Since the group O(4) is locally isomorphic to SU(2) x SU(2), the linear sigma model is a
popular framework for illustrating the spontaneous symmetry breaking in two-flavor QCD.
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L(D,0,®) = L(Dy, Dy, ©3,0,D;,0,D,0,Ds)
J

4((131'(1)1')27 (2.11)

1 m?
=-0,0;0'D; — — O;D; —
2 2
where m? <0, 2 > 0, with Hermitian fields ®;. By choosing m? <0, the symmetry
is realized in the Nambu-Goldstone mode [9, 13].5
The Lagrangian of Eq. 2.11 is invariant under a global “isospin” rotation,®

8 € S0(3) : B;+— ) = Dy(g)®; = (e”™*™) ;. (2.12)

For the @! to also be Hermitian, the Hermitian 7; must be purely imaginary and
thus antisymmetric (see Eqs. 1.69). The iT; provide the basis of a representation of
the so(3) Lie algebra and satisfy the commutation relations [T, TJ] = ieTr. We
use the representation of Eqs. 1.69, i.e., the matrix elements are given by ¢ =
—igijx. We now look for a minimum of the potential which does not depend on x.

Exercise 2.2 Determine the minimum of the potential

N
A

2
1(®y, By, B3) = '%@,-(Di + (@)

We find

> —m? "
|(Dmin| = TEV7 |(D| = \/(D%+<I)§+<D§, (213)

Since ®pin can point in any direction in isospin space we have a non-countably
infinite number of degenerate vacua. Any infinitesimal external perturbation that is
not invariant under SO(3) will select a particular direction which, by an appro-
priate orientation of the internal coordinate frame, we denote as the 3 direction in
our convention,

Dpin = ves. (2.14)

=

Clearly, @i, of Eq. 2.14 is not invariant under the full group G = SO(3) since
rotations about the 1 and 2 axes change &)min.7 To be specific, if

5 In the beginning, the discussion of spontaneous symmetry breaking in field theories [9, 13-15]
was driven by an analogy with the theory of superconductivity [1, 2, 4, 5].

S The Lagrangian is invariant under the full group O(3) which can be decomposed into its two
components: the proper rotations connected to the identity, SO(3), and the rotation-reflections.
For our purposes it is sufficient to discuss SO(3).

7 We say, somewhat loosely, that 7} and 7, do not annihilate the ground state or, equivalently,
finite group elements generated by 7 and 7> do not leave the ground state invariant. This
should become clearer later on.
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. 0
DOpin=v|[ 0|,
1
we obtain
0 i
Tl(I)min =v| —i s TZ(Dmin =v| 0 y T3CDmin =0. (215)
0 0

Note that the set of transformations which do not leave émin invariant does not

form a group, because it does not contain the identity. On the other hand, Dpyin is
invariant under a subgroup H of G, namely, the rotations about the 3 axis:

-/

heH: ® =Dh)®=e¢™"®, D(h)Dpi = Dpin- (2.16)

Exercise 2.3 Write @5 as

@3 (x) = v+ n(x), (2.17)

where 7(x) is a new field replacing ®3(x), and express the Lagrangian in terms of
the fields @y, ®,, and 1, where v = \/—m?2 /.

The new expression for the potential is given by

o A :
7= (=2 + (O + B ) + 2 (O} + @3 +7) =" (218)

Upon inspection of the terms quadratic in the fields, one finds after spontaneous
symmetry breaking two massless Goldstone bosons and one massive boson:

2 _ 2
mg, = mg, =0,
2 2

mﬂ:—Zm .

(2.19)

The model-independent feature of the above example is given by the fact that for
each of the two generators 7 and T, which do not annihilate the ground state one
obtains a massless Goldstone boson. By means of a two-dimensional simplification
(see the “Mexican hat” potential shown in Fig. 2.5) the mechanism at hand can
easily be visualized. Infinitesimal variations orthogonal to the circle of the mini-
mum of the potential generate quadratic terms, i.e., “restoring forces” linear in the
displacement, whereas tangential variations experience restoring forces only of
higher orders.
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Fig. 2.5 Two-dimensional
rotationally invariant
potential:

7 (xy) = - +y)+

(24’
4

Now let us generalize the model to the case of an arbitrary compact Lie group G
of order ng resulting in ng infinitesimal generators.® Once again, we start from a
Lagrangian of the form [10]

g(cii, aﬂé) - %a#cf) D — 4/(&)), (2.20)

where @ is a multiplet of scalar (or pseudoscalar) Hermitian fields. The Lagrangian
% and thus also ¥~ are supposed to be globally invariant under G, where the
infinitesimal transformations of the fields are given by

geG: O;— D; + 5(1),', ONES —l.Sal‘an(Dj. (221)

The Hermitian representation matrices 7, = (f,;) are again antisymmetric and
purely imaginary. We now assume that, by choosing an appropriate form of #~, the
Lagrangian generates a spontaneous symmetry breaking resulting in a ground state

with a vacuum expectation value T — ((f)) which is invariant under a contin-
uous subgroup H of G. We expand 7~ about (f)min, |(f)mm| =v,ie, D =D, + A

“V((f)) = “V((f)min) —|—in +%%ij+..._ (2.22)

i

8 The restriction to compact groups allows for a complete decomposition into finite-dimensional
irreducible unitary representations.
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The matrix M? = (mi) must be symmetric and, since one is expanding about a
minimum, positive semidefinite, i.e.,

> mixx >0 VX (2.23)
ij
In that case, all eigenvalues of M? are nonnegative. Making use of the invariance
of ¥~ under the symmetry group G,
' ((_ﬁmin) =Y (D(g)(f)mm) =7 <6min + 5cf)min)
(2.22)

= 1
=7 (q)min) + Emizjéq)min,iéq)min,j +y (224)

one obtains, by comparing coefficients,
M 0@pin j6Ppyinj = 0. (2.25)

Differentiating Eq. 2.25 with respect to 6@y, and using mlz] = mlzl results in the

matrix equation

M?6®,, = 0. (2.26)
Inserting the variations of Eq. 2.21 for arbitrary ¢, 5(f)min = —isaTa@min, we
conclude

M*T,® i = 0. (2.27)

Recall that the T, represent generators of the symmetry transformations of the
Lagrangian of Eq. 2.20. The solutions of Eq. 2.27 can be classified into two
categories:

1. T,, a=1,...,nyg, is a representation of an element of the Lie algebra
belonging to the subgroup H of G, leaving the selected ground state invariant.
Therefore, invariance under the subgroup H corresponds to

Taq)min:0> a=1,...,ny,

such that Eq. 2.27 is automatically satisfied without any knowledge of M>.

2. T,, a=ny+1,... ng,is not a representation of an element of the Lie algebra
belonging to the subgroup H. In that case T, a<_ﬁmin =+ 6, and Ta(_ﬁmin is an
eigenvector of M? with eigenvalue 0. To each such eigenvector corresponds a
massless Goldstone boson. In particular, the different Tu(f)min =+ 0 are linearly
independent, resulting in ng — ny independent Goldstone bosons. (If they were
not linearly independent, there would exist a nontrivial linear combination
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6: i Ca<Ta(f)min) = ( f: caTa> (f)mim

a=ng+1 a=ny+1

T

such that 7 is an element of the Lie algebra of H in contradiction to our
assumption.)

Remark It may be necessary to perform a similarity transformation on the fields in
order to diagonalize the mass matrix.

Let us check these results by reconsidering the example of Eq. 2.11. In that case
ng = 3 and ny = 1, generating two Goldstone bosons (see Eq. 2.19).
We conclude this section with two remarks.

1. The number of Goldstone bosons is determined by the structure of the
symmetry groups. Let G denote the symmetry group of the Lagrangian with ng
generators, and H the subgroup with ny generators which leaves the ground
state invariant after spontaneous symmetry breaking. For each generator which
does not annihilate the vacuum one obtains a massless Goldstone boson, i.e.,
the total number of Goldstone bosons equals ng — ng.

2. The Lagrangians used in motivating the phenomenon of a spontaneous sym-
metry breakdown are typically constructed in such a fashion that the degen-
eracy of the ground states is built into the potential at the classical level (the
prototype being the “Mexican hat” potential of Fig. 2.5). As in the above case,
it is then argued that an elementary Hermitian field of a multiplet transforming
nontrivially under the symmetry group G acquires a vacuum expectation value
signaling a spontaneous symmetry breakdown. However, there also exist the-
ories such as QCD where one cannot infer from inspection of the Lagrangian
whether the theory exhibits spontaneous symmetry breaking. Rather, the cri-
terion for spontaneous symmetry breaking is a nonvanishing vacuum expec-
tation value of some Hermitian operator, not an elementary field, which is
generated through the dynamics of the underlying theory. In particular, we will
see that the quantities developing a vacuum expectation value may also be
local Hermitian operators composed of more fundamental degrees of freedom
of the theory. Such a possibility was already emphasized in the derivation of
Goldstone’s theorem in Ref. [10].

2.3 Goldstone Theorem

By means of the above example, we motivate another approach to Goldstone’s
theorem without delving into all the subtleties of a quantum field-theoretical
approach (for further reading, see Sect. 2 of Ref. [3]). Given a Hamilton operator
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with a global symmetry group G = SO(3), let ®(x) = (®;(x), D> (x), D3(x))
denote a triplet of local Hermitian operators transforming as a vector under G,

- - . 3 N . 3 . 3 -
geG: Px)— (D/(x) = ¢ 2 O(kQ"(I)()c)ele:lzl L) D “Te@(x), (2.28)

where the Q; are the generators of the SO(3) transformations on the Hilbert space
satisfying [Q;, Qj] = ig;xQ and the T; = (t;%) are the matrices of the three-
dimensional representation satisfying #; 5 = —ig;. We assume that one component
of the multiplet acquires a nonvanishing vacuum expectation value:

{0]®1(x)|0) = (0@ (x)[0) =0,  (0]®3(x)[0) = v # 0. (2.29)

Then the two generators Q; and Q, do not annihilate the ground state, and to each
such generator corresponds a massless Goldstone boson.
In order to prove these two statements, let us expand Eq. 2.28 to first order in
the oy :
3

+iY o[, P = (1 —ii:ocka>(f): d+3 x O
k=1 k=1
Comparing the terms linear in the oy,
i[04 O, @1] = &m0 Py
and noting that all three «; can be chosen independently, we obtain
i[Ok, ®1] = — &1 D,
which expresses the fact that the field operators ®@; transform as a vector.” Using

EkImEkin = 25mna we find

i
_Egkln [Qka (I)l] = 5mn(I)m = (I)n~

In particular,

O3 = —é([Ql,(Dz] — [0, D)), (2.30)

with cyclic permutations for the other two cases.
In order to prove that Q) and Q> do not annihilate the ground state, let us
consider Eq. 2.28 for & = (0,7/2,0),

. cos (g) 0 sin (g) O, (O (ON
e 5@ = 0 1 0 O, | = & | =2 0, | 5.
—sin(3) 0 cos(3) 03 —@, 03

° Using the replacements Oy — I, and ®; — %), note the analogy with i [7,“)%,} = —EumXm-
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From the first row we obtain
O3 = "0 Dje 22,
Taking the vacuum expectation value
y = <0|ei§Q2CI)1e’i§Q2 |O>

and using Eq. 2.29, clearly 0,|0) # 0, since otherwise the exponential operator
could be replaced by unity and the right-hand side would vanish. A similar
argument shows Q;|0) # 0.

At this point let us make two remarks.

1. The “states” Q;(2)|0) cannot be normalized. In a more rigorous derivation one
makes use of integrals of the form

/ P (0]17(1, %), 4(0)][0),

and first determines the commutator before evaluating the integral [3].

2. Some derivations of Goldstone’s theorem right away start by assuming
Q1(2)|0) # 0. However, for the discussion of spontaneous symmetry breaking in
the framework of QCD it is advantageous to establish the connection between
the existence of Goldstone bosons and a nonvanishing expectation value (see
Sect. 3.2).

Let us now turn to the existence of Goldstone bosons, taking the vacuum
expectation value of Eq. 2.30:

0.4 v = (01@5(0)10) = £ (O[([Q1, ®:(0)] ~ (02, D (0)])}0) = - (4~ B).

We will first show A = —B. To that end we perform a rotation of the fields as well
as the generators by 7/2 about the 3 axis [see Eq. 2.28 with d = (0,0, 7/2)]:

-0, D,
e P = (O} =20 [ @, |e 59,
@, @;

and analogously for the charge operators

-0 ' 0 ‘
01 | =" 0, |e 2.
03 0;

We thus obtain


http://dx.doi.org/10.1007/978-3-642-19254-8_3
http://dx.doi.org/10.1007/978-3-642-19254-8_3
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B = (01102, ®1(0)]J0) = (0](¢(~01) ¢ 03 0)e
=1
B0y (0)e 050 (— ) e—igga) 10)
—(0[[21, @2(0)]0) = —A4,

where we made use of Q3]|0) =0, i.e., the vacuum is invariant under rotations
about the 3 axis. In other words, the nonvanishing vacuum expectation value v can
also be written as

0 # v =(0]®3(0)|0) = —i{0][Q1, P2(0)]|0) = —i/d3x (O[[7 (1,%), @2(0)]]0)-
(2.31)

We insert a complete set of states 1 = z|n><n| into the commutator'®
n

v= —igﬁ / % ((019(2, %)) (] 0(0)[0) — (0[2(0) ) (21, 7)[0)),

and make use of translational invariance

- —ii / (e (01 (0) ) (n] 0 (0)[0) — )

= —ii(Zﬂ)353(13n)(e*"E"’<0|J(f(0)|n><n|<Dz(0)\0> = ¢5{0]®;(0)|m) (n]7(0)]0)).

n

Integration with respect to the momentum of the inserted intermediate states yields
an expression of the form

where the prime indicates that only states with j = 0 need to be considered. Due to
the Hermiticity of the symmetry current operators J;' as well as the ®;, we have

= (O7(0)]m) (n]®2(0)[0) = (n|J7(0)[0)" (0]®2(0)[m)",

such that

= —i(2n)3z/ (c,le_iE”’ - cZe’E"’) (2.32)

n

' The abbreviation i\n (n| includes an integral over the total momentum 5 as well as all

other quantum numbers necessary to fully specify the states.
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From Eq. 2.32 we draw the following conclusions.

1. Due to our assumption of a nonvanishing vacuum expectation value v, there must
exist states |n) for which both <O|J?<2) (0)|n) and (n|®,(,)(0)|0) do not vanish. The
vacuum itself cannot contribute to Eq. 2.32 because (0|®;(,)(0)|0) = 0.

2. States with E, > O contribute (¢, is the phase of c,)

1 . , 1 . . .
?(cneﬂEnt _ c:gtE,,t) — ;|C11| (el(/)ne*lE;xl _ eft(/?netEnt) — 2|Cn| sin((pn _ Enl‘)

to the sum. However, v is time independent and therefore the sum over states
with (E, ) = (E, > 0,0) must vanish.

3. The right-hand side of Eq. 2.32 must therefore contain the contribution from
states with zero energy as well as zero momentum thus zero mass. These zero-
mass states are the Goldstone bosons.

2.4 Explicit Symmetry Breaking: A First Look

Finally, let us illustrate the consequences of adding a small perturbation to our
Lagrangian of Eq. 2.11 which explicitly breaks the symmetry. To that end, we
modify the potential of Eq. 2.11 by adding a term a®s,

2 2
1 (D, Dy, D3) = %QiQi + Z(q)iq)i)z + a®;, (2.33)

where m? <0, 4 > 0, and a > 0, with Hermitian fields ®;. Clearly, the potential no
longer has the original O(3) symmetry but is only invariant under O(2). The

conditions for the new minimum, obtained from 6([)"% =0, read

O =0, =0, 20} +m*D;+a=0.
Exercise 2.4 Solve the cubic equation for @3 using the perturbative ansatz

(@3) = D + a0\" + 0(a?). (2.34)

2
© mo e 1
BEEE T N T

As expected, <I)(30) corresponds to our result without explicit perturbation. The

condition for a minimum (see Eq. 2.23) excludes <I)g0> =+4/— "‘72 Expanding the

potential with @3 = (®3) + 1 we obtain, after a short calculation, for the masses

The solution reads
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A
mé]—méz—a -1
(2.35)
2= _2m?+3 £
m, = —2m + 3a 7—mz

The important feature here is that the original Goldstone bosons of Eq. 2.19 are
now massive. The squared masses are proportional to the symmetry breaking
parameter a. Calculating quantum corrections to observables in terms of
Goldstone-boson loop diagrams will generate corrections which are nonanalytic in
the symmetry breaking parameter such as aln(a) [12]. Such so-called chiral
logarithms originate from the mass terms in the Goldstone-boson propagators
entering the calculation of loop integrals. We will come back to this point in the
next chapter when we discuss the masses of the pseudoscalar octet in terms of
the quark masses which, in QCD, represent the analogue to the parameter a in the
above example.
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