Chapter 2
Basics of the Dimensional Analysis

2.1 Preliminary Remarks

In this introductory chapter some basic ideas of the dimensional analysis are
outlined using a number of the instructive examples. They illustrate the applications
of the Pi-theorem in the field of hydrodynamics and heat and mass transfer.

The systems of units and dimensional and dimensionless quantities, as well as
the principle of dimensional homogeneity are discussed in Sect. 2.2. Section 2.3
deals with non-dimensionalization of the mass and momentum balance equations,
as well as the energy and diffusion equations. In Sect. 2.4 the dimensionless
groups characteristic of hydrodynamic and heat and mass transfer phenomena are
presented. Here the physical meaning of several dimensionless groups and simi-
larity criteria is discussed, In addition, similitude and modeling characteristic of the
experimental investigations of thermohydrodynamic processes are considered.
The Pi-theorem is formulated in Sect. 2.5.

2.2 Basic Definitions

2.2.1 Dimensional and Dimensionless Parameters

Momentum, heat and mass transfer in continuous media occur in processes
characterized by the interaction and coupling of the effects of hydrodynamic and
thermal nature. The intensity of these interactions and coupling is determined by
the magnitudes of physical quantities involved which characterize the physical
properties of the medium, its state, motion and interactions with the surrounding
boundaries and penetrating fields. The magnitudes of these quantities are deter-
mined experimentally by comparing the readings of the measuring devices
with some chosen scales, which are taken as units of the measured characteristics,
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e.g. length, mass, time, etc. For example, an actual pipe diameter, fluid velocity or
temperature are expressed as

d=nL,, v=mV,, T =kT, (2.1)

where n, m and k are some numbers, whereas L., V, and T, are units of length,
velocity and temperature, respectively.

The quantities which characterize flow and heat and mass transfer of fluids
are related to each other by certain expressions based on the laws of nature. For
example, the volumetric flow rate Q, of viscous fluid through a round pipe of radius
r, and the drag force F; acting on a small spherical particle slowly moving with
constant velocity in viscous fluid are expressed by the Poiseuille and Stokes laws

wr* AP
v = 2.2
0 8l (2.2)
Fy = 6nuur (2.3)

In (2.2) and (2.3) AP is the pressure drop on a length /, u is the fluid viscosity,
and u is the particle velocity. Equations 2.2 and 2.3 show that units of the
volumetric flow rate O, and drag force F; can be expressed as some combinations
of the units of length, velocity, viscosity and pressure drop. In particular, the unit of
r coincides with the unit of length L, of u is expressed through the units of length
and time as LT !, the unit of [ = L~'MT~! in addition involves the unit of mass,
as well as the unit of the pressure drop [AP] = L~ 'MT~? (cf. Table 2.1). Here and
hereinafter symbol [A] denotes units of a dimensional quantity A.

It is emphasized that the units of numerous physical quantities can be expressed
via a few fundamental units. For example, we have just seen that the units of
volumetric flow rate and drag force are expressed via units of length, mass and time
only, as [Q,] = L3T~!, and [F;]) = LMT2. A detailed information the units of
measurable quantities is available in the book by Ipsen (1960). The possibility to
express units of any physical quantities as a combination of some fundamental units
allows subdividing all physical quantities into two characteristic groups, namely (1)
primary or fundamental quantities, and (2) derivative (secondary or dependent)
ones. The set of the fundamental units of measurements that is sufficient for
expressing the other measurement quantities of a certain class of phenomena is
called the system of units. Historically, different systems of units were applied to
physical phenomena (Table 2.2).

In the present book we will use mainly the International System of Units
(Table 2.3).

In this system of units (hereinafter called SI Units) an amount of a substance is
measured with a special unit- mole (mol). Also, two additional dimensionless units:
one for a plane angle- radian (rad), and another one for a solid angle- steradian (sr),
are used. A detailed description of the SI Units can be found in the books of
Blackman (1969) and Ramaswamy and Rao (1971).
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Table 2.1 Physical
quantities

5
Quantity Dimensions Derived units
A. (Mechanical quantities)
Acceleration LT m.s~2
Action ML*T! kg.m?s™!
Angle (plane) 1 rad.
Angle (solid) 1 sterad.
Angular acceleration T2 rad.s~?
Angular momentum ML2T! kg.m*s™!
Area L? m?
Curvature L m!
Surface tension MT—2 kg.s™2
Density ML™3 kg.nf3
Elastic modulus ML™'T—2 kg.m~'s72
Energy (work) ML*T? J
Force MLT™? N
Frequency T-! 57!
Kinematic viscosity LT m2s~!
Mass M kg
Momentum MLT™! kg.m.s~!
Power ML>T3 w
Pressure ML™'T2 Nm™?
Time T s
Velocity LT! m.s~!
Volume L’ m
B. (Thermal quantities)
Enthalpy ML?T? J
Entropy ML2T?0™! JK!
Gas constant L2719} Jkg 'K
Heat capacity per unit mass 12T72097! J.kg_’ll(’l
Heat capacity per unit volume — p7-'7-29~'  Jm.3K~!
Internal energy ML?T? J
Latent heat of phase change L*T? Jkg!
Quantity of heat ML*T2 J
Temperature 0 K
Temperature gradient L0 Km™!
Thermal conductivity MT3L07! W.m 1K1
Thermal diffusivity [2T! m2s~!
Heat transfer coefficient MT3071 W.m2K!

The numerical values of the physical quantities expressed through fundamental
units depend on the scales of arbitrarily chosen for the latter in any given system of
units. For example, the velocity magnitude of a solid body moving in fluid, which is
1 m/s in SI units is 100 cm/s in the Gaussian CGS (centimeter, gram, second)
System of Units. The physical quantities whose numerical values depend on the
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Table 2.2 Systems of units

Absolute Technical
Quantity CGS MKS FPS CGS MKS FPS
Mass Gram Kilogram  Pound 981g 9.81 kg Slug
Force Dyne Newton Poundal Gram-force Kilogram-force  Pound-force
Length Centimeter  Meter Foot Santimeter ~ Meter Foot
Time Second Second Second  Second Second Second

Table 2.3 International system of units-SI

Quantity Units Abbreviation
Mass Kilogram kg

Length Meter m

Time Second s
Temperature Kelvin K

Electric current Ampere A

Luminous intensity Candela cd

fundamental units are called dimensional. For such quantities, units are derivative
and are expressed through the fundamental unites according to the physical
expressions involved. For example, units of the gravity force F, =mg are
expressed through the fundamental units bearing in mind the previous expression
and the fact that [m] = M, and [g] = LT as

[F,] =LMT* 2.4)
In fact, units of any physical quantity can be expressed through a power law'
[A] = L M 2.5)

where the exponents o; are found by using the principle of dimensional
homogeneity.

The quantities whose numerical values are independent of the chosen units of
measurements are called dimensionless. For example, the relative length of a pipe
7:5 (where [ and d are the length and diameter of the pipe, respectively) is
dimensionless. Formally this means that m =1.

In the general case, physical quantities can be characterized by their magnitude
and direction. Such quantities as, for example, temperature and concentration are
scalar and are characterized only by their magnitudes, whereas such quantities as
velocity and force are vectors and are characterized by their magnitudes and
directions. Vectors can also be characterized by introducing a so-called vector
length L (Williams 1892). Projections of the vector length L on, say, the axes of

! A demonstration of this statement can be found in Sedov (1993).
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a Cartesian coordinate system x,y and z are denoted as L, L, and L., respectively.
A number of instructive examples of application of vector length for studying different
problems of applied mechanics are presented in the monographs by Huntley (1967)
and Douglas (1969). The application of the idea of vector length in studying of
drag and heat transfer at a flat plate subjected to a uniform flow of the incompressible
fluid is discussed by Barenblatt (1996) and Madrid and Alhama (2005).

The expansion of a number of the fundamental units allows a significant
improvement of the results of the dimensional analysis. For this aim it is useful to
consider different properties the mass: (1) mass as the quantity of matter M, and
(2) mass as the quantity of the inertia M;. Similarly, using projections of a vector L
on the Cartesian coordinate axes as the fundamental units it is possible to express
the units of such derivative (secondary) quantities as volume V and velocity vector
vas [V]=L[L,L. and [u] =L, T, [v] =L,T', and [w] = L,T~! where u,v and
w denote the projections of v on the coordinate axes as is traditionally done in fluid
mechanics. It is emphasized that using two different quantities of mass and
projections of a vector allows one to reveal more clearly the physical meaning
of the corresponding quantities. For example, the dimensions of work W in a
rectilinear motion and torque 7 in rotation system of units LMT are the same
L?MT~? whereas in the system of unitsL,L,L,MT they are different, namely
[W] = L>MT 2, whereas [T] = L,L,MT 2.

2.2.2 The Principle of Dimensional Homogeneity

Principle of dimensional homogeneity expresses the key requirements to a structure
of any meaningful algebraic and differential equations describing physical phe-
nomena, namely: all terms of these equations must to have the same dimensions.
To illustrate this principle, we consider first the expression for the drag force acting
on a spherical particle slowly moving in highly viscous fluid. The Stokes formula
describing F; reads

Fy = 6nuur (2.6)

Here [F;] = LMT=? is the drag force, [u] = L~'MT~! is the viscosity of the
fluid, [u] = LT~" and [r] = L are the particle velocity and its radius, respectively.
It is easy to see that (2.6) satisfies the principle dimensional homogeneity. Indeed,
substitution of the corresponding dimensions to the left hand side and the right hand
side of (2.6) results in the following identity

LMT™2 = (L™'"MT~Y)(LT7Y) (L) = LMT 2 2.7)

As a second example, we consider the Navier—Stokes and continuity equations.
For flows of incompressible fluids they read
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ov 1 )
E—&-(VV)V——;VP—FVVV (2.8)

V-v=0 (2.9)

where v = [LT~!] is the velocity vector, [p] =L 3M,[v] =L>T~! and [P] =
L~'MT=? are the density, kinematic viscosity v and pressure, respectively.

It is seen that all the terms in (2.8) have dimensions LT~2 and in (2.9) have
dimensions T~!.

There are a number of important applications of the principle of the dimensional
homogeneity. For example, it can be used for correcting errors in formulas or
equations, which is advisable to students. Take the expression for the volumetric
rate of incompressible fluid through a round pipe of radius r as

wr? (AP
0, = m (T) (2.10)

where Q, is the volumetric flow rate, AP is the pressure drop over an arbitrary
section of the pipe length of length /.

The dimension of the term on the left hand side in (2.10) is L37~!, whereas of the
one on the right hand side of this equation is LT~!. Thus, (2.10) does not satisfy
the principle of dimensional homogeneity. In order to find the correct form of the
dependence of the volumetric flow rate on the governing parameters, we present
(2.10) as follows

AP\*
0, = gr“‘ 1 (T) @.11)

where «; are unknown exponents.

Bearing in mind the dimensions of Q,, r, i and (ATP), we arrive at the following
system of algebraical equations for the exponents o;

061—062—2063:3

o +o3=0
—op — 203 = —1 (2.12)
From (2.12) it follows that the exponents «; are equal oy =4, op = —1,

and a3 = 1. Then, the correct form of (2.10) reads as

ar* (AP
O = o (T) (2.13)
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The third example concerns the application the principle of dimensional homo-
geneity to determine the dimensionless groups from a set of dimensional
parameters. Consider a set of dimensional parameters

ay, @y - - Qg Agy - Ay (2.14)

Assume that k parameters have independent dimensions. Accordingly, the
dimensions of the other n — k parameters can be expressed as

[ak-H] = [al] | [ak]
“/x—k OCuf/(
ay] = [a]" - @)™ (2.15)
Therefore, the ratios
/ak+1 -1,
a4 .a“k
1 k
aﬂ
= an 2.16
a e ar J (2.16)

are dimensionless. Requiring that the dimensions of the numerator and denominator
in the ratios (2.16) will be the same, we arrive at the system of algebraical equations
for the unknown exponents.

In conclusion, we give one more instructive example of the application of the
principle of dimensional homogeneity for the description of the equation of state of
perfect gas. The general form of the equation of state reads (Kestin v.1 (1966) and
v.2 (1968)):

F(P,vs,T) =0 (2.17)

where P,v;and T are the pressure, specific volume and temperature, respectively.
Equation 2.17 can be solved (at least in principle), with respect to any one of the
three variables involved. In particular, it can be written as

P =f(vs,T) (2.18)

The set of the governing parameters involved in (2.18) is incomplete since the
dimension of pressure [P] = L~'MT~? cannot be expressed in the form of any
combination of dimensions of specific volume [v] = L?M~! and temperature
[T] = 0. Therefore, the function f on right hand side in (2.18) must include some
dimensional constant ¢
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P=f(c,v,T) (2.19)

It is reasonable to choose as such a constant the gas constant R that account
for the physical nature of the gas, but does not depend on its specific volume,
pressure and temperature. Assuming that ¢ = R/ (y is a dimensionless constant),
we write the dimension of this constant as [c] = L2T207". All the parameters
in (2.19) have independent dimensions. Then, according to the Pi-theorem (see
Sect. 2.5), (2.19) takes the form

P =7y, c"veT™ (2.20)

where 7, is a dimensionless constant.

Using the principle of the dimensional homogeneity, we find the values of
the exponents o; as o = 1,00 = —1,03 = 1. Assuming y = 7,, we arrive at the
Clapeyron equation

P=RpT 2.21)

The equation of state of perfect gas can be also derived directly by applying the
Pi-theorem to solve the problems of the kinetic theory and accounting for the fact
pressure of perfect gas results from atom (molecule) impacts onto a solid wall.?
Considering perfect gas as an ensemble of rigid spherical atoms (or molecules)
moving chaotically in the space, we can assume that pressure of such gas is deter-
mined by atom (or molecule) mass m, their number per unit volume N and the
average velocity squared <v>>

P =f(m,N,<v*>) (2.22)

The dimensions of P and the governing parameters m, N and <v>> are
[P]=L"'MT*, [m] =M, [NJ=L", [<v*>] =L’T"* (2.23)
All the governing parameters have independent dimensions. Therefore, the
difference between the number of the governing parameters n and the number of
the parameters with independent dimensions k equals zero. In this case the pressure

can be expressed as Sedov (1993);

P = ym* N* <y?>5 (2.24)

where 7 is a dimensionless constant.

2 This idea was expressed first by D. Bernoulli in 1727 who wrote that pressure of perfect gas is
related to molecule velocities squared.
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Using the principle of dimensional homogeneity, we find the values of the
exponents in (2.24) as oy = o, = a3 = 1. Then, (2.24) takes the form

P = ymN<v*> (2.25)

Bearing in mind that m<v?> is directly proportional kzT (m<v>> =
v1ksT, where y, is a dimensionless constant), we arrive at the following equation

P = ¢kgTN (2.26)

Here ¢ = yy, is a dimensionless constant, [kz] = L*MT20™" is Boltzmann’s
constant, [T] = 6 is the absolute temperature.

Applying (2.26) to a unit mole of a perfect gas, we can write the known
thermodynamic relations as

UR
N=N,, kg ="—
n Nﬂ

, Wy = constant (2.27)
Here N, is the Avogadro number, p is the molecular mass, v, is the specific
volume, and [R] = L2T~207" is the gas constant. Then, (2.27) takes the form

P = pRT (2.28)

Summarizing, we see that the pressure of perfect gas is directly proportional to
the product of the gas density, gas constant and the absolute temperature and does
not depend on the mass of individual atoms (molecules). Note that (2.28) can be
obtained directly from the functional equation P = f(m,N, T, kg)(Bridgman 1922).

2.3 Non-Dimensionalization of the Governing Equations

It is beneficial in the analysis complex thermohydrodynamic phenomena to trans-
form the system of mass, momentum, energy and species balance equations into a
dimensionless form. The motivation for such transformation comes from two
reasons. The first reason is related with the generalization of the results of theoreti-
cal and experimental investigations of hydrodynamics and heat and mass transfer in
laminar and turbulent flows by presentation the data of numerical calculation and
measurements in the form of dependences between dimensionless parameters.
The second reason is related to the problem of modeling thermohydrodynamic
processes by using similarity criteria that determine the actual conditions of
the problem. The procedure of non-dimensionalization of the continuity (mass
balance), momentum, energy and species balance equations is illustrated below
by transforming the following model equation
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ZA}" -0 (2.29)

where Aj(-') includes differential operators, some independent variables, as well as
constants; superscript i refers to the momentum (i = 1), energy (i = 2), species
(i = 3) and continuity (i = 4) equations, 7 is the total number of terms in a given
equation.

The terms in (2.29) account for different factors that affect the velocity, temper-
ature and species fields: the inertia features of fluid, viscous friction, conductive and
convective heat transfer, etc. These terms are dimensional. The dimension of Ajm in
the system of units LMT0 is

(i)
[Aﬂ b e (2.30)

where the values of the exponents o, f, 7 and ¢ are determined by the magnitude of
i and j; all the terms that correspond to a given i have the same dimension:

[Aﬂ - [Ag>] — . -[Aﬂ — . -{Afj)] 2.31)

The variables and constants included in (2.29) may be rendered dimensionless
by using some characteristic scales of the density [p,] = L=>M, velocity [v.] =
LT, length [I,] = L, time [t,] = T, etc. Then, the dimensionless variables and
constants of the problem are expressed as

_ p _ v = T _ ¢ _ t - P _ u - k =
p p*7v V*7 T*7C C*7 1*7 P*hu /-1*7 k*7
D 8
=—_ =2 2.32
D% g (2.32)

where the asterisks denote the characteristic scales, and the dimensionless
parameters are denoted by bars. In addition, k, = [LMT’3071],D* = [LZT’I],
and g, = [LT~?] are the characteristic scales of thermal conductivity, diffusivity
and gravity acceleration, respectively.

Taking into account (2.32), we can present all terms of (2.29) as follows

AD = A7 (2.33)
where A; )15 the correspondmg dimensional multiplier comprised of the character-
istic scales Aj> —A /A is the dimensionless form of the jth term in (2.29).
The exact form of the multlphers AJ() is determined by the actual structure of the
terms A( Y For example, the multiplier of the first term of the momentum balance
equatlon is found from
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(i) _ 5\’ P O(v/vs) (%
A — AW3 2.34
1 8[ 1, (t/t*) o ( :

(i ) p*v* —(i) o
LA = —.
., Vot
The substitution of the expression (2.33) into (2.29) yields

where A,

n N (F
S Al =0 (2.35)
=1

Dividing the left and right hand sides of (2.35) by a multiplier A\’ (1 < k < n),
we arrive at the dimensionless form of the conservation equations

n_ (i)

. -1 0 .
Y

where H;Q = Aj. /Ay are the dimensionless groups.

To illustrate the general approach described above, we render dimensionless
the Navier—Stokes equations, the energy and species balance equations, as well
as the continuity equation. For incompressible fluids these equations read

v
pa p(V-V)v=—VP+ uV?v+pg (2.37)
T 5
L + pep(v- V)T =kV°T + ¢ (2.38)
az S 4 p(v- V) = pDVe: (2.39)

V-v=0 (2.40)

where p, v T, P and c¢ are the density, velocity vector, the temperature, pressure
and the concentration of the species &. In particular, let us use the Cartesian
coordinate system where vector v has components u#, v and w in projections
to the x, y and z axes. In addition, u, k and D are the viscosity, thermal conductivity
and diffusivity which are assumed to be constant, g the magnitude of the gravity
acceleration g, ¢ is the dissipation function ¢ =2pu [(814 /0x)* + (9v/8y)*+
(Ow/d2)*] + pu(du/d v+ /) Ox)? 4 u(0v/dz + Ow/dy)*+ u(Ow/dx + du/dz)>.
The multipliers A in (2.37)—(2.40) are listed below

2
* * P*
Al = pjv AL = plv* AN =" Al = p g (2.41)

L
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@) _ PsCr:Tx

1« —

7A§i) o p.CpsviTy

A =
ty I,

A2

(3) _ P:Cx (3) _ Pl ,3) _ PuDscy
Al* - t, 7A2* - l* 7A3* - lz

Dividing the multipliers A}l by A5, A” by A?), AP by AT and A7 by ALY,
we arrive at the following system of dimensionless equations

N 1, 1
— . = —FEuVP +— — 2.42
Stat+(v V)v uV +Rev V+Fr ( )
St@—k(v V)T—iv27+ﬁ$ (2.43)
ot T Pe Re )
Jc: _ |
L V-V =— Ve 2.44
St 5 + (V- V)ce Pedv e (2.44)
V.v=0 (2.45)

where St =L, /vit., Eu = P./pv?, Re = v.l./v., Pe = v,l. /0., Peq = v.l./D.,
Fr = vi /8y, Br = u, vi /k.T, are the Strouhal, Euler and Reynolds numbers,
as well as the thermal and diffusion Peclet numbers, and the Froude and Brinkman
numbers, respectively, v and o are the kinematic viscosity and thermal diffusivity,
and the dimensionless dissipation function ¢ = ¢/ |u(v./L)*|,v =v/v.,P =
P/pv?, T =T/T, and ¢; = c/c, are the dimensionless variables.

The non-dimensionalization of the initial and boundary conditions is similar to
the one described above. In that case each of the independent variables x, y, zand ¢,
as well as the flow characteristics u, v, T and c¢ are also rendered dimensionless by
using some scales that have the same dimensions as the corresponding parameters.
For example, consider the non-dimensionalization of the initial and boundary
conditions for the following three problems of the theory of viscous fluid flows:
(1) steady flow in laminar boundary layer over a flat plate, (2) laminar flow about
a flat plate which instantaneous started to move in parallel to itself, and (3) sub-
merged laminar jet issued from a round nozzle.

In case (1), let the velocity and temperature of the undisturbed fluid far enough
from the plate be uy, T, and the wall temperature be T,, = const. Then, the
boundary conditions read
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x=0,0<y<o0, U=, T =T (2.46)

x>0, y=0,u=v=0,T=T,;y =00, U = U, T — T,
Introducing as the scales of length some L, velocity u., and temperature
T, — T, we rearrange (2.46) to the following dimensionless form?

=0,0<y<o00 u=1AT=1 (2.47)

=I
~<|

¥>0,y=0u=v=0,AT=0;y o0 u— 1, AT — 1
where X = x/L, y = y/L, U = tt/too,V = V/ttoo, AT = (T}, = T) /(T — To).

The equation for the heat flux at the wall is used to introduce the heat transfer
coefficient A:

or

T, —Ty) = —k|— 2.48
(1 1) = =4 ( 3y)y_0 2.48)

Being rendered dimensionless, the heat transfer coefficient is expressed in the

following form
AT
Nu = (8—> (2.49)
5=0

where Nu = hL/k is the dimensionless heat transfer coefficient is called the Nusselt
number.

In case (2), the initial and boundary conditions of the problem on a plate starting
to move from rest with velocity U in the x-direction in contact with the viscous fluid
read

t=0, 0<y<oou=0 (2.50)
t>0, y=0 u=U;y=o00,u=0
Since no time or length scales are given, we use as the characteristic time scale
t. = v/U? and as the characteristic length scale v/U. Then, (2.50) take the follow-
ing dimensionless form

7=0,0<y<oo=0;7>0,y=0u=15— 00t — 0 (2.51)

In case (3), the boundary conditions for a submerged laminar jet are

31t is emphasized that in the problem on flow in the boundary layer over a semi-infinite plate,
a given characteristic scale L is absent. According to the self-similar Blasius solution of this
problem, the dimensionless coordinate y = y/(vx/ux0) 172 with (vx/ o) 12 playing the role of the
length scale (Sedov 1993).
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x=0,0<y<rp,u=uy, T=Tp; y>rou=0,T =Ty (2.52)
0 oT
.X>07y:O,—MZO,—:O,y%OO,M—)O,T_)TOC
dy dy

where ryis the nozzle radius.
The dimensionless form of the conditions (2.52) is

¥=0,0<y<1,u=1AT=1;y>00,u4— 0, AT =0 (2.53)
o OAT _

$>0,5=0, 2 —0, 220 — 0,5 =00, — 0, AT — 0
dy dy

where X = x/ro, ¥ = y/ro, i = ufug, AT = (Too —T)/ (T — Tp)-
At large enough distance from the jet origin at x/ro >> 1, it is possible to use the

o0
integral condition [ w*ydy = const, instead of the condition (2.52) at x = 0. Note
0

that there is another way of rendering the system of fundamental equations of
hydrodynamics and heat and mass transfer theory dimensionless. It consists in
rendering dimensionless each quantity in these equations using for this aim the
scales of the density, velocity, temperature, etc. Requiring that the convective terms
of these equations do not contain any dimensional multipliers, it is not easy to arrive
at the equations identical to (2.42)—(2.45). To illustrate this approach to non-
dimensionalization of the mass, momentum, energy and species conservation
equations, consider, for example, the system of equations describing flows of
reactive gases

ap B
v
Py TPV V)V =—VP V- (uVV) + pg (2.55)
Oh

P+ PV V)=V (KVT) = gWy (2.56)

8ck
PtV V)=V (pDVer) = ~ Wy (2.57)

y—1

P= . oh (2.58)

where v is the velocity vector, p, P, h and T are the density, pressure, enthalpy
and temperature, ¢, = p;/p is the relative concentration of the kth species,
p = Zp;, with p, being density of the k™ species, W (c, T) and W are the chemi-
cal reaction rates, g is the heat of the overall reaction, and y = ¢, /cyis the ratio of
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specific heat at constant pressure to the one at constant volume (the adiabatic index).
Note that in the energy balance equation (2.56) the dissipation term is neglected.

Introducing dimensionless parameters as follows @ = - (the asterisk denotes the
scale of a parameter a), we arrive at the following equations

P Op | PV

b 422 V. (pv) =0 (2.59)
e R R LV V) F g8 60
th : ﬁ%? +2 Zh AV V)R — kZ? V- (kVT) = qW,.. Wy 2.61)
5 % P55 e P*L’;* V. (pDVe) = Wi Wi (2.62)
P % p;/z* oh (2.63)

where p,, vi, P, Ty, h. and L, are the scales of density, velocity, pressure,
temperature, enthalpy and length, respectively.

Requiring that the second terms on left hand sides in (2.59)—(2.62) do not contain
any dimensionless multipliers and also accounting for the fact that for perfect gas
p,hi/P.=7/(y — 1), we obtain

s%+v-<p—v)=o (2.64)

Sr@+*(‘ V)v=-E VF+LV (—V‘)+i’ (2.65)
g TPV VIV TRIVE T R VWYY TP '

s 4 55V - L. GVT) = DasW 2.66)
gi TPV VIT =5 V- (RVT) = DasWi @

5t % L 57 V)ey — -1V - (3DVer) = Da W (2.67)
6; pv Ck Ped p Cr) = aj k .

P =ph (2.68)

where in addition to previously introduced Strouhal, Reynolds, Euler, the
thermal and diffusion Peclet numbers, and the Froude number, two Damkohler
numbers Da; = Wy L, /p,v., and Das = qW .L./p,v.h, (defined according to
the Handbook of Chemistry and Physics,1968) appear.
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2.4 Dimensionless Groups

2.4.1 Characteristics of Dimensionless Groups

As was shown in Sect. 2.3, the dimensionless momentum, energy and diffusion
equations contain a number of dimensionless groups, which represent themselves
some combinations of the physical properties of fluid, acting forces, heat fluxes, etc.
The physical meaning and number of these groups is determined by a specific
situation, as well as by a particular model used for description of the physical
phenomena characteristic of that situation (Table 2.4).*

Consider in detail some particular dimensionless groups. The Prandtl, Schmidt
and Lewis numbers belong to a subgroup of dimensional groups that incorporate
only quantities that account for the physical properties of fluid. They are expressed
as the following ratios (cf. Table 2.4)

Pr
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o)
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I
~
[N
|

|

(2.69)

where v, @ and D are the kinematic viscosity, thermal diffusivity and diffusivity,
respectively.

Consider, for example the Prandtl number. It represents itself the ratio of
kinematic viscosity to thermal diffusivity, i.e. of the characteristics of fluid respon-
sible for the intensity of momentum and heat transfer. Accordingly, the Prandtl
number can be considered as a parameter that characterizes the ratio of the extent of
propagation of the dynamic and thermal perturbations. Therefore, at very low
Prandtl numbers (for example, in flows of liquid metals), the thickness of the
thermal boundary layer d7 is much larger than the thickness of the dynamical
one, d. In contrast, at Pr >> 1 (in flows of oils) the equality 6 >> dr is valid. The
Schmidt number is the diffusion analog of the Prandtl number. It determines the
ratio of the thicknesses of the dynamical and diffusion boundary layers.

The Reynolds number belongs to the subgroup of the dimensionless groups
which are ratios of the acting forces. It can be considered as the ratio of the inertia
force Fto the friction force Fy

“ Dimensionless groups can be also found directly by transformation of the functional equations of
a specific problem using the Pi-theorem (see Sect. 2.5). A detailed list of dimensionless groups
related to flows of incompressible and compressible fluids in adiabatic and diabatic conditions,
flows of non-Newtonian fluids and reactive mixtures can be found in Handbook of Chemistry and
Physics, 68th Edition, 1987-1988, CBC Inc. Boca Roton, Florida, and in Chart of Dimensionless
Numbers, OMEGA Technology Company. See also Lykov and Mikhailov (1963) and Kutateladze
(1986).
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Table 2.4 Dimensionless groups

Name Symbol Definition Comparison ratio Field of use
Archimedes Ar Q (p—py) Gravity force to viscous Motion of fluid due to
number K ! force density
differences
(buoyancy)
Biot number Bi Z—L Convection heat transfer to  Heat transfer
' conduction heat transfer
Bond Bo pgl? Gravitaty force to surface ~ Motion of drops and
number ’ tension bubbles.
Atomization
Brinkman Br w? Heat dissipation to heat Viscous flows
number kAT transferred
Capillary Ca & Viscous force to surface Two-phase flow.
number tension force Atomization.
Moving contact
lines
Damkohler Da, % Chemical reaction rate to Chemical reactions,
number Daj qwL bulk mass flow rate. momentum, and
prophT Heat released to heat transfer
convected heat
Darcy Da, % Inertia force to permeation  Flow in porous media
number force
Dean De vRp /R Centrifugal force to inertial Flow in curved
number BV force channels and
pipes
Deborah De % Relaxation time to the Non-Newtonian
number characteristic hydrodynamics.
hydrodynamic time Rheology
Eckert Ec v Kinetic energy to thermal Compressible flows
number crAT energy
Ekman Ek 4 1/2 (Viscous force to Coriolis ~ Rotating flows
number (W) force)!/2
Euler Eu 1 Pressure drop to dynamic Fluid friction in
number AP pressure conduits
Grashof Gr 0*8BLIAT Buoyancy force to viscous  Natural convection
number ” force
Jacob Ja crpy AT Heat transfer to heat of Boiling
number oy evaporation
Knudsen Kn i Mean free path to Rarefied gas flows
number characteristic dimension and flows in
micro- and nano-
capillaries
Kutateladze K (‘Prg Latent heat of phase change Combined heat and
number to convective heat mass transfer in
transfer evaporation
Lewis Le WLP Thermal diffusivity to Combined heat and
number diffusivity mass transfer
Mach M ¢ Flow speed to local speed of Compressible flows
number sound
Nu L Forced convection

(continued)
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Table 2.4 (continued)

Name Symbol Definition Comparison ratio Field of use
Nusselt Total heat transfer to
number conductive heat transfer
Peclet Pe % Bulk heat transfer to Forced convection
number conductive heat transfer
Prandtl Pr £ Momentum diffusivity to Heat transfer in fluid
number thermal diffusivity flows
Rayleigh Ra gL e Thermal expansion to Natural convection
number He thermal diffusivity and
viscosity
Richardson Ri _ (g 0P dv Gravity force to the inertia ~ Stratified flow of
y
number P Ly i) w force multilayer
systems
Rossby Ro SLenk The inertia force to Coriolis Geophysical flows.
number force Effect of earth’s
rotation on flow in
pipes
Schmidt Sc p’—z) Kinematic viscosity to Diffusion in flow
number molecular diffusivity
Senenov Se % Intensity of heat transfer to  Reaction kinetics.
number intensity of chemical Convective heat
reaction transfer.
Sherwood  Sh ’IBL Mass diffusivity to Mass transfer
number molecular diffusitivy
Stenton St mh( Heat transferred to thermal  Forced convection
Cp . .
number capacity of fluid
Strouhal St L Time scale of flow to Unsteady flow.
v . . . .
number oscillation period Vortex shedding
Taylor Ta <2(3L2p>2 (Coriolis force to viscous Effect of rotation on
number # force)? natural convection
Weber We VoL The dynamic pressure to Bubble formation,
number ’ capillary pressure drop impact

L 2 2/L
Y P v/ (2.70)

A AR /%)

where p, n and L are the density, viscosity and the characteristic length.

The dimensions of the numerator and denominator in right hand side ratio in
(2.70) are [pv* /L] = [u(v/L*)] = L72MT 2, i.e. the same as the dimensions of the
terms p[0v/Ot + (v - V)v] and uV?v accounting for the inertia and viscous forces
in the momentum balance equation. The terms pv?/L and uv/L* can be treated as
the specific inertia and viscous forces f; = F;/V and f; = Fy/V, respectively, with
the dimensions [F;] = LMT 2, [Fy| = LMT?, and [V] = L*.

At small Reynolds numbers when the influence of viscosity is dominant, any
chance perturbations of the flow field decay very quickly. At large Re such
perturbations increase and result in laminar-turbulent transition. Therefore, the
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Reynolds number is sensitive indicator of flow regimes. For example, in flows of an
incompressible fluid in a smooth pipe, three kinds of flow regime can be realized
depending on the value of the Reynolds number: (1) laminar (Re < 2300), transi-
tional (2300 < Re < 3500), and developed turbulent (Re > 3500).

The Peclet number is an example of a dimensionless group that is a ratio of heat
fluxes of different nature. It reads

Pe = % _ pYeral ZEZTA)T 2.71)
L

where k and cp are the thermal conductivity and specific heat at constant pressure,

AT is the characteristic temperature difference.

The Peclet number is the ratio of the heat flux due to convection to the heat flux
due to conduction. It can be considered as a measure of the intensity of molar to
molecular mechanisms of heat transfer.

We mention also the Damkohler number that characterize the conditions of
chemical reaction which proceeds in a reactive mixture, i.e. in the process
accompanied by consumption of the initial reactants, formation of the combustion
products, as well as an intensive heat release. Under these conditions the evolution
of the temperature and concentration fields is determined by two factors: (1)
hydrodynamics of the flow of reacting mixture, and (2) the rate of chemical
reaction. The contribution of each of these factors can be estimated by the ratio
of the characteristic hydrodynamic time 7, ~ W~! to the chemical reaction time
1, ~ V! ie. by the Damkohler number

Da; = 2 (2.72)

T,

If the Damkohler number is much less than unity, the influence of the chemical
reaction on the temperature (concentration) field is negligible. At large values of
Da, the effect of the chemical reaction and its heat release is dominant.

2.4.2 Similarity

Before closing the brief comments on the dimensionless groups, we outline how
such groups are used in modeling of hydrodynamic and thermal phenomena. For
this aim, we turn back to (2.64)—(2.68) that describe the mass, momentum, heat and
species transfer in flows of incompressible fluids with constant physical properties.
These equations contain eight dimensionless groups, namely, St, Re, Pe, Pey,
Eu, Fr, Da; and Daj3. If the initial and boundary conditions of a particular problem
do not contain any additional dimensionless groups (as, for example, the conditions

y=0 $v=0,T=0,¢,=0, y—oo v=1,T=1, ct=1), the velocity,



22 2 Basics of the Dimensional Analysis

temperature and concentration fields determined by (2.64)—(2.68) can be expressed
as follows

v =/,,(X,5,%,St,Re, Eu, Fr) (2.73)
T = fi(x,y,%, 5t, Pe, Da, ) (2.74)
Ck :fc()_‘i,f,Sl,PedaDas) (2.75)

In(2.73)and 2.75) T = (T —T\)/ (T — Ty), and cx = (cx — Ckw)/(Ck.co — Ckow )
subscripts w, and oo correspond to the values at the wall and in undisturbed fluid.

The expressions (2.73)—(2.75) are universal in a sense that the fields of dimen-
sionless velocity, temperature and concentration determined by these expressions
do not depend on the absolute values of the characteristic scales. That means that in
geometrically similar systems (for example, cylindrical pipes of different diameter)
values of dimensionless velocity, temperature and concentration at any similar
point (with Xj =X = =X}y, =Y, =:--=Y;; 2| =2 = - - - =z;) are the
same if the values of the corresponding dimensionless groups are the same. Thus,
the necessary conditions of the dynamic and thermal similarity in geometrically
similar systems consist in equality of dimensionless groups (similarity numbers)
relevant for the compared systems, i.e.

St = idem, Re = idem, Eu = idem, Fr = idem, Pe = idem, (2.76)
Pe, = idem, Da, = idem, Das = idem '

for a considered class of flows. It is emphasized that in geometrically similar
systems the boundary conditions should also be identical in such comparisons.
The conditions (2.76) allow modeling the momentum, heat and mass transfer
processes in nature and technical applications by using the results of the
experiments with miniature geometrically similar models. Note that among the
totality of similarity numbers it is possible to select a family of dimensionless
groups that contain combinations of only scales of the considered flow family and
the physical parameters of a medium involved in a situation under consideration.
Such similarity numbers are called similarity criteria (Loitsyanskii 1966). A num-
ber of similarity criteria can be less than the number of similarity numbers. For
example, hydraulic resistance of cylindrical pipes with fully developed incompress-
ible viscous fluid flow with a given throughput is characterized by two similarly
numbers, namely, the Reynolds and Euler numbers. The first of them Re = vod/v is
the similarity criterion, since it contains known parameters: the average velocity of
fluid vy, its viscosity v and pipe diameter d. In contrast, the Euler number is not
a similarity criterion, since it contains an unknown pressure drop which has to be
found by solving the problem or measured experimentally (Loitsyanskii 1966).
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2.5 The Pi-Theorem

2.5.1 General Remarks

This whole book is devoted to the Buckingham Pi-theorem (1914), which is widely
used in a number of important problems of modern physics and, in particular,
mechanics. The proof of this theorem, as well as numerous instructive examples
of its applications for the analysis of various scientific and technical problems are
contained in the monographs by Bridgman (1922), Sedov (1993), Spurk (1992)
and Barenblatt (1987). Referring the readers to these works, we restrict our consid-
eration by applications of the Pi-theorem to problems of hydrodynamics and the
heat and mass transfer only.

The study of thermohydrodynamical processes in continuous media consists in
establishing the relations between some characteristic quantities corresponding to
a particular phenomenon and different parameters accounting for the physical
properties of the matter, its motion and interaction with the surrounding medium.
Such relations can be expressed by the following functional equation

a=flay,ay - a,) (2.77)

where a is the unknown quantities (for example, velocity, temperature, heat or mass
fluxes, etc.), ai, as,- - -a, are the governing parameters (the characteristics of an
undisturbed fluid, physical constants, time and coordinates of a considered point).

Equation 2.77 indicates only the existence of some relation between the unknown
quantities and the governing parameters. However, it does not express any particular
form of such relation. There are two approaches to determine an exact form of
a relation of the type of (2.77): one is experimental, and the other one theoretical.
The first approach is based on generalization of the results of measurements of
unknown quantities a while varying the values of the governing parameters
ai, as,- - -a,. The second, theoretical, approach relies on the analytical or numerical
solutions of the mass, momentum, energy and species balance equations. In both
cases the establishment of a particular exact form of (2.77) does not entail significant
difficulties while studying the simplest one-dimensional problems when (2.77) takes
the form a = f(a; ). On the contrary, a comprehensive experimental and theoretical
analysis of a multiparametric equationa = f(ay, a, - - - a,) is extremely complicated
and often represents itself an insoluble problem. The latter can be illustrated by the
problem on a drag force acting on a body moving with a constant velocity in an
infinite bulk of incompressible viscous fluid. In this case the drag force F; acting
from the fluid to the body depends on four dimensional parameters, namely, the fluid
density p and viscosity p, a characteristic size of the body d, and its velocity v. Then,
the functional equation (2.77) takes the form

Fa=f(p,p,d,v) (2.78)
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In order to find experimentally the drag force, it is necessary to put the body into
a wind tunnel and measure the drag force at a given velocity by an aerodynamic
scale. That is the experimental way of solving the problem under consideration but
only for one point on the parametric plane drag force-velocity. To determine the
dependence of the drag force on velocity within a certain range of velocity v, it is
necessary to reiterate the measurement of F; at N values of v to determine the
dependence F,; = f(v) within a range [v1, v,] at fixed values of p, u and d. If we
want to find the dependence F; on all four governing parameters, we have to
perform N* measurement.’ Therefore, if the number of data points forF at varying
one governing parameter is N = 102, the total number of measurements that one
needs will be equal to 103! It is evident that such number of measurements is
practically impossible to perform. Moreover, even if we have an experimental
data bank with 10® measurement points, we cannot say anything about the behavior
of the function F; = f(p, u, v, d) outside the studied range of the governing para-
meters. An analytical or numerical calculation of the dependence of drag force on
density, viscosity, velocity and size of the body is also an extremely complicated
problem in the general case (at the arbitrary values of p, u, v, and d) due to the
difficulties involved in integrating the system of nonlinear partial differential
equations of hydrodynamics.

Essentially both approaches to study the dependence of drag force on density,
viscosity, velocity and size of the body allow a significant simplification of the
problem by using the Pi-theorem. The latter points at the way of transformation
of the function of n dimensional variables into a function of m (with m < n)
dimensionless variables. As a matter of fact, the Pi-theorem suggests how many
dimensionless variables are needed for describing a given problem containing
n dimensional parameters.

The Pi-theorem can be stated as follows. Let some dimension physical quantities
a depend on n dimensional parameters a;, a; - - - a,, where k of them have an
independent dimension. Then the functional equation for the quantities a

a=f(ay,ay- - ag,ars1 -~ - ay) (2.79)
can be reorganized to the form of the dimensionless equation
M= oI1,,T, - - - T, ) (2.80)

that contain n — k dimensionless variables. The latter are expressed as

ap a dy

r lh=—— o ha=—
k

! /
%y % O oy % g %1 2.
al a2 ...ak al a2 ...ak a2 ak

m, = 2.81)

The dimensionless form of the unknown quantities « is

3 With an equal number of data points for each one of the four governing parameters.
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a

e — 2.82
a?lagz “ee azk ( )
To illustrate the application of the Pi-theorem to hydrodynamic problems, return

to the drag force acting on a body moving in viscous fluid. The unknown quantities

and governing parameters of the corresponding problem have the following
dimensions

FJ =LMT 2, [p] =L°M, [ =L"'MT", [d] =L, D =LT" (283

Three from the four governing parameters of this problem have independent
dimensions. That means that a dimension of any governing parameters in this case
can be expressed as a combination of dimensions of the three others. The dimension
of the unknown quantity is also expressed as a combination of the governing
parameters having independent dimensions [Fy] = LMT % = [pv*d?] = [12/p] =
[uvd].

In accordance with the Pi-theorem, (2.78) takes the form

I = p(IT;) (2.84)

and I1; =

where Il = W, ——.
) “1v2d"3 .
Taking into account the dlmenswn of the drag forceF; and governing parameters
with independent dimension p,v and d and using the pr1n01ple of the dimensional

homogeneity, we find the values of the exponents «; and oc
=1, p=2, o3=2; oy =1, oy =1, o3 =1 (2.85)
Then (2.84) reads
Ca = ¢(Re) (2.86)

where C; = F,/pv*d® is the drag coefficient, and Re=pvd/u is the Reynolds
number.

The exact form of the function p(Re) cannot be determined by means of the
dimensional analysis. However, this fact does not diminish the importance of
the obtained result. Indeed, the dependence of the drag coefficient on only one
dimensionless group (the Reynolds number) allows generalization of the experi-
mental data on drag related to motions of bodies of different sizes moving with
different velocities in fluids with different densities and viscosities. All this data can
be presented in a collapsed form of a single curve C,y(Re). Moreover, in some
limiting cases corresponding to motion with low velocities (the so-called, creeping
flows with Re << 1) or high speeds when Re >> 1, it is possible to determine the
exact forms of the dependence of the drag coefficient on Re.
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In particular, at Re << 1 the inertia effects become negligible. Returning to
(2.78), we can assume that the drag force depends on fluid viscosity, body size and
its velocity

Fd :f(:uvvad) (287)

All the governing parameters in (2.87) have independent dimensions
(n — k = 0). Therefore, in this case (2.87) reduces to

Fy = cp®v*2d® (2.88)

where ¢ is a dimensionless constant and oy =1, o =1, o3 = 1.
Substituting the values of the exponents o, o, and o3 into (2.88) leads to the
following expression for the drag coefficient

Ci=— (2.89)

It is evident that to determine the dependence C,4(Re) at Re << 1 it is sufficient to
perform only one measurement in order to establish the value of the constant c.

It is emphasized that the efficiency of using the Pi-theorem in studies of physical
phenomena is determined by the value of the difference n — k, i.e. by the number of
the governing dimensionless groups. In all cases (excluding £ = 0) the transforma-
tion of the functional equation by the Pi-theorem allows one to decrease number of
variables. The most interesting two cases correspond to the difference n — k being
either O or 1. In the first case the functional equation takes the form

23]

a = cai'ay

ay ---ay (2.90)

In the second one it becomes
IT = (1)) (2.91)

where IT represents itself the dimensionless group corresponding to the unknown
parameter. Decreasing the number of dimensionless variables in (2.91) to only one
is equivalent to the transformation of partial differential equations into the ordinary
ones. A number of examples of transformation of the functional equations similar to
(2.77) to a dimensionless form, as well as transformations of partial differential
equations into the ordinary ones is given in the following sections.

2.5.2 Choice of the Governing Parameters

The theoretical study of hydrodynamic and heat and mass transfer processes is
based on the system of partial differential equations that include the mass,
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momentum, energy and species conservation balances. This system of equations is
supplemented by an equation of state and correlations determining the physical
properties of the medium. The exact and approximate solutions of hydrodynamic
and heat transfer problems in the framework of the continuum approach yield
comprehensive answers to different problems of the theory. In distinction the
dimensional analysis of hydrodynamic and heat and mass transfer problems
meets some difficulties that arise already at the first step of the investigation
when choosing the governing parameter of the problem. They stem from certain
vagueness in choosing the governing parameters beginning from a pure intuitive
evaluation of the features of a phenomenon under consideration. In addition,
such approach to choosing the governing parameters often involves a number of
parameters whose influence will appear to be negligible at the end. The latter makes
it difficult to foresee the results of the dimensional analysis from scratch in
generalizing hydrodynamic and heat and mass transfer. In order to improve the
procedure of choosing the governing parameters and simplify and the following
analysis, it is possible to use the system of the mass, momentum, energy and species
balance equations.

Let us illustrate such an approach by the following examples.® We begin with the
drag force acting on a spherical particle moving with a constant velocity in an
infinite bulk of viscous incompressible fluid. It is reasonable to assume that the
force that acts on the particle depends on its size d, velocity v and physical
properties of the fluid, namely its density p and viscosity u. In this case the
functional equation for the drag force F,; reads

Fd :f(pv Ky da V) (292)

The dimensional analysis of (2.92) leads to the following transformation in the
form of the drag coefficient

Ca = ¢.(Re) (2.93)

where C; = F,/pv*d* is the drag coefficient, and Re = vd/v is the Reynolds
number.

It is emphasized that the function ¢, (Re)on the right hand side of (2.93) can be
presented as cp(Re), where ¢ is a dimensionless constant with its value being
chosen according to the experimental data. For example, for creeple motion of
a small spherical particle when the drag force is given by the Stokes law
F; = 3nuvd, constant ¢ = 8/n. Then the expression for the drag coefficient takes
the form C; = 24/Re.

To determine the exact form of the dependence (2.93), one needs to integrate the
continuity and the Navier—Stokes equations subjected to the no-slip condition at the
particle surface. In some limiting cases corresponding to special conditions of

S A detailed analysis of these problems see in Chaps. 4 and 7
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particle motion (say, very slow or fast), it is possible to find the exact form of the
function ¢, (Re) in (2.93) using these equations only for determining the set of
the governing parameters. For example, in the case of slow motion (creeping flows)
the inertia terms on the left hand side of the Navier—Stokes equations p(v - V)v is
much less than the terms in on the right hand side of these equations. That allows
one to omit the inertial term and thereby exclude density from the governing
parameters. As a result, the functional equation for the drag force reduces to the
form of (2.6). Such simplification of the problem formulation is a key element
which allows establishing an exact form of the dependence of the drag force on
viscosity, velocity and diameter of the particle as F; = pvd that coincide (up to a
numerical factor) with the exact result (the Stokes force) derived from the
Navier—Stokes equations.

In the second case corresponding to a rapid body motion (the case of a large
Reynolds number) the dominant role belongs to the turbulent transfer. The average
characteristics of fully developed turbulent flows are governed by the Reynolds
equations (Hinze 1975; Loitsyanskii 1966)

v _ v 1 OP

) _
R el 54— —(—pviv, 2.94
or Y 0x; 0 8x;+vv Vi +p 8xj< pv,vj) 2.99)

(bars over parameters denote the average values).
In high Reynolds number flows the term vV>v; associated with the effect of the
molecular momentum transfer through molecular viscosity mechanism can be

omitted. Then, assuming steady state average turbulent flow, the drag force which
does not depend on molecular viscosity and time is given by

Fy=f(p,v,d) (2.95)
Applying the Pi-theorem to (2.95), we can rearrange it to the following form
Fq ~ pi*d* (2.96)

which agrees with the Newton law for drag.

Another example of employing the conservation equations to facilitate the
dimensional analysis of complicated hydrodynamic and heat transfer problems is
related to mass transfer to a vertical reactive plate in contact with a liquid solution
of a reactive species (a reagent) which is initially at rest. When the rate of
a heterogeneous reaction at the plate surface is much larger than the rate of
diffusion transport of the reagent toward the surface, its concentration there equals
zero, whereas far from the surface it is equal c,. The gradient of the reagent
concentration across the thickness of the diffusion boundary layer results in
a non-uniform density field. That, in turn, triggers buoyancy force which results
in liquid motion near the wall. It is reasonable to assume that the velocity
and concentration of the reactive species in the dynamic and diffusion boundary
layers are determined by four parameters p., ¢, v, § and two independent
variables x and y
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U= fu(Poos Coor v, &%, Y) (2.97)
C:f;‘(pcxNCOC?v?gvxmy) (298)

where we consider for brevity only one component of the velocity vector u; v
and D are the kinematic viscosity and diffusivity, and gis the acceleration due
to gravity.

The functional equations (2.97) and (2.98) contain six governing parameters.
Three of them have independent dimensions. Choosing p,, vand gorp_, D and g
as parameters with the independent dimensions, we transform (2.97) and (2.98) to
the following form

HM = ¥y (H17 H27 H3) (299)
. = ¢ (M, Max, 34) (2.100)

where  TT, = u/(gv)'"*, Th = coc/po, Th=x/(*/2)'", T3 =y/(v*/9)"”,
and I, = c/p., M = coo/poe, T =x/(D?/g)'?, s, =y/(D?/g)"°.

Equations (2.99) and (2.100) show that the dimensionless velocity and concen-
tration of the reactive species are the function of three dimensionless groups, which
makes the analysis of the problem under consideration difficult. Therefore, employ
also the conservation equations. The momentum and species balance equations that
describe flow in the boundary layer and mass transfer to the vertical reactive wall
read (Levich 1962) (see Sect. 3.10)

ou ou u
o _ T8 e, 2.101
u8x+v8y v8y2+gc ( )

Oc. oc. d%c,
=D 2.102
o Ty =P (2.102)

where g, = g(cou/p)(9p/0C),_, €2 = (o0 — ) [cno, and p = p(c).
The boundary conditions for (2.101) and (2.102) are

u=v=0 c,=laty=0; u=v=0 c¢,=0aty— (2.103)

Equations (2.101) and (2.102) and the boundary conditions (2.103) contain four
parameters that determine the local velocity and concentration fields

”:fu(xa}’,‘%g*) (2104)

¢ =fe(x,y,D, &) (2.105)
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Applying the Pi-theorem to transform (2.104) and (2.105) to the dimensionless
form, we obtain

M, =y, (TTy) (2.106)
M. = y,(M.) (2.107)
or equivalently,
u=(xg.)"*,(n) (2.108)
¢. =, (nVSc) (2.109)

where I, = u/(xg,)"? TI, :y(g*/)cvz)l/“7 I, =c,., I, = y(g*/xD2)1/4,
n= y(g*/xv2)1/4, and Sc = v/D is the Schmidt number.

A number of instructive examples of application of the mass, momentum, energy
and species conservation equations for dimensional analysis of the hydrodynamic
and heat and mass transfer problems can be found in Chap. 7.

Problems

P.2.1. Transform the van der Waals equation (Kestin 1966; Jones and Hawkis 1986)
to the dimensionless form. Show that such form is universal for any van der Waals
gas if one uses the critical values of the pressure, volume and temperature as the
characteristic scales.

In order to transform equation the van der Waals equation (P + a/V?)(V — b) =
RT(where a and b are constants) to dimensionless form, we present this equation as

(A1 +A2)(As + Ag) = As (P.2.1)

where A} =P, Ay =a/V? A3;=V, Ay=—b, As=RT with P,V and T
being pressure, molar volume and temperature, respectively.

We can introduce some still undefined scales of pressure Py, volume V; and
temperature Ty and write the expressions for scales of A; as

Al* = P*; AZ* = A3* = V*, A4* = —b, AS* = RT. (P22)

a
W )
Then (P.2.1) reduces to the form

(A1 + 0A2) (A3 4 7A) = ¢As (P.2.3)
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whereA_1 = A]/Al* = P/P7 A_2 = Az/Az*, = (V/V*)iz, A_3 = A3/A3* = (V/V*),
Ag = A4/As. = 1 As = As/As, = T/T, are the dimensionless variables, and o =
Ap /AL = a/(VfP*), f=As/A1 =V./P., y=As/A1.=—-b/P,, and &=
Asi /A1« = RT, /P, are the dimensionless constants.

Equation (P.2.3) is the dimensionless van der Waals equation. For its further
transformation one should define the characteristic scales of pressure, volume and
temperature. For that purpose, take as the scales P, V., and T, the critical values
of pressure, volume and temperature P, V. and T, respectively. Bearing
in mind that the critical point is the inflection point where (OP/0V); =0,
and (0*P/OV?); =0, we find

27 R°T2 Ver
= — ca = — P.2.4
‘e P, T3 24
1 a 8a
Pcr = A5 1 Vcr = 3b7 Tcr Y= P.2.5
27 b? 27bR ( )

Using as the characteristic scales the critical values of pressure, temperature and
specific volume, we transform (P.2.3) to the following final form

3
(n+ E)Gw —-1)=8t (P.2.6)

where 1 = P/P,, @ =V [V, and 1 =T/T,,.

Equation (P.2.6) does not contain any constants accounting for the physical
properties of any particular gas and, thus, is universal. It holds for any van der
Waals gas.

P.2.2. (i) Transform the momentum and continuity equations for laminar flow of
incompressible fluid over a plane plate in the boundary layer approximation to the
dimensionless form using the LMT and L.L,L.MT systems of units. (ii) Show that
the L.L,L.MT system of units cannot be used for transformation of the
Navier—Stokes equations to the dimensionless form.

(i)-A: The LMTsystem of units. The boundary layer and continuity equations
read

Ou Ou  Ou
ou Ov
— 4 — P.2.
pp + o +0 (P.2.8)

where the dimensions of u, v, v, x and yare as follows

W =LT ') =LT ", [v) = LT, [x] =L, [y] = L (P.2.9)
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All the terms in (P.2.7) have the dimension LT 2, whereas the dimension of the
terms in (P.2.8) is T~!. That shows that (P.2.7) and (P.2.8) can be transformed to
the dimensionless form by using the multipliers [N}] = (LT72) 'and [N,] =
(T’l)_l,respectively. Introducing the scales of length L,, velocity V.and kine-
matic viscosity v. = v, we write the expressions for the coefficients Aﬁ) as follows

1% 1 _ V

(1) _ A V.
A Az*—L—Ae = L2’

AP =AP = T (P.2.10)

AW

;. » we express the multipliers Ny and N, as

Bearing in mind the dimensions of A

N, = (P.2.11)

Then (P.2.7) and (P.2.8) reduce to the following form

_Bﬁ 8u 1 &%u

— — P.2.12
“% TV " Re oy ®.2.12)
814 av
—=0 P.2.13
8x dy ( )
where 5 = u/V,, v =v/V,,¥ =x/L.,y = y/L,, andRe = V,L, /v,.
The coefficients A ji for the Navier—Stokes and continuity equations
ou  Ou Pu  u
—tv—=v|=S+=5 P.2.14
u8x+V8y v<8x2 +6y2> ( )
Ou v *v 9%
—tv—=v|—S+=— P.2.15
" ox v Jy ! (8}(2 + 8y2) ( )
Oou Ov
—+—=0 P.2.16
o B ( )
are defined as follows
%3 V. %3 V. V
1 1 ¥ 40 NG ; *
AP =AY :L_*,Agg =g AP =A%) 7L—*,Agj =g AV =4 = (217
Using the multipliers Ny = 1/A Ny =1/A;Y, and N3 = 1/A1*, we reduce
(P.2.14)—(P.2.16) to the following dimensionless form
ou  _ou_ 1 (%u 0u
+v —t= P.2.18
T Ve <5)_cz ayz) (F.2.18)
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Ou v 1 (O

R (e F21
aﬁ av
ot =0 (P.2.20)

(1)-B: The L,L,L.MT system of units. The dimensions of u, v, x and y are
W =L, T V] =L,T" [x] =L, [y] =L, (P.2.21)

where L, and L, are the scales of length in the x and ydirections.

Introducing the characteristic scales of u,v,v,x and y as [U,] = L,7~1,[V.] =
L,77', and [v,] = [v], we transform first of all the boundary layer and continuity
equations (P.2.7) and (P.2.8). To this aim, we write the expressions for the coeffi-

cients Aj(-f;) as

U? UV, v.U, U* V.,
A == Al =2 A == A = Al = p22))

L, L, : L2 L,

Then (P.2.7) and (P.2.8) are transformed to
ou V.L,\_ Ou v.L, \ 0%
— —= )= P.2.23
= < > Erl (LgU*> 07 (F.2.23)
ou V.L.\ Ov

— =0 P.2.24
% " ( ) Iy ( )

where % = u/U,,v=v/V,,X=x/L,,y =y/L,, and the multipliers before the
second terms on left hand side of the boundary layer and continuity equations are
dimensionless, i.e. [V*LX/ U*Ly] =1.

In planar viscous flows in the x-direction with shear in the y-direction an
important role is played by the shear component t,, of the stress tensor. The
shear stress 1y, can be presented as the ratio of the force F, to the surface area
S.. which have the following dimensions: [F yx} = ML, T2, and [S,,] = L,L,.
Then the dimension of the shear stress is [‘ny] = MLZ’1 T~2. For viscous Newtonian
fluids 7, = udu/dy, where p is the viscosity. Then, we find the dimension of the
viscosity in the L,L,L.MT system of units as

(1] = [t/ (du/dy)] = L;'L,L7'MT™! (P.2.25)



34 2 Basics of the Dimensional Analysis

Bearing in mind that the dimension of density in the L,L,L.MT system of units is
] =L; IL; 'L-'M, we determine the dimension of the kinematic viscosity v as

M= lu/p] =LT7" (P.2.26)

Thus, the multiplier ( v.L, L U, on the right hand side of (P.2.23) is dimen-
sionless. It can be presented as Re , where Re, = U*Li /viLy) is a modified
Reynolds number. Taking into account that the characteristic scal€s Ly, Ly, U, and
V, are arbitrary, it is possible to assume that the ratio (U*Ly / V*Lx) = 1. Then,

(P.2.23) and (P.2.24) take the following form

on _ou 1 0%

"% 9 " Re, oy (P2.27)
on Ov
e P22
ox ayo ( 8

The Navier—Stokes and continuity equations (P.2.14) and (P.2.16) can be

presented as

ADAY 4 aDZY = ALY 4 ADAY (P.2.29)
AYAY 1 APAY = ADRD + ADRY (P.2.30)
AP 4 AP =0 (P.2.31)
where A\ = 02/L,, AY = U.v,/L,, AV =v.U, /12, AV =v,U, /12, AP =
UV/L,, AY) =V2/L,, A3,) =V, /L2, A4,) =V, /L2, AY = U*/LMAZ* =
V. /Ly, A" = non/ox, A =vou/oy, A = *ujoR2, A\ = o%ajoy?, AV =
vou/0%, Ay =v0v/dy, Ay =050, A = 0%5/0y2, AL = 0u/o%, and
Y = v/0y.
Then (P.2.18)—(P.2.20) take the form
on (VL \_ 00 [ v.L, L\ 0%
i )y = [ =) 22 P.2.32
“ox T (U*Ly>vc3‘y <U*L§>{(LX) Frear (F.2.32)
ou (VL v (vl L\?*v 0%
A e =) 2l P.2.33
Vo T < y>v8y <U*L§> { (L) e "o (F-233)
ou (VL) 0¥
= ) =0 P.2.34
% " ( *Ly) 7 ®:239
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The system of Egs. (P.2.32)—(P.2.34) can be written as

o o 1 [(L\®u Ou
"%V T Re { (E) o2 " oy’ (235
o _ov 1 (LN u
" Vo Re. { (L> o oy (230
du Ov
5= (P.2.37)

if we account for the fact that the dimension of the kinematic viscosity [v.] =
L2T~". However, even in this case (P.2.35) and (P.2.36) are not dimensionless,
since the dimension of the ratio L, /Ly is not 1. Moreover, (P.2.35) and (P.2.36) do
not satisfy the principle of the dimensional homogeneity under any assumption on
the dimension of the kinematic viscosity. The latter shows that applying the
L.L,L.MT system of units to transformation of the Navier—Stokes is incorrect.

P.2.3. (Reynolds 1886) Determine the resistance force acting on each of two
circular disks of radii R which approach each other along the joint axis of symmetry
with a constant velocity u, while the gap between the disks and the surrounding
space are filled with incompressible viscous fluid. The pressure in the surrounding
fluid far from the disks is equal P..

The liquid flow in the gap is axisymmetric. Therefore, we use cylindrical
coordinates z, r, ¢ with the origin at the center of the lower disk which is assumed
to be motionless (z and r correspond to the vertical and radial directions, respec-
tively). Consider the low velocity case when the inertial effects are negligible. The
effect of the gravity force we also will neglected. Then, it is possible to assume that
the pressure gradient AP /r (AP = P — P, is determined by the speed of the upper
disk u, liquid viscosity u, the instantaneous height of the gap h, and the radial
position r

¥ =f(u,u,h,r) (P.2.38)

For analyzing the problem, we use two different systems of units with a single
(L) and two (L., L,) length scales. In the first case the dimensions of the pressure
gradient and the governing parameters can be expressed as

{AP L (P.2.39)

—} =L°MT 2, [ul =LT ", [l = L7'MT ", [n] = L, [r]
r

Three of the four governing parameters in (P.2.38) have independent
dimensions. Choosing u,u, and r as the parameters with the independent
dimensions, we reduce (P.2.38) according to the Pi-theorem to the following form
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I = (1)) (P.2.40)

where I1 = (AP/r)/u® p*2r* and Iy = h/u“,l u“;r“;.
Using the principle of the dimensional homogeneity, we find the values of

the exponents o; and a;: =100 =1,03 = —2;0(’1 =0, ac’z =0, and oc/3 =1.
Accordingly, we arrive at the following expression
AP h
—= u,ur_ch(—> (P.2.41)
r r

The force acting at the disk is found as

R
F,= ZH/APrdr (P.2.42)

Substituting the expression (P.2.41) into (P.2.42), we obtain

1

Fy = 2muuR / @(2) dé (P.2.43)
0

1
where ¢ = h/R,& =r/R, and [ p(e/E)dE = Y (e).

Equation P.2.43 shows thaf the resistance force acting on a disk is directly
proportional to its velocity, the radius of the disk, viscosity of the liquid, as well
as a function of the ratio of the gap to the disk radius.

Additionally we transform (P.2.38) using the system of units with the two length
scales L. and L, in the z and r directions, respectively. First, we determine the
dimensions of the governing parameters and pressure gradient. The dimensions of
the velocity u, gap thickness 4 and r are

W =L.T ' [ =L.,[r] =L, (P.2.44)

To determine the dimensions of viscosity u and pressure gradient AP /r, we take
into account the fact that in flows of viscous fluids in a narrow gap the dominant role
is played by the radial velocity component, since the axial one is typically much
smaller, v, << v,. In this case the force acting in the r-direction is much larger than
in the z-direction, so that its dimension is [F,] = ML, T2 Accordingly, the dimen-
sion of the shear stress 1., = F, /S, ([S,,] = L?) is [t,,] = ML 'T~2. For Newtonian
viscous fluids 7, = p(dv,/dz). As aresult, we find the dimension of viscosity [u] =
ML-2L,T~'. The dimensions of pressure and its gradient are

F, MLT?
[AP]:S =7 =ML 'T™? (P.2.45)

N
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AP]  MLI'T?
[ ] == = ML'L'T (P.2.46)

r L,

Thus, the dimensions of all the governing parameters are expressed in the system
of units with two length scales are independent. Then, according to the Pi-theorem,
(P.2.38) takes the form

A—P = cu® P h*Br* (P.2.47)
,

where c is a dimensionless constant.
Determining the values of the exponents «; using the principle of the dimen-

sional homogeneity as «; = 1,0, = 1,03 = —3 and a4 = 1, we obtain
AP -
— — cup— (P.2.48)
r h

Then, the substitution of (P.2.48) into (P.2.42) yields

R

3
Fy— %nu,uR <h> (P.2.49)

The exact solution of this problem reads (Landau and Lifshitz 1987)

3 R\’
Fa =3 muR (E) (P.2.50)

The comparison of (P.2.49) and (P.2.50) shows that the exact solution and the
result of the dimensional analysis agree up to a dimensionless numerical factor. At
the same time, the dimensional analysis of the problem using the system of units
with a single length scale yields a less informative result, since (P.2.43) contains an
unknown function y(%/R).
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