
Chapter 2

Basics of the Dimensional Analysis

2.1 Preliminary Remarks

In this introductory chapter some basic ideas of the dimensional analysis are

outlined using a number of the instructive examples. They illustrate the applications

of the Pi-theorem in the field of hydrodynamics and heat and mass transfer.

The systems of units and dimensional and dimensionless quantities, as well as

the principle of dimensional homogeneity are discussed in Sect. 2.2. Section 2.3

deals with non-dimensionalization of the mass and momentum balance equations,

as well as the energy and diffusion equations. In Sect. 2.4 the dimensionless

groups characteristic of hydrodynamic and heat and mass transfer phenomena are

presented. Here the physical meaning of several dimensionless groups and simi-

larity criteria is discussed, In addition, similitude and modeling characteristic of the

experimental investigations of thermohydrodynamic processes are considered.

The Pi-theorem is formulated in Sect. 2.5.

2.2 Basic Definitions

2.2.1 Dimensional and Dimensionless Parameters

Momentum, heat and mass transfer in continuous media occur in processes

characterized by the interaction and coupling of the effects of hydrodynamic and

thermal nature. The intensity of these interactions and coupling is determined by

the magnitudes of physical quantities involved which characterize the physical

properties of the medium, its state, motion and interactions with the surrounding

boundaries and penetrating fields. The magnitudes of these quantities are deter-

mined experimentally by comparing the readings of the measuring devices

with some chosen scales, which are taken as units of the measured characteristics,
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e.g. length, mass, time, etc. For example, an actual pipe diameter, fluid velocity or

temperature are expressed as

d ¼ nL�; v ¼ mV�; T ¼ kT� (2.1)

where n; m and k are some numbers, whereas L�;V� and T� are units of length,

velocity and temperature, respectively.

The quantities which characterize flow and heat and mass transfer of fluids

are related to each other by certain expressions based on the laws of nature. For

example, the volumetric flow rate Qv of viscous fluid through a round pipe of radius

r, and the drag force Fd acting on a small spherical particle slowly moving with

constant velocity in viscous fluid are expressed by the Poiseuille and Stokes laws

Qv ¼ pr4DP
8ml

(2.2)

Fd ¼ 6pmur (2.3)

In (2.2) and (2.3) DP is the pressure drop on a length l; m is the fluid viscosity,

and u is the particle velocity. Equations 2.2 and 2.3 show that units of the

volumetric flow rate Qv and drag force Fd can be expressed as some combinations

of the units of length, velocity, viscosity and pressure drop. In particular, the unit of

r coincides with the unit of length L, of u is expressed through the units of length

and time as LT�1, the unit of m½ � ¼ L�1MT�1 in addition involves the unit of mass,

as well as the unit of the pressure drop DP½ � ¼ L�1MT�2 (cf. Table 2.1). Here and

hereinafter symbol A½ � denotes units of a dimensional quantity A.

It is emphasized that the units of numerous physical quantities can be expressed

via a few fundamental units. For example, we have just seen that the units of

volumetric flow rate and drag force are expressed via units of length, mass and time

only, as Qv½ � ¼ L3T�1; and Fd½ � ¼ LMT�2. A detailed information the units of

measurable quantities is available in the book by Ipsen (1960). The possibility to

express units of any physical quantities as a combination of some fundamental units

allows subdividing all physical quantities into two characteristic groups, namely (1)

primary or fundamental quantities, and (2) derivative (secondary or dependent)

ones. The set of the fundamental units of measurements that is sufficient for

expressing the other measurement quantities of a certain class of phenomena is

called the system of units. Historically, different systems of units were applied to

physical phenomena (Table 2.2).

In the present book we will use mainly the International System of Units

(Table 2.3).

In this system of units (hereinafter called SI Units) an amount of a substance is

measured with a special unit- mole (mol). Also, two additional dimensionless units:

one for a plane angle- radian (rad), and another one for a solid angle- steradian (sr),

are used. A detailed description of the SI Units can be found in the books of

Blackman (1969) and Ramaswamy and Rao (1971).
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The numerical values of the physical quantities expressed through fundamental

units depend on the scales of arbitrarily chosen for the latter in any given system of

units. For example, the velocity magnitude of a solid body moving in fluid, which is

1 m/s in SI units is 100 cm/s in the Gaussian CGS (centimeter, gram, second)

System of Units. The physical quantities whose numerical values depend on the

Table 2.1 Physical

quantities
Quantity Dimensions Derived units

A. (Mechanical quantities)

Acceleration LT�2 m�s�2

Action ML2T�1 kg�m2
� s

�1

Angle (plane) 1 rad:

Angle (solid) 1 sterad:

Angular acceleration T�2 rad�s�2

Angular momentum ML2T�1 kg�m2
� s

�1

Area L2 m2

Curvature L�1 m�1

Surface tension MT�2 kg�s�2

Density ML�3 kg�m�3

Elastic modulus ML�1T�2 kg�m�1
� s�2

Energy (work) ML2T2 J

Force MLT�2 N

Frequency T�1 s�1

Kinematic viscosity L2T�1 m2
� s

�1

Mass M kg

Momentum MLT�1 kg�m�s�1

Power ML2T�3 W

Pressure ML�1T�2 N�m�2

Time T s

Velocity LT�1 m�s�1

Volume L3 m3

B. (Thermal quantities)

Enthalpy ML2T2 J

Entropy ML2T2y�1 J�K�1

Gas constant L2T�1y�1 J�kg��1K�1

Heat capacity per unit mass L2T�2y�1 J�kg�1
� K�1

Heat capacity per unit volume ML�1T�2y�1 J�m��3K�1

Internal energy ML2T2 J

Latent heat of phase change L2T�2 J�kg�1

Quantity of heat ML2T�2 J

Temperature y K

Temperature gradient L�1y K�m�1

Thermal conductivity MT�3Ly�1 W�m�1
� K�1

Thermal diffusivity L2T�1 m2
� s

�1

Heat transfer coefficient MT3y�1 W�m2
� K

�1
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fundamental units are called dimensional. For such quantities, units are derivative

and are expressed through the fundamental unites according to the physical

expressions involved. For example, units of the gravity force Fg ¼ mg are

expressed through the fundamental units bearing in mind the previous expression

and the fact that m½ � ¼ M; and g½ � ¼ LT�2 as

Fg

� � ¼ LMT�2 (2.4)

In fact, units of any physical quantity can be expressed through a power law1

A½ � ¼ La1Ma2Ta3 (2.5)

where the exponents ai are found by using the principle of dimensional

homogeneity.

The quantities whose numerical values are independent of the chosen units of

measurements are called dimensionless. For example, the relative length of a pipe

l ¼ l
d (where l and d are the length and diameter of the pipe, respectively) is

dimensionless. Formally this means that l
� � ¼ 1:

In the general case, physical quantities can be characterized by their magnitude

and direction. Such quantities as, for example, temperature and concentration are

scalar and are characterized only by their magnitudes, whereas such quantities as

velocity and force are vectors and are characterized by their magnitudes and

directions. Vectors can also be characterized by introducing a so-called vector

length L (Williams 1892). Projections of the vector length L on, say, the axes of

Table 2.2 Systems of units

Quantity

Absolute Technical

CGS MKS FPS CGS MKS FPS

Mass Gram Kilogram Pound 9.81 g 9.81 kg Slug

Force Dyne Newton Poundal Gram-force Kilogram-force Pound-force

Length Centimeter Meter Foot Santimeter Meter Foot

Time Second Second Second Second Second Second

Table 2.3 International system of units-SI

Quantity Units Abbreviation

Mass Kilogram kg

Length Meter m

Time Second s

Temperature Kelvin K

Electric current Ampere A

Luminous intensity Candela cd

1A demonstration of this statement can be found in Sedov (1993).
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a Cartesian coordinate system x; y and z are denoted as Lx; Ly and Lz, respectively.
A number of instructive examples of application of vector length for studying different

problems of applied mechanics are presented in the monographs by Huntley (1967)

and Douglas (1969). The application of the idea of vector length in studying of

drag and heat transfer at a flat plate subjected to a uniform flow of the incompressible

fluid is discussed by Barenblatt (1996) and Madrid and Alhama (2005).

The expansion of a number of the fundamental units allows a significant

improvement of the results of the dimensional analysis. For this aim it is useful to

consider different properties the mass: (1) mass as the quantity of matter Mm, and

(2) mass as the quantity of the inertia Mi. Similarly, using projections of a vector L
on the Cartesian coordinate axes as the fundamental units it is possible to express

the units of such derivative (secondary) quantities as volume V and velocity vector

v as V½ � ¼ LxLyLz and u½ � ¼ LxT
�1; v½ � ¼ LyT

�1; and w½ � ¼ LzT
�1 where u,v and

w denote the projections of v on the coordinate axes as is traditionally done in fluid

mechanics. It is emphasized that using two different quantities of mass and

projections of a vector allows one to reveal more clearly the physical meaning

of the corresponding quantities. For example, the dimensions of work W in a

rectilinear motion and torque T in rotation system of units LMT are the same

L2MT�2;whereas in the system of unitsLxLyLzMT they are different, namely

W½ � ¼ L2xMT�2; whereas T½ � ¼ LxLyMT�2:

2.2.2 The Principle of Dimensional Homogeneity

Principle of dimensional homogeneity expresses the key requirements to a structure

of any meaningful algebraic and differential equations describing physical phe-

nomena, namely: all terms of these equations must to have the same dimensions.

To illustrate this principle, we consider first the expression for the drag force acting

on a spherical particle slowly moving in highly viscous fluid. The Stokes formula

describing Fd reads

Fd ¼ 6pmur (2.6)

Here Fd½ � ¼ LMT�2 is the drag force, m½ � ¼ L�1MT�1 is the viscosity of the

fluid, u½ � ¼ LT�1 and r½ � ¼ L are the particle velocity and its radius, respectively.

It is easy to see that (2.6) satisfies the principle dimensional homogeneity. Indeed,

substitution of the corresponding dimensions to the left hand side and the right hand

side of (2.6) results in the following identity

LMT�2 ¼ ðL�1MT�1ÞðLT�1ÞðLÞ ¼ LMT�2 (2.7)

As a second example, we consider the Navier–Stokes and continuity equations.

For flows of incompressible fluids they read
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@v

@t
þ ðv � rÞv ¼ � 1

r
rPþ nr2v (2.8)

r � v ¼ 0 (2.9)

where v ¼ LT�1½ � is the velocity vector, r½ � ¼ L�3M, n½ � ¼ L2T�1 and P½ � ¼
L�1MT�2 are the density, kinematic viscosity n and pressure, respectively.

It is seen that all the terms in (2.8) have dimensions LT�2 and in (2.9) have

dimensions T�1.

There are a number of important applications of the principle of the dimensional

homogeneity. For example, it can be used for correcting errors in formulas or

equations, which is advisable to students. Take the expression for the volumetric

rate of incompressible fluid through a round pipe of radius r as

Qv ¼ pr2

8m
DP
l

� �
(2.10)

where Qv is the volumetric flow rate, DP is the pressure drop over an arbitrary

section of the pipe length of length l.
The dimension of the term on the left hand side in (2.10) is L3T�1, whereas of the

one on the right hand side of this equation is LT�1. Thus, (2.10) does not satisfy

the principle of dimensional homogeneity. In order to find the correct form of the

dependence of the volumetric flow rate on the governing parameters, we present

(2.10) as follows

Qv ¼ p
8
ra1ma2

DP
l

� �a3

(2.11)

where ai are unknown exponents.

Bearing in mind the dimensions of Qv; r; m and DP
l

� �
, we arrive at the following

system of algebraical equations for the exponents ai

a1 � a2 � 2a3 ¼ 3

a2 þ a3 ¼ 0

�a2 � 2a3 ¼ �1 (2.12)

From (2.12) it follows that the exponents ai are equal a1 ¼ 4; a2 ¼ �1;
and a3 ¼ 1. Then, the correct form of (2.10) reads as

Qv ¼ pr4

8m
DP
l

� �
(2.13)
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The third example concerns the application the principle of dimensional homo-

geneity to determine the dimensionless groups from a set of dimensional

parameters. Consider a set of dimensional parameters

a1; a2 � � � ak; akþ1 � � � an (2.14)

Assume that k parameters have independent dimensions. Accordingly, the

dimensions of the other n� k parameters can be expressed as

akþ1½ � ¼ a1½ �a
0
1 � � � � � ak½ �a

0
k

� � � � � � � � � � � � � � � � � � � � � � ��
an½ � ¼ a1½ �an�k

1 � � � � ak½ �an�k
k (2.15)

Therefore, the ratios

akþ1

a
a0
1

1 � � � aa
0
k

k

¼ P1

� � � � � � � � � � � � � � � � � � ��
an

an�k
1 � � � an�k

k

¼ Pn�k (2.16)

are dimensionless. Requiring that the dimensions of the numerator and denominator

in the ratios (2.16) will be the same, we arrive at the system of algebraical equations

for the unknown exponents.

In conclusion, we give one more instructive example of the application of the

principle of dimensional homogeneity for the description of the equation of state of

perfect gas. The general form of the equation of state reads (Kestin v.1 (1966) and

v.2 (1968)):

FðP; vs; TÞ ¼ 0 (2.17)

where P; vsand T are the pressure, specific volume and temperature, respectively.

Equation 2.17 can be solved (at least in principle), with respect to any one of the

three variables involved. In particular, it can be written as

P ¼ f ðvs; TÞ (2.18)

The set of the governing parameters involved in (2.18) is incomplete since the

dimension of pressure P½ � ¼ L�1MT�2 cannot be expressed in the form of any

combination of dimensions of specific volume vs½ � ¼ L3M�1 and temperature

T½ � ¼ y. Therefore, the function f on right hand side in (2.18) must include some

dimensional constant c
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P ¼ f ðc; vs; TÞ (2.19)

It is reasonable to choose as such a constant the gas constant R that account

for the physical nature of the gas, but does not depend on its specific volume,

pressure and temperature. Assuming that c ¼ R g= (g is a dimensionless constant),

we write the dimension of this constant as c½ � ¼ L2T�2y�1: All the parameters

in (2.19) have independent dimensions. Then, according to the Pi-theorem (see

Sect. 2.5), (2.19) takes the form

P ¼ g1c
a1va2s T

a3 (2.20)

where g1 is a dimensionless constant.

Using the principle of the dimensional homogeneity, we find the values of

the exponents ai as a1 ¼ 1; a2 ¼ �1; a3 ¼ 1: Assuming g ¼ g1, we arrive at the

Clapeyron equation

P ¼ RrT (2.21)

The equation of state of perfect gas can be also derived directly by applying the

Pi-theorem to solve the problems of the kinetic theory and accounting for the fact

pressure of perfect gas results from atom (molecule) impacts onto a solid wall.2

Considering perfect gas as an ensemble of rigid spherical atoms (or molecules)

moving chaotically in the space, we can assume that pressure of such gas is deter-

mined by atom (or molecule) mass m, their number per unit volume N and the

average velocity squared <v2>

P ¼ f ðm;N; <v2>Þ (2.22)

The dimensions of P and the governing parameters m;N and <v2> are

P½ � ¼ L�1MT�2; m½ � ¼ M; N½ � ¼ L�3; <v2>
� � ¼ L2T�2 (2.23)

All the governing parameters have independent dimensions. Therefore, the

difference between the number of the governing parameters n and the number of

the parameters with independent dimensions k equals zero. In this case the pressure
can be expressed as Sedov (1993);

P ¼ gma1Na2<v2>a3 (2.24)

where g is a dimensionless constant.

2 This idea was expressed first by D. Bernoulli in 1727 who wrote that pressure of perfect gas is

related to molecule velocities squared.
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Using the principle of dimensional homogeneity, we find the values of the

exponents in (2.24) as a1 ¼ a2 ¼ a3 ¼ 1: Then, (2.24) takes the form

P ¼ gmN<v2> (2.25)

Bearing in mind that m<v2> is directly proportional kBT (m<v2> ¼
g1kBT; where g1 is a dimensionless constant), we arrive at the following equation

P ¼ ekBTN (2.26)

Here e ¼ gg1 is a dimensionless constant, kB½ � ¼ L2MT�2y�1 is Boltzmann’s

constant, T½ � ¼ y is the absolute temperature.

Applying (2.26) to a unit mole of a perfect gas, we can write the known

thermodynamic relations as

N ¼ Nm; kB ¼ mR
Nm

; mvs ¼ constant (2.27)

Here Nm is the Avogadro number, m is the molecular mass, vs is the specific

volume, and R½ � ¼ L2T�2y�1 is the gas constant. Then, (2.27) takes the form

P ¼ rRT (2.28)

Summarizing, we see that the pressure of perfect gas is directly proportional to

the product of the gas density, gas constant and the absolute temperature and does

not depend on the mass of individual atoms (molecules). Note that (2.28) can be

obtained directly from the functional equation P ¼ f ðm;N; T; kBÞ(Bridgman 1922).

2.3 Non-Dimensionalization of the Governing Equations

It is beneficial in the analysis complex thermohydrodynamic phenomena to trans-

form the system of mass, momentum, energy and species balance equations into a

dimensionless form. The motivation for such transformation comes from two

reasons. The first reason is related with the generalization of the results of theoreti-

cal and experimental investigations of hydrodynamics and heat and mass transfer in

laminar and turbulent flows by presentation the data of numerical calculation and

measurements in the form of dependences between dimensionless parameters.

The second reason is related to the problem of modeling thermohydrodynamic

processes by using similarity criteria that determine the actual conditions of

the problem. The procedure of non-dimensionalization of the continuity (mass

balance), momentum, energy and species balance equations is illustrated below

by transforming the following model equation
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Xn
j¼1

A
ðiÞ
j ¼ 0 (2.29)

where A
ðiÞ
j includes differential operators, some independent variables, as well as

constants; superscript i refers to the momentum ði ¼ 1Þ; energy ði ¼ 2Þ; species

ði ¼ 3Þ and continuity ði ¼ 4Þ equations, n is the total number of terms in a given

equation.

The terms in (2.29) account for different factors that affect the velocity, temper-

ature and species fields: the inertia features of fluid, viscous friction, conductive and

convective heat transfer, etc. These terms are dimensional. The dimension of A
ðiÞ
j in

the system of units LMTy is

A
ðiÞ
j

h i
¼ La

ðiÞ
j MbðiÞ

j TgðiÞ
j ye

ðiÞ
j (2.30)

where the values of the exponents a; b; g and e are determined by the magnitude of

i and j; all the terms that correspond to a given i have the same dimension:

A
ðiÞ
1

h i
¼ A

ðiÞ
2

h i
¼ � � � AðiÞ

j

h i
¼ � � � AðiÞ

n

h i
(2.31)

The variables and constants included in (2.29) may be rendered dimensionless

by using some characteristic scales of the density r�½ � ¼ L�3M; velocity v�½ � ¼
LT�1; length l�½ � ¼ L; time t�½ � ¼ T, etc. Then, the dimensionless variables and

constants of the problem are expressed as

r ¼ r
r�

; v ¼ v

v�
; T ¼ T

T�
; c ¼ c

c�
; t ¼ t

t�
;P ¼ P

P�
; m ¼ m

m�
; k ¼ k

k�
;D

¼ D

D�
; g ¼ g

g�
(2.32)

where the asterisks denote the characteristic scales, and the dimensionless

parameters are denoted by bars. In addition, k� ¼ LMT�3y�1
� �

;D� ¼ L2T�1½ �;
and g� ¼ LT�2½ � are the characteristic scales of thermal conductivity, diffusivity

and gravity acceleration, respectively.

Taking into account (2.32), we can present all terms of (2.29) as follows

A
ðiÞ
j ¼ A

ðiÞ
j� A

ðiÞ
j (2.33)

where A
ðiÞ
j� is the corresponding dimensional multiplier comprised of the character-

istic scales, A
ðiÞ
j ¼ A

ðiÞ
j =A

ðiÞ
j� is the dimensionless form of the jth term in (2.29).

The exact form of the multipliers A
ðiÞ
j� is determined by the actual structure of the

terms A
ðiÞ
j . For example, the multiplier of the first term of the momentum balance

equation is found from
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A
ðiÞ
1 ¼ r

@v

@t
¼ r�v�

t�

@ðv=v�Þ
@ðt=t�Þ ¼ A

ðiÞ
1�A

ðiÞ
1 (2.34)

where A
ðiÞ
1� ¼ r�v�

t�
, A

ðiÞ
1 ¼ @v

@t
.

The substitution of the expression (2.33) into (2.29) yields

Xn
j¼1

A
ðiÞ
j� A

ðiÞ
j ¼ 0 (2.35)

Dividing the left and right hand sides of (2.35) by a multiplier A
ðiÞ
k� ð1 � k � nÞ,

we arrive at the dimensionless form of the conservation equations

A
ðiÞ
k þ

Xk�1

j¼1

YðiÞ
j�

A
ðiÞ
j þ

Xn
j¼kþ1

YðiÞ
j�

Aj
ðiÞ

( )
¼ 0 (2.36)

where
QðiÞ

j� ¼ Aj�=Ak� are the dimensionless groups.

To illustrate the general approach described above, we render dimensionless

the Navier–Stokes equations, the energy and species balance equations, as well

as the continuity equation. For incompressible fluids these equations read

r
@v

@t
þ r v � rð Þv ¼ �rPþ mr2vþ rg (2.37)

rcp
@T

@t
þ rcP v � rð ÞT ¼ kr2T þ f (2.38)

r
@cx
@t

þ r v � rð Þcx ¼ rDr2cx (2.39)

r � v ¼ 0 (2.40)

where r; v T; P and cx are the density, velocity vector, the temperature, pressure

and the concentration of the species x. In particular, let us use the Cartesian

coordinate system where vector v has components u; v and w in projections

to the x; y and z axes. In addition, m; k andD are the viscosity, thermal conductivity

and diffusivity which are assumed to be constant, g the magnitude of the gravity

acceleration g, f is the dissipation function f ¼ 2m ð@u=@xÞ2 þ ð@v=@yÞ2þ
h

ð@w=@zÞ2� þ mð@u=@yþ @v=@xÞ2 þ mð@v=@zþ @w=@yÞ2þ mð@w=@xþ @u=@zÞ2.
The multipliers A

ðiÞ
j� in (2.37)–(2.40) are listed below

A
ð1Þ
1� ¼ r�v�

t�
;A

ð1Þ
2� ¼ r�v2�

l�
;A

ð1Þ
3� ¼ P�

l�
;A

ð1Þ
4� ¼ r�g� (2.41)
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A
ð2Þ
1� ¼ r�cP�T�

t�
; A

ð2Þ
2� ¼ r�cP�v�T�

l�
;A

ð2Þ
3� ¼ k�T�

l�
;A

ð2Þ
4� ¼ m�v2�

l�

A
ð3Þ
1� ¼ r�c�

t�
;A

ð3Þ
2� ¼ r�c�

l�
;A

ð3Þ
3� ¼ r�D�c�

l2�

A
ð4Þ
1� ¼ v�

l�
;A

ð4Þ
2� ¼ v�

l�

Dividing the multipliers A
ð1Þ
j� by A

ð1Þ
2� ; A

ð2Þ
j� by A

ð2Þ
2� ; A

ð3Þ
j� by A

ð3Þ
2� and A

ð4Þ
j� by A

ð4Þ
2� ,

we arrive at the following system of dimensionless equations

St
@v

@t
þ v � rð Þv ¼ �EurPþ 1

Re
r2vþ 1

Fr
(2.42)

St
@T

@t
þ v � rð ÞT ¼ 1

Pe
r2T þ Br

Re
f (2.43)

St
@cx
@t

þ v � rð Þcx ¼ 1

Ped
r2cx (2.44)

r � v ¼ 0 (2.45)

where St ¼ l�=v�t�; Eu ¼ P�=r�v
2
�; Re ¼ v�l�=n�; Pe ¼ v�l�=a�; Ped ¼ v�l�=D�,

Fr ¼ v2�=g�l�; Br ¼ m�v2�=k�T� are the Strouhal, Euler and Reynolds numbers,

as well as the thermal and diffusion Peclet numbers, and the Froude and Brinkman

numbers, respectively, n and a are the kinematic viscosity and thermal diffusivity,

and the dimensionless dissipation function f ¼ f= mðv�=l�Þ2
h i

; v ¼ v v�= ;P ¼
P rv2�
�

; T ¼ T T�= and cx ¼ c c�= are the dimensionless variables.

The non-dimensionalization of the initial and boundary conditions is similar to

the one described above. In that case each of the independent variables x; y; z and t,
as well as the flow characteristics u; v; T and cx are also rendered dimensionless by

using some scales that have the same dimensions as the corresponding parameters.

For example, consider the non-dimensionalization of the initial and boundary

conditions for the following three problems of the theory of viscous fluid flows:

(1) steady flow in laminar boundary layer over a flat plate, (2) laminar flow about

a flat plate which instantaneous started to move in parallel to itself, and (3) sub-

merged laminar jet issued from a round nozzle.

In case (1), let the velocity and temperature of the undisturbed fluid far enough

from the plate be u1, T1, and the wall temperature be Tw ¼ const: Then, the
boundary conditions read
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x ¼ 0; 0 � y � 1; u ¼ u1; T ¼ T1 (2.46)

x> 0, y ¼ 0, u ¼ v ¼ 0; T ¼ Tw; y ! 1, u ! u1, T ! T1

Introducing as the scales of length some L, velocity u1 and temperature

Tw � T1, we rearrange (2.46) to the following dimensionless form3

x ¼ 0; 0 � y � 1 u ¼ 1; DT ¼ 1 (2.47)

x> 0, y ¼ 0 u ¼ v ¼ 0; DT ¼ 0; y ! 1 u ! 1; DT ! 1

where x ¼ x=L; y ¼ y=L; u ¼ u=u1; v ¼ v=u1; DT ¼ ðTw � TÞ=ðTw � T1Þ.
The equation for the heat flux at the wall is used to introduce the heat transfer

coefficient h:

h Tw � T1ð Þ ¼ �k
@T

@y

� �
y¼0

(2.48)

Being rendered dimensionless, the heat transfer coefficient is expressed in the

following form

Nu ¼ @DT
@y

� �
y¼0

(2.49)

where Nu ¼ hL=k is the dimensionless heat transfer coefficient is called the Nusselt

number.

In case (2), the initial and boundary conditions of the problem on a plate starting

to move from rest with velocity U in the x-direction in contact with the viscous fluid
read

t ¼ 0; 0 � y � 1 u ¼ 0 (2.50)

t> 0, y ¼ 0 u ¼ U; y ¼ 1, u ¼ 0

Since no time or length scales are given, we use as the characteristic time scale

t� ¼ n=U2 and as the characteristic length scale n=U. Then, (2.50) take the follow-
ing dimensionless form

t ¼ 0; 0 � y � 1 u ¼ 0; t> 0; y ¼ 0 u ¼ 1; y ! 1 u ! 0 (2.51)

In case (3), the boundary conditions for a submerged laminar jet are

3 It is emphasized that in the problem on flow in the boundary layer over a semi-infinite plate,

a given characteristic scale L is absent. According to the self-similar Blasius solution of this

problem, the dimensionless coordinate y ¼ y=ðnx=u1Þ1=2 with ðnx=u1Þ1=2 playing the role of the

length scale (Sedov 1993).
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x ¼ 0; 0 � y � r0; u ¼ u0; T ¼ T0; y> r0 u ¼ 0; T ¼ T1 (2.52)

x> 0; y ¼ 0,
@u

@y
¼ 0,

@T

@y
¼ 0; y ! 1, u ! 0, T ! T1

where r0is the nozzle radius.
The dimensionless form of the conditions (2.52) is

x ¼ 0; 0 � y � 1; u ¼ 1 DT ¼ 1; y>1; u ! 0; DT ! 0 (2.53)

x> 0, y ¼ 0,
@u

@y
¼ 0,

@DT
@y

¼ 0; y ¼ 1, u ! 0, DT ! 0

where x ¼ x=r0; y ¼ y=r0; u ¼ u=u0; DT ¼ ðT1 � TÞ=ðT1 � T0Þ:
At large enough distance from the jet origin at x=r0 >> 1, it is possible to use the

integral condition
R1
0

u2ydy ¼ const; instead of the condition (2.52) at x ¼ 0. Note

that there is another way of rendering the system of fundamental equations of

hydrodynamics and heat and mass transfer theory dimensionless. It consists in

rendering dimensionless each quantity in these equations using for this aim the

scales of the density, velocity, temperature, etc. Requiring that the convective terms

of these equations do not contain any dimensional multipliers, it is not easy to arrive

at the equations identical to (2.42)–(2.45). To illustrate this approach to non-

dimensionalization of the mass, momentum, energy and species conservation

equations, consider, for example, the system of equations describing flows of

reactive gases

@r
@t

þr � ðrvÞ ¼ 0 (2.54)

r
@v

@t
þ rðv � rÞv ¼ �rPþr � ðmrvÞ þ rg (2.55)

r
@h

@t
þ rðv � rÞh�r � ðkrTÞ ¼ qWk (2.56)

r
@ck
@t

þ rðv � rÞck �r � ðrDrckÞ ¼ �Wk (2.57)

P ¼ g� 1

g
rh (2.58)

where v is the velocity vector, r; P; h and T are the density, pressure, enthalpy

and temperature, ck ¼ rk=r is the relative concentration of the kth species,

r ¼ Srk; with rk being density of the kth species, Wkðck; TÞ and W are the chemi-

cal reaction rates, q is the heat of the overall reaction, and g ¼ cp=cvis the ratio of
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specific heat at constant pressure to the one at constant volume (the adiabatic index).

Note that in the energy balance equation (2.56) the dissipation term is neglected.

Introducing dimensionless parameters as follows a ¼ a
a�

(the asterisk denotes the

scale of a parameter a), we arrive at the following equations

r�
t�

@r
@t

þ r�v�
L�

r � ðrvÞ ¼ 0 (2.59)

r�v�
t�

@v

@t
þ r�v�

L�
rðv � rÞv ¼ �P�

L�
rPþ m�v�

L2�
r � ðmrvÞ þ r�g�rg (2.60)

r�h�
t�

r
@h

@t
þ r�v�h�

L�
rðv � rÞh� k�T�

L2�
r � ðkrTÞ ¼ qWk:�Wk (2.61)

r�
t�
r
@ck
@t

þ r�v�
L�

rðv � rÞck � r�D�
L2�

r � ðrDrckÞ ¼ �Wk:��Wk (2.62)

P ¼ g� 1

g
r�h�
P�

rh (2.63)

where r�; v�; P�; T�; h� and L� are the scales of density, velocity, pressure,

temperature, enthalpy and length, respectively.

Requiring that the second terms on left hand sides in (2.59)–(2.62) do not contain

any dimensionless multipliers and also accounting for the fact that for perfect gas

r�h�=P� ¼ g=ðg� 1Þ, we obtain

St
@r
@t

þr � ðrvÞ ¼ 0 (2.64)

St
@v

@t
þ rðv � rÞv ¼ �EurPþ 1

Re
r � ðmrvÞ þ 1

Fr
rg (2.65)

St
@T

@t
þ rðv � rÞT � 1

Pe
r � ðkrTÞ ¼ Da3Wk (2.66)

St
@ck
@t

þ rðv � rÞck � 1

Ped
r � ðrDrckÞ ¼ Da1Wk (2.67)

P ¼ rh (2.68)

where in addition to previously introduced Strouhal, Reynolds, Euler, the

thermal and diffusion Peclet numbers, and the Froude number, two Damkohler

numbers Da1 ¼ Wk:�L�=r�v�; and Da3 ¼ qWk:�L�=r�v�h� (defined according to

the Handbook of Chemistry and Physics,1968) appear.
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2.4 Dimensionless Groups

2.4.1 Characteristics of Dimensionless Groups

As was shown in Sect. 2.3, the dimensionless momentum, energy and diffusion

equations contain a number of dimensionless groups, which represent themselves

some combinations of the physical properties of fluid, acting forces, heat fluxes, etc.

The physical meaning and number of these groups is determined by a specific

situation, as well as by a particular model used for description of the physical

phenomena characteristic of that situation (Table 2.4).4

Consider in detail some particular dimensionless groups. The Prandtl, Schmidt

and Lewis numbers belong to a subgroup of dimensional groups that incorporate

only quantities that account for the physical properties of fluid. They are expressed

as the following ratios (cf. Table 2.4)

Pr ¼ n
a
; Sc ¼ n

D
; Le ¼ a

D
(2.69)

where n; a and D are the kinematic viscosity, thermal diffusivity and diffusivity,

respectively.

Consider, for example the Prandtl number. It represents itself the ratio of

kinematic viscosity to thermal diffusivity, i.e. of the characteristics of fluid respon-

sible for the intensity of momentum and heat transfer. Accordingly, the Prandtl

number can be considered as a parameter that characterizes the ratio of the extent of

propagation of the dynamic and thermal perturbations. Therefore, at very low

Prandtl numbers (for example, in flows of liquid metals), the thickness of the

thermal boundary layer dT is much larger than the thickness of the dynamical

one, d: In contrast, at Pr >> 1 (in flows of oils) the equality d>> dT is valid. The

Schmidt number is the diffusion analog of the Prandtl number. It determines the

ratio of the thicknesses of the dynamical and diffusion boundary layers.

The Reynolds number belongs to the subgroup of the dimensionless groups

which are ratios of the acting forces. It can be considered as the ratio of the inertia

force Fito the friction force Ff

4 Dimensionless groups can be also found directly by transformation of the functional equations of

a specific problem using the Pi-theorem (see Sect. 2.5). A detailed list of dimensionless groups

related to flows of incompressible and compressible fluids in adiabatic and diabatic conditions,

flows of non-Newtonian fluids and reactive mixtures can be found in Handbook of Chemistry and

Physics, 68th Edition, 1987–1988, CBC Inc. Boca Roton, Florida, and in Chart of Dimensionless

Numbers, OMEGA Technology Company. See also Lykov and Mikhailov (1963) and Kutateladze

(1986).
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Table 2.4 Dimensionless groups

Name Symbol Definition Comparison ratio Field of use

Archimedes

number

Ar gL3r
m2 ðr� rf Þ Gravity force to viscous

force

Motion of fluid due to

density

differences

(buoyancy)

Biot number Bi hL
ks

Convection heat transfer to

conduction heat transfer

Heat transfer

Bond

number

Bo rgL2

s
Gravitaty force to surface

tension

Motion of drops and

bubbles.

Atomization

Brinkman

number

Br mv2

kDT
Heat dissipation to heat

transferred

Viscous flows

Capillary

number

Ca mv
s Viscous force to surface

tension force

Two-phase flow.

Atomization.

Moving contact

lines

Damkohler

number

Da1
Da3

WL
Vm
qWL

rvcPDT

Chemical reaction rate to

bulk mass flow rate.

Heat released to

convected heat

Chemical reactions,

momentum, and

heat transfer

Darcy

number

Da2 vL
D�

Inertia force to permeation

force

Flow in porous media

Dean

number

De vRr
m

ffiffiffi
R
r

q
Centrifugal force to inertial

force

Flow in curved

channels and

pipes

Deborah

number

De tr
t0

Relaxation time to the

characteristic

hydrodynamic time

Non-Newtonian

hydrodynamics.

Rheology

Eckert

number

Ec v21
cPDT

Kinetic energy to thermal

energy

Compressible flows

Ekman

number

Ek m
2roL2


 �1=2 (Viscous force to Coriolis

force)1=2
Rotating flows

Euler

number

Eu rv2

DP
Pressure drop to dynamic

pressure

Fluid friction in

conduits

Grashof

number

Gr r2gbL3DT
m2

Buoyancy force to viscous

force

Natural convection

Jacob

number

Ja cPrfDT
rrV

Heat transfer to heat of

evaporation

Boiling

Knudsen

number

Kn l
L

Mean free path to

characteristic dimension

Rarefied gas flows

and flows in

micro- and nano-

capillaries

Kutateladze

number

K rv
cPDT

Latent heat of phase change

to convective heat

transfer

Combined heat and

mass transfer in

evaporation

Lewis

number

Le k
rcPD

Thermal diffusivity to

diffusivity

Combined heat and

mass transfer

Mach

number

M v
C Flow speed to local speed of

sound

Compressible flows

Nu hL
k

Forced convection

(continued)
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Re ¼ vL

n
¼ rv2

m v L=ð Þ ¼
rv2 L=

m v L2=ð Þ (2.70)

where r; m and L are the density, viscosity and the characteristic length.

The dimensions of the numerator and denominator in right hand side ratio in

(2.70) are rv2 L=½ � ¼ m v L2
�� �� � ¼ L�2MT�2, i.e. the same as the dimensions of the

terms r @v=@tþ v � rð Þv½ � and mr2v accounting for the inertia and viscous forces

in the momentum balance equation. The terms rv2=L and mv=L2 can be treated as

the specific inertia and viscous forces fi ¼ Fi V= and ff ¼ Ff V= , respectively, with

the dimensions Fi½ � ¼ LMT�2, Ff

� � ¼ LMT�2, and V½ � ¼ L3.
At small Reynolds numbers when the influence of viscosity is dominant, any

chance perturbations of the flow field decay very quickly. At large Re such

perturbations increase and result in laminar-turbulent transition. Therefore, the

Table 2.4 (continued)

Name Symbol Definition Comparison ratio Field of use

Nusselt

number

Total heat transfer to

conductive heat transfer

Peclet

number

Pe Lrvcp
k

Bulk heat transfer to

conductive heat transfer

Forced convection

Prandtl

number

Pr mcP
k Momentum diffusivity to

thermal diffusivity

Heat transfer in fluid

flows

Rayleigh

number

Ra gbL3r2cP
mk

Thermal expansion to

thermal diffusivity and

viscosity

Natural convection

Richardson

number

Ri � g
r

@P
@Lh


 �
@v
@Lh


 �
w

.
Gravity force to the inertia

force

Stratified flow of

multilayer

systems

Rossby

number

Ro v
oL sinL The inertia force to Coriolis

force

Geophysical flows.

Effect of earth’s

rotation on flow in

pipes

Schmidt

number

Sc m
rD Kinematic viscosity to

molecular diffusivity

Diffusion in flow

Senenov

number

Se hm
K

Intensity of heat transfer to

intensity of chemical

reaction

Reaction kinetics.

Convective heat

transfer.

Sherwood

number

Sh hmL
D

Mass diffusivity to

molecular diffusitivy

Mass transfer

Stenton

number

St h
rvcP

Heat transferred to thermal

capacity of fluid

Forced convection

Strouhal

number

St fL
v

Time scale of flow to

oscillation period

Unsteady flow.

Vortex shedding

Taylor

number

Ta 2oL2r
m


 �2 (Coriolis force to viscous

force)2
Effect of rotation on

natural convection

Weber

number

We v2rL
s

The dynamic pressure to

capillary pressure

Bubble formation,

drop impact
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Reynolds number is sensitive indicator of flow regimes. For example, in flows of an

incompressible fluid in a smooth pipe, three kinds of flow regime can be realized

depending on the value of the Reynolds number: (1) laminar (Re � 2300), transi-

tional (2300 � Re � 3500), and developed turbulent (Re > 3500).

The Peclet number is an example of a dimensionless group that is a ratio of heat

fluxes of different nature. It reads

Pe ¼ vL

a
¼ rvcPDT

k DT
L

� � (2.71)

where k and cP are the thermal conductivity and specific heat at constant pressure,

DT is the characteristic temperature difference.

The Peclet number is the ratio of the heat flux due to convection to the heat flux

due to conduction. It can be considered as a measure of the intensity of molar to

molecular mechanisms of heat transfer.

We mention also the Damkohler number that characterize the conditions of

chemical reaction which proceeds in a reactive mixture, i.e. in the process

accompanied by consumption of the initial reactants, formation of the combustion

products, as well as an intensive heat release. Under these conditions the evolution

of the temperature and concentration fields is determined by two factors: (1)

hydrodynamics of the flow of reacting mixture, and (2) the rate of chemical

reaction. The contribution of each of these factors can be estimated by the ratio

of the characteristic hydrodynamic time th � W�1 to the chemical reaction time

tr � V�1
v i.e. by the Damkohler number

Da1 ¼ th
tr

(2.72)

If the Damkohler number is much less than unity, the influence of the chemical

reaction on the temperature (concentration) field is negligible. At large values of

Da1 the effect of the chemical reaction and its heat release is dominant.

2.4.2 Similarity

Before closing the brief comments on the dimensionless groups, we outline how

such groups are used in modeling of hydrodynamic and thermal phenomena. For

this aim, we turn back to (2.64)–(2.68) that describe the mass, momentum, heat and

species transfer in flows of incompressible fluids with constant physical properties.

These equations contain eight dimensionless groups, namely, St; Re; Pe; Ped;
Eu; Fr; Da1 andDa3: If the initial and boundary conditions of a particular problem
do not contain any additional dimensionless groups (as, for example, the conditions

y ¼ 0 v ¼ 0; T ¼ 0; ck ¼ 0, y ! 1 v ¼ 1; T ¼ 1; ck ¼ 1), the velocity,
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temperature and concentration fields determined by (2.64)–(2.68) can be expressed

as follows

v ¼ fvðx; y; z; St;Re;Eu;FrÞ (2.73)

T ¼ ftðx; y; z; St;Pe;Da1Þ (2.74)

ck ¼ fcðx; y; z; St;Ped;Da3Þ (2.75)

In (2.73) and (2.75) T ¼ ðT�TwÞ=ðT1�TwÞ; and ck ¼ ðck� ck;wÞ=ðck;1� ck;wÞ;
subscripts w; and1 correspond to the values at the wall and in undisturbed fluid.

The expressions (2.73)–(2.75) are universal in a sense that the fields of dimen-

sionless velocity, temperature and concentration determined by these expressions

do not depend on the absolute values of the characteristic scales. That means that in

geometrically similar systems (for example, cylindrical pipes of different diameter)

values of dimensionless velocity, temperature and concentration at any similar

point (with x1 ¼ x2 ¼ � � � ¼ xi; y1 ¼ y2 ¼ � � � ¼ yi; z1 ¼ z2 ¼ � � � ¼ zi) are the

same if the values of the corresponding dimensionless groups are the same. Thus,

the necessary conditions of the dynamic and thermal similarity in geometrically

similar systems consist in equality of dimensionless groups (similarity numbers)

relevant for the compared systems, i.e.

St ¼ idem; Re ¼ idem; Eu ¼ idem; Fr ¼ idem; Pe ¼ idem;

Ped ¼ idem; Da1 ¼ idem; Da3 ¼ idem
(2.76)

for a considered class of flows. It is emphasized that in geometrically similar

systems the boundary conditions should also be identical in such comparisons.

The conditions (2.76) allow modeling the momentum, heat and mass transfer

processes in nature and technical applications by using the results of the

experiments with miniature geometrically similar models. Note that among the

totality of similarity numbers it is possible to select a family of dimensionless

groups that contain combinations of only scales of the considered flow family and

the physical parameters of a medium involved in a situation under consideration.

Such similarity numbers are called similarity criteria (Loitsyanskii 1966). A num-

ber of similarity criteria can be less than the number of similarity numbers. For

example, hydraulic resistance of cylindrical pipes with fully developed incompress-

ible viscous fluid flow with a given throughput is characterized by two similarly

numbers, namely, the Reynolds and Euler numbers. The first of them Re ¼ v0d=n is
the similarity criterion, since it contains known parameters: the average velocity of

fluid v0, its viscosity n and pipe diameter d. In contrast, the Euler number is not

a similarity criterion, since it contains an unknown pressure drop which has to be

found by solving the problem or measured experimentally (Loitsyanskii 1966).
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2.5 The Pi-Theorem

2.5.1 General Remarks

This whole book is devoted to the Buckingham Pi-theorem (1914), which is widely

used in a number of important problems of modern physics and, in particular,

mechanics. The proof of this theorem, as well as numerous instructive examples

of its applications for the analysis of various scientific and technical problems are

contained in the monographs by Bridgman (1922), Sedov (1993), Spurk (1992)

and Barenblatt (1987). Referring the readers to these works, we restrict our consid-

eration by applications of the Pi-theorem to problems of hydrodynamics and the

heat and mass transfer only.

The study of thermohydrodynamical processes in continuous media consists in

establishing the relations between some characteristic quantities corresponding to

a particular phenomenon and different parameters accounting for the physical

properties of the matter, its motion and interaction with the surrounding medium.

Such relations can be expressed by the following functional equation

a ¼ f ða1; a2 � � � anÞ (2.77)

where a is the unknown quantities (for example, velocity, temperature, heat or mass

fluxes, etc.), a1; a2; � � �an are the governing parameters (the characteristics of an

undisturbed fluid, physical constants, time and coordinates of a considered point).

Equation 2.77 indicates only the existence of some relation between the unknown

quantities and the governing parameters. However, it does not express any particular

form of such relation. There are two approaches to determine an exact form of

a relation of the type of (2.77): one is experimental, and the other one theoretical.

The first approach is based on generalization of the results of measurements of

unknown quantities a while varying the values of the governing parameters

a1; a2; � � �an: The second, theoretical, approach relies on the analytical or numerical

solutions of the mass, momentum, energy and species balance equations. In both

cases the establishment of a particular exact form of (2.77) does not entail significant

difficulties while studying the simplest one-dimensional problemswhen (2.77) takes

the form a ¼ f ða1Þ: On the contrary, a comprehensive experimental and theoretical

analysis of amultiparametric equation a ¼ f ða1; a2 � � � anÞ is extremely complicated

and often represents itself an insoluble problem. The latter can be illustrated by the

problem on a drag force acting on a body moving with a constant velocity in an

infinite bulk of incompressible viscous fluid. In this case the drag force Fd acting

from the fluid to the body depends on four dimensional parameters, namely, the fluid

density r and viscosity m, a characteristic size of the body d, and its velocity v. Then,
the functional equation (2.77) takes the form

Fd ¼ f ðr; m; d; vÞ (2.78)
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In order to find experimentally the drag force, it is necessary to put the body into

a wind tunnel and measure the drag force at a given velocity by an aerodynamic

scale. That is the experimental way of solving the problem under consideration but

only for one point on the parametric plane drag force-velocity. To determine the

dependence of the drag force on velocity within a certain range of velocity v, it is
necessary to reiterate the measurement of Fd at N values of v to determine the

dependence Fd ¼ f ðvÞ within a range ½v1; v2� at fixed values of r; m and d. If we
want to find the dependence Fd on all four governing parameters, we have to

perform N4 measurement.5 Therefore, if the number of data points forFd at varying

one governing parameter is N ¼ 102; the total number of measurements that one

needs will be equal to 108! It is evident that such number of measurements is

practically impossible to perform. Moreover, even if we have an experimental

data bank with 108 measurement points, we cannot say anything about the behavior

of the function Fd ¼ f ðr; m; v; dÞ outside the studied range of the governing para-

meters. An analytical or numerical calculation of the dependence of drag force on

density, viscosity, velocity and size of the body is also an extremely complicated

problem in the general case (at the arbitrary values of r; m; v; and d) due to the

difficulties involved in integrating the system of nonlinear partial differential

equations of hydrodynamics.

Essentially both approaches to study the dependence of drag force on density,

viscosity, velocity and size of the body allow a significant simplification of the

problem by using the Pi-theorem. The latter points at the way of transformation

of the function of n dimensional variables into a function of m ðwith m < nÞ
dimensionless variables. As a matter of fact, the Pi-theorem suggests how many

dimensionless variables are needed for describing a given problem containing

n dimensional parameters.

The Pi-theorem can be stated as follows. Let some dimension physical quantities

a depend on n dimensional parameters a1; a2 � � � an; where k of them have an

independent dimension. Then the functional equation for the quantities a

a ¼ f ða1; a2 � � � ak; akþ1 � � � anÞ (2.79)

can be reorganized to the form of the dimensionless equation

P ¼ ’ðP1;P2 � � �Pn�kÞ (2.80)

that contain n� k dimensionless variables. The latter are expressed as

P1 ¼ a1

a
a0
1

1 a
a0
2

2 � � �aa
0
k

k

; P2 ¼ a2

a
a00
1

1 a
a00
2

2 � � �aa
00
k

k

� � � Pn�k ¼ an

a
an�k
1

1 a
an�k
2

2 � � �aan�k
k

k

(2.81)

The dimensionless form of the unknown quantities a is

5With an equal number of data points for each one of the four governing parameters.
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P ¼ a

aa11 a
a2
2 � � � aakk

(2.82)

To illustrate the application of the Pi-theorem to hydrodynamic problems, return

to the drag force acting on a body moving in viscous fluid. The unknown quantities

and governing parameters of the corresponding problem have the following

dimensions

Fd½ � ¼ LMT�2; r½ � ¼ L�3M; m½ � ¼ L�1MT�1; d½ � ¼ L; v½ � ¼ LT�1 (2.83)

Three from the four governing parameters of this problem have independent

dimensions. That means that a dimension of any governing parameters in this case

can be expressed as a combination of dimensions of the three others. The dimension

of the unknown quantity is also expressed as a combination of the governing

parameters having independent dimensions Fd½ � ¼ LMT�2 ¼ rv2d2½ � ¼ m2=r½ � ¼
mvd½ �:
In accordance with the Pi-theorem, (2.78) takes the form

P ¼ ’ðP1Þ (2.84)

where P ¼ Fd

ra1 va2da3 ; and P1 ¼ m

ra
0
1 v

a
0
2d

a
0
3

:

Taking into account the dimension of the drag forceFd and governing parameters

with independent dimension r; v and d and using the principle of the dimensional

homogeneity, we find the values of the exponents ai and a
0
i

a1 ¼ 1; a2 ¼ 2; a3 ¼ 2; a
0
1 ¼ 1; a

0
2 ¼ 1; a

0
3 ¼ 1 (2.85)

Then (2.84) reads

Cd ¼ ’ðReÞ (2.86)

where Cd ¼ Fd=rv2d2 is the drag coefficient, and Re¼rvd=m is the Reynolds

number.

The exact form of the function ’ðReÞ cannot be determined by means of the

dimensional analysis. However, this fact does not diminish the importance of

the obtained result. Indeed, the dependence of the drag coefficient on only one

dimensionless group (the Reynolds number) allows generalization of the experi-

mental data on drag related to motions of bodies of different sizes moving with

different velocities in fluids with different densities and viscosities. All this data can

be presented in a collapsed form of a single curve CdðReÞ. Moreover, in some

limiting cases corresponding to motion with low velocities (the so-called, creeping

flows with Re<< 1) or high speeds when Re>> 1, it is possible to determine the

exact forms of the dependence of the drag coefficient on Re.
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In particular, at Re << 1 the inertia effects become negligible. Returning to

(2.78), we can assume that the drag force depends on fluid viscosity, body size and

its velocity

Fd ¼ f ðm; v; dÞ (2.87)

All the governing parameters in (2.87) have independent dimensions

(n� k ¼ 0). Therefore, in this case (2.87) reduces to

Fd ¼ cma1va2da3 (2.88)

where c is a dimensionless constant and a1 ¼ 1; a2 ¼ 1; a3 ¼ 1.

Substituting the values of the exponents a1; a2 and a3 into (2.88) leads to the

following expression for the drag coefficient

Cd ¼ c

Re
(2.89)

It is evident that to determine the dependence CdðReÞ at Re<< 1 it is sufficient to

perform only one measurement in order to establish the value of the constant c.
It is emphasized that the efficiency of using the Pi-theorem in studies of physical

phenomena is determined by the value of the difference n� k, i.e. by the number of

the governing dimensionless groups. In all cases (excluding k ¼ 0) the transforma-

tion of the functional equation by the Pi-theorem allows one to decrease number of

variables. The most interesting two cases correspond to the difference n� k being

either 0 or 1. In the first case the functional equation takes the form

a ¼ caa11 a
a2
2 � � � aann (2.90)

In the second one it becomes

P ¼ ’ðP1Þ (2.91)

where P represents itself the dimensionless group corresponding to the unknown

parameter. Decreasing the number of dimensionless variables in (2.91) to only one

is equivalent to the transformation of partial differential equations into the ordinary

ones. A number of examples of transformation of the functional equations similar to

(2.77) to a dimensionless form, as well as transformations of partial differential

equations into the ordinary ones is given in the following sections.

2.5.2 Choice of the Governing Parameters

The theoretical study of hydrodynamic and heat and mass transfer processes is

based on the system of partial differential equations that include the mass,
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momentum, energy and species conservation balances. This system of equations is

supplemented by an equation of state and correlations determining the physical

properties of the medium. The exact and approximate solutions of hydrodynamic

and heat transfer problems in the framework of the continuum approach yield

comprehensive answers to different problems of the theory. In distinction the

dimensional analysis of hydrodynamic and heat and mass transfer problems

meets some difficulties that arise already at the first step of the investigation

when choosing the governing parameter of the problem. They stem from certain

vagueness in choosing the governing parameters beginning from a pure intuitive

evaluation of the features of a phenomenon under consideration. In addition,

such approach to choosing the governing parameters often involves a number of

parameters whose influence will appear to be negligible at the end. The latter makes

it difficult to foresee the results of the dimensional analysis from scratch in

generalizing hydrodynamic and heat and mass transfer. In order to improve the

procedure of choosing the governing parameters and simplify and the following

analysis, it is possible to use the system of the mass, momentum, energy and species

balance equations.

Let us illustrate such an approach by the following examples.6 We begin with the

drag force acting on a spherical particle moving with a constant velocity in an

infinite bulk of viscous incompressible fluid. It is reasonable to assume that the

force that acts on the particle depends on its size d; velocity v and physical

properties of the fluid, namely its density r and viscosity m: In this case the

functional equation for the drag force Fd reads

Fd ¼ f ðr; m; d; vÞ (2.92)

The dimensional analysis of (2.92) leads to the following transformation in the

form of the drag coefficient

Cd ¼ ’�ðReÞ (2.93)

where Cd ¼ Fd=rv2d2 is the drag coefficient, and Re ¼ vd=n is the Reynolds

number.

It is emphasized that the function ’�ðReÞon the right hand side of (2.93) can be

presented as c’ðReÞ, where c is a dimensionless constant with its value being

chosen according to the experimental data. For example, for creeple motion of

a small spherical particle when the drag force is given by the Stokes law

Fd ¼ 3pmvd, constant c ¼ 8 p= : Then the expression for the drag coefficient takes

the form Cd ¼ 24=Re:
To determine the exact form of the dependence (2.93), one needs to integrate the

continuity and the Navier–Stokes equations subjected to the no-slip condition at the

particle surface. In some limiting cases corresponding to special conditions of

6A detailed analysis of these problems see in Chaps. 4 and 7
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particle motion (say, very slow or fast), it is possible to find the exact form of the

function ’�ðReÞ in (2.93) using these equations only for determining the set of

the governing parameters. For example, in the case of slow motion (creeping flows)

the inertia terms on the left hand side of the Navier–Stokes equations rðv � rÞv is

much less than the terms in on the right hand side of these equations. That allows

one to omit the inertial term and thereby exclude density from the governing

parameters. As a result, the functional equation for the drag force reduces to the

form of (2.6). Such simplification of the problem formulation is a key element

which allows establishing an exact form of the dependence of the drag force on

viscosity, velocity and diameter of the particle as Fd 	 mvd that coincide (up to a

numerical factor) with the exact result (the Stokes force) derived from the

Navier–Stokes equations.

In the second case corresponding to a rapid body motion (the case of a large

Reynolds number) the dominant role belongs to the turbulent transfer. The average

characteristics of fully developed turbulent flows are governed by the Reynolds

equations (Hinze 1975; Loitsyanskii 1966)

@vi
@t

þ vj
@vi
@xj

¼ � 1

r
@P

@xi
þ nr2vi þ 1

r
@

@xj
ð�rv0

iv
0
jÞ (2.94)

(bars over parameters denote the average values).

In high Reynolds number flows the term nr2vi associated with the effect of the

molecular momentum transfer through molecular viscosity mechanism can be

omitted. Then, assuming steady state average turbulent flow, the drag force which

does not depend on molecular viscosity and time is given by

Fd ¼ f ðr; v; dÞ (2.95)

Applying the Pi-theorem to (2.95), we can rearrange it to the following form

Fd 	 r�v2d2 (2.96)

which agrees with the Newton law for drag.

Another example of employing the conservation equations to facilitate the

dimensional analysis of complicated hydrodynamic and heat transfer problems is

related to mass transfer to a vertical reactive plate in contact with a liquid solution

of a reactive species (a reagent) which is initially at rest. When the rate of

a heterogeneous reaction at the plate surface is much larger than the rate of

diffusion transport of the reagent toward the surface, its concentration there equals

zero, whereas far from the surface it is equal c1: The gradient of the reagent

concentration across the thickness of the diffusion boundary layer results in

a non-uniform density field. That, in turn, triggers buoyancy force which results

in liquid motion near the wall. It is reasonable to assume that the velocity

and concentration of the reactive species in the dynamic and diffusion boundary

layers are determined by four parameters r1; c1; n; g and two independent

variables x and y
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u ¼ fuðr1; c1; n; g; x; yÞ (2.97)

c ¼ fcðr1; c1; n; g; x; yÞ (2.98)

where we consider for brevity only one component of the velocity vector u; n
and D are the kinematic viscosity and diffusivity, and gis the acceleration due

to gravity.

The functional equations (2.97) and (2.98) contain six governing parameters.

Three of them have independent dimensions. Choosing r1; n and g or r1; D and g
as parameters with the independent dimensions, we transform (2.97) and (2.98) to

the following form

Pu ¼ ’uðP1;P2;P3Þ (2.99)

Pc ¼ ’cðP1�;P2�;P3�Þ (2.100)

where Pu ¼ u= gnð Þ1=3; P1 ¼ c1=r1; P2 ¼ x=ðn2=gÞ1=3; P3 ¼ y=ðn2=gÞ1=3;
and Pc ¼ c=r1; P1� ¼ c1=r1; P2� ¼ x=ðD2=gÞ1=3; P3� ¼ y=ðD2=gÞ1=3:

Equations (2.99) and (2.100) show that the dimensionless velocity and concen-

tration of the reactive species are the function of three dimensionless groups, which

makes the analysis of the problem under consideration difficult. Therefore, employ

also the conservation equations. The momentum and species balance equations that

describe flow in the boundary layer and mass transfer to the vertical reactive wall

read (Levich 1962) (see Sect. 3.10)

u
@u

@x
þ v

@u

@y
¼ n

@2u

@y2
þ g�c� (2.101)

u
@c�
@x

þ v
@c�
@y

¼ D
@2c�
@y2

(2.102)

where g� ¼ gðc1=rÞð@r=@cÞc¼c1 ; c� ¼ ðc1 � cÞ=c1; and r ¼ rðcÞ.
The boundary conditions for (2.101) and (2.102) are

u ¼ v ¼ 0 c� ¼ 1 at y ¼ 0; u ¼ v ¼ 0 c� ¼ 0 at y ! 1 (2.103)

Equations (2.101) and (2.102) and the boundary conditions (2.103) contain four

parameters that determine the local velocity and concentration fields

u ¼ fuðx; y; n; g�Þ (2.104)

c� ¼ fcðx; y;D; g�Þ (2.105)
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Applying the Pi-theorem to transform (2.104) and (2.105) to the dimensionless

form, we obtain

Pu ¼ cuðP1Þ (2.106)

Pc ¼ ccðP1�Þ (2.107)

or equivalently,

u ¼ xg�ð Þ1=2cuð�Þ (2.108)

c� ¼ ccð�
ffiffiffiffiffi
Sc

p
Þ (2.109)

where Pu ¼ u= xg�ð Þ1=2; P1 ¼ y g�=xn2ð Þ1=4; Pc ¼ c�; P1� ¼ y g�=xD2ð Þ1=4,
� ¼ y g�=xn2ð Þ1=4; and Sc ¼ n/D is the Schmidt number.

A number of instructive examples of application of the mass, momentum, energy

and species conservation equations for dimensional analysis of the hydrodynamic

and heat and mass transfer problems can be found in Chap. 7.

Problems

P.2.1. Transform the van der Waals equation (Kestin 1966; Jones and Hawkis 1986)

to the dimensionless form. Show that such form is universal for any van der Waals

gas if one uses the critical values of the pressure, volume and temperature as the

characteristic scales.

In order to transform equation the van der Waals equation ðPþ a=V2ÞðV � bÞ ¼
RT(where a and b are constants) to dimensionless form, we present this equation as

ðA1 þ A2ÞðA3 þ A4Þ ¼ A5 (P.2.1)

where A1 ¼ P; A2 ¼ a=V2; A3 ¼ V; A4 ¼ �b; A5 ¼ RT with P;V and T
being pressure, molar volume and temperature, respectively.

We can introduce some still undefined scales of pressure P0; volume V0 and

temperature T0 and write the expressions for scales of Aj as

A1� ¼ P�; A2� ¼ a

V2�
; A3� ¼ V�; A4� ¼ �b; A5� ¼ RT� (P.2.2)

Then (P.2.1) reduces to the form

ðA1 þ aA2ÞðbA3 þ gAÞ ¼ eA5 (P.2.3)
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where A1 ¼ A1=A1� ¼ P=P; A2 ¼ A2 A2�; ¼ V V�=ð Þ�2;
.

A3 ¼ A3=A3� ¼ ðV=V�Þ;
A4 ¼ A4 A4� ¼ 1= A5 ¼ A5=A5� ¼ T=T� are the dimensionless variables, and a ¼
A2�=A1� ¼ a= V2

�P�
� �

; b ¼ A3�=A1� ¼ V�=P�; g ¼ A4�=A1� ¼ �b=P�; and e ¼
A5�=A1� ¼ RT�=P� are the dimensionless constants.

Equation (P.2.3) is the dimensionless van der Waals equation. For its further

transformation one should define the characteristic scales of pressure, volume and

temperature. For that purpose, take as the scales P�; V� and T� the critical values

of pressure, volume and temperature Pcr; Vcr and Tcr, respectively. Bearing

in mind that the critical point is the inflection point where ð@P=@VÞT ¼ 0;

and ð@2P=@V2ÞT ¼ 0 , we find

a ¼ 27

64

R2T2
cr

Pcr
; b ¼ Vcr

3
(P.2.4)

Pcr ¼ 1

27

a

b2
; Vcr ¼ 3b; Tcr ¼ 8a

27bR
(P.2.5)

Using as the characteristic scales the critical values of pressure, temperature and

specific volume, we transform (P.2.3) to the following final form

ðpþ 3

o2
Þð3o� 1Þ ¼ 8t (P.2.6)

where p ¼ P=Pcr; o ¼ V=Vcr; and t ¼ T=Tcr.
Equation (P.2.6) does not contain any constants accounting for the physical

properties of any particular gas and, thus, is universal. It holds for any van der

Waals gas.

P.2.2. (i) Transform the momentum and continuity equations for laminar flow of

incompressible fluid over a plane plate in the boundary layer approximation to the

dimensionless form using the LMT and LxLyLzMT systems of units. (ii) Show that

the LxLyLzMT system of units cannot be used for transformation of the

Navier–Stokes equations to the dimensionless form.

(i)-A: The LMTsystem of units. The boundary layer and continuity equations

read

u
@u

@x
þ v

@u

@y
¼ n

@2u

@y2
(P.2.7)

@u

@x
þ @v

@y
þ 0 (P.2.8)

where the dimensions of u; v; n; x and yare as follows

u½ � ¼ LT�1; v½ � ¼ LT�1; n½ � ¼ L2T�1; x½ � ¼ L; y½ � ¼ L (P.2.9)
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All the terms in (P.2.7) have the dimension LT�2; whereas the dimension of the

terms in (P.2.8) is T�1: That shows that (P.2.7) and (P.2.8) can be transformed to

the dimensionless form by using the multipliers N1½ � ¼ ðLT�2Þ�1
and N2½ � ¼

ðT�1Þ�1; respectively. Introducing the scales of length L�; velocity V�and kine-

matic viscosity n� ¼ n, we write the expressions for the coefficients AðiÞ
j� as follows

A
ð1Þ
1� ¼ A

ð1Þ
2� ¼ V2

�
L�

;A
ð1Þ
3� ¼ n�

V�
L2�

;A
ð2Þ
1� ¼ A

ð2Þ
2� ¼ V�

L�
(P.2.10)

Bearing in mind the dimensions of A
ðiÞ
j� , we express the multipliers N1 and N2 as

N1 ¼ 1

A
ð1Þ
1�

; N2 ¼ 1

A
ð2Þ
1�

(P.2.11)

Then (P.2.7) and (P.2.8) reduce to the following form

u
@u

@x
þ v

@u

@y
¼ 1

Re

@2u

@y2
(P.2.12)

@u

@x
þ @v

@y
¼ 0 (P.2.13)

where u ¼ u=V�; v ¼ v=V�; x ¼ x=L�; y ¼ y=L�; andRe ¼ V�L�=n�.
The coefficients A

ðiÞ
j� for the Navier–Stokes and continuity equations

u
@u

@x
þ v

@u

@y
¼ n

@2u

@x2
þ @2u

@y2

� �
(P.2.14)

v
@u

@x
þ v

@v

@y
¼ n

@2v

@x2
þ @2v

@y2

� �
(P.2.15)

@u

@x
þ @v

@y
¼ 0 (P.2.16)

are defined as follows

A
ð1Þ
1� ¼A

ð1Þ
2� ¼

V2
�

L�
;A

ð1Þ
3� ¼n�

V�
L�

;A
ð2Þ
1� ¼A

ð2Þ
2� ¼

V2
�

L�
;A

ð2Þ
3� ¼n�

V�
L�

;A
ð3Þ
1� ¼A

ð3Þ
2� ¼

V�
L�

(P.2.17)

Using the multipliers N1 ¼ 1=A
ð1Þ
1� ;N2 ¼ 1=A1

ð2Þ
� ; and N3 ¼ 1=A

ð3Þ
1� , we reduce

(P.2.14)–(P.2.16) to the following dimensionless form

u
@u

@x
þ v

@u

@y
¼ 1

Re

@2u

@x2
þ @2u

@y2

� �
(P.2.18)
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v
@u

@x
þ v

@v

@y
¼ 1

Re

@2v

@x2
þ @2v

@y2

� �
(P.2.19)

@u

@x
þ @v

@y
¼ 0 (P.2.20)

(i)-B: The LxLyLzMT system of units. The dimensions of u; v; x and y are

u½ � ¼ LxT
�1; v½ � ¼ LyT

�1; x½ � ¼ Lx; y½ � ¼ Ly (P.2.21)

where Lx and Ly are the scales of length in the x and ydirections.
Introducing the characteristic scales of u; v; n; x and y as U�½ � ¼ LxT

�1; V�½ � ¼
LyT

�1; and n�½ � ¼ n½ �, we transform first of all the boundary layer and continuity

equations (P.2.7) and (P.2.8). To this aim, we write the expressions for the coeffi-

cients A
ðiÞ
j� as

A
ð1Þ
1� ¼ U2

�
Lx

; A
ð1Þ
2� ¼ U�V�

Ly
; A

ð1Þ
3� ¼ n�U�

L2y
; A

ð2Þ
1� ¼ U�

Lx
; A

ð2Þ
2� ¼ V�

Ly
(P.2.22)

Then (P.2.7) and (P.2.8) are transformed to

u
@u

@x
þ V�Lx

U�Ly

� �
v
@u

@y
¼ n�Lx

L2yU�

 !
@2u

@y2
(P.2.23)

@u

@x
þ V�Lx

U�Ly

� �
@v

@y
¼ 0 (P.2.24)

where u ¼ u=U�; v ¼ v=V�; x ¼ x=Lx; y ¼ y=Ly; and the multipliers before the

second terms on left hand side of the boundary layer and continuity equations are

dimensionless, i.e. V�Lx=U�Ly
� � ¼ 1.

In planar viscous flows in the x-direction with shear in the y-direction an

important role is played by the shear component tyx of the stress tensor. The

shear stress tyx can be presented as the ratio of the force Fyx to the surface area

Szx which have the following dimensions: Fyx

� � ¼ MLxT
�2; and Szx½ � ¼ LzLx:

Then the dimension of the shear stress is tyx
� � ¼ ML�1

z T�2: For viscous Newtonian
fluids tyx ¼ mdu=dy, where m is the viscosity. Then, we find the dimension of the

viscosity in the LxLyLzMT system of units as

m½ � ¼ tyx du dy=ð Þ=
� � ¼ L�1

x LyL
�1
z MT�1 (P.2.25)

Problems 33



Bearing in mind that the dimension of density in the LxLyLzMT system of units is

r½ � ¼ L�1
x L�1

y L�1
z M, we determine the dimension of the kinematic viscosity n as

n½ � ¼ m r=½ � ¼ L2yT
�1 (P.2.26)

Thus, the multiplier n�Lx L2yU�
.
 �

on the right hand side of (P.2.23) is dimen-

sionless. It can be presented as Re�1
� , where Re� ¼ U�L2y n�Lx=


 �
is a modified

Reynolds number. Taking into account that the characteristic scales Lx; Ly;U� and
Vx are arbitrary, it is possible to assume that the ratio U�Ly V�Lx=

� � ¼ 1. Then,

(P.2.23) and (P.2.24) take the following form

u
@u

@x
þ v

@u

@y
¼ 1

Re�

@2u

@y2
(P.2.27)

@u

@x
þ @v

@y
0 (P.2.28)

The Navier–Stokes and continuity equations (P.2.14) and (P.2.16) can be

presented as

A
ð1Þ
1� A

ð1Þ
1 þ A

ð1Þ
2� A

ð1Þ
2 ¼ A

ð1Þ
3� A

ð1Þ
3 þ A

ð1Þ
4� A

ð1Þ
4 (P.2.29)

A
ð2Þ
1� A

ð2Þ
1 þ A

ð2Þ
2� A

ð2Þ
2 ¼ A

ð2Þ
3� A

ð2Þ
3 þ A

ð2Þ
4� A

ð2Þ
4 (P.2.30)

A
ð3Þ
1� A

ð3Þ
1 þ A

ð3Þ
2� A

ð3Þ
2 ¼ 0 (P.2.31)

where A
ð1Þ
1� ¼ U2

�=Lx; A
ð1Þ
2� ¼ U�V�=Ly; A

ð1Þ
3� ¼ n�U�=L2x ; A

ð1Þ
4� ¼ n�U�=L2y , A

ð2Þ
1� ¼

U�V=Lx; A
ð2Þ
2� ¼ V2

�=Ly; A
ð2Þ
3� ¼ n�V�=L2x ; A

ð2Þ
4� ¼ n�V�=L2y , A

ð3Þ
1� ¼ U�=Lx;A

ð3Þ
2� ¼

V�=Ly, A
ð1Þ
1 ¼ u@u=@x; A

ð1Þ
2 ¼ v@u=@y; A

ð1Þ
3 ¼ @2u=@x2; A

ð1Þ
4 ¼ @2u=@y2, A

ð2Þ
1 ¼

v@u=@x, A
ð2Þ
2 ¼ v@v=@y, A

ð2Þ
3 ¼ @2v=@x2;A

ð2Þ
4 ¼ @2v=@y2, A

ð3Þ
1 ¼ @u=@x; and

A
ð3Þ
2 ¼ @v=@y.
Then (P.2.18)–(P.2.20) take the form

u
@u

@x
þ V�Lx

U�Ly

� �
v
@u

@y
¼ n�Lx

U�L2y

 !
Ly
Lx

� �2
@2u

@x2
þ @2u

@y2

( )
(P.2.32)

v
@u

@x
þ V�Lx

U�Ly

� �
v
@v

@y
¼ n�Lx

U�L2y

 !
Ly
Lx

� �2 @2v

@x2
þ @2v

@y2

( )
(P.2.33)

@u

@x
þ V�Lx

U�Ly

� �
@v

@y
¼ 0 (P.2.34)
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The system of Eqs. (P.2.32)–(P.2.34) can be written as

u
@u

@x
þ v

@u

@y
¼ 1

Re

Ly
Lx

� �2
@2u

@x2
þ @2u

@y2

( )
(P.2.35)

v
@u

@x
þ v

@v

@y
¼ 1

Re�

Ly
Lx

� �2
@2v

@x2
þ @2u

@y2

( )
(P.2.36)

@u

@x
þ @v

@y
¼ 0 (P.2.37)

if we account for the fact that the dimension of the kinematic viscosity n�½ � ¼
L2yT

�1: However, even in this case (P.2.35) and (P.2.36) are not dimensionless,

since the dimension of the ratio Ly Lx= is not 1. Moreover, (P.2.35) and (P.2.36) do

not satisfy the principle of the dimensional homogeneity under any assumption on

the dimension of the kinematic viscosity. The latter shows that applying the

LxLyLzMT system of units to transformation of the Navier–Stokes is incorrect.

P.2.3. (Reynolds 1886) Determine the resistance force acting on each of two

circular disks of radii R which approach each other along the joint axis of symmetry

with a constant velocity u, while the gap between the disks and the surrounding

space are filled with incompressible viscous fluid. The pressure in the surrounding

fluid far from the disks is equal P�.
The liquid flow in the gap is axisymmetric. Therefore, we use cylindrical

coordinates z; r; ’ with the origin at the center of the lower disk which is assumed

to be motionless (z and r correspond to the vertical and radial directions, respec-

tively). Consider the low velocity case when the inertial effects are negligible. The

effect of the gravity force we also will neglected. Then, it is possible to assume that

the pressure gradient DP=r ðDP ¼ P� P�Þ is determined by the speed of the upper

disk u; liquid viscosity m; the instantaneous height of the gap h, and the radial

position r

DP
r

¼ f ðu; m; h; rÞ (P.2.38)

For analyzing the problem, we use two different systems of units with a single

(L) and two (Lz; Lr) length scales. In the first case the dimensions of the pressure

gradient and the governing parameters can be expressed as

DP
r

� 

¼ L�2MT�2; u½ � ¼ LT�1; m½ � ¼ L�1MT�1; h½ � ¼ L; r½ � ¼ L (P.2.39)

Three of the four governing parameters in (P.2.38) have independent

dimensions. Choosing u; m; and r as the parameters with the independent

dimensions, we reduce (P.2.38) according to the Pi-theorem to the following form
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P ¼ ’ðP1Þ (P.2.40)

where P ¼ DP=rð Þ=ua1ma2ra3 and P1 ¼ h=ua
0
1ma

0
2 ra

0
3 .

Using the principle of the dimensional homogeneity, we find the values of

the exponents ai and a
0
i: a1 ¼ 1; a2 ¼ 1; a3 ¼ �2; a

0
1 ¼ 0; a

0
2 ¼ 0; and a

0
3 ¼ 1.

Accordingly, we arrive at the following expression

DP
r

¼ umr�2’
h

r

� �
(P.2.41)

The force acting at the disk is found as

Fd ¼ 2p
ZR

DPrdr (P.2.42)

Substituting the expression (P.2.41) into (P.2.42), we obtain

Fd ¼ 2pumR
Z1
0

’
e
x

� �
dx (P.2.43)

where e ¼ h=R; x ¼ r=R; and
R1
0

’ e=xð Þdx ¼ c eð Þ.
Equation P.2.43 shows that the resistance force acting on a disk is directly

proportional to its velocity, the radius of the disk, viscosity of the liquid, as well

as a function of the ratio of the gap to the disk radius.

Additionally we transform (P.2.38) using the system of units with the two length

scales Lz and Lr in the z and r directions, respectively. First, we determine the

dimensions of the governing parameters and pressure gradient. The dimensions of

the velocity u, gap thickness h and r are

u½ � ¼ LzT
�1; h½ � ¼ Lz; r½ � ¼ Lr (P.2.44)

To determine the dimensions of viscosity m and pressure gradient DP=r, we take
into account the fact that in flows of viscous fluids in a narrow gap the dominant role

is played by the radial velocity component, since the axial one is typically much

smaller, vz << vr: In this case the force acting in the r-direction is much larger than

in the z-direction, so that its dimension is Fr½ � ¼ MLrT
�2: Accordingly, the dimen-

sion of the shear stress tzr ¼ Fr Srr= ð Srr½ � ¼ L2r Þ is tzr½ � ¼ ML�1
r T�2: For Newtonian

viscous fluids tzr ¼ m dvr dz=ð Þ. As a result, we find the dimension of viscosity m½ � ¼
ML�2

r LzT
�1: The dimensions of pressure and its gradient are

DP½ � ¼ Fr

Srz
¼ MLrT

�2

LrLz
¼ ML�1

z T�2 (P.2.45)
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DP
r

� 

¼ ML�1

z T�2

Lr
¼ ML�1

z L�1
r T�2 (P.2.46)

Thus, the dimensions of all the governing parameters are expressed in the system

of units with two length scales are independent. Then, according to the Pi-theorem,

(P.2.38) takes the form

DP
r

¼ cua1ma2ha3ra4 (P.2.47)

where c is a dimensionless constant.

Determining the values of the exponents ai using the principle of the dimen-

sional homogeneity as a1 ¼ 1; a2 ¼ 1; a3 ¼ �3 and a4 ¼ 1, we obtain

DP
r

¼ cum
r

h3
(P.2.48)

Then, the substitution of (P.2.48) into (P.2.42) yields

Fd ¼ c

2
pumR

R

h

� �3

(P.2.49)

The exact solution of this problem reads (Landau and Lifshitz 1987)

Fd ¼ 3

2
pmuR

R

h

� �3

(P.2.50)

The comparison of (P.2.49) and (P.2.50) shows that the exact solution and the

result of the dimensional analysis agree up to a dimensionless numerical factor. At

the same time, the dimensional analysis of the problem using the system of units

with a single length scale yields a less informative result, since (P.2.43) contains an

unknown function c h R=ð Þ:
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