Chapter 3
The Sensorimotor Loop

Abstract: This chapter aims at providing a basic understanding of the sensorimotor loop as
a feedback system. First we will give some insights into the richness of behavior resulting
from simple closed loop control structures in a robotic system called the BARREL. This
richness is a lesson we can learn from dynamical systems theory: even very simple systems
can produce highly complicated behavior. Nearly everything is possible in such a feedback
system that is provided with enough energy from outside. Surprisingly, this is accomplished
even with extremely simple, fixed controllers, to which we will restrict ourselves here. In
later chapters we will see how the homeokinetic principle makes theses systems adaptive
and drives them towards specific working regimes of moderate complexity, loosely speaking
somewhere between order and chaos.

The aim of this chapter is to make the reader familiar with the general structure
and specific properties of tightly coupled sensorimotor loops. In these loops the mo-
tor commands are directly related to the sensor readings, so that the robot with its
“brain” forms a feedback system. In this context the framework of dynamical sys-
tems, known from mathematics and physics, started to get increasing attention in
the last two decades [|E, @, @, E]) It is a powerful method to analyze [Iﬂ] and
construct [@, , @, |§l|, E, E] robot controllers, as it allows one to formulate
the time evolution of the system, in a quantitative manner and to obtain both analyt-
ical and qualitative predictions. Dynamical system theory also led to the application
of chaos control and coupled chaotic oscillators to robotics [@ , ].

After a general introduction of closed loop control, using the framework of dy-
namical systems, we study a specific example, the BARREL, that is particularly in-
teresting by its strong embodiment effects. The general settings are investigated sub-
sequently in an elementary sensorimotor loop, a one-dimensional system controlled
by a single neuron. Without noise, a pitchfork bifurcation occurs and a pronounced
hysteresis behavior is established if the neuron has a bias. We introduce our concept
of an effective bifurcation point to allow for noise effects. This concept defines a
specific working regime, where robots can already take decisions while still being
sensitive to perturbations by the environment. Eventually, we present briefly neural
networks as universal tools for the realization of the control system. The investi-
gations are based on dynamical systems theory but the mathematics will be kept
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24 3 The Sensorimotor Loop

simple and essentially self-contained so that no special knowledge of the latter is
necessary.

The theoretical studies are underpinned by robotic experiments that can be ex-
ecuted with our simulation environment. Experiments are provided for studying
closed loop control and in particular the concept of the effective bifurcation point un-
der various conditions. The role of the embodiment can be investigated with wheeled
robots. When interconnected to form a chain of robots emergent cooperativity is ob-
served even though decentralized control is used. In this way, the present chapter
makes first contact to the central idea of externalizing complexity, namely to con-
trol complex physical modes with very simple control structures and thus to source
the complexity out to the interaction with the environment.

3.1 Sensorimotor Loop — The General Case

In a self-consistent approach to self-organizing robot behavior, the sensor values are
the only source of information for the robot. This is also the credo of our approach.
The communication between the “brain” and the body of the robot takes place at
the discrete instants of time # = 0, 1,2, .... In practice, typical clock frequencies are
ranging from 10 to 100 Hz, depending on the speed of the information processing.
In each time step a vector of sensor values x; € R" is reported. Let us illustrate this
by two examples. Firstly we consider a wheeled robot with sensor vector

x= (v;,vr,sl,...,sk)T (3.1)

where v; and v, are the wheel velocities of the left and right wheel, respectively, as
measured by the wheel counters, and s; are the values of the infrared sensor i with
0 <'s; < 1. The wheel velocities are examples for proprioceptive sensors. Infrared
sensors are examples of exteroceptive sensors since they get information about the
relation to the outside world. In many of the applications treated further below the
robot has only proprioceptive sensors providing informative feedback on the state
of its body, an example being our dog robot, see Fig. 3.1l where

x= (xl,...,x,,)T , (3.2)

x; are the joint angles.

3.1.1 The Controller

At each time step ¢, the controller sends a vector y, € R™ of target values to the
motors of the robot. Closed loop control means that the controller is given by a
function K : R" — R mapping sensor values x € R” to motor values y € R™. In the
most simple case this is a function
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motor value y: (next joint angle)
Controller m

Fig. 3.1: Example of a sensorimotor loop with the joint angles as proprioceptive sen-
sors. Only a single joint is depicted.

sensor value z;
(current joint angle)

y=K(x) (3.3)

depending in general on a vector of parameters p that can be adapted in order to
realize a desired behavior. More generally, the map may depend on an internal state
s, € RK, which is updated in each time step as well so that the controller is realized
as

YVt = K(.xt,st) (34)
St = O(x,,st,l) (3.5)

where now K : R" x R — R™. Controllers with internal states are realized conve-
niently by recurrent neural networks as introduced later in Sect.[3.6.4] However, the
main problem in using an internal state is to find the update rule (3.3)) for the latter
such that the system develops the desired behaviors.

We will use a very simple realization of the parameterized controller function
K (x), see Eq. (33D, but complement it later with a dynamics for the parameters p,
which will be a function of the state dynamics. We are free to consider the param-
eters p as internal state variables so that the new feature introduced by the homeo-
kinetic principle is an explicit rule for the function O : R” x R* — R¥ in Eq. (3.3).

3.1.2 Forward Model and Sensorimotor Dynamics

Let us stipulate that our robot has a certain ability for cognition. We understand here
cognition in a minimalist sense as the ability of the robot to predict the consequences
of its actions in the near future with a forward model. Formally, this is realized by
a function M : R" x R™ — R” mapping the sensor values x and the actions y of the
robot onto the new sensor values, i.e.

Xep1 =M (x, 1) + & (3.6)
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where & is the difference between the predicted and the true sensor values. This
quantity will also be called noise because it contains the unpredictable effects like
sensor noise and so on.
With these notions we may write the dynamics of the sensorimotor loop in the

closed form

Xept = W () + & (3.7
where

W) =M (xK() . (3.8)

The function y : R” — R” is called the dynamics model and can be understood as a
time series predictor for the time series of the sensor values x;, see also Fig.
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Fig. 3.2: The sensorimotor loop (top) and its model (bottom).

The prediction error, also called the model error, can be defined as (dropping the
time indices)

Epred = éTé . 3.9

Let the model M be realized by a parameterized function with parameters a € RM,
In order to minimize the prediction error the parameters can be adapted by
following the gradient of the error function in descending direction, see Fig.[3.3]for
the signal flow. Let a be any of those parameters, then the learning step is defined as

aEpred
da ’

with a learning rate &4 that is kept so large that fast parameter changes are possible
in the following applications. The model and the learning dynamics can be realized
for instance by a neural network as introduced in Sect.

The structure of the model and the learning procedure define the passive cognitive
abilities of the robot as will be worked out in more detail in the following.

We use the word model in two different contexts. There is the forward model
M that predicts the outcome of the actions. For simplicity it is sometimes called

Aa=—¢y (3.10)
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Fig. 3.3: The sensorimotor loop and the forward model of the robot. The controller
receives the current sensor values and generates corresponding motor values, which are
sent both to the robot and its forward model. The difference between the predicted new
sensor values and the measured ones forms the prediction error Epeq. A learning signal
for the improvement of the model is derived by gradient descending the error Epeq.

just the model. In its most simple realization it only receives the motor values (ac-
tions), in which case it can be considered as a self-model, especially if the sensors
are essentially only the proprioceptive ones. The second context is the model of the
entire sensorimotor dynamics y(x), which we call the dynamics model. Quite gen-
erally, we will call the robot together with its controller and the forward model the
brain-body system.

In order to illustrate the formalism of the sensorimotor loop and the merits of
closed loop control we consider now an example using a robot with strong em-
bodiment effects, i. e. a robot where the physical effects like inertia and centrifugal
forces are heavily interfering with the effects of the actions taken. Afterwards we
will return to a simpler case for analytical considerations.

3.2 Dominated by Embodiment: The BARREL

While our emphasis lies on controlling more complex robots we will in the current
chapter restrict ourselves to a case of moderate complexity so that analytical consid-
erations are still possible. The machine we are going to use is the BARREL (which
is short for barrel robot), see Fig.[3.4l

Fig. 3.4: The BARREL. It consists of a cylin-
drical encasement with two weights sliding on
two orthogonal axes perpendicular to the cylin-
der axis. Each of the weights is moved by a lin-
ear motor so that the system can shift its center
of gravity. The sensor values measure only the
inclination of the axes, i.e. x; = sin(6;). Thus,
the true physical state of the system is largely un-
known to the controller. Note that x; < O in the
displayed situation.

Axes
(Sliders
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The robot has a cylindrically shaped body. Inside there are two weights that are
moved along the two axes by simulated linear motors. Each bare motor is supported
in doing its task by an extra PID controller, see Sect. [16.4.4 (p. 301)| for details,
that compensates for both overshooting and undershooting in the movement of the
weights. Nevertheless, due to a limited maximal force the motors cannot move the
weights with arbitrary velocity and precision. The movements of the weights induce
a change of the center of gravity that causes the robot to roll in one direction or the
other.

The BARREL can unfold many different kinds of motion, despite its simple con-
struction, as will be seen below.

3.2.1 Properties

The reason why we have chosen the BARREL is because it is a body-dominated
system. What we mean by this is that, similar to many systems used in robotics,
the consequences of an action are largely dominated by the current physical state
of the robot. By way of example the effect of shifting a weight on its axis will be
very different if the system is at rest or in a rapidly rolling motion so that the sensor
reaction on any action is highly ambiguous. The situation is even more complicated
due to the physical properties of the robot which are simulated realistically by the
ODE physics engine [Erill] embedded in our simulation software, see Chap.[I6l The
execution of an action (moving the weights) is largely influenced by the inertia of
the weights, the Coriolis forces due to the motion of the weights on a rotating axis,
centrifugal forces if the BARREL is rolling with high velocity, and others.

In the following we are going to discuss different control paradigms using the ex-
ample of the BARREL. This allows us on the one hand to demonstrate some features
of the embodied artificial intelligence approach in a simple and transparent manner
and on the other hand to outline the perspectives of self-organization for extending
this approach to a wider field of applications.

3.2.2 Open Loop Control

One way to control the BARREL is in the open loop setup where a sequence of motor
signals is sent to the robot. This sequence may be for instance generated by a central
pattern generator. Let us first assume that the BARREL is to roll with a fixed velocity.
This may be achieved by shifting the internal weights periodically with a convenient
frequency and a phase shift of /2. The velocity of the BARREL is then determined
by that frequency — one rotation of the BARREL corresponds to one period of the
pendular oscillations.
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Spherical Robot (gzrobots Simulator) _Martus Der 2007

Video 3.1: Open loop control of the BARREL The robot is controlled by a periodic
control signal driving the internal weights with a phase shift of 7/2. Starting with a very
low frequency of the controller signal, the frequency is doubled at time 2:15, 2:40, 3:05,
and 3:30. At 3:45 the BARREL is accelerated by a force (red dot) but is seen to return
rapidly to the original mode of behavior. The higher frequencies very clearly reveal the
difficulties in realizing a fast motion under the open loop control paradigm. The video can
be watched athttp://playfulmachines.com.

When doing so we find that, at low frequencies and with some friction at least, the
BARREL adapts its (average) rotational frequency to the frequency of the pendular
oscillations indeed, see Video[3.1]

This behavior is stable against moderate perturbations. To understand this, imag-
ine a stroboscopic mapping depicting the BARREL every moment the red weight,
say, has maximal downward elongation. In an ideal and constant rolling mode (with-
out friction) the red weight will be exactly below the cylinder axis since then there
is no torque (the green weight is in the center due to the 7 /2 phase shift). If the
BARREL is externally decelerated, the stroboscopic mapping will show the weight
to rotate slowly against the rotational direction of the BARREL (since the maximal
elongation is reached before the tip of the axis reaches ground). Hence a torque is
exerted counteracting the slowing down. This stabilization mechanism works just
as well if the BARREL is being accelerated from outside, as long as within certain
bounds.

Let us try to make contact with the embodied Al paradigm 131] at this point.
Its aim is to shift the computational load from the controller to the morphology and
physical properties of the embodiment. In the above case this is realized due to the
self-stabilization effect—a simple periodic signal generates a stable motion pattern
in a complex physical object. If the aim was to realize nice harmonic motion one
had two options, either to change the wave form of the control signal (to increase
the control effort) or to modify the physical properties of the body.

The embodied Al approach takes the latter route. As the experiments show, for a
BARREL with fixed physical properties, there are one or more preferred frequencies
where the motion is most harmonic. This is also where minimal control effortd] are
required. On the other hand, in the sense of the embodied Al, given the frequency,
one may change the physical parameters like the PID settings, the forces and pen-

! Control efforts are understood in terms of the complexity of the required controller that can
generate the behavior.
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dular ranges, the mass of the cylinder and so forth in order to get the desired nice
harmonic motion.

However, this only works as long as the frequency is not too high. At higher
frequencies, the self-stabilization effect is lost and different modes of behavior are
induced by the periodic signal. It is here that the physical effects, like the Coriolis
force, start to dominate so that the BARREL is driven into irregular behaviors, see
Video 3.1l Following the embodied Al paradigm, one would try to modify the phys-
ical properties appropriately to make the system obey the simple periodic control
signal but there is no simple and/or straightforward solution to that problem.

The experiment can also be performed by the reader as described in Experi-

ment[3.1]

Experiment 3.1: Open loop control of BARREL

Many of the experiments described in this book can be performed by the reader using our simulation software that
is online at [I03]. Here we will describe the handling of the software in more detail. Choose one of the options
described at the website to get the software on your computer. You will get a folder with an index.html, which
when opened in a browser shows all experiment descriptions and provides links to start them. For each simulation a
terminal window and a graphical window opens. The latter shows the rendered scene, see Video[3.I] At the same time
the terminal window shows a welcome text and the parameters that are used. While working with the simulator both
windows are important. The terminal window allows to check and change parameters via a text-based console, which
can be entered by pressing <Ctrl>+C in the terminal window. A prompt appears (>) and you can type
>help<Enter>

to obtain a list of possible commands, see Fig.B3[b)] The graphical window allows to observe and possibly interact
with the robots. For a list of keystrokes and mouse actions type h (make sure the focus is on this window).

Our first experiment is Open loop control of BARREL. The simulation is now running with the default parameters:
period=300 given in control steps (1/50s) and phaseshift=1 given in multiples of 7.

Changing parameters of the robot or controller is done by using the pattern “Parameter=Value” on the command
prompt. For instance, in order to decrease the period duration (increase frequency) of the sine signal type (after press-
ing <CtrlI>+C in the terminal window)

>period=200<Enter>

If done correctly, the actually set value is echoed, i.e. period = 200.0000,

otherwise the parameter name was probably misspelled. Hint: you can use the <Tab> key to do automatic completion.
In the default situation there is no rolling friction. The barrel does not move with a constant speed but oscillates in-
stead. Switch on the friction by

>friction=0.1

Now, decrease the period further, try: >period=100, 50, 10. Note, that the robot cannot follow the periodic com-
mands if too fast. You can also change to another control mode for instance by using a colored noise with the param-
eters

>strength=Strength

>color=Correlation time of the noise in 1/50 s

Try >strength=1, >color=100 and disable the sine generator with

>amplitude=0

Most of the parameters of the simulation can be monitored by starting the GUILOGGER by pressing <Ctrl>+G in the
graphical window. Then a new window appears where you may tick the boxes for the on-line display of sensor and/or
motor values, see Fig. Alternatively you can invoke the MATRIXV1Z with <Ctrl>+M, which is especially handy
in highdimensional systems, see Fig. B30)]

3.2.3 Closed Loop Control

Outside the self-stabilization region of a rolling mode, the BARREL does not obey
the periodic motor signals any longer and realizes more or less chaotic behaviors.




3.2 Dominated by Embodiment: The BARREL 31

(@ (b)
e = [~
A = ~ mewt | | Welcome to LpzRobots
1 b B [Simulation Environment]
P o @ simstepsize= 0.010000 stepsize of the ...
o \M wor v gravity= -9.810000 strength of gravity
) 2 realtimefactor= 1.000000 speed of simulation
e wm owm m m m| @ .
i oz o v
™ =y wo v [SineController]
1 P period= 50 period of oscillation
o ool v phaseshift= 1 phaseshift of channels
o v
o — g wa v PP
s = = Type: ? for help or press TAB
= woal S ] >
3 e ? help 1list load 1s quit set show store view
B m m m m wm — > 1s
e ool Agents --------------- (for store and load)
ID: Name
(c) 1: Barrel (Controller and Robot)
101: |- only Controller
[KEmarz G K] K& R G K| S e | 102: |- only Robot
vis mode Options vis mode Options Objects —----mmmmmmmmm (for set and show)
co x ID: Name
z v 1: Simulation Environment
1o 2: SineController
A0 3: Barrel
T S > period=10
= N period = 10.0000
_R _J| eta avg > store 102 barrel.ctrl
Robot stored

Fig. 3.5: User interface of the LPZROBOTS simulator. (a) GUILOGGER window with
two controlled plotting windows. In the main window (right) a set of channels are se-
lected. Their temporal evolution is shown in the subwindows (left), here sensor and motor
values, and the parameters of the controller. (b) Terminal window with console interface.
(c) MATRIX VIZ showing the state of the matrix R and the time evolution of x.

In some sense the body takes over the command and if the controller is to achieve
a certain objective, it has to “watch” carefully what the body is doing and develop
the right “tact” for it. However, this can not be done in the open loop control mode
we used in the previous section, because the sensors have to be taken into account.
In the special case of the BARREL, we have two sensors measuring the inclination
of the axes, see Fig. 3.4

As before, we assume that the sensor values at time 7 are comprised in the vector
x; € R". In the case of the BARREL we have n = 2 and we may normalize the sensor
values so that —1 < x;; < 1 for i = 1,2. If the robot is rolling with a fixed velocity,
the vector of sensor values x; is rotated in each time step by a fixed angle ¢ so that
we have the very simple sensor dynamics

Xt+1 = U(Ot)x, 5 (311)

where U is the rotation matrix

U(ar) <cosoc —sinoc)

sinot  coso

rotating a vector by the angle or.
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Under the closed loop control paradigm, the controller is a function K : R” — R™
mapping the vector x; of sensor values to the vector y, of motor values, see Eq. (33).
These controllers can be rather complex, in particular they may contain internal
states that modify the mapping depending on contexts, see Eqs. (3.4 B.3). In the
BARREL case y; € R? gives the nominal positions of the internal weights on their
respective axes. We will use for the moment a very simple controller that will prove
sufficient to produce a rolling motion with fixed velocity. The idea is that in the
stable rolling mode, the vector of actions y; is to be in a fixed phase relation to the
vector of the sensor values x;.

Let us therefore tentatively put the controller as

K (x)=Cx (3.12)

where
C=cU(9) (3.13)

with ¢ defining the amplitude of the weight shifting. When using this controller
we find stable rolling modes as expected. We may push the BARREL or reverse its
velocity from outside but after a very short time the robot returns to its stable rolling
mode with fixed velocity, to reproduce follow Experiment[3.2]

If C is a rotation matrix one observes stable rolling modes with a frequency de-
fined by ¢, see Eq. (B.13). However, it is observed that ¢ is in general larger than
the true rotation angle of the sensor vector in one time step o (3.11). Instead one
may choose ¢ rather large without increasing the velocity considerably. The phase
difference is due to the specific physical properties of the robot described above and
could be evaluated empirically or calculated by knowing the physics of the system
in detail. However, this is not in the spirit of this book, which is devoted to the self-
organization of specific modes in a physical system without knowing it in advance.

The linear controller, see Eq. (3.12), is appropriate in the BARREL case since the
sensor values are not in a direct proportionality to the motor values. In general, we
have to make sure the actions (motor values) are kept in bounds by introducing a
smooth squashing function g (u), that is applied componentwise putting

K(x)=g(Cx+h) (3.14)

where i € R™ is a bias introduced for greater generality. In this way, motor values
are kept safely in a defined interval.

The nonlinearity in Eq. (3.14) does not qualitatively change the behavior if C is
chosen as in Eq. (3.13). However, we are now free to chose the matrix elements of
C arbitrarily. As the experiments show, depending on the parameters, one observes
a variety of behavioral modes, which are sometimes surprising given the extremely
simple nature of the controller. An example is the “lolloping” mode, see Video[3.2
The variety of modes is even larger if the bias values & are also chosen arbitrarily,
see Experiment[3.2}

By varying the parameters in a systematic way, we obviously can find out about
the scope of modes that are realizable by this type of controllers. In the BARREL
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Experiment 3.2: Closed loop control of BARREL

Start the simulation Closed loop control of BARREL. The simulation is now running with the C matrix as C;; = Cy =
1, Cjp = —Cy; = .1 and hy = h; = 0. Change the parameters couplingl for the diagonal and coupling? for the
non-diagonal matrix elements of C, e. g.

>couplingl=-0.2

Use the GUILOGGER (<Ctrl>+G) for watching the sensor values, which are a good indicative for the behavior of the
BARREL. In order to select random control parameters in the interval (—5,5) press r on the graphical window. The
new parameters are printed on the terminal and you can use the GUILOGGER for monitoring all parameters (x,y, C, h).
To randomize also the bias terms 4 in the interval (—3,3) press R (<Shift>+R), which results in even more different
behaviors. With L (Shift+L) you can set to Cy; = Cj2 = 2, C3; = G2, = —1, which will cause the robot to roll and
jump such that we call it the lolloping mode.

0000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000

Video 3.2: BARREL performing a “lolloping” behavior. A fixed closed loop controller
(C11 = C12 =2, Cy1 =Cxp = —1, hip = 0) was used. The robot jumps by rapidly mov-
ing the internal weight while rolling from left ro right. The video can be watched at
http://playfulmachines.com.

case the space of parameters is 6 dimensional so that the search space is already
quite large. However, in the systems to be considered later, the parameter space is
of several hundred dimensions so that an unbiased search is impossible. The new
perspective self-organization can bring into this paradigm is to find out, by self-
exploration, about the whole range of low-complexity modes the system is able
to support by low-complexity controllers. These modes may then be viewed as the
candidates for embodied Al realizations of more complex behavior architectures.

Before going to the more theoretical considerations let us remark a remote sim-
ilarity of the BARREL to the famous passive walker [111] when driven by some
periodic motor forces enabling it to walk on a horizontal plane [32]. This walker
works by having its center of gravity a little ahead of the point of support, falling
over being avoided by the leg swinging forward to support the body in the right
moment. The BARREL has an easier life since it is always protected from falling
over by the cylinder encasement. Nevertheless, in both cases there is a self-stabiliz-
ing and self-promoting effect due to the specific embodiment so that the amount of
control can be kept small.

3.3 Analyzing the Loop

In order to treat essential features of the closed loop control analytically, we con-
sider now an even simpler example, namely a one-dimensional sensorimotor loop.
One special application will be the velocity control of wheeled robots. Actually, this
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seems a little strange, given that the realization of an externally determined wheel
velocity is a standard task of classical robotics with many reliable solutions. How-
ever, our goal is different. We want to use the wheel velocity control as a transparent
example for the more involved cases to be considered later and moreover we aim to
underline the merits and the potential of closed loop control for embodied systems.
Furthermore, we want to show how minimalist decentralized control can give rise to
self-organization effects as a mere consequence of the specific physical properties
of the embodied system. This will be exemplified by a chain of such robots with
each wheel being controlled independently so that control is strictly decentralized.
We will see that under certain conditions the robots spontaneously cooperate. This
takes place even when moving in a maze with only narrow passages between ob-
stacles. Thereby, the investigation of this special system gives us the opportunity to
come into contact with basic notions and effects relevant for the self-organization
of robot behavior. Moreover we will also argue that this kind of control opens new
perspectives for robotic tasks in quite practical settings.

Let us consider a wheel of a robot rotating with velocity v;. It is monitored by a
wheel counter, which outputs a measured velocity x; so that

X =AV,+ K

where K; is the measurement (sensor) noise and A is a hardware constant assumed to
be known for the moment. The controller of the robot outputs the target velocity y,
for the current time step. Assuming that the motor is able to realize in one time step
the target wheel velocity we would have Vv, = y; and x;+1 = Ay; + k;. However,
there are always perturbations so that we put

X1 = Ay + &1 - (3.15)

We will use this equation also for the case that the robot is moving on the ground or
embedded into the chain. In this case the “noise” term £ has to account for all effects
due to the coupling with other robots, the slip and friction on the ground, inertia
effects, collisions, and the like. Fig. gives an exemplification of this situation in
an experiment with a realistically simulated robot.
In a closed loop approach without internal states, the controller is given in terms
of the sensor value x; as
i =K(x) . (3.16)

In the simple case we use
K(x) = tanh(Cx) (3.17)

where the hyperbolic tangent (tanh) confines the motor values between —1 and 1,
see Fig. B.7] so that the wheel can rotate forward and backward. We may inter-
pret this as a simple rate-coded neuron with tanh activation function and synaptic
strength C, the neural network realization, see Sect. of the controller consisting
just of this one neuron.

Using Eq. (316) in Eq. (3:13) leads to the following dynamics of the sensorimo-
tor loop
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Fig. 3.6: Model error of a wheeled robot. A typical trajectory of the robot with the model
errors £2, see Eq. (3I8). While during the normal drive the error is essentially given by the
measuring uncertainties, the error increases drastically at the repeated collisions with the
wall since wheels get blocked or may also rotate freely if the robot gets jammed. Control
is realized by a homeokinetic controller as introduced later. Graphics taken from [68].
(© MDPI Publishing and Frank Hesse.

Xt+1 = Atanh(Cx[) + éH»l (318)
so that the map y of Eq. (3.8) is

v (x) = Atanh (Cx) .

It will prove convenient to use also the formulation of the dynamics in terms of the
membrane potential z; = Cx; of the neuron where R = CA

Zr+1 = Rtanh(z;) + py41 (3.19)

and
p=C¢& (3.20)

is a modified noise variable.

3.3.1 Feedback Strength

The sensorimotor loop is a feedback loop, the (linear) feedback strength being given
by
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Fig. 3.7: Hyperbolic tangent squashing function. The range of tanh(z) is (—1,1). Used
as an activation function the neuron has a linear response around z = 0 with slope 1. For
large absolute z the neuron is in its saturation region with little input dependence.

R=CA.

The effect of R can be seen by the following argument. We consider the case of small

z where the approximation tanh(z) & z — é can be used. Using the linear term only,
one gets (ignoring the noise for the moment) from either Eq. (3.18) or Eq. (3.19)

x; = R'xo (3.21)

meaning that the wheel slows down for 0 < R < 1 (x; — 0 as t — o) and accelerates
for R > 1 ( x; increases exponentially), but the velocity can not increase unrestrict-
edly since |tanh(z)| < 1, i.e. the nonlinearities confine the further growth of x;.

3.3.2 Fixed Points

The asymptotic value of x in the nonlinear case is given by the solution of the fixed
point equation obtained from Eq. (3.19) as

z=Rtanh(z), (3.22)

which has always z* = 0 as a fixed point, which is stable for 0 < R < 1 and unstable
for R > 1. For R < 0 the state changes signed every iteration and is thus not useful
for our purposes. At R = 1 there is a pitchfork bifurcation with two stable fixed
points emerging. The stable fixed points can be found for instance by graphically
solving the transcendental equation as shown in Fig.[3.8

Another way is to use the approximation tanh(z) ~ z — é in order to get results
for the case that |z| is not too large. This is supported by the well known fact from
dynamical systems theory that a system given by Eq. is topologically equiv-
alent ] to the more simple system
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Fig. 3.8: Pitchfork bifurcation. (a) The graphical solution of z = Rtanh(z) is exemplified
for R = 0.5 with the stable fixed point at z = 0 and for R = 1.2 with two stable fixed
points at z = £0.79, the fixed point at z = 0 being unstable; (b) The bifurcation diagram
is showing the fixed points in dependence on R. The solid line indicates the stable fixed
points of the exact system and the dashed line of the approximation Eq. (3.23). The dash-
dotted line marks the unstable fixed points.

2
Z+1 =R (Zt - é) + Pr1-

In this way we may get a qualitative analysis of the system in simpler terms. This
point will be discussed again in the gradient descent formulation of the dynamics,
see Sect.

Using this simplification, we obtain for R = 1+ 6 with 0 < 0 < 1 the two stable
fixed points as (setting p = 0)

z=+3(R-1)+0(58%). (3.23)

The approximation is valid only for 0 < § < 1. The expansion in next order of the
noise strength is given in Sect. see Eq. (330). Further analysis of
such a system (self-coupled single neuron) without noise is given in [Imh. In [@]
it was shown that such a neuron can even exhibit chaotic dynamics, however, not
for the parameters used here.

3.3.3 Dynamics as Gradient Descent

The above derived properties of the sensorimotor loop can be seen more simply if
rewriting the system dynamics as a gradient descent. This is possible for any one-
dimensional system. In the present case we use

d
—Incoshz = tanhz

dz
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to introduce a potential

2
V (z) = —RlIncoshz + % (3.24)
so that Eq. (3.19) can be rewritten as
d
Az = *—V(Zt)+p[+1 . (3.25)

31[

As usual the gradient dynamics of Eq. (3.23) may be visualized by that of a sphere
sliding down on the walls of a vessel filled with a viscous fluid.
The potential picture allows the discussion of the properties in simpler terms. For
instance, the potential
V(z) = yz+ o + Bzt (3.26)

with o = %(1 —R), B = ﬁR, and y = 0, corresponds to the third order approxi-
mation of the tanh function. It is easily seen that the potential differs from the full
potential by a smooth deformation (without introducing new extremes) so that the
qualitative properties of the gradient dynamics are preserved. In this way the notion
of topological equivalence of dynamical systems gets a clear graphical demonstra-
tion, see Fig. The above potential is well known from many branches of physics
and dynamical systems theory.

Fig. 3.9: Double well potential with
approximation. Comparison of the
exact potential, see Eq. (3.24) (solid

Z  curve), with its z* approximation
Eq. (326), both for R = 1.2.

3.3.4 The Effective Bifurcation Point

If the noise is not zero it will not only modify the gradient step in size but may
even change its sign. As a result, the system does not converge to the fixed point but
instead fluctuates around the latter, provided the noise is weak and/or the fixed point
has a high stability. In the bistable situation the noise may even drive the state over
the potential barrier by a longer sequence of sign inverted gradient steps. Intuitively,
the probability of such a transition will decrease exponentially with the length of an
appropriate sequence which, at its hand, must be the longer the higher the potential
wall and the weaker the noise.

Interestingly, the average time between such transitions is given [@] as a function
of the strength D of the noise p Eq. (3.23) as

AV

Teross X e D (3.27)
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where AV is the height of the potential barrier. The probability of crossing is close
to one if D > AV, i.e. if the potential barrier is low as compared to the fluctuations
produced by the noise. On the other hand, if AV >> D, there is no barrier crossing
at all in any physical time. There is a certain region where the system still feels
the bistability but the barrier crossing is nevertheless substantial. In this region, the
system, so to say, is already taking decisions (choosing one of the two fixed points)
but is still very sensitively reacting to perturbations (e.g. by the environment) by
revising decisions.

Right in that region we may define a point, called the effective bifurcation poinﬂ
where the number of barrier crossings becomes critical in a relevant physical time.
In the robotics application this will be the time scale of the behavior so that barrier
crossing events will directly influence the behavior of the robot.

The concrete position of that point is empirical and can be defined by speci-
fying the crossing time. In view of the exponential behavior of the crossing time,
see Eq. (B.27), we better define the position of the effective bifurcation point by
specifying the quantity (which is the logarithm of the crossing time)

AV
X=—7- (3.28)
Details may be found in Sect. The idea is illustrated in Fig. which
demonstrates that the effective bifurcation point is rather sharply defined even if the
noise is rather strong. This is a direct consequence of the exponential dependence
on the noise strength, see Eq. (3.27). Moreover, Fig. shows that the effective
bifurcation point reveals itself rather sharply if looking at the time averages of the
noisy trajectories.
We can even find an analytical expression for the effective bifurcation point. As
shown in the Appendix, see Sect.[3.:A.2 (p. 56)|Eq. (3.32)), the effective bifurcation
point is for small noise strength D given by the expansion

2 2 ;
Rar = 1+ == /gD + 152D +0(Dz) (3.29)

where D* = D /A2. With infinitesimal noise, the effective bifurcation point deviates
from the deterministic one (which is at R = 1) by a square root law in the variance
D of the noise. However, since this is an expansion in terms of /D, the next order
terms rapidly come into play as the noise increases. Figure[3.11]confirms Eq.
with ¥ = 3.5 in a convincing way. The idea is also illustrated by Fig. 3 12]displaying
the probability distributions of the system state with different values of R. At the
bifurcation point of the noise-free system (R = 1) a broad unimodal distribution is
observed. For larger values of R a clear bimodal structure appears, and eventually

2 The notion should not be confused with the stochastic bifurcation point, an abstract mathemat-
ical concept introduced by Ludwig Arnold [3]. In contrast to our effective bifurcation point the
stochastic bifurcation is obtained from asymptotic limits. In our pitchfork bifurcation setting the
bifurcation structure would not be revealed. Moreover, asymptotic limits are not useful in robotics
due to finite behavior timescales.



40 3 The Sensorimotor Loop

z | D=0.00001 @ 2} p=0.0001 ®

0.5

U
N — o
NN S
b
= F
1|
0D — o
=]
W
B
W
=

Fig. 3.10: Effective bifurcation diagrams for different noise strengths. The variance
D of the uniform distributed noise is increased from panel (a) to (f). The gray area marks
the hull of all trajectories (for each value of R 5000 iterations with positive and negative
initial value). The black dots mark the mean value of 20 000 iterations for each value of
R and the dashed line shows the effective bifurcation point determined by eye.

the probability for the state to be in the region around z = 0 decays exponentially to
Zero.

We will encounter many illustrative examples showing that the effective bifurca-
tion point defines a working regime, where systems are particularly avid to self-or-
ganize. First examples will be given in the following.

Reﬁ
1.8¢ .
1.6f .ot . Fig. 3.11: Effective bifurcation point
Lab o in dependence on the noise strength.

. The dashed line shows Eq. (3.29) with
1.2}f ',“' x = 3.5 and the black points show the
3 data taken form the simulations (partly

: : : : - p i >
0.00 0.01 0.02 0.03 0.04 0.05 displayed in Fig.[3.10).
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s (a) 15 (b) 15 (c)
1.0 1.0 1.0
0.5 0.5 0.5
-1.0-0.50.0 0.5 1.0 -1.0-0.50.0 0.5 1.0 -1.0-0.50.0 0.5 1.0

Fig. 3.12: Stationary probability distributions of the states (z) for different values of
R. In all panels D = 0.005, see Fig.3.10(d). (a) R = 1 (bifurcation point of the noise-free
system); (b) R = 1.1 (Regr for y = 1.24); (¢) R = 1.18 (Refr for y = 3.5).
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3.3.5 Effective Bifurcation Point and Explorative Behavior

The effective bifurcation point is a novel concept with many interesting and far
reaching consequences for the closed loop control of embodied robots. Let us con-
sider a few examples, starting with a two-wheeled robot with each wheel being
controlled individually and the sensor measuring the actual wheel velocity. We use
in all examples the above controller with parameter C defining the feedback strength
R = AC, using A = I for simplicity in the following. In the applications, the noise
may be very strong and of varying nature, thinking for instance of a collision with an
obstacle as in Fig. so that the above requirements for the validity of Eq.
are not guaranteed. Nevertheless the concept of the effective bifurcation point re-
mains valid. In fact, numerical experiments support that there is a relatively sharp
value Ccr defining a favorable working regime in the sense explained above. You
may convince yourself by doing Experiment[3.3]

Experiment 3.3: Closed loop control of wheeled robots.

For this experiment you have two choices: (a) a single wheeled robot in a square arena and (b) a chain of robots. The
simulations start with the coupling set to C = 1.2 and the noise strength set to noise=0.1 (D = 0.01). Decrease the
coupling constants by entering:

>coupling=value

until the behavior starts to change frequently, which should happen around Cesr = 1.05. This is especially visible in
simulation (b), where below Ce the chain barely moves. In order to exert external forces to the robots use either
<Ctrl>+<left Mouse button> or <Ctrl>+<right Mouse button>. You can add/remove random obstacles by pressing o
or O in all simulations.

The behavior of the robot is in good agreement with the message from the effec-
tive bifurcation diagrams of Fig.[3.10land Fig. With values C < Cefr the wheel
velocity is essentially fluctuating around zero, so that the robot executes a very slow
random walk. The amplitude of the fluctuations is increasing rapidly if C approaches
Cesr- With C > Cfr the state is caught essentially in one of the fixed points so that
the wheel velocity is fluctuating around this fixed point. Then, the robot is in one
of four states, moving either forward or backward or rotating on site clockwise or
counterclockwise.

A more favorable behavior occurs if C is close to Cetr since then there are occa-
sional random transitions between these four states so that the robot realizes a rather
effective exploration of the space. The nature of this exploration sensitively depends
on the value of C since it defines the frequency of the switching between the states.

3.3.5.1 Robot in Cluttered Environments

The benefits of this closed loop control mode reveal themselves most clearly if the
robot is colliding with an obstacle. In collision events, the wheels can get blocked
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Fig. 3.13: The collision with an obstacle in the
potential picture of the dynamics. The robot
was moving forward, i.e. the state was at the
r.h.s (z > 0) minimum of the double well poten-
tial. The impenetrable object corresponds to an
infinitely steep rise in the potential so that the
state is bound to move to the left minimum and
0 the robot starts moving backward.

V(z)

or at least slowed dowrl] In either case the effective feedback strength of the loop
decreases so that z and with it the output y of the neuron decays. The only activity in
the loop then comes from noise events, either by the measurement noise or the actu-
ator noise (there are many different possibilities for a jerkily motion of the wheels,
see the experiment). These fluctuations will be amplified if they are of the right
sign, i. e. if the robot is momentarily moving away form the obstacle since then the
wheels get free and the velocity can grow due to the still positive feedback. Hence,
after a (short) sequence of collision events the state of the system goes to the other
fixed point so that the robot is moving away from the obstacle, see Fig. 3.13] and
Fig. 3.14] We may say that in this elementary sense the robot ‘feels’ the obstacles
and generates a behavior away from them after a collision. There are no bumper
sensors necessary for this to happen. Instead the behavior is an emerging property
of our specific control mode close to the effective bifurcation point. You can verify
this by doing Experiment[3.3] with a single robot.

The experiments reveal also another important property, namely that, once the
initial hard collision has taken place, the probing of the obstacle by collisions hap-
pens in a quite gentle way so that the risk of damages is reduced. This is also an
immediate consequence of the dynamics under the effective bifurcation regime, see
Fig. 314

As a consequence of this ‘feeling’ for the body, the robot will explore its envi-
ronment in an effective way also in the case of a heavily cluttered arena. In Sect.
we will discuss how the robot can get this ‘feeling’ of the body without collisions
by a virtual extension of the body using proximity sensors.

3.3.5.2 Emerging Cooperativity in a Chain of Robots

The sensitivity towards external influences produces an interesting effect if we con-
sider a chain of passively connected robots (via ball-joints) with each wheel being
controlled individually by a controller of the above kind. The behavior depends in
an even more sensitive way on the value of the feedback strength in the loops. The
region around the effective bifurcation point is again that of the most interesting
behaviors. There the wheel velocities can become already quite large (decisions are
taken) but can easily be switched by (i) noise events caused for instance by collisions

3 The wheel velocities may also change sign due to an elastic collision, in which case the robot
will automatically move away from the obstacle.
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with obstacles or (ii) by the influence of the forces exerted by the other robots in the
chain. In fact, due to the high sensitivity, the wheel velocity will have a tendency
to switch sign if a torque in the opposite direction is exerted by the other robots in
the chain. By switching the velocity, the wheel is now acting in the direction of the
force exerted on it. This self-amplification effect is essentially what is necessary for
a self-organized synchronization of the wheel velocities.

Video 3.3 demonstrates quite clearly the strength of this self-organized synchro-
nization effect, which not only makes the robot chain move into one direction but
also keeps it still explorative in the sense that, after some time, it spontaneously in-
verts its direction of motion. Moreover, when colliding with an obstacle, the chain of
robots often will change velocity in an integrated manner. Finally and most impor-
tantly, it will also effectively explore the spatial extensions of a maze, see Video[3.4]
and/or do Experiment[3.3] with a chain of robots.

In order to demonstrate this point in a more general context, we have carried
out a series of experiments with a more complex controller. Instead of using a con-
troller for each wheel, each robot has now a controller with two motor neurons each
of, which receiving the inputs from the two wheel sensors. Thus, there is a 2 x 2
coupling matrix C that we parameterize as

- (32)
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Fig. 3.14: Robot at a wall. (d) Neuron output y and wheel velocity sensor x of the closed
loop control system (with feedback strength R > R.) before and after a collision with a
wall as obtained from an experiment with a real Khepera robot. Note that the wheels of
the robot may slip, such that the activity in the loop is slowly decaying at the wall contact.
Panels (a-c) display the corresponding potential V (z) the sphere marking a stationary
state (fixed point) of the system. Before the collision the system is in the fixed point with
positive sign (robot is driving forward). During the time 118 to 122 the robot is kept at the
unstable fixed point z = 0. At around 121.5 sec the robot starts moving backward because
of the noise amplification effect.
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Video 3.3: Emerging cooperativity
in a chain of TWOWHEELEDs. The
arena has no obstacles. Control is
completely decentralized, but the in-
dividual wheels spontaneously coop-
erate in the working regime close to
the effective bifurcation point. The
video can be watched at http://
playfulmachines.com.

Video 3.4: The chain of robots with
decentralized control in a regular
maze. Spontaneous cooperativity and
sensitive reactions to collisions helps
the chain to navigate in the maze
without any proximity sensors. The
video can be watched at http://
playfulmachines.com.

Fig. 3.15: Exploration of a maze by the chain quantified by the spacial entropy. The
average spacial entropy (H) is depicted in dependence on the coupling parameters ¢ and
b. It is maximal if all sites are visited by the robot with equal probability and it is zero if
the robot remains in its starting position. Interestingly, the coverage of the maze is best
for the decentralized controller setting with b = 0, see [@] for details.


http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainFree
http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainFree
http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainFree
http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainMaze
http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainMaze
http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainMaze

3.4 Extending the Parameter Space 45

in accordance with the symmetries of the robot. The most essential point is that the
robot chain explores the space effectively only for very subtle combinations of the
parameters b and c. This is reflected by the spacial entropy (entropy of distribution
of visited sites), see Fig. B.13 It is only with those parameter values that the 10
wheels of the chain coordinate their activities so that the chain can act as a whole.
In the two-dimensional parameter space, these combinations define a line of effec-
tive bifurcation points, see ], which again shows the importance of that concept.
Even more interestingly, the best exploration and hence the best spontaneous co-
operation between the robots is obtained if » = 0, which means that the channels
decouple or that each wheel has its individual controller. This is an interesting result
in the direction of embodied robotics meaning that, due to the embodiment, higher
coordination is achieved with less control, see , ] for more details and the
VideosB3land B4

3.4 Extending the Parameter Space

The analysis and results given so far have demonstrated that, under the closed loop
setting, very rich behavior is observed even if the controller neuron has only a single
parameter. This can be advanced further by including an additional parameter that
acts as a bias for the neuron. As we will see, this extension of the parameter space
creates a new behavioral feature—the system shows hysteresis. These properties are
investigated as before by first analyzing the fixed point nature of the deterministic
system.

3.4.1 Bifurcation Scenario.

When including a bias / into the controller, i. e.
K (x) = tanh (Cx+h)

the fixed point equation of the deterministic system is, written in terms of the mem-
brane potential, given by
z=Rtanh(z)+h. (3.30)

Using the approximation of tanh(z) (Sect.[3.3.2)), one gets from Eq. (3.30)

Z3
ZR<Z§)+h. (3.31)

The stability and existence of the fixed points is well known so that we can draw
upon the results obtained for such systems, see e. g. 121]]. The bias leads to a cusp
bifurcation where we have always one stable fixed point and additionally we observe
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1.0
R
Fig. 3.16: Bifurcation diagram for the closed loop with bias. The diagram depicts the

solution of z = Rtanh(z) + &, see Eq. (3.30), as a surface over R and A, that is called cusp
bifurcation. Colors: blue, green are stable fixed points and red is unstable.
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Fig. 3.17: Bifurcation diagrams for z = Rtanh(z) + h. The diagram depicts different
cuts through the surface in Fig.[3.16] (a) Section at & = 0; (b) Catastrophic bifurcation at
h = —0.1; (¢) The hysteresis in dependence of & in the supercritical regime at R = 1.2, also
indicated in Fig.[3.16] (d) Typical cusp wedge showing the saddle nodes in dependence of
R and h. The colored points are correspondingly marked in (b,c). Colors: blue, green are
stable fixed points and red marks unstable fixed points.
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the emergence of a so-called saddle-node bifurcation point, sometimes also called a
catastrophic bifurcation because of the sudden appearance or disappearance of a pair
of fixed points, one stable the other one unstable. A saddle-node bifurcation point
occurs if the solution of the cubic fixed point equation (3.31)) has three real solutions
of which two are coinciding. The solution, is plotted as a bifurcation diagram for the
parameters R and 4 in Fig. showing a cusp bifurcation [E]. The saddle-nodes
are located at the line where the red and green surfaces are intersecting.

Figure[317lshows different sections of the fixed point structure for better illustra-
tion. The positions of the saddle nodes form the typical cusp wedge, see Fig. BI7(d)]
With R < 1, the system has only one stable fixed point. We call the system subcrit-
ical, since the fixed point is at small z and thus little activity occurs in the senso-
rimotor loop. For 7 = 0 we observe the same pitchfork bifurcation as before, see
Fig. For h # 0 two disconnected branches emerge, see Fig. and
the bifurcation becomes catastrophic, since the system state can undergo a dras-
tic transition for small changes in parameter values. To illustrate the consequences,
Fig. B.I7(c)|displays the bifurcation diagram for the supercritical parameter R = 1.2
in dependence of & revealing a clear hysteresis effect. This means that the system
resides in its fixed point when the parameter £ is slowly decreased or increased until
the fixed point disappears and the state jumps to the fixed point with the opposite
sign (dashed lines). If the parameter /4 is changed in the other direction the same
behavior is observed. Hence, for one parameter configuration the system can be in
two possible states and / can be used to force a transition.

The visualization of the dynamics can again be done in the gradient descent pic-
ture, see Fig.

3.4.2 Application: Biasing the Behavior

Hysteresis systems have interesting properties that have been exploited in many
branches of science and technology. In our case, if we set the feedback strength a
little above the critical point, a periodic signal of the bias with small amplitude is
largely amplified by the dynamics of the sensorimotor loop. In the homeokinesis
control mode to be discussed further below, the bias will be found to self-regulate.
In that scenario, the amplification of the bias signals plays an essential role in the
emergence of nontrivial behaviors.

The properties of the bias can immediately be used for biasing the behavior into a
desired direction. For instance, in the simple two-wheeled robot experiment we can
force the robot to move preferentially into the forward direction by choosing the
same positive value of the bias for both the neurons. By choosing a bias of moderate
size, we can preserve the reactions of our two-wheeled robot to collisions with some
obstacle and nevertheless retain its forward preference, reducing the on-site rotation
probability so that the exploration of the space will be enhanced.
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Fig. 3.18: The hysteresis cycle in the gradient picture. The diagrams show the stages
of one hysteresis cycle starting from 4 = 0 (a) with the state at z > 0 as represented by the
sphere. Decreasing / leads to a deepening of the left minimum, while the right minimum
gets more flat, but the state remains at the minimum at z > 0, see (b). If & = —h, the
saddle-node bifurcation happens, i.e. both the maximum at z=0 and the right minimum
disappear so that the system shifts to the left minimum of the potential (c). Increasing h
until 2 = 0 brings us back to the initial situation with the difference that the system is now
at the fixed point with negative sign, see (d,e). The diagrams (f) and (g) show the switching
from the minimum at z < 0 to the minimum at z > 0 by increasing 4. By decreasing / until
h = 0 the hysteresis cycle is finished, see (h,i).

3.5 Expanding the Body

In the scenarios considered so far, the robot can feel its environment only by col-
lisions or other direct physical influences. This is of course annoying in practical
applications where collisions might be dangerous. One way to help this is to virtu-
ally expand the body of the robot by exteroceptive sensors so that the collision can
be felt before it takes place physically. A convenient choice are infrared sensors,
which gradually change their sensor values as a function of the distance to an obsta-
cle. Let us assume we equip the robot with six such sensors as depicted in Fig.
The output y; of the controller for wheel i € {left, right} now is chosen as (dropping
time indices, same C for both wheels)

y; = tanh (Cx; + I;)
where h; is a bias given by a linear combination of the infrared sensor values s;

]’l,’ = ZB,‘ij (332)
J
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2 ’(right)
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Fig. 3.19: Virtual expansion of the body. Infrared sensors, usually seen as exteroceptive
sensors measuring distances to an obstacle, are considered here as defining a soft expan-
sion of the body that is used as elastic collision sphere. The robot is the FOURWHEELED
of the LPZROBOTS simulator that can be operated in a two-wheeled mode, meaning that
the wheels at one side receive the same motor signal. The wheel velocity sensor reports
the mean of both wheel sensors. (a) Screenshot taken from a simulation. The infrared (IR)
sensors are drawn for illustration in black if they measure no obstacle and in red if they
do; (b) Wire-frame view with IR sensor rays.

with a conveniently chosen set of parameters B;; (typically in [—1, 1]) that determine
the reactions of the robot to the proximity sensors.

The biasing effect can be understood in terms of the unbiased loop by introduc-
ing an effective sensor value x.f, defined via Cxegr = Cx + h. Changing h according
to Eq. (3.32) acts like a variation of the sensor values xeg just like in a collision.
The effects of collisions can be mimicked if the B;; are chosen such that a slowing
down or switching of the wheel velocity is generated when approaching an obsta-
cle. Moreover, by choosing C appropriately, the reactions of the robot can be made
more smooth or more robust against the switching signals 4;, so that, by choosing
the couplings B and C, a large number of behavioral patterns can be achieved. Ex-
periment [3.4] shows that the robot will again explore its environment effectively,
however now without colliding with the obstacles.

We see here some parallel to the famous Braitenberg vehicles (221, in that we
can by simple means generate complex behaviors of the robot moving in an envi-
ronment. It is not difficult to imitate some of the vehicles proposed by Braitenberg
but we do not go into the details here. Altogether, the parallel is also in the gen-
eral attitude of externalizing complexity from the internal control structure to the
interaction with the environment.

Experiment 3.4: Expanding the body.

Start the simulation Expanding the Body (FourWheeled). Some obstacles are placed in the environment, you may add

more with o and remove them with O. Try different coupling strengths for the IR sensors by entering:

>alpha=value

-1 0 1 0 1 -1
0-1-1 10 1

cle avoidance behavior. You can also change each individual entry with the parameters B11-B26 to get a different

behavior. Alternatively you can try Expanding the Body (LongVehicle) where only four infrared sensors are used.

The default value is 1.0. The coupling matrix set to B;; = o , which leads to an obsta-
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One advantage of our setting is seen in the fact that the collision handling works
even in the case that the obstacle is not seen by the IR sensors. In that case the
physical collision will take place with the switching of the wheel velocities due to
the blocking effect on the wheels as described above. Thus there is always a kind of
minimal strategy for survival.

The remainder of this chapter is devoted to the introduction of neural networks
that are used for the implementation of the control systems. It may be skipped and
looked up as needed.

3.6 Realization by Neural Networks

The implementation of the parameterized functions for controllers and forward
models are realized in practice in many different ways. A standard approach is to
use artificial neural networks because they are universal, easy to implement, and
have well structured algorithms for the adaptation of the parameters. Since we want
to derive explicit expressions later on, we will introduce very briefly the main points
of that approach in the following.

We will consider a network of rate-coding neurons, where the activity of each
neuron at discrete time steps is represented by a single number, which can be inter-
preted as a mean firing rate. Actually, biological neurons have a very complicated
internal dynamics, but in a simplified view we can think of a membrane potential
that is driven by incoming spikes from other neurons. Once the membrane potential
has reached a certain threshold, a single spike is fired and the membrane potential is
reset. In this picture the time distribution of the spikes may carry information (time
coding). This is known to play a role for instance in correlation learning via spike
timing dependent plasticity (STDP) [@]. However, in many cases it was shown that
neurons transmit information mainly via their firing rate (mean activity), which is
especially prominent in coding of sensory stimuli. This is the so called rate-coding
paradigm, which is used in the artificial neural networks (ANNs) we are dealing
with. Viewed as information processing systems, ANNs are much closer to the brain
than to a classical computer program. In particular the ANNs are prominent due to
their ability to learn.

There are many excellent textbooks, e. g. (114, 1671, dealing with the theory and
application of artificial neural networks, especially in robotics, so that we will sketch
here only the facts most relevant to our work.

3.6.1 Rate-Coding Neuron Model

Under the rate-coding paradigm, the neuron can be represented by a simple mathe-
matical function. The neuron is considered as an input-output device. The input is
represented by a vector x € R" and the output of a neuron i is written as
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0; =g (z)

where g : R — R! is the so called activation (or transfer) function and z; is the post
synaptic potential given by the weighted sum over the inputs as

n
zi=hi+ z Wijxj
=1

the W;; being the synaptic efficacies of the i-th neuron connected to a neuron or
sensor input j and A; is a threshold or biasing term. We denote by W; € R the
weight vector of neuron i. The function g : R! — R! is typically a sigmoid function
like |
z) = sigmoid(z) =
8(2) = sigmoid(z) = —— .

which monotonously increases from O to 1 as z increases from large negative to large
positive values. We mainly use

eZ _ e*Z
g(z) = tanh(z) P (3.33)

mapping the input to the interval —1 to 1, see Fig.[3.20

Fig. 3.20: Neuron activation

functions. Note the range of

sigmoid(z) is (0,1) whereas

tanh(z) maps to (—1,1). The

derivative of the hyperbolic I TR
L )

tlaigteal;)th 125( ;g)l.ven by tanh’(z) 3 S , o : 5 3

3.6.2 Supervised Learning

A neuron i from above maps the inputs x to output o;. The map is parameterized by
the weight vector W;. The weights can be adapted in the following learning scenario:
given a set of input-output mappings (provided by a trainer) find W; such that the
neuron reproduces these pairs as close as possible. In an on-line learning scenario,

the neuron sees an input x together with the target output 0", which is provided
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by the trainer, in each time step. The error of the neuron is

1 21
E=> (o,» - o;each) =38 (3.34)
where 0; = g (z;) is the current output of the neuron and &; = 0; — OEeaCh is the mis-
match between current output and target output. Gradient descent on this error yields
the update rule, also known delta-rule, for both the synaptic weights and the thresh-
olds as

AVV,/ = 78dix]' (335)
Ah; = —&d; (3.36)

where
di =g (i) <0i - Oﬁe“h) =g ()6 (3.37)

which can be considered as an error signal present at the output of the synapse W;;.
The structure of d; is generic since it can be considered as the result of propagating
the error signal §; at the output of the neuron through the activation function, thereby
producing a factor g’ (z;), backwards to the output of the synapse.

The update of W;; is given by the product of this output signal multiplied by x;,
which is the activity at the input of the synapse. This is reminiscent of the general
rule introduced by D. Hebb [66] who postulated that the synaptic strength increases
if activities on the pre- and postsynaptic side are both high, often stated as “fire
together—wire together.” However the delta-rule is still different from pure Hebbian
learning. The difference of Eqs. (3.35H3.37) to Hebb’s rule is (i) that the postsynap-
tic activity is not that of the neuron but the error signal propagated back from the
output of the neuron and (ii) that the update can be both positive and negative. Nev-
ertheless we will find this parallel to Hebb’s rule very helpful also with our more
complicated learning rules driving the self-organization process.

3.6.3 Feed-Forward Networks

Neurons can be combined to neural networks in order to represent more compli-
cated input output mappings. In a typical feed-forward architecture the net realizes
a function f : R" — R™ | i.e. it maps inputs x € R" to outputs o € R"”. The network
is organized as a sequence of layers, the neuron outputs of a layer forming the inputs
to the neurons of the subsequent layer. A network with N layers consists of the input
layer where x is fed in, a number of hidden layers, and an output layer of m neurons.
Numbering the layers from the input layer (k = 0) to the output layer (k = N) the
rule for feeding the input information through the network is given iteratively by

oM =¢ (hﬁ“ 4 214/1.5.")05"”) , fork=1,2,....N (3.38)
J
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(identical activation functions for all neurons) starting with 0©) = x. The output
vector of the network is given by o).

There is well known theorem stating the universality of neural networks as a func-
tion approximator: Already a network with only one hidden layer (with a sufficient
number of neurons) is able to represents any function F : R" — R™ with arbitrary
accuracy see ]. An intuitive explanation is that the neurons of the hidden layer
can be organized into groups so that the collective receptive field of a group covers
regions in input space mapping to about the same value of the target function f.
Then, all the output layer has to do is to weight the contributions of the groups in
order to produce the correct output o(h) — £ (x) to any input x.

This function approximation can be learned by gradient descending the error

E— (o - otmh)z . (3.39)

This can be transformed into a systematic procedure for the individual updates of
the synaptic weights

AW = —eg®olk1) (3.40)
which is again Hebb like. The error activities are obtained in an iterative way
df =g () 2 WD, fork =1, N1 (3.41)
!
starting with di(N) =g (zl(N)) (0,- — OEeaCh) as in the single layer case. The error sig-

nal for neuron i in layer k < N is produced by the weighted sum of the error signals
in the layer k4 1 multiplied by the derivative of the gain function. This is the famous
error backpropagation rule [ﬁ@]. In matrix notation we write

d® = ¢ (ZU‘)) (W<’<+1>)Td<’<“>, fork=1,... N—1 (3.42)

where G’ is the diagonal matrix given by G;]- (z(k)) = ;¢ (z(k)) with 6;; being the

i

Kronecker delta and W ' being the transpose of a matrix W.

3.6.4 Recurrent Networks

The feed forward networks serve well the purpose of parametrized function approx-
imation. However in many applications, in time series prediction e.g., the output of
the network is depending on previously seen inputs. Another example is the real-
ization of a controller with internal states, see Eq. (3:4). This can be achieved with
additional inputs into the network generated from earlier events. A more elegant way
consists in recurrent neural networks (RNN), which internally built up a memory of
the past by time delayed recurrences.
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A simple RNN, introduced by Elman ], is obtained by equipping a feed-for-
ward network with feedback loops providing a time delayed copy of the outputs of
all neurons of the net, or a group thereof, back to the neurons itself. As before the
inputs are presented to the network at times t = 0, 1,.... The iterative rule (3.38)) for
evaluating the output of the network is now (sum over repeated indices)

0¥ (1) =g (W}j’%g"*” (0)+VYo;(t—1) +h§">) . fork=1,2,....N (3.43)
where 0() (1) = x; is the current input into the network, o (f — 1) the vector of pre-
vious activations of the ensemble of neurons in the net, and V is a weight matrix
controlling the feeding back of these activations. We are not going into any details
here since we are introducing recurrences in a different way by the principle of
homeokinesis, see Chap.

The network is now a discrete-time dynamical system driven by the inputs x;.
Depending on the weights, the network can develop the full scope of dynamical
behaviors ranging from fixed point attractors over limit cycles to chaos. Again the
important point is that the weights can be learned such that the network reproduces
a target dynamics. The learning rules are a bit more complicated but are systematic
and well investigated. It is this property which makes the recurrent networks valu-
able tools for time series prediction, system identification, signal processing, and
last but not least robot control.

3.7 Summary

To summarize, given a simple closed loop system with a single nonlinear neuron
we find non-trivial fixed points and hysteresis depending on the control parame-
ters. This type of dynamics is found in many systems, e. g. in statistical mechanical
models of magnets, see ]. We introduce the effective bifurcation point, since
we consider the system with noisy perturbations. For robot control it seems suitable
to keep the feedback strength R at the effective bifurcation point, slightly above the
bifurcation point of the deterministic system, in order to have two stable fixed points
allowing the system to switch either by changing the bias /4 or by external influences.
In the case of multiple sensors and motors we get of course a much larger number
of attractors, Neimark-Sacker bifurcations, limit cycles and so forth, which will be
work out in Chap. [7] and demonstrated by applications to robotic systems later in
this book.



3.A Mathematical Details 55
Appendix 3.A Mathematical Details

We give here the mathematical details for the stability analysis of the fixed points
without bias and the evaluation for the position of the effective bifurcation point.

3.A.1 Stability Analysis

The properties of the fixed points are most easily obtained by a linear stability anal-
ysis. We put z; = z* + u, where u is small. The state dynamics 7,1 = Rg(z) is
linearized as

= Rg(Z" +u)

and by using Taylor expansion one gets

U1 =L(Z")wy

where
L=Rg'(z")

is the derivative. One has only to show that 0 < L < 1 in order to prove that u, — 0
as t — oo. Using the approximation Eq. (3:23) we get

L:Rg/(z*)zR(l—w) =3-2R

so L < 1if 1.5> R > 1, provided tanh(z) = z — é is valid, i.e as long as R close
to 1. However if R >> 1 then [z] is very large and one gets from the fixed point
equation ( z = Rtanh(z)) that z* = R , so L = R(1 — tanh?(R)) or approximately
L =4Rexp(—2R), since at large R we may write approximately

R_o R | _ 2R

= ~l—2e 2R
eR4e R |4 2R ¢

tanhR =

Hence L goes exponentially to 0 as R — oo so that the stability of the fixed point
increases with increasing R.

These results have been derived in some detail since L is the central quantity of
the time-loop error, as we will see later. We have seen here that it is directly related
to the stability of the fixed points of the state dynamics. In the higher dimensional
cases L is the Jacobian matrix of the dynamical system the eigenvalues of which
define the stability of the system.
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3.A.2 Determining the Effective Bifurcation Point

The aim now is to find an explicit expression for the position of the effective bifur-
cation point (EBP) in the case of the pitchfork bifurcation for the dynamics given

by Eq' m, i' €.
0
%1 =Rg(z) + prgy1 = —gv(Zt) +Pr+1
[

The position of the EBP is defined by the empirical constant y defining the relation
between the barrier height and the variance of the noise as

AV =y (p?) (3.44)

< p2> being the variance of the noise in the z dynamics.

3.A.2.1 Series Expansion of the EBP in the z* Case

In order to find AV we consider the z* potential case first, see Eq. (3.26)

CR=1, 1L,
2 Tt

where the maximum is given by V (0) = 0 and the minimum by V (z*) with

3(R—1)*
AV =V ="
v=vo)-ve) =8
Eq. (3:44) reads now
3(R—1)°
T —a (3.45)

where g = x (p?). The solution and its power series expansion (Taylor) is

R=1+% q+ \/3q—|—q 1+—3\/_+ q+0(q2>

In order to get an expression in terms of the original noise strength D = <§2>,
i. e. the one featuring in the x dynamics, we use (p?) = (£?) C* = DR* /A> =: D*R?
so that now ¢ = y D* and we have to solve

AV =gR*. (3.46)
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This equation is of third order in R so that it can be solved explicitly. The solution
however is quite complex so that we better aim at establishing a series expansion in
terms of g since we are mainly interested in the low noise case anyway. We try a
power series expansion for R in terms of /g as

R=1+myg+nq+pg’ +0(q?) (3.47)

and expand the condition given by Eq. (3.46) in terms of ¢ as

12
43—1(R Rl) —gR* = (%m2 — 1) q+ <§mn — 43—1m3 2m> q% +0 (qz) (3.48)

where now g = y D*. If the expansion Eq. (3.47) is to be a solution of Eq. (3.46)), the
coefficients in Eq. (3.48)) must be zero in all orders that are relevant for the expansion

of the solution. Up to order q% the coefficients are equal to zero if m = 2/1/3 and
n = 2 so that we get the result

R= 1+%\/c_]+2q+0(q%).

Putting the results together, the low noise expansion of the EBP in the z* case is
2 ;
R = 1+ﬁ\/xD*+2)(D*+O<D%> (3.49)

with D* = &,

3.A.2.2 Series Expansion of the EBP in the tanh Case

The expression of the fixed point (FP) in the case of infinitesimal noise has been
given already in Eq. (3.23). In order to get an expansion for the EBP comprising
the next order we have to find first the corresponding expansion of the FP. We put
R=1+uwith0<uandtry z=m/u+ nqupu% +0 (uz) in the expansion of the
FP condition z = Rtanhz obtaining

Rtanh(z) —z= o’ + Bu’ + )/u% +0 (u?)

where o = (mf ’gi), B = (n—m’n),and y= 12—5m5 — (’";) —mn®+ p—m?p. The

coefficients o, 3, and y are shown to be zero if m = V3,n=0, and p= \/5/10 SO
that the two stable FPs have the expansion

[

. V3 3
z :I:(\/3_u+ﬁu2>+0(u ) . (3.50)
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The potential now is, see Eq. (3.24),
1,
Vi(z) = 57 — Rln(coshz)
with the height of the barrier obtained as

3 3
AV =0-V () = Zu27 %u3+0(u4)
The EBP is found by using for u the expansion u = m,/q +nq + sq% +0 (qz) and
R = 1 +u in the condition AV = yD*R? so that

3

3 3 3 3 3
S22 23 o2 (2 2 S o 3\ 3 2
74 20u qR (4m l)qu (zmn 2m —20m )qZ +0(q ) (3.51)

the first two coefficients being zero if m = % 3andn = %—2 so that for small noise

strengths we obtain the solution of Eq. (3:43)) for Ref by the expansion

2 22 3
Rett =1+ —=+/xD*+ —xD" D> .52
r =1+ /gD D"+ 0(DF) (3.52)

with the leading square root dependence for very small D as in the case of the z*
potential.
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