Chapter 2

Evolutionary Algorithm Parameters and
Methods to Tune Them

A. E. Eiben and S. K. Smit

2.1 Background and Objectives

Finding appropriate parameter values for evolutionary algorithms (EA) is one of the
persisting grand challenges of the evolutionary computing (EC) field. In general, EC
researchers and practitioners all acknowledge that good parameter values are essen-
tial for good EA performance. However, very little effort is spent on studying the
effect of EA parameters on EA performance and on tuning them. In practice, param-
eter values are mostly selected by conventions (mutation rate should be low), ad hoc
choices (why not use uniform crossover?), and experimental comparisons on a lim-
ited scale (testing combinations of three different crossover rates and three different
mutation rates). Hence, there is a striking gap between the widely acknowledged im-
portance of good parameter values and the widely exhibited ignorance concerning
principled approaches to tuning EA parameters.

To this end, it is important to recall that the problem of setting EA parameters
is commonly divided into two cases, parameter tuning and parameter control [14].
In case of parameter control, the parameter values are changing during an EA run.
In this case one needs initial parameter values and suitable control strategies, which
run;in turn can be deterministic, adaptive, or self-adaptive. Parameter tuning is eas-
ier in the sense that the parameter values are not changing during a run, hence only
a single value per parameter is required. Nevertheless, even the problem of tuning
an EA for a given application is hard because of the large number of options and the
limited knowledge about the effect of EA parameters on EA performance.

Given this background, we can regard the primary focus of this chapter as be-
ing parameter tuning. Our main message is that the technical conditions for choos-
ing good parameter values are given and the technology is easily available. As it
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happens, there exist various algorithms that can be used for tuning EA parame-
ters. Using such tuning algorithms (tuners, for short, in the sequel) implies signifi-
cant performance improvements and the computational costs are moderate. Hence,
changing the present practice and using tuning algorithms widely would lead to
improvements on a massive scale: large performance gains for a large group of re-
searchers and practitioners.

The overall aim of this chapter is to offer a thorough treatment of EA parame-
ters and algorithms to tune them. This aim can be broken down into a number of
technical objectives:

1. To discuss the notion of EA parameters and its relationship with the concepts
of EAs and EA instances.

2. To consider the most important aspects of the parameter tuning problem.

3. To give an overview of existing parameter tuning methods.

4. To elaborate on the methodological issues involved here and provide recom-
mendations for further research.

2.2 Evolutionary Algorithms, Parameters, Algorithm Instances

Evolutionary algorithms form a class of heuristic search methods based on a par-
ticular algorithmic framework whose main components are the variation operators
(mutation and recombination — a.k.a. crossover) and the selection operators (par-
ent selection and survivor selection); cf. [17]. The general evolutionary algorithm
framework is shown in Figure 2.1.

A decision to use an evolutionary algorithm to solve some problem implies that
the user or algorithm designer adopts the main design decisions that led to the gen-
eral evolutionary algorithm framework and only needs to specify “a few” details. In
the sequel we use the term parameters to denote these details.

Using this terminology, designing an EA for a given application amounts to se-
lecting good values for the parameters. For instance, the definition of an EA might
include setting the parameter crossoveroperator to onepoint, the parameter
crossoverrate to 0.5, and the parameter populationsize to 100. In princi-
ple, this is a sound naming convention, but intuitively there is a difference between
choosing a good crossover operator from a given list of three operators and choos-
ing a good value for the related crossover rate p. € [0,1]. This difference can be
formalized if we distinguish between parameters by their domains. The parameter
crossoveroperator has a finite domain with no sensible distance metric or order-
ing, e.g., {onepoint,uniform,averaging}, whereas the domain of the parameter
Pc 1s a subset of IR with the natural structure of real numbers. This difference is es-
sential for searchability. For parameters with a domain that has a distance metric, or
is at least partially ordered, one can use heuristic search and optimization methods
to find optimal values. For the first type of parameter this is not possible because the
domain has no exploitable structure. The only option in this case is sampling.
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Fig. 2.1: General framework of an evolutionary algorithm.

Parameter with an |Parameter with an
unordered domain |ordered domain
qualitative quantitative
symbolic numeric

categorical numerical
structural behavioral
component parameter

nominal ordinal

categorical ordered

Table 2.1: Pairs of terms used in the literature to distinguish between two types of
parameters (variables)

The difference between the two types of parameters has already been noted in
evolutionary computing, but different authors use different naming conventions.
For instance, [5] uses the terms qualitative and quantitative parameters, [37] dis-
tinguishes between symbolic and numeric parameters, [10] calls them categorical
and numerical, while [23] refers to structural and behavioral parameters. [30] calls
unstructured parameters components and the elements of their domains, operators,
and a parameter is instantiated by a value while a component is instantiated by
allocating an operator to it. In the context of statistics and data mining one distin-
guishes between two types of variables (rather than parameters) depending on the
presence of an ordered structure, but a universal terminology is lacking here too.
Commonly used names are nominal vs. ordinal and categorical vs. ordered vari-
ables. Table 2.1 provides a quick overview of these options in general; Table 2.2 of-
fers an EA-specific illustration with commonly used parameters in both categories.

From now on we will use the terms qualitative parameter and quantitative pa-
rameter. For both types of parameters the elements of the parameter’s domain are
called parameter values and we instantiate a parameter by allocating a value to it.
In practice, quantitative parameters are mostly numerical values, e.g., the parame-
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| [[EA] [EA, [EA3 |
qualitative parameters

Representation bitstring bitstring real-valued

Recombination 1-point 1-point averaging

Mutation bit-flip bit-flip Gaussian N(0, 0)

Parent selection ||tournament [tournament |uniform random
Survivor selection || generational | generational | (t, 1)
quantitative parameters

DPm 0.01 0.1 0.05
o n.a. n.a 0.1
Pe 0.5 0.7 0.7
u 100 100 10
A n.a. n.a 70
tournament size 2 4 n.a.

Table 2.2: Three EA instances specified by the qualitative parameters representa-
tion, recombination, mutation, parent selection, survivor selection, and the quan-
titative parameters mutation rate (p,,), mutation step size (o), crossover rate (p.),
population size (u), offspring size (A), and tournament size. In our terminology, the
EA instances in columns EA; and EA, are just variants of the same EA. The EA
instance in column EA3 belongs to a different EA

ter crossover rate uses values from the interval [0, 1], and qualitative parameters are
often symbolic, e.g., crossoveroperator. However, in general, quantitative pa-
rameters and numerical parameters are not the same, because it is possible to have
an ordering on a set of symbolic values. For instance, one could impose an alpha-
betical ordering on the set of colors {blue, green,red,yellow}.

It is important to note that the number of parameters of EAs is not specified
in general. Depending on design choices one might obtain different numbers of
parameters. For instance, instantiating the qualitative parameter parentselection
by tournament implies a new quantitative parameter tournamentsize. However,
choosing roulettewheel does not add any parameters. This example also shows
that there can be a hierarchy among parameters. Namely, qualitative parameters may
have quantitative parameters “under them”. For an unambiguous treatment we can
call such parameters sub-parameters, always belonging to a qualitative parameter.

Distinguishing between qualitative and quantitative parameters naturally leads to
distinguishing between two levels when designing a specific EA for a given prob-
lem. In the sequel, we perceive qualitative parameters as high-level ones that define
an evolutionary algorithm, and look at quantitative parameters as low-level ones that
define a variant of this EA. Table 2.2 illustrates this.

Following this naming convention an evolutionary algorithm is a partially spec-
ified algorithm where the values to instantiate qualitative parameters are defined,
but the quantitative parameters are not. Hence, we consider two EAs to be differ-
ent if they differ in one of their qualitative parameters, e.g., use different mutation
operators. If the values for all parameters are specified, we obtain an EA instance.
This terminology enables precise formulations while it requires care in phrasing.
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Clearly, this distinction between EAs and EA instances is similar to distinguish-
ing between problems and problem instances. For example, the abbreviation TSP
represents the set of all possible problem configurations of the traveling salesman
problem, whereas a TSP instance is one specific problem, e.g., ten specific cities
with a given distance matrix D. If rigorous terminology is required then the right
phrasing is “to apply an EA instance to a problem instance”. However, such rigor
is not always required, and formally inaccurate but understandable phrases like “to
apply an EA to a problem” are fully acceptable in practice.

2.3 Algorithm Design and Parameter Tuning

In the broad sense, algorithm design includes all decisions needed to specify an
algorithm (instance) for solving a given problem (instance). Throughout this chap-
ter we treat parameter tuning as a special case of algorithm design. The principal
challenge for evolutionary algorithm designers is that the design details, i.e., param-
eter values, largely influence the performance of the algorithm. An EA with good
parameter values can be orders of magnitude better than one with poorly chosen
parameter values. Hence, algorithm design in general, and EA design in particular,
is an optimization problem.

To obtain a detailed view on this issue we distinguish between three layers: ap-
plication layer, algorithm layer, and design layer; see Figure 2.2. As this figure indi-
cates, the whole scheme can be divided into two optimization problems. The lower
part of this three-tier hierarchy consists of a problem (e.g., the traveling salesman
problem)on the application layer and an EA (e.g., a genetic algorithm) on the al-
gorithm layer to find an optimal solution for the problem. Simply put, the EA is
iteratively generating candidate solutions (e.g., permutations of city names), seek-
ing one with maximal quality. The upper part of the hierarchy contains a tuning
method to find optimal parameter values for the EA on the algorithm layer. Simi-
larly to the lower part, the tuning method is iteratively generating parameter vectors
seeking one with maximal quality, where the quality of a given parameter vector is
based on the performance of the EA using its values. To avoid confusion we use dis-
tinct terms to designate the quality function of these optimization problems. In line
with the usual EC terminology we use the term fitness for the quality of candidate
solutions on the lower level, and the term utility to denote the quality of parameter
vectors. Table 2.3 provides a quick overview of the related vocabulary.

With this nomenclature we can formalize the problem to be solved by the al-
gorithm designer if we denote the qualitative parameters and their domains by
q1,---,qm and Qq,...,Q,, and likewise use the notations ry,...,r, and Ry,...,R,
for the quantitative parameters.! The problem of parameter tuning can then be seen
as a search problem (S, u) in the parameter space

! Observe that due to the possible presence of sub-parameters the number of quantitative parame-
ters n depends on the instantiations of ¢y, . ..q,,. This makes the notation somewhat inaccurate, but
we use it for sake of simplicity.
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Design layer Design layer
optimizes \ 1 Algorithm quality
Algorithm layer Algorithm layer
optimizes \ 1 Solution quality
Application layer Application layer

Fig. 2.2: The left diagram depicts the control flow through the three main layers in
the hierarchy of parameter tuning, while the right diagram shows the information
flow

| [[Problem solving [Parameter tuning|
Method at work ||evolutionary algorithm |tuning procedure
Search space solution vectors parameter vectors
Quality fitness utility

Assessment evaluation testing

Table 2.3: Vocabulary distinguishing the main entities in the context of problem
solving (lower two blocks in Figure 2.2) and algorithm design, and parameter tuning
(upper two blocks in Figure 2.2).

S=01 X XQuXRy X+ XRy (2.1)

using a utility function u, where the utility u(p) of a given parameter vector p € S
reflects the performance of EA(p), i.e., the evolutionary algorithm instance using
the values of p, on the given problem instance(s). Solutions of the parameter tuning
problem can then be defined as parameter vectors with maximum utility. Given this
conceptual framework it is easy to distinguish between the so-called “structural”
and “parametric” tunings [9] in a formal way: structural tuning takes place in the
space S = Q1 X -+ X Qp, while parametric tuning refers to searching through S =
Ry x---XR,.

Now we can define the utility landscape as an abstract landscape where the loca-
tions are the parameter vectors of an EA and the height reflects utility. It is obvious
that fitness landscapes - commonly used in EC - have a lot in common with utility
landscapes as introduced here. To be specific, in both cases we have a search space
(candidate solutions vs. parameter vectors), a quality measure (fitness vs. utility)
that is conceptualized as ‘height’, and a method to assess the quality of a point in
the search space (fitness evaluation vs. utility testing). Finally, we have a search
method (an evolutionary algorithm vs. a tuning procedure) that is seeking a point
with maximum height.

Despite the obvious analogies between the upper and the lower halves of Fig-
ure 2.2, there are some differences we want to note here. First of all, fitness values



2 Evolutionary Algorithm Parameters and Methods to Tune Them 21

are most often deterministic — depending, of course, on the problem instance to be
solved. However, the utility values are always stochastic, because they reflect the
performance of an EA, which is a stochastic search method. The inherently stochas-
tic nature of utility values implies particular algorithmic and methodological chal-
lenges that will be discussed later. Second, the notion of fitness is usually strongly
related to the objective function of the problem on the application layer and dif-
ferences between suitable fitness functions mostly concern arithmetic details. The
notion of utility, however, depends on the problem instance(s) to be solved and the
performance metrics used to define how good an EA is. In the next secion we will
have a closer look at these aspects.

2.4 Utility, Algorithm Performance, Test Functions

As stated above, solutions of the parameter tuning problem are parameter vectors
with maximum utility, where utility is based on some definition of EA performance
and some objective functions or problem instances.

In general, there are two atomic performance measures for EAs: one regarding
solution quality and one regarding algorithm speed or search effort. The latter is
interpreted here in the broad sense, as referring to any sensible measure of com-
putational effort for evolutionary algorithms, e.g., the number of fitness evaluations,
CPU time, and wall clock time.? There are different combinations of fitness and time
that can be used to define algorithm performance in one single run. For instance:

» Given a maximum running time (computational effort), algorithm performance
is defined as the best fitness at termination.

» Given a minimum fitness level, algorithm performance is defined as the running
time (computational effort) needed to reach it.

* Given a maximum running time (computational effort) and a minimum fitness
level, algorithm performance is defined through the Boolean notion of success:
a run succeeds if the given fitness is reached within the given time; otherwise it
fails.

Obviously, by the stochastic nature of EAs multiple runs on the same problem are
necessary to get a good estimate of performance. Aggregating the measures men-
tioned above over a number of runs we obtain the performance metrics commonly
used in evolutionary computing, (cf. [17, Chapter 14]):

¢ MBF (mean best fitness),

* AES (average number of evaluations to solution),

* SR (success rate),
respectively. When designing a good EA, one may tune it on either of these perfor-
mance measures, or a combination of them.

Further to the given performance metrics, utility is also determined by the prob-
lem instance(s) or objective functions for which the EA is being tuned. In the sim-

2 Please refer to [15] for more details on measuring EA search effort.
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plest case, we are tuning our EA on one function f. Then the utility of a parameter
vector p is measured by the EA performance on f. In this case, tuning delivers
a specialist, that is, an EA that is very good at solving one problem instance, the
function f, with no claims or indications regarding its performance on other prob-
lem instances. This can be a satisfactory result if one is only interested in solving
f- However, algorithm designers in general, and evolutionary computing experts in
particular, are often interested in so-called robust EA instances, that is, in EA in-
stances that work well on many objective functions. In terms of parameters, this
requires “robust parameter settings”. To this end, test suites consisting of many
test functions are used to test and evaluate algorithms. For instance, a specific set
{fi,---,fn} is used to support claims that the given algorithm is good on a “wide
range of problems”. Tuning an EA on a set of functions delivers a generalist, that
is, an EA that is good at solving various problem instances. Obviously, a true gen-
eralist would perform well on all possible functions. However, this is impossible
by the no-free-lunch theorem [36]. Therefore, the quest for generalist EAs is prac-
tically limited to less general claims that still raise serious methodology issues, as
discussed in [15].

Technically, tuning an EA on a collection of functions {fi,..., f,} means that
the utility is not a single number, but a vector of utilities corresponding to each of
the test functions. Hence, finding a good generalist is a multi-objective problem for
which each test function is one objective. The current parameter tuning algorithms
can only deal with tuning problems for which the utilities can be compared directly;
therefore a method is needed to aggregate the utility vectors into one scalar number.
A straightforward solution to this can be obtained by averaging over the given test
suite. For a precise definition we need to extend the notation of the utility function
such that it shows the given objective function f. Then us(p) reflects the perfor-
mance of the evolutionary algorithm instance EA(p) on f, and the utility of p on
F ={f1,...,f.} can be defined as the average of the utilities uy, (p),...,uz,(p):

Obviously, instead of a simple arithmetic average, one could use weighted averages
or more advanced multi-objective aggregation mechanisms, for instance, based on
lexicographic orderings.

Summarizing, the core of our terminology is as follows:

1. Solution vectors have fitness values, based on the objective function related to
the given problem instance to be solved.

2. EA instances have performance values, based on information regarding fitness
and running time on one or more problem instances (objective functions).

3. Parameter vectors have utility values, defined by the performance of the corre-
sponding EA instance and the problem instances (objective functions) used for
tuning.

Figure 2.3 illustrates the matter in a graphical form. It shows that the solutions of
a tuning problem depend on the problem(s) to be solved, the EA used, and the utility
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Fig. 2.3: Generic scheme of parameter tuning showing how good parameter values
depend on four factors: the problem(s) to be solved, the EA used, the utility function,
and the tuner itself

function. Adding the tuner to the equation we obtain this picture showing how a set
of good parameter values obtained through tuning depends on four factors.

2.5 Algorithmic Approaches to Parameter Tuning

In this section we review algorithmic approaches to solving the parameter tuning
problem. In essence, all of these methods work by the generate and test principle,
i.e., by generating parameter vectors and testing them to establish their utility.

2.5.1 Iterative and Non-Iterative Tuners

The tuners we are to review in the following are variants of this generic scheme,
which can be divided into two main categories:

1. iterative and

2. non-iterative.
All non-iterative tuners execute the GENERATE step only once, during initializa-
tion, thus creating a fixed set of vectors. Each of those vectors is then tested during
the TEST phase to find the best vector in the given set. Hence, one could say that
non-iterative tuners follow the INITIALIZE -and- TEST template. Initialization can
be done by random sampling, generating a systematic grid, or some space-filling set
of vectors.

The second category of tuners is formed by iterative methods that do not fix the

set of vectors during initialization, but start with a small initial set and create new
vectors iteratively during execution.

2.5.2 Single and Multistage Procedures

Given the stochastic nature of EAs, a number of tests is necessary for a reliable
estimate of utility. Following [8] and [5], we distinguish between
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1. single-stage and

2. multistage procedures.
Single-stage procedures perform the same number of tests for each given vector,
while multistage procedures use a more sophisticated strategy. In general, they aug-
ment the TEST step with a SELECT step, where only promising vectors are selected
for further testing and those with low performance are deliberately ignored.

As mentioned in Section 2.2, some methods are only applicable to quantitative

parameters. Sophisticated tuners, such as SPOT [3], however, can be used for quan-
titative, qualitative or even mixed parameter spaces.

2.5.3 Measuring Search Effort

In the sequel, we present an overview of parameter tuning algorithms. The arranging
principle we use is based on the search effort perspective. Obviously, good tuning
algorithms try to find a good parameter vector with the least possible effort. In gen-
eral, the total search effort can be expressed as A x B x C, where

1. A is the number of parameter vectors to be tested by the tuner.

2. B is the number of tests, e.g., EA runs, per parameter vector needed to estab-
lish its utility. The product A x B represents the total number of algorithm runs
used by the tuners. Note, B = 1 for deterministic algorithms which optimize
deterministic problems.

3. Cis the number of function evaluations performed in one run of the EA. This is
related to the estimate of the performance, because we are trying to estimate the
performance of an algorithm based on a small number of function evaluations
only, and not after the complete run is finished.

Based on this perspective, we summarize existing methods in four categories: tuners
that try to allocate search efforts optimally by saving on A, B, and C, respectively,
and those that try to allocate search efforts optimally by saving on A and B.

2.5.4 Classification of Tuning Methods

2.5.4.1 Using a Small Number of Parameter Vectors (A)

In this group we find tuners that are trying to allocate search efforts efficiently by
cleverly generating parameter vectors. Strictly speaking, they might not always min-
imize A, but try to “optimize the spending”, that is, get the most out of testing A
parameter vectors. Such tuners are usually iterative methods, although there are ex-
ceptions, e.g., Latin square [25] and Taguchi orthogonal arrays [35]. The idea behind
most tuners in this category is to start with a relatively small set of vectors and iter-
atively generate new sets in a clever way, i.e., such that new vectors are likely to be
good. These tuners are only appropriate for quantitative parameters.
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Finding a good set of parameter values for EAs is the kind of search problem
that EAs are good at. It is therefore possible to use an EA (on the design layer) for
optimizing the parameters of an EA (on the algorithm layer). The EA on the design
layer is called a meta-EA and in general any kind of evolutionary algorithm, e.g., ge-
netic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP),
differential evolution (DE), particle swarm optimization (PSO), and estimation of
distribution algorithms (EDAs), could be used for this purpose. However, existing
literature only reports on using GAs, ESs, and EDAs as meta-EAs. We assume that
readers of this chapter are familiar with the basics of evolutionary algorithms and
need no introduction to GAs or ESs. Therefore, here we only discuss the generic
template of meta-EA applications, which is the following. The individuals used in
the meta-EA encode a parameter vector p of (quantitative) parameter values of the
baseline EA. This encoding depends on the type of EA on the design layer, and
may differ for a meta-GA, and a meta-ES, or meta-EDA. To evaluate the utility of
such a vector p, the baseline EA is run B times using the given parameter values
in p, thereby performing B tests. The utility of p is determined based on these run-
s/tests, and the actual definition of EA performance. Using this utility information,
the meta-EA can perform selection, recombination, and mutation of parameter vec-
tors in the usual way. As early as 1978, Mercer and Sampson [24] elaborated on this
idea by their meta-GA (called meta-plan), but due to the large computational costs,
their research was very limited. Greffenstette [18] was the first to conduct more ex-
tensive experiments with meta-EAs and showed the effectiveness of the approach.
The use of meta-ES has been reported by Greffenstette [18] and Herdy [20] with
mixed results.

The meta-GA and meta-ES approaches do not differ significantly; the GA or ES
is used as an optimizer and any preference between them is solely based on their op-
timization power and/or speed. The approach based on ideas from EDAs is different
in this respect. While EAs only try to find good points in a search space belonging
to a certain problem, EDAs try to estimate the distribution of promising values over
the search space. Consequently, they provide more information than GAs or an ESs,
because the evolved distributions disclose a lot about the parameters, in particular
about the utility landscape, and can be used to get insight into the sensitivity and
relevance of the different parameters. Hence, the choice for using a meta-EDA can
be motivated by the additional information it provides w.r.t. a meta-GA or a meta-
ES. The Relevance Estimation and VAlue Calibration method (REVAC) offered by
Nannen and Eiben is based on this idea. REVAC has been introduced in [29] and
further polished in [27, 28] and [26]. In [30] and [34] it is demonstrated how REVAC
can be used to indicate the costs and benefits of tuning each parameter —something
a meta-GA or a meta-ES cannot do. In the process of searching for good parameter
values REVAC implicitly creates probability distributions (one probability distribu-
tion per parameter) in such a way that parameter values that proved to be good in
former trials have a higher probability than poor ones. Initially, all distributions rep-
resent a uniform random variable and after each new test they are updated based on
the new information. After the termination of the tuning process, i.e., the stopping
of REVAC, these distributions can be retrieved and analyzed, showing not only the
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range of promising parameter values, but also disclosing information about the rel-
evance of each parameter. For a discussion of REVAC’s probability distributions,
entropy, and parameter relevance we refer you to [34].

2.5.4.2 Using a Small Number of Tests (B)

The methods in this group try to reduce B, i.e., the number of tests per parameter
vector. The essential dilemma here is that fewer tests yield fewer reliable estimates
of utility and if the number of tests is too low, then the utilities of two parameter
vectors might not be statistically distinguishable. More tests can improve (sharpen)
the stability of the expected utility to a level such that the superiority of one vector
over another can be safely concluded, but more tests come with a price of longer
runtime. The methods in this group use the same trick to deal with this problem:
performing only a few tests per parameter vector initially and increasing this num-
ber to the minimum level that is enough to obtain statistically sound comparisons
between the given parameter vectors. Such methods are known as statistical screen-
ing, ranking, and selection. Some of these methods are designed to select a single
best solution, others are designed to screen a set of solutions by choosing a (random
size) subset of the solutions containing the best one. Several of these approaches are
based on multistage procedures such as sequential sampling [8, 11].

Maron et al. [22] introduced the term racing for a basic ranking and selection
scheme and applied several methods, based on this scheme, to EAs. These non-
iterative methods assume that a set P = {p,..., pa} of parameter vectors is given
and a maximum number of tests, B, per parameter vector is specified. Then they
work according to the following procedure.

1. Testall p € P once.

2. Determine pp.s with highest (average) utility.

3. Determine P’ as the set of parameters vectors whose utility is not significantly

worse than that of ppey.

4. p="P.

5. If size(P) > 1 and the number of tests for each p € P is smaller than B, goto 1.
The main difference between the existing racing methods can be found in step 3 as
there are several statistical tests® that can indicate significant differences in utility:

* Analysis of Variance (ANOVA), cf. [32].

» Kruskal-Wallis (Rank Based Analysis of Variance).

* Hoeffding’s bound, cf. [22].

¢ Unpaired Student T-Test, cf. [22].
All these methods are multistage procedures and they can be used for both quan-
titative and qualitative parameters; see also the discussion in [9]. Recently, Bal-
aprakash et al. [1] introduced iterative racing procedures. Birattari et al. [10] present
an overview of state-of-the-art racing procedures.

3 Not to be confused with tests of parameter vectors; cf. Table 2.3.
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2.5.4.3 Using a Small Number of Parameter Vectors and Tests (A and B)

There are currently four approaches that try to combine the main ideas from both
categories. Yuan et al. [37] showed how racing [22] can be combined with meta-
EAs in order to reduce both A and B. They propose two different approaches. In both
methods, they use the standard meta-EA approach, but introduce a racing technique
into the evaluation of parameter vectors.

In the first method, the quantitative (numerical) parameters are represented by a
vector and are evolved using a meta-(1+4) ES. At each generation, a set of A new
vectors is created using a Gaussian distribution centered at the current best vector.
Racing is then used to determine which vector has the highest utility. By using
racing, not all of the A individuals have to be evaluated B times to determine the
current best vector. It is expected that many of the vectors are eliminated after just a
few tests saving a large portion of computational resources.

Their second method uses a population of parameter vectors containing the quan-
titative (numerical) parameters, which is evolved using selection, recombination,
and mutation. However, the utility of a vector of numerical parameters is evalu-
ated not only within one single EA instance, but on all possible combinations of
qualitative parameters. The utility of the vector is equal to the performance of the
best combination. Racing is then used to determine which combination is most suc-
cessfully using the vector of numerical parameters. By employing racing, not every
combination has to be evaluated B times. This saves computational resources, while
the search space of both quantitative and qualitative parameters can still be explored.

Introducing the sequential parameter optimization toolbox (SPOT), Bartz-Beiel-
stein et al. [3] outlined another approach which uses a small number of parameter
vectors A and tests B by means of an iterative procedure. SPOT starts with an initial
set of parameter vectors usually laid out as a space filling design, e.g., Latin hy-
bercube design (LHD). These are tested By times to estimate their expected utility.
Based on the results, a prediction model is fitted to represent an approximation of the
utility landscape (additionally, the often used kriging component enables estimating
the error at any point in the model). Then / new parameter vectors are generated
and their expected utility is estimated using the model, i.e., without additional runs
of the EA. This step employs predictions and error estimations within the expected
improvement heuristic to find points with good potential to improve over the cur-
rently existing ones. The most promising points are then tested B times. If none of
those points results in a better expected utility, B is increased. To establish fairness,
the number of reevaluations of the current best and new design points is the same.
As the estimates of the current vectors are sharpened, utility prediction gets more
accurate over time and “lucky samples” from the start are dropped. Note that the set
of parameter vectors employed after the initial step is usually very small, often in
the range of one to four vectors, and is held constant in size.

In order to explore the search space relatively quickly, B is initialized to a small
value. If a promising area is found, the method focuses on improving the model and
the best vector using more accurate utility estimates by increasing B. Although in
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[3] a kriging enhanced regression model is used to predict utilities, it is in principle
a general framework suited for a large range of modeling techniques: see, e.g. [4].

Note that SPOT may also be combined with racing-like statistical techniques for
keeping B low where possible. In [7], random permutation tests have been employed
to decide if a newly tested configuration shall be repeated as often as the current best
one or if it can safely be regarded as inferior. Lasarczyk [21] implemented Chen’s
optimal computing budget allocation (OCBA) [12] into SPOT.

The fourth approach that explicitly aims at using a small number of parameter
vectors and tests is REVAC++, the most recent variant of REVAC. The name RE-
VAC++ is motivated by the fact that the method can be simply described as REVAC
+ racing + sharpening, where racing and sharpening are separate methods that serve
as possible add-ons to REVAC, or in fact any search-based tuner. This version of
REVAC has been introduced in [33], where the advantageous effects of the racing
and sharpening extensions have been also shown.

2.5.4.4 Using a Small Number of Function Evaluations (C)

Optimizing A and/or B are the most commonly used methods to optimally allocate
search efforts, but in principle the number of fitness evaluations per EA run (C)
could also be optimized. Each decrease in EA run-time is multiplied by both A and
B; hence such runtime reduction methods can have a high impact on the total search
effort. However, at the time of writing this chapter, we are not aware of any methods
proposed for this purpose.

In theory, methods to reduce the number of evaluations per EA run could be based
on the idea of terminating an EA run if there is an indication that the parameter
vector used by the given EA will not reach some utility threshold, e.g., the average
utility, or the utility of another, known parameter-vector such as the current best or
current worst one. Such an indication can be statistically or theoretically grounded,
but also based on heuristics. This concept is very similar to racing, but instead of
decreasing the number of tests (B), it decreases the number of evaluations (C). In
general, such a method could deal with both qualitative and quantitative parameters.

As mentioned above, we could not find any general parameter tuning methods of
this type in the literature. However, we found one paper whose main concept would
fit under the umbrella of saving on C whenever possible. This paper of Harik et al.
is concerned with population sizes only, as all other EA parameters are fixed and
only population sizes are varied and compared [19]. The essence of the method is
to run multiple EAs in parallel, each with a different population size, compare the
running EAs after a fixed number of fitness evaluations, and terminate those that
use a population size with an expectedly poor performance (i.e., utility). The ex-
pectations regarding the utilities of different population sizes are based on a simple
heuristic observing that small populations always have a head-start, because of the
fast convergence to a (local) optimum. This fact motivates the assumption that once
a large population EA overtakes a small population EA (using the same number
of fitness evaluations), the small population EA will always remain behind. Hence,
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when an EA with a small population size starts performing worse than EAs with a
large population size it can be terminated in an early stage, thus reducing search ef-
fort. The method in [19] can only use a fitness-based notion of utility, i.e., not speed
of success rate information, and the heuristic is only applicable to population sizes.
Further research is needed to develop heuristics for parameters regarding variation
and selection operators.

2.6 Successful Case Studies on Tuning Evolutionary Algorithms

In recent years, the number of well-documented case studies on parameter tuning
have been increasing. Depending on the type of tuning method, the focus varies
from increasing algorithm performance to decreasing effort. Examples of the latter
are the experiments of Clune et al., who tune a traditional GA on the counting ones
and a four-bit deceptive trap problem [13]. Using the DAGA?2 algorithm, they found
parameter values that performed only slightly worse than the parameters found using
extensive experimentation by experts. They concluded that ‘In situations in which
the human investment required to set up runs is more precious than performance,
the meta-GA could be preferred’.

The experiments of Yuan and Gallagher in [37] are similar, but with a slightly
different focus. They compared the tuning effort of their Racing-GA with the effort
needed to test all possible combinations with parameter values, rather than manual
labor. They tuned a range of algorithms to the 100-bit One-Max problem. They
reported a 90% decrease in effort related to the brute force method with a similar
precision.

Nannen et al. illustrate the relation between tuning costs and performance in [30].
In contrast to [13], tuning effort is not compared with human effort, but measured as
the computational effort to reach a certain performance. The study reports on tuning
a large collection of EAs on the Rastrigin problem. The results show that the amount
of tuning needed to reach a given performance differs greatly per EA. Additionally,
the best EA depends on the amount of tuning effort that is allowed. Another inter-
esting outcome indicates that the tuning costs mainly depend on the overall setup of
the Evolutionary Algorithm, rather than the number of free parameters.

There are two studies we know of reporting on a significant performance im-
provement over that of the ’common wisdom’ parameter values found using an au-
tomated tuning algorithm. Bartz-Beielstein and Markon [6] showed how an Evolu-
tion Strategy and Simulated Annealing algorithm can be tuned using DACE and re-
gression analysis on a real-world problem concerning elevator group control. They
reported that standard parameterizations of search algorithms might be improved
significantly. Smit and Eiben [34] compare three different tuning algorithms with
and without extra add-ons to enhance performance. The problem at the application
layer was a the Rastrigin function, which was solved using a simple GA. They con-
cluded that tuning parameters pays off in terms of EA performance. All nine tuner
instances managed to find a parameter vector that greatly outperformed the best
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guess of a human user. As the authors summarize: “no matter what tuner algorithm
you use, you will likely get a much better EA than relying on your intuition and the
usual parameter setting conventions”.

Tuning evolutionary algorithms can be considered as a special case of tuning
metaheuristics. Birattari’s book, cf. [9], gives a good treatment from a machine
learning perspective, including several case studies, for instance, on tuning iterated
local search and ant colony optimization by the F-Race tuner.

2.7 Considerations for Tuning EAs

In this section we discuss some general issues of EA tuning as we advocate it here
and provide some guidelines for tuning EAs.

To begin, let us address concerns about the benefits of the whole tuning approach
for real-world applications due to the computational overhead costs. For a detailed
answer it is helpful to distinguish between two types of applications, one-off prob-
lems and repetitive problems; cf. [17, Chapter 14]. In the case of one-off problems,
one has to solve a given problem instance only once and typically the solution qual-
ity is much more important than the total computational effort. Optimizing the road
network around a new airport is an example of such problems. In such cases it is a
sound strategy to spend the available time on running the EA several times — with
possibly long run times and different settings — and keep the best solution found
without inferring anything about good parameters. After all, this problem instance
will not be faced again, so information about the best EA parameters for solving
it is not really relevant. In these cases, i.e., one-off problems, the added value of
tuning is questionable. Applying some parameter control technique to adjust the
parameter values on the fly, while solving the problem, is a better approach here.
In the case of repetitive problems, one has to solve many different instances of a
given problem, where it is assumed that the different instances are not too different.
Think, for example, of routing vehicles of a parcel delivery service in a city. In this
case it is beneficial to tune the EA to the given problem, because the computational
overhead costs of tuning only occur once, while the advantages of using the tuned
EA are enjoyed repeatedly. Given these considerations, it it interesting to note that
academic research into heuristic algorithms is more akin to solving repetitive prob-
lems than to one-off applications. This is especially true for research communities
that use benchmark test suites and/or problem instance generators.

Given the above considerations, we can argue that algorithmic tuning of EA pa-
rameters is beneficial for at least two types of users, practitioners facing real-world
applications with a repetitive character and academics willing to advance the devel-
opment of evolutionary algorithms in general. To these groups our first and foremost
recommendation is

Do tune your EA with a tuner algorithm (and report the tuning efforts alongside the perfor-
mance results).
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This suggestion may sound trivial, but considering the current practice in evolu-
tionary computing it is far from being superfluous. As we argue in this chapter, there
are enough good tuners available, the efforts of tuning are limited, and the gains can
be substantial. A typical use case is the publication of a research paper showing that
a newly invented EA (NI-EA) is better than some carefully chosen benchmark EA
(BM-EA). In this case, tuning NI-EA can make the difference between comparable-
and-sometimes-better and convincingly-better in favor of NI-EA.

Let us note that using parameter tuners in performance comparisons leads to the
methodological question about whether the benchmark algorithm should be tuned
too. One argument for not tuning is that a benchmark may be interpreted as a fixed
and invariable algorithm that provides the same challenge to every comparison using
it. This may sound unreasonable, giving an unfair advantage to the new algorithm in
the comparison. However, the current EC research and publication practice ignores
the tuning issue completely, hiding the tuning efforts, and thus hiding the possible
unfairness of a comparison between a tuned NI-EA and an untuned BM-EA. In this
respect, using a tuner for NI-EA and reporting the tuning efforts alongside the per-
formance results is more illustrative than the contents of the majority of publications
at present. A typical claim in a paper following the usual practice sounds like

“NI-EA is better than BM-EA,”

with possible refinements concerning the number or type of test functions where
this holds. Using tuners and reporting the tuning effort would improve the present
practice by making things public and transparent. A typical claim of the new style
would sound like

“Spending effort X on tuning NI-EA, we obtain an instance that is better than (the untuned)
BM-EA”

To this end, the tuning effort could be measured by the number of parameter vectors
tested (A), the number of utility tests executed (A x B)*, the computing time spent
on running the tuner, and so on.

Alternatively, one could reinterpret the concept of a benchmark EA from as is
(including the values of its parameters) to as it could be (if its parameters were
tuned). This stance would imply that both NI-EA and BM-EA need to be tuned for
a fair comparison. A typical claim of this style would sound like

“The best instance of NI-EA is better than the best instance of BM-EA, where for both EAs
the best instance is the one obtained through spending effort X on tuning.”

Note that this new philosophy eliminates the rather accidental parameter values as
a factor when comparing EAs and focuses on the type of EA operators (recombina-
tion, mutation, etc.) instead. In other words, we would obtain statements about EAs
rather than EA instances.

An important caveat with respect to tuning EAs is the fact that the set of important
parameters is often less clear than it may seem. At first sight, it is easy to identify the

4 If the number of tests per parameter vector is not constant, then A x B is not the total number of
utility tests executed; but for the present argument this is not relevant.
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parameters of a given EA, but a closer look at its code may disclose that the work-
ing of the algorithm depends on several constants hidden in the code. These “magic
constants” are determined by the algorithm designer/programmer, but are not made
visible as independent parameters. For instance, the conceptual description of the
well-known G-CMA-ES will indicate the population size ¢ and the offspring size
A as parameters with corresponding default values, such as A =4+ 3 -log,(n) and
u= %, including the magic constants 4, 3, and 2. These constants can be designated
as independent parameters of the given EA, thereby making them subject to tuning.
The advantage of this practice is clear; it provides additional knobs to tune, poten-
tially increasing the maximum achievable performance. If your game is to obtain a
very well performing EA for some application, then you should definitely consider
this option. For academic comparisons, it may raise questions regarding the fairness
of comparison similar to those discussed above regarding benchmarking. The main
question here is whether it is correct to compare the given EA using some good val-
ues’ for its original parameters with a new variant of it using tuned values for those
parameters and tuned values for some of its magic constants.

Finally, note that the adaptability of EAs or related algorithms to a specific prob-
lem is different. We have seen this in the documented results from [30], as explained
in Section 2.6: The default parameters of algorithm A lead to very good perfor-
mance, whether or not the ones of algorithm B do. Tuning is thus much more im-
portant for B. An attempt to measure the adaptablity by means of the empirical
tuning potential (ETP) is given in [31]. However, a lower adaptability may stem
from two sources. Either the algorithm is harder to tune and requires more effort
while tuning, or the obtainable best parameter vectors are not much better than the
default values. Running tuners with increased number of tests 7 may pay off by
giving insight here.

2.8 Conclusions and Outlook

In this chapter we discussed the notions of EA parameters, elaborated on the issue
of tuning EA parameters and reviewed several algorithmic approaches to address it.
Our main message can be summarized as follows: Contrary to what contemporary
practice would suggest, there are good tuning methods that enable EA users to boost
EA performance at moderate cost through finding good parameter values tailored to
the given problem(s).

Regarding the future, we are moderately optimistic. We foresee a change in
attitude on a large scale, fueled by the easily accessible and easy-to-use tuners.
The most prominent change we expect is the wide spread use of tuners in scien-
tific publications as well as in applications. To be specific, we expect that evolu-
tionary computing researchers and practitioners will spend an extra day on tun-
ing their EA before creating the figures for an experimental comparison or de-

5 The definition of “good” is irrelevant here. The algorithm could be hand-tuned, algorithmically
tuned, commonly used, whatever.
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Fig. 2.4: The effect of parameter tuning on comparing EAs. Left: the traditional
situation, where the reported EA performance is an “accidental” point on the scale
ranging from the worst to the best performance (as determined by the parameter
values used). Right: the improved situation, where the reported EA performance is
a near-optimal point on this scale, belonging to the tuned instance. This indicates
the full potential of the given EA, i.e., how good it can be when using the right
parameter values

ploying their EA-based optimizer module within a decision support system. Given
that the costs of this extra effort are limited, but the gains can be substantial, it
is hard to imagine a reason for not undertaking it. To support this development,
let us point to freely available software from http://sourceforge.net/
projects/tuning/. This Web site contains the Matlab codes of the tuning al-
gorithms we have been using over the last couple of years. Additionally, http:
//sourceforge.net/projects/mobat/ provides the Meta-Heuristic Op-
timizer Benchmark and Analysis Toolbox. It can be used to configure, bench-
mark and analyze Evolutionary Algorithms and other Meta-Heuristic Optimizers.
MOBAT is written in Java and optimized for parallel processing. Alternatively,
SPOT can be obtained from www.gm.fh-koeln.de/campus/personen/
lehrende/thomas.bartz-beielstein/00489/.

A change of practice as foreseen here could also imply a change in methodology
in the long term, illustrated in Figure 2.4. In today’s research practice, comparisons
of EAs are typically based on ad hoc parameter values. Hence, the experiments show
a comparison between two rather arbitrary EA instances and tell nothing about the
full potential of the given EAs. Using tuner algorithms could fix this deficiency and
eliminate much of the noise introduced by ad hoc parameter values, thus support-
ing comparisons of evolutionary algorithms (i.e., configurations of the qualitative
parameters), rather than evolutionary algorithm instances.
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