
Chapter 2
Basic Computational Algorithms

John F. Monahan

2.1 Computer Arithmetic

Numbers are the lifeblood of statistics, and computational statistics relies heavily on
how numbers are represented and manipulated on a computer. Computer hardware
and statistical software handle numbers well, and the methodology of computer
arithmetic is rarely a concern. However, whenever we push hardware and software
to their limits with difficult problems, we can see signs of the mechanics of floating
point arithmetic around the frayed edges. To work on difficult problems with
confidence and explore the frontiers of statistical methods and software, we need
to have a sound understanding of the foundations of computer arithmetic. We need
to know how arithmetic works and why things are designed the way they are.

As scientific computation began to rely heavily on computers, a monumental
decision was made during the 1960s to change from base ten arithmetic to base
two. Humans had been doing base ten arithmetic for only a few hundred years,
during which time great advances were possible in science in a short period of time.
Consequently, the resistance to this change was strong and understandable. The
motivation behind the change to base two arithmetic is merely that it is so very easy
to do addition (and subtraction) and multiplication in base two arithmetic. The steps
are easy enough that a machine can be designed – wire a board of relays – or design
a silicon chip – to do base two arithmetic. Base ten arithmetic is comparatively
quite difficult, as its recent mathematical creation would suggest. However two big
problems arise in changing from base ten to base two: (1) we need to constantly
convert numbers written in base ten by humans to base two number system and then
back again to base ten for humans to read the results, and (2) we need to understand
the limits of arithmetic in a different number system.

J.F. Monahan (�)
Department of Statistics, North Carolina State University, Raleigh, NC, USA
e-mail: monahan@ncsu.edu

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__2,
© Springer-Verlag Berlin Heidelberg 2012

19

monahan@ncsu.edu


20 J.F. Monahan

2.1.1 Integer Arithmetic

Computers use two basic ways of writing numbers: fixed point (for integers) and
floating point (for real numbers). Numbers are written on a computer following base
two positional notation. The positional number system is a convention for expressing
a number as a list of integers (digits), representing a number x in base B by a list of
digits am; am�1; : : : ; a1; a0 whose mathematical meaning is

x D am�1B
m�1 C : : : C a2B2 C a1B C a0 (2.1)

where the digits aj are integers in f0; : : : ; B � 1g. We are accustomed to what
is known in the West as the Arabic numbers, 0; 1; 2; : : : ; 9 representing those
digits for writing for humans to read. For base two arithmetic, only two digits are
needed f0; 1g. For base sixteen, although often viewed as just a collection of four
binary digits (1 byte D 4 bits), the Arabic numbers are augmented with letters, as
f0; 1; 2; : : : ; 9; a; b; c; d; e; f g, so that fsixteen D 15ten.

The system based on (2.1), known as fixed point arithmetic, is useful for writing
integers. The choice of m D 32 dominates current computer hardware, although
smaller (m D 16) choices are available via software and larger (m D 48)
hardware had been common in high performance computing. Recent advances in
computer architecture may soon lead to the standard changing to m D 64. While
the writing of a number in base two requires only the listing of its binary digits,
a convention is necessary for expression of negative numbers. The survivor of many
years of intellectual competition is the two’s complement convention. Here the first
(leftmost) bit is reserved for the sign, using the convention that 0 means positive and
1 means negative. Negative numbers are written by complementing each bit (replace
1 with 0, 0 with 1) and adding one to the result. For m D 16 (easier to display), this
means that 22ten and its negative are written as

.0 001 0110/ D 22ten

and
.1 110 1010/ D �22ten :

Following the two’s complement convention with m bits, the smallest (negative)
number that can be written is �2m�1 and the largest positive number is 2m�1 � 1;
zero has a unique representation of (0 000 � � � 0000). Basic arithmetic (addition
and multiplication) using two’s complement is easy to code, essentially taking the
form of mod 2m�1 arithmetic, with special tools for overflow and sign changes. See,
for example, Knuth (1997) for history and details, as well as algorithms for base
conversions.

The great advantage of fixed point (integer) arithmetic is that it is so very fast.
For many applications, integer arithmetic suffices, and most nonscientific computer
software only uses fixed point arithmetic. Its second advantage is that it does not



2 Basic Computational Algorithms 21

suffer from the rounding error inherent in its competitor, floating point arithmetic,
whose discussion follows.

2.1.2 Floating Point Arithmetic

To handle a larger subset of the real numbers, the positional notation system includes
an exponent to express the location of the radix point (generalization of the decimal
point), so that the usual format is a triple (sign, exponent, fraction) to represent
a number as

x D .�1/signBexponent
�
a1B�1 C a2B�2 C : : : C ad B�d

�
; (2.2)

where the fraction is expressed by its list of base B digits 0:a1a2a3 : : : ad . To
preserve as much information as possible with the limited d digits to represent the
fraction, normalization is usually enforced, that is, the leading=most significant digit
a1 is nonzero – except for the special case x D 0. The mathematical curiosity of
an infinite series expansion of a number has no place here where only d digits are
available. Moreover, a critical issue is what to do when only d digits are available.
Rounding to the nearest number is preferred to the alternative chopping; in the
case of representing � D 3:14159265 : : : to d D 5 decimal (B D ten) digits
leads to the more accurate .C; C1; 0:31416/ in the case of rounding, rather than
.C; C1; 0:31415/ for the chopping alternative. Notice that normalization and the
use of this positional notation reflects a goal of preserving relative accuracy, or
reducing the relative error in the approximation. The expression of a real number x

in floating point arithmetic can be expressed mathematically in terms of a function
f l W R ! F where F is the set of numbers that can be represented using this
notation, the set of floating point numbers. The relative accuracy of this rounding
operation can be expressed as

f l.x/ D .1 C u/x ; (2.3)

where juj � U where U is known as the machine unit. Seen in terms of the relative
error of f l.x/ in approximating x, the expression above can be rewritten as

jx � f l.x/j=jxj � U for x ¤ 0 :

For base B arithmetic with d digits and chopping, U D B1�d ; rounding reduces U

by a factor of 2.
An important conceptual leap is the understanding that most numbers are

represented only approximately in floating point arithmetic. This extends beyond
the usual irrational numbers such as � or e that cannot be represented with a finite
number of digits. A novice user may enter a familiar assignment such as x D 8:6

and, observing that the computer prints out 8:6000004, may consider this an error.



22 J.F. Monahan

When the “8:6” was entered, the computer had to first parse the text “8:6” and
recognize the decimal point and arabic numbers as a representation, for humans,
of a real number with the value 8 C 6 � 10�1. The second step is to convert this
real number to a base two floating point number – approximating this base ten
number with the closest base two number – this is the function f l.�/. Just as 1=3

produces the repeating decimal 0:33333 : : : in base 10, the number 8:6 produces
a repeating binary representation 1000:100110011 : : :two, and is chopped or rounded
to the nearest floating point number f l.8:6/. Later, in printing this same number out,
a second conversion produces the closest base 10 number to f l.8:6/ with few digits;
in this case 8:6000004, not an error at all. Common practice is to employ numbers
that are integers divided by powers of two, since they are exactly represented. For
example, distributing 1,024 equally spaced points makes more sense than the usual
1,000, since j=1024 can be exactly represented for any integer j .

A breakthrough in hardware for scientific computing came with the adoption and
implementation of the IEEE 754 binary floating point arithmetic standard, which has
standards for two levels of precision, single precision and double precision (IEEE
1985). The single precision standard uses 32 bits to represent a number: a single
bit for the sign, 8 bits for the exponent and 23 bits for the fraction. The double
precision standard requires 64 bits, using 3 more bits for the exponent and adds 29

to the fraction for a total of 52. Since the leading digit of a normalized number is
nonzero, in base two the leading digit must be one. As a result, the floating point
form (2.2) above takes a slightly modified form:

x D .�1/signBexponent�excess �
1 C a1B�1 C a2B�2 C : : : C ad B�d

�
(2.4)

as the fraction is expressed by its list of binary digits 1:a1a2a3 : : : ad . As a result,
while only 23 bits are stored, it works as if one more bit were stored. The exponent
using 8 bits can range from 0 to 255; however, using an excess of 127, the range
of the difference .exponent � excess/ goes from �126 to 127. The finite number of
bits available for storing numbers means that the set of floating point numbers F is
a finite, discrete set. Although well-ordered, it does have a largest number, smallest
number, and smallest positive number. As a result, this IEEE Standard expresses
positive numbers from approximately 1:4 � 10�45 to 3:4 � 1038 with a machine
unit U D 2�24 � 10�7 using only 31 bits. The remaining 32nd bit is reserved for
the sign. Double precision expands the range to roughly 10˙300 with U D 2�53 �
10�16, so the number of accurate digits is more than doubled.

The two extreme values of the exponent are employed for special features. At
the high end, the case exponentD 255 signals two infinities (˙1) with the largest
possible fraction. These values arise as the result of an overflow operation. The
most common causes are adding or multiplying two very large numbers, or from
a function call that produces a result that is larger than any floating point number.
For example, the value of exp.x/ is larger than any finite number in F for x > 88:73

in single precision. Before adoption of the standard, exp.89:9/ would cause the
program to cease operation due to this “exception”. Including ˙1 as members
of F permits the computations to continue, since a sensible result is now available.



2 Basic Computational Algorithms 23

As a result, further computations involving the value ˙1 can proceed naturally,
such as 1=1 D 0. Again using the exponent D 255, but with any other fraction
represents not-a-number, usually written as “NaN”, and used to express the result
of invalid operations, such as 0=0, 1 � 1, 0 � 1, and square roots of negative
numbers. For statistical purposes, another important use of NaN is to designate
missing values in data. The use of infinities and NaN permit continued execution
in the case of anomalous arithmetic operations, instead of causing computation
to cease when such anomalies occur. The other extreme exponent D 0 signals
a denormalized number with the net exponent of �126 and an unnormalized
fraction, with the representation following (2.2), rather than the usual (2.4) with the
unstated and unstored 1. The denormalized numbers further expand the available
numbers in F , and permit a soft underflow. Underflow, in contrast to overflow,
arises when the result of an arithmetic operation is smaller in magnitude than the
smallest representable positive number, usually caused by multiplying two small
numbers together. These denormalized numbers begin approximately 10�38 near the
reciprocal of the largest positive number. The denormalized numbers provide even
smaller numbers, down to 10�45. Below that, the next number in F is the floating
point zero: the smallest exponent and zero fraction – all bits zero.

Most statistical software employs only double precision arithmetic, and some
users become familiar with apparent aberrant behavior such as a sum of residuals
of 10�16 instead of zero. While many areas of science function quite well using
single precision, some problems, especially nonlinear optimization, nevertheless
require double precision. The use of single precision requires a sound understand
of rounding error. However, the same rounding effects remain in double precision,
but because their effects are so often obscured from view, double precision may
promote a naive view that computers are perfectly accurate.

The machine unit expresses a relative accuracy in storing a real number as
a floating point number. Another similar quantity, the machine epsilon, denoted by
�m, is defined as the smallest positive number that, when added to one, gives a result
that is different from one. Mathematically, this can be written as

f l.1 C x/ D 1 for 0 < x < �m : (2.5)

Due to the limited precision in floating point arithmetic, adding a number that is
much smaller in magnitude than the machine epsilon will not change the result. For
example, in single precision, the closest floating point number to 1 C 2�26 is 1.
Typically, both the machine unit and machine epsilon are nearly the same size, and
these terms are often used interchangeably without grave consequences.

2.1.3 Cancellation

Often one of the more surprising aspects of floating point arithmetic is that some
of the more familiar laws of algebra are occasionally violated: in particular, the



24 J.F. Monahan

associative and distributive laws. While most occurrences are just disconcerting to
those unfamiliar to computer arithmetic, one serious concern is cancellation. For
a simple example, consider the case of base ten arithmetic with d D 6 digits,
and take x D 123:456 and y D 123:332, and note that both x and y may have
been rounded, perhaps x was 123:456478 or 123:456000 or 123:455998. Now x

would be stored as .C; 3; 0:123456/ and y would be written as .C; 3; 0:123332/,
and when these two numbers are subtracted, we have the unnormalized difference
.C; 3; 0:000124/. Normalization would lead to .C; 0; :124???/ where merely “?”
represents that some digits need to take their place. The simplistic option is to put
zeros, but 0:124478 is just as good an estimate of the true difference between x

and y as 0:124000, or 0:123998, for that matter. The problem with cancellation
is that the relative accuracy that floating point arithmetic aims to protect has been
corrupted by the loss of the leading significant digits. Instead of a small error in the
sixth digit, we now have that error in the third digit; the relative error has effectively
been magnified by a factor of 1,000 due to the cancellation of the first 3 digits.

The best way to deal with the potential problem caused by catastrophic cancella-
tion is to avoid them. In many cases, the cancellation may be avoided by reworking
the computations analytically to handle the cancellation:

1 � .1 � 2t/�1 D 1 � 2t � 1

1 � 2t
D �2t

1 � 2t
:

In this case, there is significant cancellation when t is small, and catastrophic
cancellation whenever t drops below the machine epsilon. Using six digit decimal
arithmetic to illustrate, at t D 0:001, the left hand expression, 1 � .1 � 2t/�1, gives

1:00000 � 1:00200 D 0:200000 � 10�2

while the right hand expression, �2t=.1 � 2t/, gives

0:200401 � 10�2 ;

the correct (rounded) result. The relative error in using the left hand expression is
an unacceptable 0:002. At t D 10�7, the left hand expression leads to a complete
cancellation yielding zero and a relative error of one. Just a little algebra here avoids
the most of the effect of cancellation. When the expressions involve functions, cases
where cancellation occurs can often be handled by approximations. In the case of
1 � e�t , serious cancellation will occur whenever t is very small. The cancellation
can be avoided for this case by using a power series expansion:

1 � e�t D 1 � �
1 � t C t2=2 � : : :

� � t � t2=2 D t .1 � t=2/ :

When t D 0:0001, the expression 1 � e�t leads to the steps

1:00000 � 0:999900 D 0:100000 � 10�4 ;



2 Basic Computational Algorithms 25

while the approximation gives

.0:0001/.0:999950/ D 0:999950 � 10�4

which properly approximates the result to six decimal digits. At t D 10�5 and 10�6,
similar results occur, with complete cancellation at 10�7. Often the approximation
will be accurate just when cancellation must be avoided.

One application where rounding error must be understood and cancellation
cannot be avoided is numerical differentiation, where calls to a function are used
to approximate a derivative from a first difference:

f 0.x/ � Œ f .x C h/ � f .x/� =h : (2.6)

Mathematically, the accuracy of this approximation is improved by taking h very
small; following a quadratic Taylor’s approximation, we can estimate the error as

Œ f .x C h/ � f .x/� =h � f 0.x/ C 1

2
hf 00.x/ :

However, when the function calls f .x/ and f .x C h/ are available only to limited
precision – a relative error of �m, taking h smaller leads to more cancellation. The
cancellation appears as a random rounding error in the numerator of (2.6) which
becomes magnified by dividing by a small h. Taking h larger incurs more bias
from the approximation; taking h smaller incurs larger variance from the rounding
error. Prudence dictates balancing bias and variance. Dennis and Schnabel (1983)
recommend using h � �

1=2
m for first differences, but see also Bodily (2002).

The second approach for avoiding the effects of cancellation is to develop
different methods. A common cancellation problem in statistics arises from using
the formula

nX

iD1

y2
i � ny2 (2.7)

for computing the sum of squares around the mean. Cancellation can be avoided by
following the more familiar two-pass method

nX

iD1

.yi � y/2 (2.8)

but this algorithm requires all of the observations to be stored and repeated updates
are difficult. A simple adjustment to avoid cancellation, requiring only a single pass
and little storage, uses the first observation to center:

nX

iD1

.yi � y/2 D
nX

iD1

.yi � y1/
2 � n.y1 � y/2 : (2.9)



26 J.F. Monahan

An orthogonalization method from regression using Givens rotations (see Chan et al.
1983) can do even better to find sn D Pn

iD1.yi � Ny/2:

ti D ti�1 C yi (2.10)

si D si�1 C .iyi � ti /
2=.i.i � 1// : (2.11)

To illustrate the effect of cancellation, take the simple problem of n D 5

observations, yi D 4;152 C i so that y1 D 4;153 through y5 D 4;157. Again
using six decimal digits, the computations of the sum and mean encounter no
problems, and we easily get y D 4;155 or 0:415500 � 104, and

P
yi D 20;775

or 0:207750 � 105. However, each square loses some precision in rounding:

y1 D 4;153 ; y2
1 D 4;1532 D 17;247;409 rounded to 0:172474 � 108

y2 D 4;154 ; y2
2 D 4;1542 D 17;255;716 rounded to 0:172557 � 108

y3 D 4;155 ; y2
3 D 4;1552 D 17;264;025 rounded to 0:172640 � 108

y4 D 4;156 ; y2
4 D 4;1562 D 17;272;336 rounded to 0:172723 � 108

y5 D 4;157 ; y2
5 D 4;1572 D 17;280;649 rounded to 0:172806 � 108 :

Summing the squares encounters no further rounding on its way to 0:863200 � 108,
and we compute the corrected sum of squares as

0:863200 � 108 � .0:207750 � 105/ � 4;155

0:863200 � 108 � 0:863201 � 108 D �100 :

The other three algorithms, following (2.8), (2.9), (2.10), and (2.11), each give the
perfect result of 10 in this case.

Admittedly, while this example is contrived to show an absurd result, a negative
sum of squares, the equally absurd value of zero is hardly unusual. Similar computa-
tions – differences of sum of squares – are routine, especially in regression and in the
computation of eigenvalues and eigenvectors. In regression, the orthogonalization
method (2.10) and (2.11) is more commonly seen in its general form. In all these
cases, simply centering can improve the computational difficulty and reduce the
effect of limited precision arithmetic.

2.1.4 Accumulated Roundoff Error

Another problem with floating point arithmetic is the sheer accumulation of
rounding error. While many applications run well in spite of a large number
of calculations, some approaches encounter surprising problems. An enlightening
example is just to add up many ones: 1 C 1 C 1 C : : : . Astonishingly, this infinite



2 Basic Computational Algorithms 27

series appears to converge – the partial sums stop increasing as soon as the ratio of
the new number to be added, in this case, one, to the current sum (n) drops below
the machine epsilon. Following (2.5), we have f l.n C 1/ D f l.n/, from which
we find

1=n � �m or n � 1=�m :

So you will find the infinite series of ones converging to 1=�m. Moving to double
precision arithmetic pushes this limit of accuracy sufficiently far to avoid most
problems – but it does not eliminate them. A good mnemonic for assessing the effect
of accumulated rounding error is that doing m additions amplifies the rounding
error by a factor of m. For single precision, adding 1,000 numbers would look
like a relative error of 10�4 which is often unacceptable, while moving to double
precision would lead to an error of 10�13. Avoidance strategies, such as adding
smallest to largest and nested partial sums, are discussed in detail in Monahan,
(2001, Chap. 2).

2.1.5 Interval Arithmetic

One of the more interesting methods for dealing with the inaccuracies of floating
point arithmetic is interval arithmetic. The key is that a computer can only do
arithmetic operations: addition, subtraction, multiplication, and division. The novel
idea, though, is that instead of storing the number x, its lower and upper bounds
.x; x/ are stored, designating an interval for x. Bounds for each of these arithmetic
operations can be then established as functions of the input. For addition, the
relationship can be written as:

x C y < x C y < x C y :

Similar bounds for the other three operations can be established. The propagation
of rounding error through each step is then captured by successive upper and
lower bounds on intermediate quantities. This is especially effective in probability
calculations using series or continued fraction expansions. The final result is an
interval that we can confidently claim contains the desired calculation. The hope
is always that interval is small. Software for performing interval arithmetic has
been implemented in a practical fashion by modifying a Fortran compiler. See, for
example, Hayes (2003) for an introductory survey, and Kearfott and Kreinovich
(1996) for articles on applications.

2.2 Algorithms

An algorithm is a list of directed actions to accomplish a designated task. Cooking
recipes are the best examples of algorithms in everyday life. The level of a cookbook
reflects the skills of the cook: a gourmet cookbook may include the instruction



28 J.F. Monahan

“saute the onion until transparent” while a beginner’s cookbook would describe
how to choose and slice the onion, what kind of pan, the level of heat, etc. Since
computers are inanimate objects incapable of thought, instructions for a computer
algorithm must go much, much further to be completely clear and unambiguous,
and include all details.

Most cooking recipes would be called single pass algorithms, since they are a list
of commands to be completed in consecutive order. Repeating the execution of the
same tasks, as in baking batches of cookies, would be described in algorithmic terms
as looping. Looping is the most common feature in mathematical algorithms, where
a specific task, or similar tasks, are to be repeated many times. The computation of
an inner product is commonly implemented using a loop:

a>b D a1b1 C a2b2 C : : : C anbn ;

implemented as

s D 0

do i D 1 to n

s D s C ai � bi

end do

where the range of the loop includes the single statement with a multiplication and
addition. In an iterative algorithm, the number of times the loop is be repeated is
not known in advance, but determined by some monitoring mechanism. For math-
ematical algorithms, the focus is most often monitoring convergence of a sequence
or series. Care must be taken in implementing iterative algorithms to insure that, at
some point, the loop will be terminated, otherwise an improperly coded procedure
may proceed indefinitely in an infinite loop. Surprises occur when the convergence
of an algorithm can be proven analytically, but, because of the discrete nature of
floating point arithmetic, the procedure implementing that algorithm may not con-
verge. For example, in a square-root problem to be examined further momentarily,
we cannot find x 2 F so that x � x is exactly equal to 2. The square of one number
may be just below two, and the square of the next largest number in F may be larger
than 2. When monitoring convergence, common practice is to convert any test for
equality of two floating point numbers or expressions to tests of closeness:

if .abs.x�x � 2/ < eps/ then exit. (2.12)

Most mathematical algorithms have more sophisticated features. Some algorithms
are recursive, employing relationships such as the gamma function: � .x C 1/ D
x� .x/ so that new values can be computed using previous values. Powerful
recursive algorithms, such as the Fast Fourier Transform (FFT) and sorting
algorithms, follow a divide-and-conquer paradigm: to solve a big problem, break
it into little problems and use the solutions to the little problems to solve the big
problem. In the case of sorting, the algorithm may look something like:



2 Basic Computational Algorithms 29

algorithm sort(list)
break list into two pieces: first and second
sort (first)
sort (second)
put sorted lists first and second together to form
one sorted list

end algorithm sort

Implemented recursively, a big problem is quickly broken into tiny pieces and
the key to the performance of divide-and-conquer algorithms is in combining the
solutions to lots of little problems to address the big problem. In cases where these
solutions can be easily combined, these recursive algorithms can achieve remarkable
breakthroughs in performance. In the case of sorting, the standard algorithm, known
as bubblesort, takes O.n2/ work to sort a problem of size n – if the size of
the problem is doubled, the work goes up by factor of 4. The Discrete Fourier
Transform, when written as the multiplication of an n � n matrix and a vector,
involves n2 multiplications and additions. In both cases, the problem is broken
into two subproblems, and the mathematics of divide and conquer follows a simple
recursive relationship, that the time=work T .n/ to solve a problem of size n is the
twice the time=work to solve two subproblem with half the size, plus the time=work
C.n/, to put the solutions together:

T .n/ D 2T .n=2/ C C.n/ : (2.13)

In both sorting and the Discrete Fourier Transform, C.n/ � cn C d , which leads
to T .n/ D cn log.n/ C O.n/. A function growing at the rate O.n log n/ grows
so much slower than O.n2/, that the moniker “Fast” in Fast Fourier Transform
is well deserved. While some computer languages preclude the use of recursion,
recursive algorithms can often be implemented without explicit recursion through
clever programming.

The performance of an algorithm may be measured in many ways, depending on
the characteristics of the problems the it may be intended to solve. The sample
variance problem above provides an example. The simple algorithm using (2.7)
requires minimal storage and computation, but may lose accuracy when the variance
is much smaller than the mean: the common test problem for exhibiting catastrophic
cancellation employs yi D 212 C i for single precision. The two-pass method (2.8)
requires all of the observations to be stored, but provides the most accuracy and least
computation. Centering using the first observation (2.9) is nearly as fast, requires
no extra storage, and its accuracy only suffers when the first observation is unlike
the others. The last method, arising from the use of Givens transformations (2.10)
and (2.11), also requires no extra storage, gives sound accuracy, but requires more
computation. As commonly seen in the marketplace of ideas, the inferior methods
have not survived, and the remaining competitors all have tradeoffs with speed,
storage, and numerical stability.



30 J.F. Monahan

2.2.1 Iterative Algorithms

The most common difficult numerical problems in statistics involve optimization, or
root-finding: maximum likelihood, nonlinear least squares, M-estimation, solving
the likelihood equations or generalized estimating equations. And the algorithms
for solving these problems are typically iterative algorithms, using the results from
the current step to direct the next step.

To illustrate, consider the problem of computing the square root of a real
number y. Following from the previous discussion of floating point arithmetic,
we can restrict y to the interval .1; 2/. One approach is to view the problem as
a root-finding problem, that is, we seek x such that f .x/ D x2 � y D 0. The
bisection algorithm is a simple, stable method for finding a root. In this case, we
may start with an interval known to contain the root, say .x1; x2/, with x1 D 1

and x2 D 2. Then bisection tries x3 D 1:5, the midpoint of the current interval. If
f .x3/ < 0, then x3 <

p
y < x2, and the root is known to belong in the new interval

.x3; x2/. The algorithm continues by testing the midpoint of the current interval,
and eliminating half of the interval. The rate of convergence of this algorithm is
linear, since the interval of uncertainty, in this case, is cut by a constant .1=2/ with
each step. For other algorithms, we may measure the rate at which the distance from
the root decreases. Adapting Newton’s method to this root-finding problem yields
Heron’s iteration

xnC1 D 1

2
.xn C y=xn/ :

Denoting the solution as x� D p
y, the error at step n can be defined as �n D

xn � x�, leading to the relationship

�nC1 D 1

2

�2
n

xn

: (2.14)

This relationship of the errors is usually called quadratic convergence, since the new
error is proportional to the square of the error at the previous step. The relative error
ın D .xn � x�/=x� follows a similar relationship,

ın D 1

2
ı2

n=.1 C ın/ : (2.15)

Here, the number of accurate digits is doubled with each iteration. For the secant
algorithm, analysis of the error often leads to a relationship similar to (2.14), but
j�nC1j � C j�njp , with 1 < p < 2, achieving a rate of convergence known as
superlinear. For some well-defined problems, as the square root problem above, the
number of iterations needed to reduce the error or relative error below some criterion
can be determined in advance.

While we can stop this algorithm when f .xn/ D 0, as discussed previously, there
may not be any floating point number that will give a zero to the function, hence the
stopping rule (2.12). Often in root-finding problems, we stop when jf .xn/j is small



2 Basic Computational Algorithms 31

enough. In some problems, the appropriate “small enough” quantity to ensure the
desired accuracy may depend on parameters of the problem, as in this case, the value
of y. As a result, termination criterion for the algorithm is changed to: stop when
the relative change in x is small

jxnC1 � xnj=jxnj < ı :

While this condition may cause premature stopping in rare cases, it will prevent
infinite looping in other cases. Many optimization algorithms permit the iteration
to be terminated using any combination – and “small enough” is within the user’s
control. Nevertheless, unless the user learns a lot about the nature of the problem
at hand, an unrealistic demand for accuracy can lead to unachievable termination
criteria, and an endless search.

As discussed previously, rounding error with floating point computation affects
the level of accuracy that is possible with iterative algorithms for root-finding. In
general, the relative error in the root is at the same relative level as the computation
of the function. While optimization problems have many of the same characteristics
as root-finding problems, the effect of computational error is a bit more substantial:
k digits of accuracy in the function to be optimization can produce but k=2 digits in
the root=solution.

2.2.2 Iterative Algorithms for Optimization
and Nonlinear Equations

In the multidimensional case, the common problems are solving a system of
nonlinear equations or optimizing a function of several variables. The most common
tools for these problems are Newton’s method or secant-like variations. Given the
appropriate regularity conditions, again we can achieve quadratic convergence with
Newton’s method, and superlinear convergence with secant-like variations. In the
case of optimization, we seek to minimize f .x/, and Newton’s method is based on
minimizing the quadratic approximation:

f .x/ � f .x0/ C .x � x0/
>rf .x0/ C .x � x0/

>r2f .x0/.x � x0/ :

This leads to the iteration step

x.nC1/ D x.n/ � �r2f
�
x.n/

���1 rf
�
x.n/

�
:

In the case of solving a system of nonlinear equations, g.x/ D 0, Newton’s method
arises from solving the affine (linear) approximation

g.x/ � g .x0/ C J g .x0/ .x � x0/ ;



32 J.F. Monahan

leading to a similar iteration step

x.nC1/ D x.n/ � ŒJ g.x.n//��1g.x.n// :

In both cases, under suitable smoothness conditions, the Newton iteration will
achieve quadratic convergence – using norms to measure the error at each step:

�
�x.nC1/ � x��

� � C
�
�x.n/ � x��

�2
:

For both problems, Newton’s method requires the computation of lots of derivatives,
either the gradient rf .x0/ and Hessian r2f .x0/, or the Jacobian matrix J g.x.n//.
In the univariate root-finding problem, the secant method arises by approximating
the derivative with the first difference using the previous evaluation of the function.
Secant analogues can be constructed for both the optimization and nonlinear
equations problems, with similar reduction in the convergence rate: from quadratic
to superlinear.

In both problems, the scaling of the parameters is quite important, as measuring
the error with the Euclidean norm presupposes that errors in each component are
equally weighted. Most software for optimization includes a parameter vector for
suitably scaling the parameters, so that one larger parameter does not dominate the
convergence decision. In solving nonlinear equations, the condition of the problem
is given by

�
�J g

�
x.n/

���
�
��
�
J g

�
x.n/

���1
�
��

(as in solving linear equations) and the problem of scaling involves the components
of g.x/. In many statistical problems, such as robust regression, the normal
parameter scaling issues arise with the covariates and their coefficients. However,
one component of g.x/, associated with the error scale parameter may be orders
of magnitude larger or smaller than the other equations. As with parameter scaling,
this is often best done by the user and is not easily overcome automatically.

With the optimization problem, there is a natural scaling with rf .x0/ in contrast
with the Jacobian matrix. Here, the eigenvectors of the Hessian matrix r 2f .x0/

dictate the condition of the problem; see, for example, Gill et al. (1981) and Dennis
and Schnabel (1983). Again, parameter scaling remains one of the most important
tools.

References

Bodily, C.H.: Numerical Differentiation Using Statistical Design. Ph.D. Thesis, NC State Univer-
sity (2002)

Chan, T.F., Golub, G.H., LeVeque, R.J.: Algorithms for computing the sample variance. Am. Stat.
37, 242–247 (1983)

Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization. Prentice-
Hall, Englewood Cliffs, NJ (1983)



2 Basic Computational Algorithms 33

Gill, P.E., Murray, W., Wright, M.H.: Practical Optimisation. Academic Press, London (1981)
Goldberg, D. (1991) What Every Computer Scientist Should Know About Floating-Point Arith-

metic, ACM Computing Surveys 23(1):5–48.
Hayes, B.: A lucid interval. Am. Sci. 91, 484–488 (2003)
Institute of Electrical and Electronics Engineers: A Proposed IEEE-CS Standard for Binary

Floating Point Arithmetic. Standard, 754–1985, IEEE, New York (1985)
Kearfott, R.B., Kreinovich, V. (ed.): Applications of Interval Computations. Boston, Kluwer (1996)
Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, (3rd edn.), Vol. 2,

Addison-Wesley, Reading MA (1997)
Monahan, J.F.: Numerical Methods of Statistics. Cambridge University Press, Cambridge (2001)
Overton, M.L.: Numerical Computing with IEEE Floating Point Arithmetic. Philadelphia, SIAM

(2001)



http://www.springer.com/978-3-642-21550-6


	2 Basic Computational Algorithms
	2.1 Computer Arithmetic
	2.1.1 Integer Arithmetic
	2.1.2 Floating Point Arithmetic
	2.1.3 Cancellation
	2.1.4 Accumulated Roundoff Error
	2.1.5 Interval Arithmetic

	2.2 Algorithms
	2.2.1 Iterative Algorithms
	2.2.2 Iterative Algorithms for Optimization and Nonlinear Equations

	References


