
Sparse Matrix Methods for Circuit Simulation
Problems

Timothy A. Davis and E. Palamadai Natarajan

Abstract Differential algebraic equations used for circuit simulation give rise to
sequences of sparse linear systems. The matrices have very peculiar characteristics
as compared to sparse matrices arising in other scientific applications. The matrices
are extremely sparse and remain so when factorized. They are permutable to block
triangular form, which breaks the sparse LU factorization problem into many
smaller subproblems. Sparse methods based on operations on dense submatrices
(supernodal and multifrontal methods) are not effective because of the extreme
sparsity. KLU is a software package specifically written to exploit the properties
of sparse circuit matrices. It relies on a permutation to block triangular form
(BTF), several methods for finding a fill-reducing ordering (variants of approximate
minimum degree and nested dissection), and Gilbert/Peierls’ sparse left-looking LU
factorization algorithm to factorize each block. The package is written in C and
includes a MATLAB interface. Performance results comparing KLU with SuperLU,
Sparse 1.3, and UMFPACK on circuit simulation matrices are presented. KLU is the
default sparse direct solver in the XyceTMcircuit simulation package developed by
Sandia National Laboratories.

1 Overview

The KLU software package is specifically designed for solving sequences of unsym-
metric sparse linear systems that arise from the differential-algebraic equations
used to simulate electronic circuits. Two aspects of KLU are essential for these

T.A. Davis (�)
Department of Computer and Information Science and Engineering. University of Florida,
FL, USA
e-mail: davis@cise.ufl.edu

E. Palamadai Natarajan
Ansys. Inc., USA
e-mail: ekanathan@gmail.com

B. Michielsen and J.-R. Poirier (eds.), Scientific Computing in Electrical Engineering
SCEE 2010, Mathematics in Industry 16, DOI 10.1007/978-3-642-22453-9__1,
© Springer-Verlag Berlin Heidelberg 2012

3

davis@cise.ufl.edu
ekanathan@gmail.com


4 T.A. Davis and E. Palamadai Natarajan

problems: (1) a permutation to block upper triangular form [15, 17], and (2) an
asymptotically efficient left looking LU factorization algorithm with partial pivoting
[18]. KLU does not exploit supernodes, since the factors of circuit simulation
matrices are far too sparse as compared to matrices arising in other applications
(such as finite-element methods).

Circuit simulation involves many different tasks for which KLU is useful:

1. DC operating point analysis, where BTF ordering is often helpful. Convergence
in DC analysis is critical in that it is typically the first step of a higher level
analysis such as transient analysis.

2. Transient analysis, which requires a fast and accurate sparse LU factorization.
The sparse linear factorization/solve stages typically dominate the run-time of
transient analyses of post-layout circuits with a large number of parasitic devices.

3. Harmonic balance analysis, which is typically solved using Krylov based
iterative methods, since the Jacobian representing all the harmonics is huge and
cannot be solved with a direct method. KLU is useful in factor/solve stages
involving the pre-conditioner.

Section 2 describes the characteristics of circuit matrices, which motivate the
design of the KLU algorithm. Section 3 gives a brief description of the algorithm.
A more detailed discussion may be found in [24]. Performance results of KLU in
comparison with SuperLU [12], Sparse 1.3 [21, 22], and UMFPACK [4, 6, 7] are
presented in Sect. 4. An extended version of this paper appears in [11].

In this paper, jAj denotes the number of nonzeros in the matrix A.

2 Characteristics of Circuit Matrices

Circuit matrices arise from Newton’s method applied to the differential-algebraic
equations representing the underlying circuit [23]. A modified nodal analysis
is typically used, resulting in a sequence of linear systems with unsymmetric
sparse coefficient matrices with identical nonzero pattern (ignoring numerical
cancellation). Circuit matrices exhibit certain unique characteristics for which KLU
is designed, which are not generally true of matrices from other applications:

1. Circuit matrices are extremely sparse and remain so when factorized. The ratio of
floating-point operation (flop) count over jL C U j is much smaller than matrices
from other applications (even for comparable values of jL C U j). A set of
columns in L with identical or similar nonzero pattern is called a supernode [12].
Supernodal and multifrontal methods obtain high performance by exploiting
supernodes via dense matrix kernels (the BLAS, [13]). Because their nodal
interconnection is highly dissimilar and their fill-in is so low, the supernodes
in circuit matrices typically have very few columns. Dense matrix kernels are
not effective when used on very small matrices, and thus supernodal/multifrontal
methods are not suitable for circuit matrices.
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Fig. 1 Fill-in factor versus the number of nonzeros in the largest irreducible block

2. Nearly all circuit matrices are permutable to a block triangular form. In DC
operating point analysis, capacitors are open and hence node connectivity is
broken in the circuit. This helps in creating many small strongly connected
components in the corresponding graph, and the resulting permuted matrix
is block triangular with many small blocks. However in transient simulation,
capacitors are not open and hence the nodes of the circuit are mostly reachable
from each other. This often leads to one large diagonal block when permuted
to BTF form, but still a large number of small blocks due to the presence of
independent and controlled sources.

The following experiment illustrates the low fill-in properties of circuit matrices.
As of March 2010, the University of Florida Sparse Matrix Collection [10] contains
491 matrices that are real, square, unsymmetric, and have full structural rank1

(excluding matrices tagged as subsequent matrices in sequences of matrices with
the same size and pattern). Of these 491 matrices, 81 are from circuit or power
network simulation. Figure 1 plots the fill-in factor (jL C U j=jAj versus jAj) for
each matrix, using lu in MATLAB (R2010a). If the matrix is reducible to block
triangular form, only the largest block is factorized for this experiment (found via
dmperm [5]). For comparison, the two lines in Fig. 1 are 2D and 3D square meshes
as ordered by METIS [20], which obtains the asymptotically optimal ordering for
regular meshes.

The fill-in factor for circuit matrices stays remarkably low as compared to
matrices from other applications. Very few circuit matrices experience as much fill-
in as 2D or 3D meshes.

1A matrix has full structural rank if a permutation exists so that the diagonal is zero-free.
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The properties of circuit matrices demonstrated here indicate that they should be
factorized via an asymptotically efficient non-supernodal sparse LU method, which
motivates the KLU algorithm discussed in the next Section.

3 KLU Algorithm

KLU performs the following steps when solving the first linear system in a
sequence.

1. The matrix is permuted into block triangular form (BTF). This consists of
two steps: an unsymmetric permutation to ensure a zero free diagonal using
maximum transversal [14, 15], followed by a symmetric permutation to block
triangular form by finding the strongly connected components of the graph
[16, 17, 26]. A matrix with full rank permuted to block triangular form looks
as follows:

PAQ D

2
66664

A11 A12 � � � A1n

A22

:::

: : :
:::

Ann

3
77775

2. Each block Akk is ordered to reduce fill. The Approximate Minimum Degree
(AMD) ordering [1,2] on Akk CAT

kk is used by default. The user can alternatively
choose COLAMD [8, 9], an ordering provided by CHOLMOD (such as nested
dissection based on METIS [20]), or any user-defined ordering algorithm that
can be passed as a function pointer to KLU. Alternatively, the user can provide a
permutation to order each block.

3. Each diagonal block is scaled and factorized using our implementation of
Gilbert/ Peierls’ left looking algorithm with partial pivoting [18]. A simpler
version of the same algorithm is used in the LU factorization method in the
CSparse package, cs_lu [5] (but without the pre-scaling and without a BTF
permutation). Pivoting is constrained to within each diagonal block, since the
factorization method factors each block as an independent problem. No pivots
can ever be selected from the off-diagonal blocks.

4. The system is solved using block back substitution.

For subsequent factorizations for matrices with the same nonzero pattern, the first
two steps above are skipped. The third step is replaced with a simpler left-looking
method that does not perform partial pivoting (a refactorization). This allows the
depth-first-search used in Gilbert/Peierls’ method to be skipped, since the nonzero
patterns of L and U are already known.

When the BTF form is exploited, entries outside the diagonal blocks do not need
to be factorized, requiring no work and causing no fill-in. Only the diagonal blocks
need to be factorized.
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The final system of equations to be solved after ordering and factorization with
partial pivoting can be represented as

.PRAQ/QT x D PRb (1)

where P represents the row permutation due to the BTF and fill-reducing ordering
and partial pivoting, and Q represents the column permutation due to just the BTF
and fill-reducing ordering. The matrix R is a diagonal row scaling matrix (discussed
below). Let .PRAQ/ D LU C F where LU represents the factors of all the blocks
collectively and F represents the entire off diagonal region. Equation (1) can now
be written as

x D Q.LU C F /�1.PRb/: (2)

The block back substitution in (2) can be better visualized as follows. Consider a
simple 3-by-3 block system

2
4

L11U11 F12 F13

0 L22U22 F23

0 0 L33U33

3
5

2
4

x1

x2

x3

3
5 D

2
4

b1

b2

b3

3
5 : (3)

The equations corresponding to the above system are

L11U11x1 C F12x2 C F13x3 D b1 (4)

L22U22x2 C F23x3 D b2 (5)

L33U33x3 D b3 (6)

In block back substitution, we first solve (6) for x3, and then eliminate x3 from
(5) and (4) using the off-diagonal entries. Next, we solve (5) for x2 and eliminate x2

from (4). Finally we solve (4) for x1.
The core of the Gilbert/Peierls factorization algorithm used in KLU is solving

a lower triangular system Lx D b with partial pivoting where L, x and b are all
sparse. It consists of a symbolic step to determine the non-zero pattern of x and a
numerical step to compute the values of x. This lower triangular solution is repeated
n times during the entire factorization (where n is the size of the matrix) and each
solution step computes a column of the L and U factors. The importance of this
factorization algorithm is that the time spent in factorization is proportional to the
number of floating point operations performed. The entire left looking algorithm is
described in the algorithm below.

The lower triangular solve is the most expensive step and includes a symbolic
and a numeric factorization step. Let b D A.W; k/, the kth column of A. Let GL be
the directed graph of L with n nodes. The graph GL has an edge j ! i iff lij ¤ 0.
Let B D fi jbi ¤ 0g and X D fi jxi ¤ 0g represent the set of nonzero indices in b

and x respectively. Now the nonzero pattern X is given by
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Algorithm 1 Left-looking LU factorization
L D I

for k D 1 to n do
solve Lx D A.W; k/ for x

do partial pivoting on x

U.1 W k; k/ D x.1 W k/

L.k W n; k/ D x.k W n/=U.k; k/

end for

X D ReachGL.B/ (7)

ReachG.i/ denotes all nodes in a graph G reachable via paths starting at node i .
Reach.S/ applied to a set S is the union of Reach.i/ for all nodes i 2 S .
Equation (7) states that the nonzero pattern X is computed by the determining
the vertices in GL that are reachable from the vertices of the set B.

The reachability problem is solved using a depth-first search. During the depth-
first search, the Gilbert/ Peierls algorithm computes the topological order of X .
If the nodes of a directed acyclic graph are written out in topological order from
left to right, then all edges in the graph would point to the right. If Lx D b is
solved in topological order, all numerical dependencies are satisfied. The natural
order 1, 2, :::; n is one such ordering (since the matrix L is lower triangular), but
any topological ordering will suffice. That is, xj must be computed before xi if
there is a path from j to i in GL. Since the depth-first graph traversal produces
X in topological order as an intrinsic by-product, the solution of Lx D b can be
computed using the algorithm below. Sorting the nodes in X to obtain the natural
ordering could take more time than the number of floating-point operations, so this
is skipped. The computation of X and x both take time proportional to the floating-
point operation count.

Algorithm 2 Solve Lx D b where L, x and b are sparse
X D ReachGL.B/

x D b

for j 2 X in any topological order do
x.j C 1 W n/ D x.j C 1 W n/ � L.j C 1 W n; j /x.j /

end for

4 Performance Comparisons with Other Solvers

Five different sparse LU factorization techniques are compared:

1. KLU with default parameter settings: BTF enabled, the AMD fill-reducing
ordering applied to A C AT , and a strong preference for pivots selected from
the diagonal.
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Table 1 The thirteen test matrices with the highest run times
Matrix Entire matrix Largest block Rows in Singletons

Rows Nonzeros Rows Nonzeros 2nd largest
�103 �103 �103 �103 block �103

Raj1 263.7 1,300.3 263.6 1,299.6 5 0.2
ASIC_680k 682.9 2,639.0 98.8 526.3 2 583.8
rajat24 358.2 1,947.0 354.3 1,923.9 172 3.4
TSOPF_RS_b2383_c1 38.1 16,171.2 4.8 31.8 654 0.0
TSOPF_RS_b2383 38.1 16,171.2 4.8 31.8 654 0.0
rajat25 87.2 606.5 83.5 589.8 57 3.4
rajat28 87.2 606.5 83.5 589.8 57 3.4
rajat20 86.9 604.3 83.0 587.5 57 3.6
ASIC_320k 321.8 1,931.8 320.9 1,314.3 6 0.3
ASIC_320ks 321.7 1,316.1 320.9 1,314.3 6 0.1
rajat30 644.0 6,175.2 632.2 6,148.3 7 11.7
Freescale1 3,428.8 17,052.6 3,408.8 16,976.1 19 0.0

2. KLU with default parameters, except that BTF is disabled. For most matrices,
using BTF is preferred, but in a few cases the BTF pre-ordering can dramatically
increase the fill-in in the LU factors.

3. SuperLU 3.1 [12], using non-default diagonal pivoting preference and ordering
options identical to KLU (but without BTF).2 These options typically give
the best results for circuit matrices. SuperLU is a supernodal variant of the
Gilbert/Peierls’ left-looking algorithm used in KLU.

4. UMFPACK [4,6,7] with default parameters. In this mode, UMFPACK evaluates
the symmetry of the nonzero pattern and selects either the AMD ordering on
A C AT and a strong diagonal preference, or it uses the COLAMD ordering with
no preference for the diagonal. For most circuit simulation matrices, the AMD
ordering is used. UMFPACK is a right-looking multifrontal algorithm that makes
extensive use of BLAS kernels.

5. Sparse 1.3 [21, 22], the sparse solver used in SPICE3f5, the latest version of
SPICE.3

The University of Florida Sparse Matrix Collection [10] includes 81 real square
unsymmetric matrices or matrix sequences (only the first matrix in each sequence is
considered here) arising from the differential algebraic equations used in SPICE-like
circuit simulation problems, or from power network simulation. All five methods
were tested an all 81 matrices, except for two matrices too large for any method
on the computer used for these tests (a single-core 3.2 GHz Pentium 4 with 4 GB
of RAM). The thirteen matrices requiring the most amount of time to analyze,
factorize, and solve (as determined by the fastest method for each matrix) are shown
in Table 1. All of the matrices come from a transient analysis, since the run time

2 Threshold partial pivoting tolerance of 0.001 to give preference to the diagonal, the SuperLU
symmetric mode, and the AMD ordering on A C AT .
3http://bwrc.eecs.berkeley.edu/Classes/icbook/SPICE/

http://bwrc.eecs.berkeley.edu/Classes/icbook/SPICE/
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for KLU is very low for matrices arising from a DC analysis. The table lists the
matrix name followed by the size of the whole matrix and the largest block in
the BTF form (the dimension and the number of nonzeros). The last two columns
list the dimension of the second-largest block, and the number of 1-by-1 blocks,
respectively.

A performance profile compares the relative run times of multiple methods on a
set of test problems. Let the relative run time of a method on a particular problem be
equal to its run time for that problem divided by the fastest run time of any method
for that problem. A relative run time of 1.0 means that the method is the fastest for
that problem among the methods being compared; 2.0 means that it took twice the
time as the fastest method. The x axis of a performance profile is this relative run
time. The y axis of a performance profile is the number of problems. A point .x; y/

is plotted if a method has a relative run time of x (or less) for y problems in the
test set.

The performance profiles of the four methods are shown in Fig. 2. It excludes
the symbolic ordering and analysis, since this step is done just once for a whole
sequence of matrices. Note that the x axis of Fig. 2 is a log scale. For most matrices,
KLU (with BTF) is the fastest method. In the worst case (the Raj1 matrix) it is 26
times slower than SuperLU, but this is because the permutation to BTF used by
KLU causes fill-in to dramatically increase.

Fig. 2 Performance profile of refactorize+solve time
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Table 2 AnalyzeCfactorizeCsolve time in seconds, and relative fill-in (jL C U j=jAj)
for KLU. Run times within 25% of the fastest are shown in bold. A dash is shown if the
method ran out of memory
Matrix KLU+BTF KLU no BTF SuperLU Sparse 1.3

Fill Time Fill Time Time Time
Raj1 40.3 111.0 5.5 4.6 4.2 3,038.9
ASIC_680ks 2.6 5.0 2.7 7.2 4.6 818.1
ASIC_680k 2.1 5.8 2.1 7.4 5.8 8,835.1
rajat24 28.7 119.0 3.3 6.0 13.9 –
TSOPF_RS_b2383_c1 1.3 6.5 2.1 71.8 34.9 –
TSOPF_RS_b2383 1.3 6.5 2.1 72.0 34.2 –
rajat25 6.7 8.5 35.2 31.7 37.2 2,675.4
rajat28 6.9 9.1 28.4 25.4 50.0 3,503.0
rajat20 7.0 9.1 35.2 31.3 40.5 4,314.1
ASIC_320k 2.5 30.4 42.9 447.5 18.1 7,908.2
ASIC_320ks 3.2 36.6 3.2 36.4 21.5 684.9
rajat30 5.1 73.0 3.2 23.8 22.5 –
Freescale1 3.9 86.8 3.9 85.6 – –

Table 3 RefactorizeCsolve time in seconds
Matrix KLU+BTF KLU no BTF SuperLU Sparse 1.3

Time Time Time Time
Raj1 94.4 3.0 3.3 127.4
ASIC_680ks 3.9 5.4 3.5 256.7
ASIC_680k 4.6 5.1 4.6 835.8
rajat24 91.2 3.7 12.4 –
TSOPF_RS_b2383_c1 5.2 40.8 10.9 –
TSOPF_RS_b2383 5.1 41.0 10.9 –
rajat25 6.7 27.0 36.8 374.4
rajat28 7.3 21.8 49.6 512.7
rajat20 7.3 26.8 40.2 657.1
ASIC_320k 28.7 429.0 17.1 870.1
ASIC_320ks 35.0 35.0 20.7 182.0
rajat30 60.5 18.6 19.6 –
Freescale1 70.5 70.6 – –

The time for the thirteen largest matrices is shown in Tables 2 and 3. The fastest
run times and run times within 25% of the fastest are shown in bold. A dash is shown
if the method ran out of memory.

For sparse Cholesky factorization, the flops per jLj ratio is an accurate predictor
of the relative performance of a BLAS-based supernodal method versus a non-
supernodal method. If this ratio is 40 or higher, chol in MATLAB (and x=A\b
for sparse symmetric positive definite matrices) automatically selects a supernodal
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Fig. 3 Relative performance of KLU versus UMFPACK as a function of flops/jL C U j
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solver. Otherwise, a non-supernodal solver is used [3]. A similar comparison is
shown in Fig. 3 between KLU and UMFPACK. If the matrix is reducible, only
the largest block is factorized. Figure 4 shows the results for sparse Cholesky
factorization from [3].
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These results are remarkable for three reasons:

1. Circuit matrices tend to have a low flop/jL C U j ratio as compared to other
matrices.

2. Even when the flop/jLCU j ratio is high enough (200 or more) to justify using the
BLAS, the relative performance of a BLAS-based method (UMFPACK) versus
KLU is much less than what would be expected if only non-circuit matrices were
considered. Thus, circuits not only remain sparse when factorized, even large
circuit matrices with higher flops/jL C U j ratios hardly justify the use of the
BLAS.

3. The flops/jL C U j ratio for LU factorization (Fig. 3) is not a very accurate
predictor of the relative performance of BLAS-based sparse methods as com-
pared to non-BLAS-based methods, as it is for sparse Cholesky factorization
(Fig. 4).

5 Summary

KLU has been shown to be an effective solver for the sequences of sparse matrices
that arise when solving differential algebraic equations for circuit simulation
problems. It is the default sparse solver in Xyce, a circuit simulation package
developed by Sandia National Laboratories [19], for which it has been proven to
be a robust and reliable solver [25].
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