Chapter 2
Background Algebra

THE aim of this chapter is to recall the main algebraic prerequisites and
all the notation and definitions used throughout the Book. All main
proofs are deferred to Chap.7. This chapter (and its counterpart Chap.7)
is intended for a Reader having only a basic undergraduate knowledge in
Algebra; a Reader acquainted with a more advanced knowledge of Algebra
may pass directly to Chap. 3.

Our main objects of interest for this chapter are:

— Free vector spaces, unital associative algebras, tensor products

— Free objects over a set X: the free magma, the free monoid, the free
(associative and non-associative) algebra over X

— Free Lie algebras

— Completions of metric spaces and of graded algebras; formal power series

— The universal enveloping algebra of a Lie algebra

2.1 Free Vector Spaces, Algebras and Tensor Products

2.1.1 Vector Spaces and Free Vector Spaces

Throughout this section, K will denote a field, while V' will denote a
vector space over IK. Moreover, when referring to linear maps, spans, basis,
generators, linear independence, etc., we shall tacitly mean' “with respect
to K”.

For instance, “let U, V be vector spaces” means that both U and V' are vector spaces over
the same field K.
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We recall the well known fact that any vector space possesses a basis.
More generally, we shall have occasion to apply the following result, which
can be easily proved by means of Zorn’s Lemma (as in [108, Theorem 5.1]):

Let V' # {0} be a vector space. Let I, G be subsets of V such that I C G, I
is linearly independent and G generates V. Then there exists a basis B of V with
ICBCG

Bases of vector spaces will always assumed to be indexed. Let B = {v; };e9
be a basis of V' (indexed over the nonempty set J). Then for every v € V
there exists a unique family {c¢;(v)}ieg C K such that ¢;(v) # 0 for all but
finitely many indices 7 in J and such that v = ), ¢;(v) v; (the sum being
well posed since it runs over a finite set). Occasionally, the subset I’ C J
such that ¢;(v) # 0 for every i € J’ will be denoted by J(v). When v = 0,
or equivalently J(v) = (), the notation 3", _, ¢; v; := 0 applies. Note that, for
every fixed v € V, the following formula

c:I =K, i ¢(v)
defines a well posed function, uniquely depending on v.

We obviously have the following result.

Proposition 2.1. Let V' be a vector space and let B be a basis of V.. Then for every
vector space X and every function L : B — X, there exists a unique linear map
L :V — X prolonging L.

If B = {v;}ieg, it suffices to set

L(v) == 2 icaw) Ci(v) L(vs).

The above proposition asserts that there always exists a unique linear
map L making the following diagram commute:

v

Here and in the sequel, when the context is understood, ¢ will always
denote the inclusion map of a set A C B into a set B.

The following are well known standard facts from Linear Algebra and
are stated without proofs for the sake of future reference.

Proposition 2.2. (i). Let V, X be vector spaces and let W be a vector subspace
of V. Suppose also that L : V' — X is a linear map such that W C ker(L)
and let m : V. — V/W denote the natural projection map.
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Then there exists a unique linear map L:V/W — X such that
L(m(v)) = L(v) foreveryv eV, (2.1)

thus making the following a commutative diagram:

L
Vv — s X
|

(ii). Let V, X be vector spaces and let L : V' — X be a linear map. Then the map
L:V/ker(L) = L(V), [olker) = L(v)

is an isomorphism of vector spaces.

Actually, (2.1) also defines L uniquely, the definition being well posed
thanks to the hypothesis W C ker(L) (indeed, 7(v) = n(v') iff v —v" € W, s0
that 7(v) = (v — v') + w(v") = w(v")).

Definition 2.3 (Free Vector Space). Let S be any nonempty set. We denote
by K(S) the vector space of the KK-valued functions on S non-vanishing only

on a finite (possibly empty) subset of S. The set IK(S) is called the free vector
space over S.

Occasionally, a function f : § — K non-vanishing only on a finite subset of
S will be said to have “compact support”.

Remark 2.4. Let v € S be fixed. We denote by

1, ifs=w

0, ifs#w 22)

x(v): S =K, x(v)(s):= {

the characteristic function of {v} on S. With this notation at hand, it is easily
seen that one has

K(S) = span{x(v) |v € S}, (2.3)

so that the generic element of IKK(S) is of the form

Z)\jx('l}j), wheren € IN, \q,...,\, €K, vq,...,v, €85.
j=1
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In the sequel, when there is no possibility of confusion, we shall identify
v € S with x(v) € K(S), so that the generic element of K(S) is of the form
> 5= Ajvj (with n, A; and v; as above), that is, IK(S) can be thought of as
the set of the “formal linear combinations” of elements of S. Thus S can be
viewed as a subset (actually, a basis) of IK(S). Occasionally, we shall also

write an element f of K(S) as

F=Yf6)xts)  (or F=3fix(®)), 2.4)

seS seS

the sum being finite, for f : S — K has compact support.

Remark 2.5. With the above notation, the set x(S) := {x(v)|v € S} isa
linear basis of IK(S). Indeed, let Ay, ..., A, € Kand letv,,...,v, be pairwise
distinct elements of S and suppose > 7, A; x(v;) = 0in K(S). For any fixed

i € {1,...,n} we then have?

0= (271 A x(y)) (wi) = 2274 Ay x(vs) 8y = A 1,

whence x(v1),...,x(v,) are linearly independent. Moreover (2.3) proves
that x(5) generates K(S).

We remark that the linear independence of the set x(S5) implies in
particular that x : S — IK(S) is an injective map.

As a consequence, KK(S) is finite dimensional iff S is finite. In this case, if
S ={v1,...,un}, we also use the brief notation K(vy, ..., vy) := K(S).

In the rest of this Book, the following result will be used many times.
This is the first of a series of universal properties of algebraic objects, which
we shall encounter frequently.

Theorem 2.6 (Universal Property of the Free Vector Space).

(i) Let S be any set. Then for every vector space X and every map F : S — X
there exists a unique linear map FX : IK(S) — X such that

FX(x(v)) = F(v) foreveryv € S, (2.5)

thus making the following a commutative diagram:

F
S —— v X
X
|

K(S)

2Here and throughout, §; ; represents as usual the Kronecker symbol, i.e., é;; =1,8; ; =0
ifi # j.
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(if) Vice versa, suppose V, o are respectively a vector space and amap ¢ : S — V
with the following property: For every vector space X and every map F:S—X
there exists a unique linear map F'¥ : V. — X such that

F?(p(v)) = F(v) foreveryv e S, (2.6)

thus making the following a commutative diagram:

F
S ——M—
o]
|
Vv

Then V is canonically isomorphic to IK(S), the isomorphism being X
K(S) — V and its inverse being x¥ : V- — IK(S). Furthermore ¢ is injective
and the set p(S) is a basis of V. Actually, it holds that ¢ = X o x.

X

When the identification S > v = x(v) € K(S) applies, the above map x
is the associated inclusion ¢ : S < K(S), so that we may think of FX as a
“prolongation” of F.

Proof. See page 393 in Chap.7. O

We recall the definitions of (external) direct sum and of product of a family
of vector spaces. Let {V; },c5 be a family of vector spaces (indexed over a set
J, finite, denumerable or not). We set

H Vi= {(vi)iej
i€J

@ Vi= {(Uz‘)iej

ie€d

v; € Vi forevery i € 3},

v; € V; for every i € Jand v; # 0 for finitely many z}

The former is called the product space of the vector spaces V;, the latter
is called the (external) direct sum of the spaces V;. More precisely, we use
a “sequence-style” notation (v;)ies to mean a function v : I — ;4 Vi,
v(i) =: v; with v; € V; for every ¢ € J. In other words

(0))ics = (V))ics == (for alli €9, v;,v, € V; and v; = Ug). 2.7)

Occasionally, when J is at most denumerable we may also use the notation
Eiej v; instead of (v;);cy. For example, according to this notation when
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J =N, the generic element of &, .\ Vi, is of the form v; + ... + v, where
peNandwv, €V, foreveryn =1,...,p.

This notation is justified by the fact that the product space and the exter-
nal direct sum of the spaces V; are naturally endowed with a vector space
structure (simply by defining the vector space operations componentwise).
Obviously €, , Vi is a subspace of [],., V;.

Remark 2.7. With the above notation, for any fixed j € J let

icJ

~ V' =V, fori=j
Vi=1|V/ wh ! - ’
pim LV where (V2 e o 2

Note that, for every j € J, V; is a vector subspace of P,cq Vi (hence of
[1;cq Vi). We now leave to the Reader the simple verification that the spaces

V; have the following property: Any v € ,_, Vi can be written in a unique

ie€d

way as a (finite) sum >, _, v; with v; € V; for every ¢ € J. Consequently,

i€’
@,c, Vi is the (usual) direct sum of its subspaces {V;}icy (and the name
“external direct sum” is thus well justified).

If, for every fixed j € J, we consider the linear map

, .
4 vi:=wv, fori=j
L-:V—>@V» Visv (vl), where H ’ R
7 it v (vi)ies vl =0, fori # j,
(3

it is easily seen that ¢;(V;) = V;. Moreover, ¢; is an isomorphism of V; onto
its image Vj, so that V; ~ V; for every j € J. As claimed above, using also
(2.7), for any v = (v;)ieg € EBiej Vi we have the decomposition

V=g ti(vi) (with Li(vi) € Vi foralli e I]). (2.8)

Hence, throughout the sequel we shall always identify any V; as a subspace of
D, cq Vi (or of [ 1,4 Vi) by the canonical identification V; ~ V; via ;.

The following simple fact holds:
Theorem 2.8 (Universal Property of the External Direct Sum).

(i) Let {V;}ieg be an indexed family of vector spaces. Then, for every vector space
X, and every family of linear maps {F;};cy (also indexed over J) with F; :
Vi = X (for every i € J) there exists a unique linear map Fs; : @, ., Vi — X
prolonging I, for every i € J. More precisely it holds that

icd

Fx(1;(v)) = Fi(v) foreveryi € Jand every v €'V, (2.9)
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thus making the following a family (over i € J) of commutative diagrams:

F;
v, ————

|

Dies Vi

(The notation @;cqF; for Fs; will also be allowed.)

Conversely, suppose V., {; }icg are respectively a vector space and a family of
linear maps p; : V; — V with the following property: For every vector space
X and every family of linear maps { F; },cy with F; : V; — X (for every i € J)
there exists a unique linear map F, : V' — X such that

Fu(pi(v)) = Fi(v) forevery i € Jand every v € V;, (2.10)
thus making the following a family (over i € J) of commutative diagrams:

F;
v, ——

| A

v

(The notation ®;cqF; for F, will also be allowed.) Then V is canonically
isomorphic to @, ., V;, the isomorphism being ©icyp; : @,cq Vi — V and
its inverse being Picgi; V. — EBZ.GJ Vi. Furthermore any o, is injective
and V. = @, .4 i (Vi) (direct sum of subspaces of V). Actually, it holds that
i = (Bieapi) © L.

Proof. (i) follows from (2.8), by setting (here v; € V; for all ¢)

Fs : @, Vi = X, FE(ZieJ Li(vi)) = ieg Fi(vi).

A simple verification shows that this map is linear and obviously it is the
unique linear map satisfying (2.9).

(ii) follows by arguing as in the proof of Theorem 2.6 (see page 393). The

fact that V' = @, i (V;) derives from the following ingredients:

— The decomposition of @V, into the direct sum of its subspaces

N i€d
Vi =u(V5).

The isomorphism @;cy0; : P,eq Vi = V.

The set equality ( Dicg ;) (1i(Vi)) = @i(V7). O

The following is easily seen to hold.
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Proposition 2.9. Let {V;};cq be a family of vector spaces. For every i € J, let B;
be a basis of V;. Then the following is a basis for the external direct sum @, _, V;:

{(wi)ieg ‘wl € B, forevery i € Jand 3! iy € J such that w;, # 0}.

2.1.2 Magmas, Algebras and (Unital) Associative Algebras

2.1.2.1 Some Structures and Their Morphisms

Since there are no universal agreements for names, we make explicit our
convention to say that a set A is:

1. A magma, if on A there is given a binary operation A x A — A4, (a,a’) —
axa.

2. A monoid, if (A, x) is a magma, * is associative and endowed with a unit

element.

. An algebra, if (A, ) is a magma, A is a vector space and # is bilinear.

. An associative algebra, if (A, %) is an algebra and * is associative.

5. A unital associative algebra (UA algebra, for brevity), if (4, %) is an associa-
tive algebra and * is endowed with a unit element.

6. A Liealgebra, if (A, x) is an algebra, * is skew-symmetric and the following
Jacobi identity holds

=~ W

a*x(bxc)+bx(cxa)+cx(axb)=0, foralla,b,ce A.

As usual, in the context of Lie algebras, the associated operation will be
denoted by (a, a’) — [a, a'] (occasionally, [a, a’] 1) and it will be called the Lie
bracket (or simply, bracket or, sometimes, commutator®) of A.

Other structures (which we shall use less frequently) are recalled in the
following (self-explanatory) table:

(A, %) * Binary | * Associative |+ Has a unit (A jeiig?iggce)
Magma vV
Unital magma v v
Semigroup Vv V
Monoid Vv Vv v
Algebra v v
Associative algebra Vv Vv v
UA algebra Vv Vv N v

3In the literature, the term “commutator” is commonly used as a synonym of “bracket”.
In this Book we shall use the term commutator only for a special kind of bracket: that
obtained from an underlying associative algebra structure.
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If (A,®), (B,®) are two magmas (respectively, two monoids, two alge-
bras, two unital associative algebras, two Lie algebras), we say that a given
map ¢ : A — Bis:

1. A magma morphism, if p(a ® ') = p(a) © p(a’), for every a,a’ € A.

2. A monoid morphism, if ¢ is a magma morphism mapping the unit of A into
the unit of B.

3. An algebra morphism, if ¢ is a linear magma morphism.

4. A morphism of unital associative algebras (UAA morphism, in short), if ¢ is
a linear monoid morphism, or equivalently, if ¢ is an algebra morphism
mapping the unit of A into the unit of B.

5. A Lie algebra morphism (LA morphism, in short), if ¢ is an algebra
morphism, i.e. (with the alternative notation for the algebra operation)

o(la,a']a) = [pla),o(a’)]s, foreverya,a’ € A.

The prefix “iso” applies to any of the above notions of morphism ¢, when ¢
is also a bijection. Plenty of examples of the above algebraic structures will
be given in the next sections. The following definitions will also be used in
the sequel:

1. Let (M, ) be a magma (possibly, a monoid) and let U C M; we say that
U is a set of magma-generators for M (or that U generates M as a magma)
if every element of M can be written as an iterated *-product (with any
coherent insertion of parentheses) of finitely many elements of U. In the
presence of associativity, this amounts to saying that every element of A/

can be written in the form uq * - - - xuy, forsome &k € Nand uq,...,u; € U.
When M is a monoid, the locution U generates M as a monoid will also
apply.

2. Let (A, %) be an algebra (associative or not, unital or not) and let U C A4;
we say that U is a set of algebra-generators for A (or that U generates A as an
algebra) if every element of A can be written as a finite linear combination
of iterated *-products (with coherent insertions of parentheses) of finitely
many elements of U.

3. When (A4, [-,]) is a Lie algebra, in case (2) we say that U is a sef of Lie-
generators for A (or that U Lie-generates A). In this case (see Theorem 2.15
at the end of the section), this is equivalent to saying that every element
of A can be written as a finite linear combination of nested elements of the
form [uq -+ - [ug—1,u] -], for k € Nand uq,...,u; € U.

Definition 2.10 (Derivation of an Algebra). If (A, ) is an algebra, we say
thatamap D : A — Ais aderivation of Aif D is linear and it holds that

D(a*b) = (Da)*b+ax (Db), foreverya,be A.
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When A is a Lie algebra, this can be rewritten
Dia,b] = [Da,b] + [a, Db], foreverya,b e A.

Here is another definition that will play a central rdle.
Definition 2.11 (Graded and Filtered Algebras).

Graded Algebra: We say that an algebra (A, *) is a graded algebra if it
admits a decomposition of the form A = 72, A;, where the A; are
vector subspaces of A such that 4; «x A; C A;y; for every i,5 > 1. In
this case, the family {4,},>1 will be called a grading of A.

Filtered Algebra: We say that an algebra (A, *) is a filtered algebra if A =
Uj=, Fj, where the sets F; are vector subspaces of A such that F; x Fj; C
Fi4; for every i,j > 1 and

F; C Fj41, foreveryje N

In this case, the family {F}; } ;>1 will be called a filtration of A.

For example, in the case of Lie algebras, a graded Lie algebra A = @72, A,
fulfils [A;, A;] C A4, for every 4, j > 1. Note that if {4;};>1 is a grading of
A then A admits the filtration {F}},;>1, where F; := @J_, A;.

The following simple result will be applied frequently in this Book.

Proposition 2.12 (Quotient Algebra). Let (A, ) be an algebra and let I C A
be a two-sided ideal* of A. Then the quotient vector space A/ is an algebra (called
quotient algebra of A modulo I), when equipped with the operation

®: A/T x AJT — AJI, [a); ® [b]; :==[axb];, VY a,b€ A.

Moreover, the associated projection 1 : A — A/I (ie., w(a) = [a]; for every
a € A) is an algebra morphism. Finally, if (A, %) is associative (respectively, unital),
then the same is true of (A/I, ®) (and respectively, its unit is [14]7).

The proof is simple and we only remark that the well-posedness of ® follows
by this argument: if [a]; = [a']; and [b]; = [V/]; thend’ = a+zand ¥ =b+y
with x,y € I so that

axb =axb+axy+ax*xb+axzxy, whence|d xb];=[ax*b]s.

el

“We recall that this means that I is a vector subspace of A and that a* 4,4 * a € I for every
i€ Iand every a € A.
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2.1.2.2 Some Notation on Lie Algebras
In this section, (A4, [-,]) denotes a Lie algebra. If U,V C A we set
[U, V] := span{[u, ] [u € U, v € V}.

Note that (unlike some customary notation) [U, V] is not the set of brackets
[u,v] with uw € U, v € V, but the span of these.

Let U C A. We say that the elements of U are brackets of length 1 of U.
Inductively, once brackets of length 1, ...,k — 1 have been defined, we say
that [u,v] is a bracket of length & of U, if u,v are, respectively, brackets of
lengths i, j of U and i + j = k. As synonyms for “length”, we shall also use
height or order. For example, if uy,...,ur € U, then

([u1, uzl, [[[us, [wa, us]], ue], urll, ([[wa, [[uz, us], wa]], us), [ue, ur]]

are brackets of length 7 of U. Note that an element of a Lie algebra may have
more than one length (or even infinitely many!). For example, if A is the Lie
algebra of the smooth vector fields on R* and X = 9,, Y = 2 9,, then

X=[-[X,Y]---Y], VkeN,
——

k times

so that X is a bracket of length k of U = {X, Y}, for every k € IN.
When uy,...,u, € U, brackets of the form

[uh [UQ R [kalyuk] . ]], [[ .. [Ul,UQ] . "Uk—l],uk]

are called nested (respectively, right-nested and left-nested). The following
result shows that the right-nested brackets span the brackets of any order.
First we give a definition.

Definition 2.13 (Lie Subalgebra Generated by a Set). Let A be a Lie
algebra and let U C A. We denote by Lie{U} the smallest Lie subalgebra
of A containing U and we call it the Lie algebra generated by U in A. More
precisely, Lie{U} = b, where the spaces h run over the set of subalgebras
of A containing U.

Remark 2.14. With the above notation, it is easily seen that Lie{U} coincides
with the span of the brackets of U of any order. More precisely, if W}, denotes
the span of the brackets of U of order £, it holds that Lie{U} = ), .y Wi,
where |4 denotes the sum of vector subspaces of A. Equivalently,

Lie{U} = span{W, | k € IN}
= span{w| w is a bracket of order k of U, with k € IN}.
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Theorem 2.15 (Nested Brackets). Let A be a Lie algebra and U C A. Set
Uy :=span{U}, Un:=[U,U,-1], n>2.
Then we have Lie{U} = span{U,, | n € IN}. Moreover, it holds that
Ui, Uj] C Uiy, foreveryi,j e IN. (2.11)

We remark that, from the definition of U,,, the elements of U,, are linear
combination of right-nested brackets of length n of U. The above theorem
states that every element of Lie{U} is in fact a linear combination of right-nested
brackets (an analogous statement holding for the left case).

To show the idea behind the proof (which is a consequence of the
Jacobi identity and the skew-symmetry of the bracket), let us take w1, us,
v1,v2 € U and prove that [[ug, ug], [v1, v2]] is a linear combination of right-

nested brackets of length 4. By the Jacobi identity [X, [Y, Z]] = —[Y, [Z, X]] —
[Z,]X,Y]] one has
[[u1, ual, @,\Uij] = —[v1, [v2, [ur, ua]]] — [v2, [[ur, ua], v1]]
X Yy z

= —[o1, [v2, [ur, uall] + [v2, [v1, [ur, us]]] € Ul

Proof (of Theorem 2.15). We set U* := span{U, |n € IN}. Obviously, U*
contains U and is contained in any Lie subalgebra of A which contains U.
Hence, we are left to prove that U* is closed under the bracket operation.

Obviously, it is enough to show that, for any 4, j € IN and for any u, ..., u;,
v1,...,v; € U wehave
[uafua - - [wi—1, ug] - |]]s [va o2+ [vj—1, 03] - - J]]| € Uiy

We argue by induction on k := i 4 j > 2. For k = 2 and 3 the assertion is
obvious whilst for k = 4 we proved it after the statement of this theorem.
Let us now suppose that the result holds for every i + j < k, with & > 4,
and prove it then holds when ¢ + j = k + 1. We can assume, by skew-
symmetry, that j > 3. Exploiting repeatedly the induction hypothesis, the
Jacobi identity and skew-symmetry, we have

u; [vrfoa[- - [vj-1,05] -+ ]]]
= _[Ula [[U2’ [U3’ T ]]’ u]] - [[UQ’ [U3’ o ]]’ [ua Ul]]
—_—
length k

= {element of Uy+1} — [[v1,ul, [v2, [Us, - - -]]]
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= {element of Uk 1} + [va, [[v3, -~ -], [v1, wl]] + [[vg, - -], [[or, u]wa]]
—_——
length k
= {element of Up11} + [[vz, [v1,u]], [v3,---]]
(after finitely many steps)

= {element of Uy 11} + (—1) " [vj—s, [vj_a, - - - [v1,u]]], v;]

= {element of U1} + (—1)7[v}, [vj—i, [Vj—2, - - - [v1, u]]]]

€ Ug41.

This ends the proof. O

The previous proof shows something more: An arbitrary bracket v of length
k of {u1,...,ux} (the minimal set of elements appearing in u) is a linear
combination (with coefficients in {—1, 1}) of right-nested brackets of length
k of the same set {uy, ..., u;} and in any such summand there appear all the
u; fori =1,..., k. (An analogous result also holds for left-nested brackets.)

Definition 2.16. Let (A, ) be an associative algebra. Let us set
[a,b]« :=axb—bx*a, foreverya,be A. (2.12)

Then (4, [, ]+) is a Lie algebra, called the Lie algebra related to A.

The Lie bracket defined in (2.12) will be referred to as the commutator
related to A (or the x-commutator) and the Lie algebra (4, [+, -].) will also be
called the commutator-algebra related to A. The notation [-, -] 4 will occasionally
apply instead of [-, -]. when confusion may not arise.

Even if authors often use the term “commutator” as a synonym for
“bracket”, we shall reserve it for brackets obtained from an associative
multiplication as in (2.12).

Due to the massive use of commutators throughout the Book, we exhibit
here the proof of the Jacobi identity (anti-symmetry and bilinearity being
trivial):

[av [bv C]*]* + [bv [C, a]*]* + [Ca [aﬂ b]*]*

—axbxc—axcxb—bxcxat+cxbxa+bxcxa—bxaxct

—cxaxb+axcxb+crxaxb—cxbxa—axbxc+bxaxc
=0 (summands canceling as over-/under-lined.)
It will be via the Poincaré-Birkhoff-Witt Theorem (a highly nontrivial result)

that we shall be able to prove that (roughly speaking) every Lie bracket can
be realized as a suitable commutator (see Sect.2.4).
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Convention. Let (A, x) be an associative algebra. When a Lie algebra structure
on A is invoked, unless otherwise stated, we refer to the Lie algebra on A which is
induced by the associated x-commutator. So, for example, if (g, [, ]4) is a Lie
algebra, (A, ) is an associative algebra and ¢ : g — A is a map, when we
say that “¢ is a Lie algebra morphism”, we mean that ¢ is linear and that it
satisfies ¢([a, b]g) = ¢(a) * p(b) — ¢(b) * ¢(a), for every a,b € g.

Remark 2.17. Let (A, ®), (B, ®) be associative algebras and let ¢ : A — B be an
algebra morphism. Then  is also a Lie algebra morphism of the associated commu-
tator-algebras. Indeed, for every a,a’ € A one has

¢(la,ale) = pla®a’ —d' ®a) = p(a) @ p(a’) — p(a’) @ ¢(a)
= [p(a),(a’)]o-
Remark 2.18. Let (A,x*) be an associative algebra and let D : A — A bea

derivation of A. Then D is also a derivation of the commutator-algebra related to A.
Indeed, for every a,a’ € A one has

D([a,a'].)

! I
D(axa" —a *xa)

(
D(a)*a +axD(a') — D(a') xa—a’ * D(a)

(D(a) xa' —a’ * D(a)) + (ax D(a’) — D(a’) * a)
= [D(a), ']« + [a, D(a)]..

2.1.2.3 Free Magma and Free Monoid

The remainder of this section is devoted to the construction of the free
magma, the free monoid and the free algebra (associative or not) generated
by a set. These structures will turn out to be of fundamental importance
when we shall be dealing with the construction of free Lie algebras, without
the use of the Poincaré-Birkhoff-Witt Theorem (see Sect.2.2).

We begin with the construction of a free magma generated by a set.
We follow the construction in [26, I, §7, n.1]. Henceforth, X will denote a
fixed set.

To begin with, we inductively set M7 (X) := X, and (if | | denotes disjoint
union® of sets)

SWe recall the relevant definition: let {A; };c 5 be an indexed family of sets (J may be finite,
denumerable or not). By [],.; A; we mean the set of the ordered couples (i, a) where i € J
and a € A;, and we call it the disjoint union of (the indexed family of) sets {A;}icq. As a
common habit, the first entry of the couple is dropped, but care must be paid since the
same element a possibly belonging to A; and A; with ¢ # j gives rise to distinct elements
in H i Ai.
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MQ(X) =X x X, Mg(X) = (MQ(X) X Ml(X)) H (Ml(X) X MQ(X)),

My(X):= [ Map(X)x My(X), foreveryn >2; (2.13)
pe{l,...n—1}

M(X) = [] Ma(X). (2.14)
nelN

Equivalently, we can drop the sign of disjoint union and replace it with
standard set-union, provided we consider as distinct the Cartesian products

(X x X X)x (X xxX)#Xx-xX.

n times m times n + m times

Hence, we have

Mi(X) =X, My(X)=X x X,

M3(X)=(X xX)x X)U(X x (X x X)),

My X)=(X xX)x X)x X)U((X x (X x X)) x X)U

U(X XxX)Xx (X xX))UX x (X xX)x X)) U (X x (X x (X x X)),

My(X):= ) M, p(X)x My(X), foreveryn>2,
pe{l,...,n—1}

and M (X) =,y Mn(X).

Roughly, M (X) is the set of non-commutative and non-associative words
on the letters of X, where parentheses are inserted in any coherent way
(different parentheses defining different words). For brevity, we set M,, :=
M, (X). For example, if € X, the following are distinct elements of My:

<(:I:,:I:),(((x,(m,x)),x),x)), (((w,((m,x),x)),x),(:E,:E))

Via the natural injection X = M; C M (X), we consider X as a subset of
M(X) (and the same is done for every M,,). For every w € M (X) there exists
a unique n € N such that w € M,,, which is denoted by n = ¢(w) and called
the length of w. Note that any w € M (X) with ¢(w) > 2 is of the form w =
(w', w") for unique w’, w” € M(X) satisfying ¢(w’) 4+ ¢(w") = £(w). For any
w,w € M(X)withw € M, and w' € M, , we denote by w.w’ the (unique)
element of M, 4, corresponding to (w, w’) in the canonical injections M,, x
M, C My1y C M(X). The binary operation (w, w') — w.w’ endows M (X)
with the structure of a magma, called the free magma over X.
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Remark 2.19. Obviously, X is a set of magma-generators for M (X). More-
over, we have a sort of “grading” on M (X) (M (X) has no vector space struc-
ture though), for it holds that M (X) = |J,,cn Mn(X) and M;(X).M;(X) C
M;+;(X), forevery i, j > 1.

Lemma 2.20 (Universal Property of the Free Magma). Let X be any set.

(i) For every magma M and every function f : X — M, there exists a unique
magma morphism f : M(X) — M prolonging f, thus making the following
a commutative diagram:

17

M(X)

M

(if) Vice versa, suppose N, ¢ are respectively a magma and a function p : X — N
with the following property: For every magma M and every function f : X —
M, there exists a unique magma morphism f% : N — M such that

fP(p(x) = f(z), foreveryz € X,

thus making the following a commutative diagram:

f
X — M

| A7

N

Then N is canonically magma-isomorphic to M (X), the magma isomorphism
being (see the notation in part (i) above) @ : M (X) — N and its inverse being
1? : N — M(X). Furthermore ¢ is injective and N is generated, as a magma,
by p(X). Actually, it holds that ¢ = B o 1. Finally, we have N ~ M (o(X)).

Proof. (i) The map f is defined as follows: Let * be the operation on M and
let us consider the maps f, defined by

fl : Ml %Ma fl(‘r) = f(‘r)v Vo € Xa

fa i My — M, fa(w1.22) = f(x1) * f(22), Vai, 22 € X,

. f3((z1.22).23) := (f(21) * f(22)) * f(23)
fa: Ms = M, {f3<z1.<z2.z3>> = Flan) * (f(2) * f(3))

V.”L‘l,xg,xg S X,
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and, inductively, f,, : M,, — M is defined by setting f,(w.w’) := fr—p(w) *
fp(w'), foreveryp € {1,...,n — 1} and every (w,w') € M,,_, x M,. Finally,
let f : M(X) — M be the unique map such that f|,;, coincides with f,,. It
is easily seen that f is a magma morphism and that it is the only morphism
fulfilling (i).

(ii) follows by arguing as in the proof of Theorem 2.6 (see page 393). We
recall the scheme of the proof. We have the commutative diagrams

» L
X — N X — M(X)
v [ / ¢
® e
M(X) N
Obviously, the following are commutative diagrams too
. ®
XC—— M(X) X —— N
. [ / [ J{
idar(x) idy
M(X) o

The maps t¥ o : M(X) - M(X),$ot? : N - N are magma morphisms
such that

(o)) =uz) VeeX, (Por?)(p(r)) =) VreX.

Hence, by the uniqueness of the morphisms represented by the “diagonal”
arrows in the last couples of commutative diagrams above, we have

LwanidM(X), po? =idy.

The rest of the proof is straightforward. O

We next construct the free monoid over X. We could realize it as a quotient
of the free magma M (X) by identifying any two elements in M,, which are
obtained by inserting parentheses to the same ordered n-tuple of elements
of X. Alternatively, we proceed as follows (which allows us to introduce in
a rigorous way the important notion of a word over a set).

Let X be any fixed set. Any ordered n-tuple w = (1, ..., z,) of elements
of X is called a word on X and n =: {(w) is called its length. By convention,
the empty set is called the empty word, it is denoted by e and its length is
taken to be 0. The set of all words of length n is denoted by W,, and we set

Mo(X) = U, Wa-
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Obviously, X is identified with the set of words in Mo(X) whose length is

1.Ifw= (x1,...,2,) and w’ = (2},...,2],) are two words on X, we define
anew word w” = (zf,...,z] ) (by juxtaposition of w and w’) by setting
" xj, forj=1,...,n,
R P forj=n+1 n+n'
{3 e .

With the above definition, we set w.w’ := w”. It then holds {(w.w') =
L(w) + L(w') so that W, . W,, = W,4, for every n,n’ > 0. Any word
w = (z1,...,2,) (With z1,...,2, € X) is written in a unique way as
W= T1.T3.- - .Tn, SO that

Wo = {e}, Wn:{xl.xg.---.xn‘xl,...,xneX}, nelN. (2.15)

Obviously, one has e.w = w.e = w for every w € Mo(X).
If w,w,w"” € Mo(X), then (w.w").w” and w.(w'.w") are both equal to the
word v’ = (zf’,...,z}") where h = {(w) + {(w’) + ¢(w") and

Zj, ]Zlavé(w)/
2! = I_/j—é(w)’ j=Llw)+1,... lw)+ L),
Ty tturys § = L)+ £) + 1, Bw) + L) + ).

As a result, (Mo(X),.) is a monoid, called the free monoid over X .

Remark 2.21. Obviously, {e} U X is a set of generators for Mo(X) as a
monoid. Note that Mo(X) \ {e} is a semigroup, i.e., an associative magma
(which is not unital, though) and that X is a set of magma-generators for
Mo(X) \ {e} (i.e., every element of Mo(X) \ {e} can be written as a finite —
nonempty — product of elements of X).

Moreover, we have a sort of “grading” on Mo(X) (though Mo(X) is not
a vector space), for it holds that Mo(X) = (J,,~o W, and W;.W; C Wi, for
every¢,j > 0.

The adjective “free” is justified by the following universal property, whose
proof is completely analogous to that of Lemma 2.20.

Lemma 2.22 (Universal Property of the Free Monoid). Let X be any set.

(i) For every monoid M and every function f : X — M, there exists a unique
monoid morphism f : Mo(X) — M prolonging f, thus making the following
a commutative diagram:

3

Mo(X)

M
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(ii) Conwersely, suppose N, @ are respectively a monoid and a function ¢ : X — N
with the following property: For every monoid M and every function f : X —
M, there exists a unique monoid morphism f% : N — M such that

f2(p(x) = f(z), foreveryz € X,

thus making the following a commutative diagram:

f
X — M

| A7

N

Then N is canonically monoid-isomorphic to Mo(X ), the monoid isomorphism
being (see the notation in part (i) above) @ : Mo(X ) — N and its inverse being
1? : N = Mo(X). Furthermore  is injective and N is generated, as a monoid,
by o(X). Actually, it holds that ¢ = P o v. Finally, we have N ~ Mo(p(X)).

2.1.2.4 Free Associative and Non-associative Algebras

We now associate to each of M(X),Mo(X) of the previous section an
algebra (over K). Let, in general, (M,.) be a magma. Let M, be the free
vector space over M (see Definition 2.3), i.e.,

Mayg := K(M).

With reference to the map x in Remark 2.4, we know from Remark 2.5 that
{x(m)|m € M} is a basis for M,,. We now define on M, an algebra
structure, compatible with the underlying structure (//,.). With this aim
we set

(Shxm) « (X Noxtmi) = 3 Axtmemi),
i=1

i'=1 1<i<p, 1<i/<p’

for any arbitrary p,p’ € IN, A1,..., Ay € K, A}, A, € K, om0 ,my € M,

my,...,my, € M. Following the notation in (2.4), the * operation can be

rewritten (w.r.t. the basis x(M)) as

=3 (X F@f@)xtm), Y F € My

meM a,a’EM: a.a’=m

(having set f = >, f(a) x(a), f" = D 0cp f'(a") x(a))-
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It is easy to prove that (Mg, *) is an algebra (when M is a magma), an
associative algebra (when M is a semigroup) and a UA algebra (when M
is a monoid) with unit x(e) (e being the unit of M), called the algebra of M.

Clearly m*m’ = m.m/ for every m, m’ € M (by identifying m = x(m), m' =
x(m’)) so that x can be viewed as a prolongation of the former . operation.

Remark 2.23. 1f (M, .) is a magma (resp., a monoid), then the injective map
X:(M,.)— (Malgv *)

is a magma morphism (resp., a monoid morphism). Indeed, one has x(m) *
x(m') = x(m.m'), for every m,m’ € M by the definition of  (together with
the fact that x(e) is the unit of M,;; when e is the unit of the monoid M).

The passage from M to the corresponding M, has a universal property:

Lemma 2.24 (Universal Property of the Algebra of a Magma, of a Monoid).
Let M be a magma.

(i) For every algebra A and every magma morphism f : M — A (here A
is equipped only with its magma structure), there exists a unique algebra
morphism fX : Myg — A with the following property

X(x(m)) = f(m), foreverym € M, (2.16)

thus making the following a commutative diagram:

f
M ——— A

| A

M, alg

(if) Vice versa, suppose N, ¢ are respectively an algebra and a magma morphism
@ : M — N with the following property: For every algebra A and every
magma morphism f : M — A, there exists a unique algebra morphism f¢ :
N — A such that

fe(p(m)) = f(m), foreverym e M,
thus making the following a commutative diagram:
f

M —
SOJ/

fW
N

A
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Then N is canonically algebra-isomorphic to My, the algebra isomorphism
being (see the notation in part (i) above) X : My — N and its inverse being
X% : N — Mayg. Furthermore o is injective and (M) is a linear basis for N.
Actually, it holds that ¢ = X o x. Finally, it also holds N ~ (¢(M))ag =
K(p(M)), the algebra of the magma (M) or, equivalently, the free vector
space over the set (M).

(iii) Statements analogous to (i) and (ii) hold when M is a monoid, by replacing,
respectively, the above algebras A, N, the magma morphisms f, o and the alge-
bra morphisms fX, f¢ by, respectively, UA algebras A, N, monoid morphisms
f, o and UA algebra morphisms fX, f*.

Proof. See page 396 in Chap.7. O

In the particular case when M = M(X) is the free magma over the set X,
we set Lib(X) := (M (X))ag and we call it the free (non-associative) algebra
over X. Moreover, when M = Mo(X) is the free monoid over X, we set
Libas(X) := (Mo(X))alg and we call it the free UA algebra over X.

More explicitly, we have

Lib(X) := K(M(X)),  Libas(X) := K(Mo(X)), (2.17)

i.e., the free (non-associative) algebra over X is the free vector space related to the
free magma over X and the free UA algebra over X is the free vector space related
to the free monoid over X, both endowed with the associated algebra structure
introduced at the beginning of this section.

It is customary to identify M (X)) (resp., Mo(X)) with a subset of Lib(X)
(resp., of Libas(X)) via the associated map x, and we shall do this when
confusion does not arise. Hence, it is customary to consider X as a subset
of Lib(X) and of Libas(X). (But within special commutative diagrams we
shall often preserve the map x.)

Remark 2.25. By an abuse of notation, we shall use the same symbol x|x in
the following statements, whose proof is straightforward:

1. The map x|x : X — Lib(X) obtained by composing the maps X —
M(X) 5 K(M(X)) = Lib(X) is injective and x (X ) generates Lib(X) as
an algebra (in the non-associative case).

2. The map x|x : X — Libas(X) obtained by composing the maps
X < Mo(X) - K(Mo(X)) = Libas(X) is injective and {x(e)} U x(X)
generates Libas(X) as an algebra (in the associative case).

Remark 2.26. 1. The set x(X) is a set of generators for Lib(X), as an algebra (this
follows from Remark 2.19). Identifying M (X) with x(M (X)), we shall

also say that X is a set of generators for Lib(X), as an algebra. If we set
(M, being defined in (2.13))

Lib,, (X) := span{x(M, (X))}, n €N, (2.18)
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then Lib(X) is a graded algebra, for it holds that

Lib(X) = @ Lib,(X),  Libi(X)xLib;(X) C Lib;y;(X), 4,5 >1,
n>1
(2.19)
where * here denotes the algebra structure on Lib(X) induced by the
magma (M (X),.).

2. Let e denote the empty word, i.e., the unit of Mo(X). Then the set {x(e)} U
X(X) is a set of generators for Libas(X), as an algebra (this follows from
Remark 2.21). With the identification of Mo(X) with x(Mo(X)), we shall
also say that {e} U X is a set of generators for Libas(X), as an algebra.

If we set (W, being defined in (2.15))

Libas,,(X) := span{x(W,,)}, n >0, (2.20)
then Libas(X) is a graded algebra, for it holds that

Libas(X) = €D, Libas, (X)),
Libas;(X) = Libas;(X) C Libas;;;(X), 1,5 >0,

(2.21)

where * here denotes the algebra structure on Libas(X) induced by the
monoid (Mo(X),.).

The above Lemma 2.24 produces the following results, which we explicitly
state for the sake of future reference.

Theorem 2.27 (Universal Property of the Free Algebra). Let X be a set.

(i) For every algebra A and every functionf : X — A, there exists a unique
algebra morphism fX : Lib(X) — A with the following property

fX(x(x)) = f(x), foreveryz e X, (2.22)

thus making the following a commutative diagram:

!

X —
XIXJ /
fX

Lib(X)

A

(Here x|x : X — Lib(X) is the composition of maps X — M(X) -
K(M (X)) =Lib(X).)
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(if) Conwversely, suppose N, are respectively an algebra and a map ¢ : X — N
with the following property: For every algebra A and every function f : X —
A, there exists a unique algebra morphism f¥ : N — A such that

fe(p(z)) = f(z), foreveryz € M,

thus making the following a commutative diagram:

!
X — A

| A

N

Then N is canonically algebra-isomorphic to Lib(X), the algebra isomorphism
being (see the notation in part (i) above) X : Lib(X) — N and its inverse
being (x|x)¥ : N — Lib(X). Furthermore o is injective and (X ) generates
N as an algebra. Actually, it holds that ¢ = X o (x|x). Finally, it also holds
N ~ Lib(¢(X)), the free non-associative algebra over the set o(X).

Proof. (i): From Lemma 2.20-(i), there exists a magma morphism f
M(X) — A prolonging f. From Lemma 2.24-(i), there exists an algebra
morphism

7 (M(X))ag = Lib(X) — A

such that f*(x(m)) = f(m) for every m € M(X). The choice fX := f* does
the job. The uniqueness part of the thesis derives from the fact that x(X)
generates Lib(X) as an algebra.

Part (ii) is standard (it makes use of Remark 2.25-1). O

Theorem 2.28 (Universal Property of the Free UA Algebra). Let X
be a set.

(i) For every UA algebra A and every functionf : X — A, there exists a unique
UAA morphism fX : Libas(X) — A with the following property

X(x(x)) = f(x), foreveryz e X, (2.23)

thus making the following a commutative diagram:

!
X —— A

“| 7

Libas(X)
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(Here x|x : X — Libas(X) is the composition of maps X < Mo(X) =

K(Mo(X)) = Libas(X).)

(if) Vice versa, suppose N, ¢ are respectively a UA algebra and amap p : X — N
with the following property: For every UA algebra A and every function f :
X — A, there exists a unique UAA morphism f¥ : N — A such that

fP(p(x) = f(z), foreveryz € X,

thus making the following a commutative diagram:

!
X —
: l /
f‘P
N
Then N is canonically isomorphic to Libas(X) as UA algebras, the UAA
isomorphism being (see the notation in part (i) above) X : Libas(X) — N
and its inverse being (x|x)? : N — Libas(X). Furthermore y is injective and
{en}U@(X) generates N as an algebra (e denoting the unit of N). Actually,

it holds that ¢ = ©X o (x|x). Finally, it holds that N ~ Libas(yx(X)), the free
UA algebra over p(X).

A

Proof. The proof is analogous to that of Theorem 2.27, making use of Lemma
2.22-(i), Lemma 2.24-(iii) and Remark 2.25-2. O

2.1.3 Tensor Product and Tensor Algebra

Letn € N, n > 2 and Vi,...,V, be vector spaces. Let us consider the
Cartesian product V; x --- x V;, (which we do not endow with a vector
space structure!) and the corresponding free vector space IK(V; x --- x V,,)
(see Definition 2.3). The notation x(v1, ..., v,) agrees with the one given in
Remark 2.4.

Let us consider the subspace of K(V; X --- x V,,), say W, spanned by the
elements of the following form

X1, a0, .., 0n) —ax(V1, .., Vi, ),

X1, v 0 vn) = X (V1 Vi vn) — X (V1 U ),
(2.24)
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where a € K, i € {1,...,n}, v;,v; € V; for every j € {1,...,n}. The main
definition of this section is the following one:

M-V, =KWV, x--xV,)/W.

We say that V; @ - - - ® V), is the tensor product of the (ordered) vector spaces
Wi, ..., V, (orderly). Moreover, if 7 : K(V; x --- x V) > V1 ®---®V, is the
associated projection, we also set

V] Q- QU i=7(x(v1,...,0,)), Vv €W,....Vu, €V,

The element v; ® - - ® vy, of the tensor product V; ® --- ® V, is called an
elementary tensor of Vi @ --- ® V,,. Not every element of V; @ --- ® V,, is
elementary, but every element of V; ® --- ® V,, is a linear combination of
elementary tensors. Finally we introduce the notation

Y:Vixo o xV,=>Vi® -V, ¥,...,vn) =v18Q - Qu,.

In other words ¢) = 7o .

Remark 2.29. With the above notation, v is n-linear and (V4 x --- x V)
generates V1 ®@- - -®V,,. The last statement is obvious, whilst the former follows
from the computation:

(vi, .. av +a vl v,) = [X(vl,...,avi+a/v£,...,vn)}w

!
= [X(vl,...,avi—i—a VhyoonyUp)

—x(vl,...,avi,...,vn)—X(Ul,...,a'vg,...,vn)}

+ [X(vl,...,avi,...,vn)+X(vl,...,a'vi,...,vn)}w
=0+ [X(vl,...,avi,...,vn)—ax(vl,...,vi,...,vn)}w

+ [X(vl,...,alvé,...,vn)—a’x(vl,...,vg,...,vn)]w

+a[x(iy. vy on)]w +a [x(v1, Vo)W
=04+04+0+ap(vi,... 0y svn) +a P(v1,... 0. 00).

Using the “®” notation instead of ¢, the previous remark takes the form
vl®-~-®(avi+a/v§)®-~-®vn:a(v1®--~®vi®~-~®vn)
+a/(’U1®”'®Uz{®.”®U”)’

foreverya,a’ € K, everyi € {1,...,n}and everyv;,v; € V;forj =1,...,n.

We are ready for another universal-property theorem of major importance.
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Theorem 2.30 (Universal Property of the Tensor Product).

(i) Letn € N, n > 2and let Vi,...,V, be vector spaces. Then, for every vector
space X and every n-linear map F : Vi x - -- x V,, = X, there exists a unique
linear map F¥ : Vi ® --- ® V,, — X such that

FY(ih(v)) = F(v) foreveryv € Vi x --- x Vj,, (2.25)
thus making the following a commutative diagram:
F
Vix--xV, — X
. l /
FY
Ve -V,

(if) Conwversely, suppose that V, ¢ are respectively a vector space and an n-linear
map ¢ : Vi x - - x V,, = V with the following property: for every vector space
X and every n-linear map F : Vi x - - - x V;, — X, there exists a unique linear
map F¥ : 'V — X such that

F?(p(v)) = F(v) foreveryv e Vi x ---x V,, (2.26)
thus making the following a commutative diagram:
F
Vix.---xV, — X
LP l
e
Vv
Then V is canonically isomorphic to Vi ® --- ® V,,, the isomorphism in one
direction being ¥ : V4 @ -+ ® V,, — V with its inverse being ¢ : V —
Vi ® - -- @ V,,. Furthermore the set p(S) is a set of generators for V.
Proof. See page 396 in Chap.7. O

Some natural properties of tensor products are now in order.

Theorem 2.31 (Basis of the Tensor Product). Let V, W be vector spaces with
bases {v; }icg and {wy, }rex respectively. Then

{”i ® wk}(i,k)ejxx

is a basisof V@ W.
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Proof. The proof of this expected result is unexpectedly delicate: See page

399 in Chap.7. O
Proposition 2.32 (“Associativity” of ®). Let n,m € IN, n,m > 2 and let
Vi,..., Vo, Wh, ..., Wy, be vector spaces. Then we have the isomorphism (of vector
spaces)

N @V) oW @ W) 2@ -V, oW1 ®- @ W,
To this end, we can consider the canonical isomorphism mapping
(U1®"'®Un)®(w1®"'®wm)

movi - Quy QWi ® -« @ Wy
Proof. See page 403 in Chap.7. O

If V is a vector space and k € IN, we set

(V) =V® @V,

k times

Thus, the generic element of .7, (V) is a finite linear combination of tensors
of the form v; ® -+ ® v, with vy,...,vp € V. We also set (V) := K.
The elements of 7 (V') are referred to as being tensors of degree (or order, or
length) k on V. We are in a position to introduce a fundamental definition.

Definition 2.33 (Tensor Algebra of a Vector Space). Let V be a vector

space. We set 7 (V) := @ T%(V) (in the sense of external direct sums).
keINU{0}
On .7 (V') we consider the operation defined by

k
(vi)iz0 - (wj)j>0 = ( > Uk ®wa‘)k20, (2.27)

J

where v;, w; € Z;(V) for every i > 0. Here, we identify any tensor product
Ty (V) ® F(V)

with 73 (V), for every £ € IN U {0} and every j = 0,...,k (thanks to
Proposition 2.32). We call .7 (V') (equipped with this operation) the tensor
algebra of V.

Throughout the Book, we consider any .7 (V) as a subset of 7 (V) as
described in Remark 2.7. Moreover, we make the identification V = 7 (V)
so that V' is considered as a subset of its tensor algebra. When there is no
possibility of confusion, we denote .7;,(V') and .7 (V') simply by .7}, and .7.
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If v = (v;)i>0 € (V) (being v; € Z;(V) for every i > 0), we say that v; is
the homogeneous component of v of degree (or order, or length) i. Moreover, in
writing v = (v;);>0 for an element v € .7 (V') we tacitly mean that v; € Z;(V)
for every i € NU{0}. The notation )., v; for (v;);>0 will sometimes apply.

Remark 2.34. We have the following remarks.
1. The operation - on .7 (V) is the only bilinear operation on .7 (V') whose
restriction to 75— ; x .7; coincides with the map

Te—i(V) x T3(V) 3 (vk—j, w5) = vp—j @ wj € T(V),

for every k € NU {0} and every j = 0,..., k. Equivalently, it holds that
v-w =v®w, whenever v € .7;(V) and .7; (V) for some ¢, j > 0. Note that
T (V) is generated, as an algebra, by the elements of V' (or of a basis of V)
through iterated ® operations (or equivalently, iterated - operations).

2. The name “tensor algebra” is motivated by the fact that (7 (V),) is a
unital associative algebra. The unitis 1x € (V). As for the other axioms of
UA algebra, we leave them all to the Reader, apart from the associativity
of -, which we prove explicitly as follows:

(ui)izo0 - ((Uz‘)izo : (wi)iZO) = (u)iz0 - (é:ovi—j ®wj)i20

= <Z“1h ® (Jﬁ:o Vh—j ® wj))

(we interchange the sums and then rename the dummy index h — j =: k)

= X X =| X X uijk®@u@u;
=0 h=j >0 =0 k=0 >0

7 h
< > Z Ui @ Vp—j ® wj)

i>0 i>0

3. By the very definition of .7 (V'), we have

V)= Z(V), and Z(V)- Z;(V) < Fiy;(V) forevery i, j > 0.
i>0

(2.28)

In particular, 7 (V') is a graded algebra. We next introduce a notation which
will be used repeatedly in the sequel: for k € INU {0} we set

=P 7V), Z(V)=U()=%V) (2.29)

i>k i>1
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The notation Uy, .7; will also apply. We have the following properties:

a. Every Uy, is anideal in .7 (V') containing .7 (V).

b. F(V)=Ug(V) D UL(V) D -+ Up(V) D Upsr (V) D -+

c. Uy(V)-Uj(V) C U4 (V), forevery i,j > 0.

d. ;5o Ui(V) = {0} and, more generally, (,~, Ui(V) = {0} for every k €
N U {0} N

Note that .7, (V) (also, any U, (V') with & > 1) is an associative algebra
with the operation -, but it is not a unital associative algebra.

Proposition 2.35 (Basis of the Tensor Algebra). Let V' be a vector space and
let B = {e;}icg be a basis of V.. Then the following facts hold:

1. For every fixed k € IN, the system By, := {e;, @ -+ @ ¢;, | i1,...,ir €I} isa
basis of 3, (V') (which we call induced by B).
2. The system

{1K}UUkeNBk:{1K’ e, - Qe ke N, il,...,ikej}

is a basis of 7 (V') (which we call induced by B).

Proof. (1) follows from Theorem 2.31, whilst (2) follows from (1) together
with Proposition 2.9. O

Remark 2.36. Also, the following are systems of generators for .7 (V):
(1)U {vm--@vg where n € IN, o € V fori < n};
and {(I]K,v%,v% ®v3, v} @vs@vS,... o ®---®UZ,O,...),
where n € IN, vf € Vforeveryj <mandi < j}.

Remark 2.37. The previous remark shows that V' generates F (V') as an
algebra and that the set {1k} UV generates 7 (V') as an algebra. (Indeed, if
V1,...,0, € Vwehavewvy ... v, =01 ® - ®vy.)

Together with the fact that x(X) generates IK(X) as a vector space, we
get that {1k } U x(X) generates .7 (IK(X)) as an algebra (and x(X) generates
T4 (K(X))). By identifying X and x(X), this last fact amounts simply to
saying that the letters of X and the unit 1k generate .7 (IK(X)), the free UA
algebra of the words on X.

The following result will be used again and again in this Book.

Theorem 2.38 (Universal Property of the Tensor Algebra).
Let V' be a vector space.
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(i) For every associative algebra A and every linear map f : V' — A, there exists
a unique algebra morphism f : (V) — A prolonging f, thus making the
following a commutative diagram:

f

\%4
[ i

T(V)

N

(ii) For every unital associative algebra A and every linear map f 'V — A, there
exists a unique UAA morphism f : (V) — A prolonging f, thus making
the following a commutative diagram:

7

7(V)

A

(iii) Vice versa, suppose W,y are respectively a UA algebra and a linear map ¢ :
V' — W with the following property: For every UA algebra A and every linear
map f : V. — A, there exists a unique UAA morphism f¥ : W — A such
that

fep)) = f(v) foreveryveV, (2.30)

thus making the following a commutative diagram:

f
Vv—— A

| A

w

Then W is canonically isomorphic, as UA algebra, to 7 (V'), the isomorphism
being (see the notation in (ii) above) @ : .7 (V) — W and its inverse being
¥« W — J(V). Furthermore, ¢ is injective and W is generated, as an
algebra, by the set {1y} U (V). Actually it holds that ¢ = @ o v. Finally we
have W ~ 7 (¢(V)), canonically.
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Proof. Explicitly, if x is the operation on 4, f in (i) is the unique linear map
such that

flor®@ - @up) = flor) x -+ f(on), (2.31)

for every k € IN arui every vy,...,u; € V. Also, if e4 is the unit of the UA
algebra A, the map f in (ii) is the unique linear map such that

k) =ea, flor@---@uvg) = for) x-- % f(og), (2.32)
for every k € IN and every vy,...,v; € V. For the proof of this theorem, see
page 404 in Chap.7. O

Remark 2.39. Let V, W be two isomorphic vector spaces with isomorphism
U :V — W.Then .7 (V) and .7 (W) are isomorphic as UA algebras, via the
UAA isomorphism ¥ : 7(V) — 7 (W) such that ¥(v) = ¥(v) for every
veVand

Doy @ @u) =T(01) @ @ ¥(vg), (2.33)

for every k € N and every v,..., v, € V. [Indeed, the above map ¥ is the
unique UAA morphism prolonging the linear map V' 2w T (W); W is
an isomorphism, for its inverse is the unique UAA morphism from .7 (W)

to .7 (V') prolonging the linear map W v g (V).

The following theorem describes one of the distinguished properties of
7 (V) as the “container” of several of our universal objects (we shall see
later that it contains the free Lie algebra of V' and the symmetric algebra of
V, too).

Theorem 2.40 (7 (K(X)) is isomorphic to Libas(X)). Let X be any set and
K a field.

(1). The tensor algebra 7 (IK(X)) of the free vector space X(X) is isomorphic,
as UA algebra, to Libas(X), the free unital associative algebra over X. As a
(canonical) UAA isomorphism, we can consider the linear map ¥ : 7 (K(X)) —
Libas(X) such that®

V(1 @ - Q) =x1.-++ Tk, forevery k € Nandevery xy,... x5 € X,

and such that ¥ (1) = e, e being the unit of Libas(X).

(2). More precisely, the couple (7 (IK(X)), @) satisfies the universal property
of the free UA algebra over X, where p : X — 7 (K(X)) denotes the canonical
injection

X 5 KX) S TKX)).

®Here we are thinking of X (respectively, Mo(X)) as a subset of K(X) — 7 (K(X)) (of
K(Mo(X)) = Libas(X), respectively).
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This means that, for every UA algebra A and every function f : X — A, there
exists a unique UAA morphism ¢ : 7 (IK(X)) — A with the following property

fe(p(x)) = f(x), foreveryz e X, (2.34)
thus making the following a commutative diagram:

!
X —
wl /
f‘P

7 (K(X))

A

Proof. In view of Theorem 2.28-(ii), it is enough to show that the above
couple (7 (K(X)), ¢) satisfies the universal property of the free UA algebra
over X. With this aim, let A be a UA algebra and let f : X — A be any
map. By Theorem 2.6-(i), there exists a linear map fX : K(X) — A such that
fX(x(z)) = f(z) for every z € X. Then, by Theorem 2.38-(ii), there exists a
UAA morphism fX : .7 (K(X)) — A such that fX(c(v)) = fX(v), for every
v € IK(X). Setting f¥ := fX, one obviously has

Fo(p()) = PX((tox)(x) = fX(x(2)) = f(z), VzeX

Moreover f¥ is the unique UAA morphism such that f#(¢(z)) = f(x), for
every z € X, since p(X) = x(X) and {1} U x(X) generates .7 (K(X)), as an
algebra.

By Theorem 2.28-(ii), we thus have .7 (KK(X)) ~ Libas(X) via the (unique)
UAA isomorphism ¥ : 7 (K(X)) — Libas(X) mapping = = x(z) € K(X)
into z = x(x) € K(Mo(X)). The theorem is proved. O

2.1.3.1 Tensor Product of Algebras

Let (A, ®) and (B, ®) be two UA algebras (over K). We describe a natural
way to equip A ® B with a UA algebra structure. Consider the Cartesian
product A x B x A x B and the map

F:AxBxAXxB— AQ® B, (al,bl,ag,bg) — (a1 ®a2)® (bl @bg).
We fix (az,b2) € A x B and we consider the restriction of F' defined by
A X B 3 (a1,b1) — F(a1,b1,as,b2). This map is clearly bilinear. Hence, by

the universal property of the tensor product in Theorem 2.30, there exists a
unique linear map G, b, : A® B — A ® B such that

Gy by (a@b)=F(a,b, az,b2)=(a®a2)@(b©bs), Y (a,b) € AxB. (2.35)
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Then we fix ¢; € A ® B and we consider the map
e tAXB— A® B, (az,b2) = Gayp,(c1).

It is not difficult to prove that this map is bilinear. Hence, again by Theorem
2.30, there exists a unique linear map 5., : A ® B — A ® B such that

Bei (@ ®D) = a, (a,b) = Gy p(c1), V (a,b) € A x B. (2.36)
Furthermore, we set
H(A@B)X(A@B)—}A@)B, H(Cl,CQ) = 601(02).

By (235) and (236), we have H(al X bl; a2 bz) = ((11 ® (12) (24 (b1 © bg)
Finally, we define a composition e on A ® B as follows:

creco:=H(er,c2), Ve, € AR B.
With the above definitions, we have the following fact:
(A ® B,e) is aunital associative algebra.

The (tedious) proof of this fact is omitted: the Reader will certainly have no
problem in deriving it. Hence, the following result follows:

Proposition 2.41. Let (A, ®) and (B,®) be two UA algebras (over ). Then
A ® B can be equipped with a UA algebra structure by an operation e which is
characterized (in a unique way) by its action on elementary tensors as follows:

(a1®b;)e(as®by) = (a1®a2)@(b1@bs), VY (a1®by), (a2®bs) € ARB. (2.37)

2.1.3.2 The Algebra 7 (V) ® 7 (V)

Let V be a vector space. Following the above section, the tensor product
T (V)® (V) can be equipped with a UA algebra structure by means of the
operation e such that

(a®b)e(a' @V) = (a-a')(b-b), (a,b),(d',b) e Z(V)o T (V), (2.38)

where - is as in (2.27). Obviously, extended by bilinearity to .7 (V) @ .7 (V),
(2.38) characterizes e. For any i, j € INU {0}, we set’

T i (V)= Z(V)® F5(V) (as asubsetof 7(V)® 7 (V)). (2.39)

7The Reader will have care, this time, not to identify
FV)QTZ;(V)=V® - oVeVe -V withVe.-- -V,
—— ——

i times J times i + j times

as we had to do in Definition 2.33.
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Given 7 = @,-, 7, one obviously has

TV T(V)= Zi,;(V). (2.40)

i,5>0
Thanks to the definition of e in (2.38), it holds that

Zij(V) 8 T o (V) C Tigir gy V),V i4,d,5 = 0. (2.41)
Occasionally, we will also invoke the following direct-sum decomposition:

TWV)e Z(V)=EPKe(V), where Ki(V):= @ Z;(V). (242

k>0 i+ji=k
More explicitly,
TV)® T (V)=
=B NANRHENRN BT NN RNDTHRTd: -
—— | N N N N — N —
y{),(} yl,() y{),l y2,0 L%,l %,2
=R (N NS DN P(ARRIDNRNSTHRT)D: -
N—_——
Ko K K>

In particular, with the decomposition (2.42), 7 (V)® .7 (V) is a graded algebra:
Indeed, (2.41) proves that

Kip(V)e Ki(V) C Ky (V)  forevery k, k' > 0. (2.43)

We next introduce a notation analogous to (2.29), which will be used
repeatedly in the sequel: for k € INU {0} we set

Wi(V)i= @ Z;(V), (Z707)1(V):=Wi(V)= P Zi;(V). (2.44)

i+i>k i+j>1

Note that, with reference to K} in (2.42), we have Wy (V') = @, K;(V), for
every k > 0. The notation Wy, (7 ® .7) will also apply. -

Remark 2.42. The following facts are easily seen to hold true:

1. Every Wy is anidealin .7 (V) ® 7 (V) containing .7; ;(V') for i + j = k.

2.9 =Wo(V)DW(V)D - - Wi(V) D Wi (V) D---

3. Wl (V) L] Wj (V) - WiJrj (V), for every i,j > 0.

4. ;>0 Wi(V) = {0} and, more generally, (-, Wi(V') = {0} for every k €
NuU{0}.
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To avoid confusion in the notation (as it appears from the note at page 81),
we decided to apply the following conventional notation:

Convention. When the tensor products in the sets Z;(V) = V@ -V
(i times) and the tensor product of 7 (V) @ 7 (V') simultaneously arise, with the
consequent risk of confusion, we use the larger symbol “@Q)” for the latter.

For example, if u, v, w € V then
(u@v)Qw e FH1(V), whereas u@) (v ®@ w) € F2(V),

and the above tensors are distinct in (V) ® 7 (V). Instead, (v ® v) ® w and
u ® (v ® w) denote the same element u @ v @ w € F(V) in T (V).

Proposition 2.43 (Basis of .7 (V) ® .7(V)). Let V be a vector space and let
B = {en}hey be a basis of V.. Then the following facts hold®:

1. For every fixed i, j > 0, the system
‘Bi,j = {(ehl ®"'®ehi)®(ek1 ®®€k]) ‘ hl,...,hi, kl,...,kj S j}

is a basis of 7; ;(V') (which we call induced by B).
2. The system J; ;~¢ Bij, i.e.,

{(ehl®"'®ehi)®(ekl®~-~®ekj) i,7 >0, hi,...,h, kl,...,kjej}

is a basis of 7 (V') @ 7 (V') (which we call induced by B).
Proof. It follows from Theorem 2.31, and Propositions 2.9 and 2.35. O

Remark 2.44. Thanks to Remark 2.36, the following is a system of generators
for 7(V) @ 7(V):

{(U1®"'®Ui)®(vl®"'®vj) 1,5 >0, wy,...,uq, vl,...,vjEV},

where the convention 1 ®- - -®@u; = lx = v1 ®- - -®v; applies when 4, j = 0.

Following the decomposition in (2.40) (and the notation we used in direct
sums), an element of .7 ® 7 will be also denoted with a double-sequence
styled notation:

(tij)ij>0, wheret;; € .7 ;(V)foreveryi,j > 0.

SWhen i = 0, the terme;, ® -+ ® en, has to be read as 1x.
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The notation (¢; ;); ; will equally apply (and there will be no need to specify
that ¢; ; € 7 ;(V)). Then the e operation in (2.38) is recast in Cauchy form
as follows (thanks to (2.41)):

(tig)ig e (tig)ig = ( D tese ?;,g) : (2.45)

- - . 4,j20
r+r=t, s+s5=j

We now introduce a selected subspace of .7 ® .7, which will play a central
role in Chap. 3: we set

K={v®l+lew|v,weV}cIT(V)o I (V). (2.46)

Here and henceforth, 1 will denote the unit in I, which is also the identity
element of the algebra .7 (V). By the bilinearity of ®, we have

K=7,0V)® %.:(V)=Ki(V). (2.47)
The following computations are simple consequences of (2.38):

(v e ---o(u; ®1)=(u; ®-- ®uz)®1
(1@u)e e (l®v)=1Qv ®- - ®v),
(u®l)e---o(u;@1)e(1R@uv))e---e(l®v))
=W Qu)QR( ® - Qvj),

(2.48a)

(2.48b)

for every i,j € N, and every uq,...,u;,v1,...,v; € V. From (2.48b) and
Remark 2.44, we derive the next proposition:

Proposition 2.45. The following is a system of generators for 7 (V) @ F(V):
{(u1®1)o- —o(u;Q1)e(1®v,)e- - -0(1®v;)|i, 7 > 0,u1,...,u;,v1,...,0; € V},

where the convention uy ® --- @ u; = lx = v1 @ - - - @ v; applies, when i,j = 0.

Moreover, if B = {ey}, }neg is a basis of V, the following is a basis of 7 (V)@ 7 (V):
{1®]—a (eh1®1)."'.(ehi®1)v (1®6k1>."'.(1®ekj)a
(eal ®1)."'.(eaa®1).(1®6ﬁ1)."'.(1®6ﬁb)7

wherei,j,a,bE]Nandhl,...,hi,kl,...,kj,al,...,oza,ﬂl,...,ﬂb63}.
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2.1.3.3 The Lie Algebra £(V)

The aim of this section is to describe another distinguished subset of .7 (V)
having important features in Lie Algebra Theory.
First the relevant definition.

Definition 2.46 (Free Lie Algebra Generated by a Vector Space). Let I/ be
a vector space and consider its tensor algebra (7 (V),-). We equip 7 (V)
with the Lie algebra structure related to the corresponding commutator (see
Definition 2.16).

We denote by L£(V) the Lie algebra generated by the set V in 7 (V)
(according to Definition 2.13) and we call it the free Lie algebra generated
by V. Namely, £(V) is the smallest Lie subalgebra of the (commutator-) Lie
algebra .7 (V) containing V.

The above adjective “free” will be soon justified in Theorem 2.49 below
(though its proof requires a lot of work and will be deferred to Sect.2.2). We
straightaway remark that we are not using the phrasing “free Lie algebra
over V” (which, according to previous similar expressions in this Book,
would — and will — mean a free object over the set V). All will be clarified
in Sect.2.2.

Convention. To avoid the (proper) odd notation [u,v]. for the commu-
tator related to (7 (V), ), we shall occasionally make use of the abuse of
notation [u, v]g for u - v — v - u (When u,v € 7 (V)). This notation becomes
particularly suggestive when applied to elementary tensors u, v of the form
w1 ® -+ - @ wy, for in this case the - product coincides with ®.

Proposition 2.47. Let V' be a vector space and let the notation in Definition 2.46
apply. We set L1 (V') :=V and, for everyn € N, n > 2,

L,(V):=[V---[V,V]---] :span{[vl~-~[vn,1,vn]~-~] Viy.onyUp € V}.
n times (249)

Then L,,(V') C Z,(V) for every n € IN, and we have the direct sum decomposition

L(V)=@psy Lu(V). (2.50)

In particular, the set V' Lie generates L(V'). Moreover, £L(V') is a graded Lie algebra,
for it holds that

[L:(V),L;(V)] C Li;(V), foreveryi,j> 1. (2.51)
Proof. From Theorem 2.15, we deduce that | J,, £,(V) spans £(V') and that

(2.51) holds (see (2.11)). Finally, (2.50) follows from £,,(V) C 7,(V), which
can be proved by an inductive argument, starting from:
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[v1,v2) = V1 - V2 — V2 -V =V QuUa — V2 QU1 € Ta(V),

holding for every vy, v2 € V, and using (2.28). This ends the proof. 0

Remark 2.48. Let V, W be isomorphic vector spaces and let ¥ : V' — W be an

isomorphism. Let ¥ : .7 (V) — .7 (W) be the UAA isomorphism constructed
in Remark 2.39. We claim that

Up = @|L(V) : L(V') — L(W) is a Lie algebra isomorphism.

Indeed, since ¥ is a UAA isomorphism, it is also a Lie algebra isomorphism,
when .7 (V') and 7 (W) are equipped with the associated commutator-alge-
bra structures (see Remark 2.17). As a consequence, the restriction of ¥ to

L(V) is a Lie algebra isomorphism onto ¥(£(V)) (recall that £(V) is a Lie
subalgebra of the commutator-algebra of .7 (1)). To complete the claim, we

have to show that (£(V)) = L(W). 'To prove this, we begin by noticing
that (in view of (2.33) in Remark 2.39) ¥ (v) = ¥(v) for every v € V and

Fe(fon onon, el Jo)) = ) - [P (0a), 201w,
(2.52)

forevery k € IKand every vy, ..., v € V. Here we have denoted by [+, -] 7 (v
the commutator related to the associative algebra .7 (V') (and analogously
for [-,-] 7(w))- Now, (2.52) shows that @(L(V)) C L(W) (recall Proposition
2.47). To prove that “=" holds instead of “C”, it suffices to recognize that
the arbitrary element [w - - - [wg—1,wi] - - -] 7wy of L(W) (where k € K and

wi, ..., w; € V)is the image via ¥ of
[ (wr) - [0 (wge—), O (wi)] - 17 (v

Theorem 2.49 (Universal Property of £(V')). Let V be a vector space.

(i) For every Lie algebra g and every linear map f : V' — g, there exists a unique
Lie algebra morphism f : L(V') — g prolonging f, thus making the following
a commutative diagram:

!

[

L(V)

g

(if) Conwversely, suppose L,y are respectively a Lie algebra and a linear map ¢ :
V' — L with the following property: For every Lie algebra g and every linear
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map f 'V — g, there exists a unique Lie algebra morphism f¥ : L — g such
that

) = f(v) foreveryveV, (2.53)

thus making the following a commutative diagram:
f
V —
® l /
f‘P
L
Then L is canonically isomorphic, as a Lie algebra, to L(V'), the isomorphism
being (see the notation in (i) above) g : L(V) — L and its inverse being
? L — L(V). Furthermore, ¢ is injective and L is Lie-generated by the

set (V). Actually it holds that ¢ = P o . Finally we have L ~ L(p(V)),
canonically.

g

Proof. Explicitly, if [, -], is the Lie bracket of g, f in (i) is the unique linear
map such that

T([Ul s fog—1, vk]e - ]®) =[f(v1)-- [f(kal),f(vk)]g e ']gv

forevery k € IN and every vq,...,vp € V.

Unfortunately, the proof of this theorem requires the results of Sect.2.2, on
the existence of Lie(X), the free Lie algebra related to a set X (together with
the characterization Lie(X) ~ L(IK(X))). Alternatively, it can be proved
by means of the fact that every Lie algebra g can be embedded in its
universal enveloping algebra % (g) (a corollary of the Poincaré-Birkhoff-
Witt Theorem, see Sect.2.4). Hence, we shall furnish two proofs of Theorem
2.49, see pages 92 and 112. O

2.2 Free Lie Algebras

The aim of this section is to prove the existence of the so-called free Lie
algebra Lie(X) related to a set X . Classically, the existence of Lie(X) follows
as a trivial corollary of a highly nontrivial theorem, the Poincaré-Birkhoff-
Witt Theorem. For a reason that will become apparent in later chapters
concerning with the CBHD Theorem, our aim here is to prove the existence
of Lie(X) without the aid of the Poincaré-Birkhoff-Witt Theorem.

Moreover, for the aims of this Book, it is also a central fact to obtain the
isomorphism of Lie(X) with £(IK(X)), the smallest Lie subalgebra of the
tensor algebra over the free vector space K(X).
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The main reference for the topics of this section is Bourbaki [27, Chapitre
II, §2 n.2 and §3 n.1]. Unfortunately, there is a feature in [27] which does not
allow us to simply rerun Bourbaki’s arguments: Indeed, the isomorphism
Lie(X) ~ L(K(X)) is proved in [27, Chapitre II, §3 n.1] as a consequence’
of the Poincaré-Birkhoff-Witt Theorem. So we are forced to present a new
argument, which bypasses this inconvenience.

To avoid confusion between the notion of free Lie algebra generated by a
vector space (see Definition 2.46) and the new notion — we are giving here —
of free Lie algebra related to a set, we introduce dedicated notations.

Definition 2.50 (Free Lie Algebra Related to a Set). Let X be any set. We
say that the couple (L, y) is a free Lie algebra related to X, if the following
facts hold: L is a Lie algebra and ¢ : X — L is a map such that, for every
Lie algebra g and every map f : X — g, there exists a unique Lie algebra
morphism f¥ : L — g, such that the following fact holds

fe(p(x)) = f(x) foreveryz e X, (2.54)

thus making the following a commutative diagram:

X
Apl
L

If, in the above definition, X C L (set-theoretically) and ¢ = ¢ is the set
inclusion, we say that (L, ) is a free Lie algebra over X.

!
—>g
f‘P

By abuse, if (L, ) (respectively, (L,)) is as above, we shall also say that
L itself is a free Lie algebra related to X (respectively, a free Lie algebra
over X). It is easily seen that any two free Lie algebras related to X are
canonically isomorphic. More precisely, the following facts hold.

Proposition 2.51. Let X be a nonempty set.

1. If (L1, 1), (L2, p2) are two free Lie algebras related to the same set X, then
Ly, Ly are isomorphic Lie algebras via the isomorphisms (inverse to each other)

o5t i Ly — Lo, ¢f? : Ly — Ly and o = @F' o ¢ (analogously, o1 =
Y2
1% 0 p2).

9See [27, Chapitre 1, §3, n.1, Théoreme 1] where it is employed [25, Chapitre I, §2, n.7,
Corollaire 3 du Théoreme 1] which is the Poincaré-Birkhoff-Witt Theorem.
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2. If (L1, 1) is a free Lie algebra related to X, if Lo is a Lie algebra isomorphic to
Ly and ) : Ly — Lo is a Lie algebra isomorphism, then (Lo, p2) is another free
Lie algebra related to X, where oo 1= 1) 0 1.

Proof. (1). As usual, it suffices to consider the commutative diagrams

®2 P1
X — Lo X — I
®1 P2
| o |
L1 L2

and to show that the diagonal arrows in the following commutative dia-

grams are respectively “closed” by the maps ¢7” o %' and ¢§' o ©7*:

®1 P2
X —— Iy X — Lo
P1 P2
idLl idLQ
L1 L2

We conclude by the uniqueness of the “closing” morphism, as stated in the
definition of free Lie algebra related to X. Part (2) of the proposition is a
simple verification. O

We next turn to the actual construction of a free Lie algebra related to the
set X. First we need some preliminary results.

Whereas ideals are usually defined in an associative setting, we need the
following (non-standard) definition.

Definition 2.52 (Magma Ideal). Let (M, *) be an algebra (not necessarily
associative).

1. We say that S C M is a magma ideal in M, if S is a subspace of the vector
space M such that sxm and mx*s belong to S, for every s € Sand m € M.

2. Let A be any subset of M. The smallest magma ideal in M containing A
is called the magma ideal generated by A.

With the above definition, it is evident that the magma ideal generated by A
coincides with (.S, where the intersection runs over the magma ideals S in
M containing A.

Up to the end of this section, X will denote a fixed set. Let us now
consider Lib(X), i.e., the free non-associative algebra over X, introduced in
Sect.2.1.2 (see (2.17)). We shall denote its operation by =, recalling that this
is the bilinear map extending the operation of the free magma (M (X),.)
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(and that Lib(X) is the free vector space of the formal linear combinations
of elements of M (X)). Let us introduce the subset of Lib(X') defined as

A :={Q(a), J(a,b,c)|a,b,c € Lib(X)}, where
Qa) :==axa, J(a,b,c):=ax*(bxc)+bx(cxa)+cx*(axb). (2.55)

We henceforth denote by a the magma ideal in Lib(X) generated by A,
according to Definition 2.52. We next consider the quotient vector space

Lie(X) := Lib(X)/a, (2.56)
and the associated natural projection
7 Lib(X) — Lie(X), 7(t) := [t]a. (2.57)

Then the following fact holds:

Proposition 2.53. With all the above notation, the map [-,-] : Lie(X) — Lie(X)
defined by

[7(a), 7(b)] :=7w(axb) foreverya,be Lib(X), (2.58)

is well posed and it endows Lie(X) with a Lie algebra structure. Moreover, the
map  in (2.57) is an algebra morphism (when we consider Lie(X) as an algebra
with the binary bilinear operation Lie(X) x Lie(X) > (¢,£') — [¢,¢'] € Lie(X)).
Proof. The well posedness of [-,-] follows from a being a magma ideal',
while the fact that it endows Lie(X') with a Lie algebra structure is a simple
consequence!! of the definition of A. Finally, 7 is an algebra morphism
because it is obviously linear (Lie(X') is a quotient vector space and = is
the associated projection!) and it satisfies (2.58). O

The Reader will take care not to confuse Lie(X ) with Lie{ X } (the latter being
the smallest Lie subalgebra — of some Lie algebra g — containing X, in case
X is a subset of a pre-existing Lie algebra g). Obviously, there is an expected
meaning for the similarity of the notation, which will soon be clarified (see
Remark 2.55 below). We are ready to state the important fact that Lie(X) is
a free Lie algebra related to X.

WIndeed, if 7(a) = m(a’) and w(b) = =(¥’) there exist a, 3 € a such that ’ = a + a,
b =b+pB.Hencea *b/ =axb+axB+axbt+taxB caxbta*xataxbtaxaCaxb+a,
so that w(a’ * V') = w(a x b).

NFor example, the Jacobi identity follows from [r(a), [7(b), 7(c)]] = 7(a * (b * ¢)) so that
[7(a), [7(b), m(c)]] + [ (b), [ (c), w(a)]] + [7(c), [7(a), 7(b)] = w(J(a,b,c)) = 0.
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Theorem 2.54 (Lie(X) is a Free Lie Algebra Related to X). Let X be any set
and, with the notation in (2.56) and (2.57), let us consider the map

v: X — Lie(X), xw— w(x), (2.59)

ie.,'?, o = | x. Then the following facts hold:

1. The couple (Lie(X), v) is a free Lie algebra related to X (see Definition 2.50).

2. The set {p(z)}sex is independent in Lie(X), whence ¢ is injective.

3. The set ¢(X) Lie-generates Lie(X), that is, the smallest Lie subalgebra of
Lie(X) containing o(X) coincides with Lie(X).

Proof. See Sect.8.1 (page 459) in Chap. 8. O

Remark 2.55. Part 3 of the statement of Theorem 2.54 says that Lie{¢(X)} =
Lie(X), the former being meant as the smallest subalgebra — of the latter —
containing X (see Definition 2.13). This fact, together with the identification
X = (X)) (this is possible due to part 2 of Theorem 2.54) says that

Lie{X} = Lie(X)

(which is extremely convenient given the abundance of notation for free Lie
algebras generated by a set!).

Here is another (very!) desirable result concerning free Lie algebras.

Theorem 2.56 (The Isomorphism £(IK(X)) ~ Lie(X)). Let X be any set and
consider the free vector space IK(X') over X. Consider also L(IK(X)), the smallest
Lie subalgebra of 7 (IK(X)) containing X.

Then L(IK(X)) and Lie(X) are isomorphic, as Lie algebras. More precisely, the
pair (L(IK(X)), x) is a free Lie algebra related to X.

When, occasionally, we shall allow ourselves to identify X with the subset
X(X) of K(X) (via the injective map x), the map x : X — L(IK(X)) becomes
the map of set inclusion, whence Theorem 2.56 will permit us to say that
L(K(X)) is a free Lie algebra over X.

Proof. If ¢ is as in (2.59), we know from Theorem 2.54 that (Lie(X), ) is a
free Lie algebra related to X. Hence, considering the map X > = — x(x) €
L(K(X)), there exists a unique Lie algebra morphism (see the notation in
Definition 2.50) x¥, say f for short, such that

f:Lie(X) — L(K(X)) and f(p(x)) = x(z), foreveryx € X.  (2.60)

We claim that f is a Lie algebra isomorphism. This claim is proved in Sect. 8.1 in
Chap. 8 (precisely in Corollary 8.6, page 469). Hence, by Proposition 2.51-2,

12More precisely, the map ¢ is the composition
X - M(X) 2% Lib(X) — Lie(X).

Via the identification X = x(X) — Lib(X) we can write ¢ = 7| x.
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(L(K(X)), p2) is a free Lie algebra related to X, with o = fop = xon X
(where we also used (2.60)). O

Collecting together Theorems 2.54 and 2.56 (and Definition 2.50), we can
deduce that, if X is any set, g any Lie algebra and f : X — g any map, there
exist Lie algebra morphisms

f?:Lie(X) — g, X LKX)) — g
such that
ffle(2)) = flz) = F(x(z), VzeX

and, more explicitly, these morphisms act — on typical elements of their
respective domains — as follows:

s ([90(551) “lp(mr-1), (@k)|Lie(x) ']Lic(X))

= X (Ix(@) - x(@r-1), x(@0)]e o)
= [f(z1) - [f(xp-1), f(mk)]g T ']g,

for every z1,...,x, € X and every k € IN. Here
['a']Lic(X)a ['a']@a ['a']g

are, respectively, the Lie brackets of Lie(X), of £L(IK(X)) (with Lie bracket
inherited from the commutator on .7 (IK(X'))) and of g.

With Theorem 2.56 at hand, we are ready to provide the following:

Proof (of Theorem 2.49, page 86). Since (ii) is standard, we restrict our attention
to the proof of (i). Let g be a Lie algebra and let f : V' — g be any linear
map. We have to prove that there exists a unique Lie algebra morphism
f: L(V) — g prolonging f. Since £(V) is Lie-generated by V (see e.g.,
Proposition 2.47) the uniqueness of f will follow from its existence. To prove
this latter fact, we make use of a basis of V' (the “non-canonical” nature of
this argument being completely immaterial). See also the diagram below:

f

>~
[s=1
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With this aim, let B = {b;};cg be a basis of V. Then V is isomorphic (as
a vector space) to the free vector space IK(B), via the (unique) linear map
¥V — K(B) mapping b; € V into x(b;) € K(B) for every i € J (recall the
notation in (2.2)): more explicitly

W( Ziej’ Ai bi) = Ziej’ i x(bs), (2.61)

where J’ is any finite subset of J and the coefficients \; are arbitrary scalars.
Since ¥ : V — K(B) is an isomorphism, by Remark 2.48 we can deduce that

L(V) and L(IK(B)) are isomorphic via the unique LA isomorphism U
L(V) — L(K(B)) such that

U (v) = ¥(v), foreverywve V. (2.62)
Since the pair (£(IK(B)), x) is a free Lie algebra related to B (see Theorem
2.56), considering the map f|z : B — g, there exists an LA morphism
(fls)X : L(K(B)) — g such that

(fl8)*(x(b:)) = f(b:), Vi€ (2.63)

We claim that f := (f|s)X oW : L(V) — g prolongs f (see the diagram
above). Indeed, if v € V, say v = >, ., A; b;, we have

2.62)

T@) = (f18)X (@ (0) 2 (fla )@ () 27 (fl8) (Cieq M x(51)
CO S X F() = F(Sieq Mibi) = f(0).
This ends the proof. O

2.3 Completions of Graded Topological Algebras

The aim of this section is to equip a certain class of algebras A with a
topology endowing A with the structure of a topological algebra. It will
turn out that a structure of metric space will also be available in this setting.
Then we shall describe the general process of completion of a metric space.
Finally, we shall focus on graded algebras and the concept of formal power
series will be closely investigated. All these topics will be of relevance when
we shall deal with the CBHD Formula (and convergence aspects concerned
with it).
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2.3.1 Topology on Some Classes of Algebras

Definition 2.57. Let (4, %) be an associative algebra. We say that {{2; } e is
a topologically admissible family in A if the sets (2, are subsets of A satisfying
the properties:

(H1.) (2 is anideal of A, for every k € IN.
(H2.) (1 =Aand 2, O 244, for every k € IN.
(H3.) 02 * §2;; C 24, for every h, k € IN.
(H4.) Npen 21 = {0}.

The main aim of this section is to prove the following theorem.

Theorem 2.58. Let (A, x) be an associative algebra and suppose that {2y} ke is
a topologically admissible family of subsets of A. Then the family

0U {a + Qk}a% . (2.64)

is a basis for a topology 2 on A endowing A with the structure of a topological
algebra.'® Even more, the topology (2 is induced by the metricd : A x A — [0, 00)
defined as follows (exp(—o0) := 0 applies)

d(z,y) :==exp(—v(z —y)), forallz,ye A, (2.65)

where v : A — N U {0, 00} is defined by v(z) == sup {n > 1|z € £2,}, or more
precisely

_Jifz#0, max{nzl‘zeﬂn}
v(z) '_{IfZZO, - (2.66)

The triangle inequality for d holds in the stronger form'*:
d(z,y) <max{d(z, z),d(z,vy)}, foreveryz,y,z¢c A (2.67)

Proof. See page 407 in Chap.7. O

13We recall that a topological algebra is a pair (A, £2) where (A, +, %) is an algebra and 2
is a topology on A such that the maps

AxAS (a,b) »a+baxbe A, KxA>(k,a)—~kacA

are continuous (with the associated product topologies, K being equipped with the
discrete topology) and such that (A, 2) is a Hausdorff topological space.

14 A metric space (A, d) whose distance satisfies (2.67) (called the strong triangle inequality
or ultrametric inequality) is usually referred to as an ultrametric space. Hence, a topologically
admissible family of subsets of an algebra A endows A with the structure of an ultrametric
space.
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Remark 2.59. In the notation of the previous theorem, (2.67) easily implies
the following peculiar fact: A sequence {a,}, in A is a Cauchy sequence in
(A, d) if and only if lim,,_, oo d(ayp, apy1) = 0.

Indeed, given a sequence {a,}, in A, as a consequence of (2.67) the
following telescopic estimate applies, for every n,p € IN:

d(an, anyp) < max{d(an, ani1), d(ang1, anyp)}
< max {d(ana an-i—l)a maX{d(an-i—la an+2)a d(an+2a a/n-l—p)}}

= max {d(an, an+1), d(ans1, Gns2), d(ani2, angp) }

(after finitely many steps)
< max {d(an, Ant1), A(Cnt1; Ang2), - d(@npp—1, an+p)}.
This shows that {a,, },, is a Cauchy sequence in (A4, d) if and only if

lim d(an,ant1) =0.
n—oo

Definition 2.60. If A is an associative algebra and if {{2;}ren is a topolog-
ically admissible family of subsets of A, the topology {2 (respectively, the
metric d) in Theorem 2.58 will be called the topology on A induced by {2} kew
(respectively, the metric on A induced by {2} kew).

Remark 2.61. When A is an associative algebra and d is the metric on
A induced by a topologically admissible family {{2}ren, we have the
following algebraic properties of the metric d in (2.65) (proved in due course
within Chap.7, see page 415):

1. d(z,y) = d(z + z,y + 2), for every z,y,z € A.
2. d(kz,ky) =d(z,y), forevery k € K\ {0} and every x,y € A.
3. d(z xy,& xn) < max{d(x,§), d(y,n)}, for every z,y,&,n € A.

Remark 2.62. In the notation of Theorem 2.58, we have the following fact:
A sequence {ay }n, in A is a Cauchy sequence in the metric space (A, d) sequence if
and only if lim,, oo (@n41 — apn) = 0.

Consequently, a series Y | a, consisting of elements in A is a Cauchy
sequence in (A, d) if and only if lim,,_,oc an, = 0 in (4, d).

Indeed, by Remark 2.59 {a,, }», is Cauchy in (A, d) iff lim,,_, o d(an, an4+1) = 0.
In its turn, by (1) in Remark 2.61, we see that this latter fact coincides with
limy, 00 (0, @nt1 — an) = 0. Finally, this is the definition of lim,oc (@n4+1 —
an) =0in (A, d).

The above remark shows how different are the metrics in Theorem 2.58
(indeed, all ultrametrics), if they are compared to the usual Euclidean metric
in R"™, where the above facts are false (as shown by the trivial example
>0, 1/n = oo in the usual Euclidean space R).
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Remark 2.63. With the notation of Theorem 2.58, by unraveling the
definition of d we have that, for two points z,y € A and a positive real
number ¢, the condition d(z, y) < ¢ is equivalent to sup {n > 1|z € 2,,} >
In(1/e), that is,

(@yecA day) <e) = (there exists n € IN, with n > ln(l/s)) -

such thatz — y € (2,
(2.68)

Example 2.64. Before proceeding, we make explicit some examples of topo-
logically admissible families, useful for the sequel.

1. Let (A, ) be an associative algebra and let I C A be an ideal. Let us set
2y := Aand, for k € IN, let
2, := ideal generated by {I * - -- x I (k times)}

] set of the finite sums of elements of the form r % 41 * - - x i *x p
N wherer,p€ Aand iy,...,ip, €1 '

Then it is easily seen that the family {{2;};>¢ fulfils hypotheses (H1),
(H2) and (H3) in Definition 2.57. Hence, whenever {2, };>o fulfils also
hypothesis (H4), it is a topologically admissible family in A.

2. Suppose (A4, %) is an associative algebra which is also graded (see Defini-
tion 2.11). We set A, := @;’il A;. Also, let £2) := Aand, for k € IN,

2 ::span{al*---*ak’ al,...,akEA_,_}.

It is not difficult to show that {2 } >0 is a topologically admissible family
in A. For example, we prove (H4): First note that 2, C ;2 A; for any
k € NU {0} (indeed equality holds); hence we have

{0} € Mizo 2k S Niso Bj=i 45 = {0}

The last equality is proved as follows: if a € A and a # 0, then we can
write @ = Zfil a; with a; € A; and ay # 0; in this case a ¢ 69;1N+1 A,
and the assertion follows. Note that also

Qe =Djsr 4 vV k€ NU{0}. (2.69)

As for hypotheses (H1)-(H2)-(H3), they follow by the previous Example 1,
since it can be easily seen that, for all k € IN,

(2, = ideal generated by {A; * --- x A, (k times)}. (2.70)

3. Let V be a vector space and let A = .7 (V). We can construct the family
{2 }ren according to the previous example, with respect to the usual
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grading 7 = @2, J;. By (2.69), we have 2, = Uy for every k € N,
where Uy, has been defined in (2.29). Hence {Uy}rew is a topologically
admissible family in 7 (V'), thus equipping 7 (V') with both a metric space and
a topological algebra structure. (This same fact also follows from the results
in Remark 2.34-(3).) As stated in Example 2, we can view this example as
a particular case of Example 1 above, since U, coincides with the ideal
generated by the k-products of I = 7, (V') (or equivalently, of I = V).

4. Let V be a vector space, and on the tensor product .7 (V) ® 7 (V) let
us consider the family of subsets {W}, }ren introduced in (2.44). Then,
by the results in Remark 2.42, {W}, }rew is a topologically admissible family
in 7(V)® T(V), thus equipping 7 (V) @ 7 (V) with both a metric space
and a topological algebra structure. Analogously, the fact that {W, }rew is a
topologically admissible family can be proved by Example 2 above, by
considering the grading 7 ® 7 = @, ., K as in (2.42). Indeed, W), =
spanfa; e --- e ap | ar,...,ax € @;5, K; = (7 @ T)4}. As stated in
Example 2, we can also view this example as a particular case of Example
1 above, since W}, coincides with the ideal generated by the k-products of
I=(7 ®7)4 (or equivalently, of I := K introduced in (2.46)).

Since we are mainly interested in graded algebras, for the sake of future
reference, we collect many of the aforementioned results in the following
proposition, and we take the opportunity to prove some further facts.

Proposition 2.65 (Metric Related to a Graded Algebra). Let (A, x) be an
associative graded algebra with grading {A;};>o. For every k € IN U {0}, set

Qk = @jgk Aj.

(@) Then {2 }r>0 is a topologically admissible family of A, thus endowing A with
both a metric space and a topological algebra structure (both structures are
referred to as “related to the grading {A;};>0").

(b) The induced metric d has the algebraic (and ultrametric) properties

d(z,y) =d(x+ z,y + 2), dlkz,ky) =d(z,y)

(2.71)
d(z *y, & xn) < max{d(z,§),d(y,n)},

for every x,y, z, {,m € Aand every k € K\ {0}.

(c) A sequence {ay}n of elements of A is a Cauchy sequence in (A, d) if and only
iflimy, o0 (@nt1 — an) = 0in (A, d). Moreover a series 220:1 ay, of elements
of A is a Cauchy sequence in (A, d) if and only if lim,, o a, = 01in (A4, d).

(d) Forevery z = (z;)j>0 € A, we have

_ Jexp(—min{j >0 : z; # 0}), ifz#0,
ﬂd_{a if 2 =0

_ {max{e_j : z; # 0}, ifz#0,
o, ifz=0.

2.72)
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(e) Let {by}new be a sequence of elements in A and let § € A; let us write

bn = (aS")j20 and B = (a;);>0,

with agn) a; € A; for every j > 0and every n € IN.

Then we have lim,,_, oo by, = [ in (A, d) if and only if
VJ>03N;eN: n>Nyimpliesa =a; for0<j<J. (273)

Proof. See page 416 in Chap.7. O

2.3.2 Completions of Graded Topological Algebras

We begin by recalling some classical results of Analysis concerning metric
spaces. As usual, the associated proofs are postponed to Chap.7.

Definition 2.66. Let (X,d) be a metric space. We say that (Y,d) is an
isometric completion of (X, d), if the following facts hold:

1. (Y,0) is a complete metric space.
2. There exists a metric subspace X, of Y which is dense in ¥ and such that
(Xo, 6) is isometric (in the sense of metric spaces'®) to (X, d).

The following simple fact holds, highlighting the fact that the notion of
isometric completion is unique, up to isomorphism.

Proposition 2.67. Let (X,d) be a metric space. If (Y1,01) and (Y2,d2) are
isometric completions of (X, d), then they are (canonically) isomorphic.

Proof. See page 417 in Chap.7. O

The following remarkable result states that every metric space always
admits an isometric completion.

Theorem 2.68 (Completion of a Metric Space). Let (X, d) be a metric space.
Then there exists an isometric completion (X, d) of (X, d), which can be constructed
as follows. We first consider the set C of all the Cauchy sequences T = (xy,)n, in
(X, d). We introduce in C an equivalence relation by setting

(p)n ~ (z)n iff  lim d(z,,z)) =0. (2.74)

n—r00

15We recall that, given two metric spaces (Y1,d1), (Y2,d2), amap @ : Y1 — Y> is called
an isomorphism of metric spaces if @ is bijective and such that d2 (?(y), #(y’)) = d1(y,v')
for every y,y’ € Y1 (note that this last condition implicitly contains the injectivity of ¢
together with the fact that @ is a homeomorphism of the associated topological spaces).
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We take as X the quotient set C/~, with the metric defined by

d([(mn)nk, [(yn)n}N) = lim d(zn, yn). (2.75)

n—oo

Furthermore (according to the notation in Definition 2.66), we take as X (say, the

isometric copy of X inside X) the quotient set of the constant sequences (x),, with
x € X and the associated isometry is the map

a:X — Xo, x—[(xn)n]~ withz, =z foreveryn € IN. (2.76)

Proof. See page 418 in Chap.7. O

In the sequel, when dealing with isometric completions of a given metric
space X, we shall reserve the notation X for the metric space introduced in
Theorem 2.68. The following result states that the passage to the isometric
completion preserves many of the underlying algebraic structures, in a very
natural way.

Theorem 2.69 (Algebraic Structure on the Isometric Completion of a
UAA). Let (A,+,%) be a UA algebra. Suppose {{2;}rew is a topologically
admissible family in A and let d be the metric on A induced by {2} ren. Finally,
consider the isometric completion A of (A, d) as in Theorem 2.68 and let Ay C A
be the set containing the equivalence classes of the constant sequences.

Then A can be equipped with a structure of a UA algebra (A, F,%), which is
also a topological algebra containing Ag as a (dense) subalgebra isomorphic to A.
More precisely, the map o in (2.76) is an isomorphism of metric spaces and of UA

algebras. The relevant operations on A are defined as follows:

[<$n J * [ nJ = [ (@0 * yn nJ 277
k(zn)n] = [(kzn)n] ., keK,
1,4 = [(1A)n]~-
Proof. See page 422 in Chap.7. O

Remark 2.70. Let (A, %), {2 }x,d, A be as in Theorem 2.69. Suppose B is
equipped with a UAA structure by the operation x, that it is equipped with

a metric space structure by the metric ¢ and that the following properties
hold:

1. Ais asubset of B.

. % coincides with * on A x A.
. 0 coincides with d on A x A.
. Ais densein B.

. Bis a complete metric space.

U1 = W IN
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Then B and A are not only isomorphic as metric spaces (according to
Proposition 2.67) but also as UA algebras (via the same isomorphism). (See
the proof in Chap.7, page 425.)

By collecting together some results obtained so far (and derived within
the proofs of some of the previous results), we obtain the following further

characterization of the isometric completion Aof A.

Theorem 2.71 (Characterizations of the Isometric Completion of a UAA).
Let (A,+,%) be a UA algebra. Suppose {2 }rew is a topologically admissible
family in A and let d be the metric on A induced by {2 }ren. Finally, consider
the isometric completion A of (A, d) as in Theorem 2.68.

If « € Ais represented by the (Cauchy) sequence (ay), in A (that is, a =
[(an)n]~), we have

a= lim a, in (E,CT),
n—oo

where each a,, € A is identified with an element of A via the map o in (2.76). Hence,

roughly, A can be thought of as the set of the “limits” of the Cauchy sequences in
A, more precisely

A= { lim [(aj,a;,--+)] _ ’(an)n is a Cauchy sequence in A}. (2.78a)

j—o0

Equivalently (see also Proposition 2.65-(c)), A can also be thought of as the set of
the A-valued series associated to a vanishing sequence, more precisely

A= { Z [(bj, b, )] _ ‘(bn)n is a sequence converging to zero in (A, d)}

(2.78b)
Here is a very natural result on the relation A — A.

Lemma 2.72. Let A, B be two isomorphic UA algebras. Suppose ¢ : A — Bisa
UAA isomorphism and suppose that {2} ke is a topologically admissible family
in A. Set 2y := o(£2,), for every k € IN.

Then the family {4 }xen is a topologically admissible family in B. Moreover
the metric spaces induced on A and on B respectively by the families {2k} ren
and {Qy}ren are isomorphic metric spaces and ¢ can be uniquely prolonged to

a continuous map @ : A — B which is both a metric isomorphism and a UAA
isomorphism.

Proof. As claimed, as an isomorphism of metric spaces we can take the map

@: A — Bsuchthat &([(an)n]~) = [(@(an))n]~- (2.79)
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Here, we used the following notation: Let (A4, d) denote the metric induced
on A by the family {2 }ren, and let (B, §) denote the metric induced on B
by the family {fzk} ren; in (2.79), (an)r is a Cauchy sequence in (A, d) while
the two classes [-]. from left to right in (2.79) are the equivalence classes
as in (2.74) related respectively to the equivalence relations induced by the
metrics d and J. See page 426 in Chap. 7 for the complete proof. O

2.3.3 Formal Power Series

Throughout this section, (A, x) is a UA graded algebra with a fixed grading
{A;};>0. Following the notation in the previous section, for & > 0 we set

= Doy, A (2.80)

We know from Proposition 2.65 that {2} rew is a topologically admissible
family of A, thus endowing A with both a metric space and a topological
algebra structure. We aim to give a very explicit realization of an isometric
completion of (A,d), as the set of the so-called formal power series on A
(w.r.t. the grading {4} ;). We begin with the relevant definitions.

Definition 2.73 (Formal Power Series on A). Let A = P, A; be a UA
graded algebra. We set -

A=T150 45 (2.81)

and we call A the space of formal power series on A (w.r.t. the grading {A;};).
On A we consider the operation * defined by

J

(a5); % (bj); = ( 2. aj—k *bk) _ (aj bj € Aj, Vj=0). (282
k=0 320

Then (A, %) is a UA algebra, called the algebra of the formal power series on A.

Remark 2.74. Note that (2.82) is well posed thanks to the fact that a;_j xb;, €
Aj_ x A C Aj for every j > 0 and every k = 0,..., 5. Obviously, 4 is a
subset of A and it is trivially seen that

a,be A = a*b=axb. (2.83)

We now introduce on A a distinguished topology, by introducing a suitable
topologically admissible family. To this aim, we set

Ow =115 45, ke NU{0}, (2.84)
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naturally considered as subspaces of A. The following facts hold:

L. Every (), is an ideal in A.
= DQl QkDQ]H_lD
i:k\Q C Hj,foreveryz]>0

4. iz 92 = {0}

As a consequence, {ﬁk}kzo is a topologically admissible family of A, By
means of Theorem 2.58 we can deduce that {ﬁk}kzo endows A with a
topology 2 (more, with the structures of a topological algebra and of a
metric space) and we call (A, 2) the topological space of the formal power series
(related to the given grading). Note that

Qe =ANGy, YkeNU{0}, (2.85)

whence the inclusion A < A is continuous (here A has the topology induced
by {{2; }1 and A has the topology induced by {{2; }1). We have the following
important result.

Theorem 2.75 (The Isometry A~ A). Let (A,*) bea UA graded algebra with
grading {A;};>o. Let 2, and 2, be defined, respectzvely, as in (2.80) and (2.84).

Then the space A (with the metric induced by {Qk}k>0) is a complete metric
space and it is an isometric completion of A (with the metric induced by {2k} 1>0).
The natural inclusion A — A is both an isometry and a UAA isomorphism, and A
is dense in A.

In particular, denoting by d (resp. by d) the metric on A ( resp. on A) induced by

the family {2 } x>0 (resp. by the family {24} r>0) we have that the restriction of d
to A x A coincides with d.

Proof. See page 428 in Chap.7. O
Remark 2.76. We have the following results.

1. By Proposition 2.65-(d), we get:
A sequence wy, = (uf,u¥,...) in A converges to w = (ug,uy,...) in Aif and
only if for every N € IN there exists k(N) € IN such that, for all k > k(N), it

holds that
_ k k k
W = | U, UL, U2, U3y - - -, UN, UN{L1, UNF2, UN435--- -

2. With all the above notation, if a = (a;); € A = [I;504; (witha; € A; for
every j > 0) then we have the limit -

N
Z = (ag,a1,...,an,0,0,...) —— a, (2.86)

N —o00
7=0
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the limit being taken in the metric space A. We can thus represent the
elements of A as series > 2o aj (witha; € A; for every j > 0).

3. Furthermore, any series > -, b, of elements of A converges in A if
and only if it is Cauchy (completeness of A), which is equivalent to
lim,, 00 by, = 0 in A (see Remark 2.62), which, in its turn, is equivalent
to limy, 00 b, = 0in A (see (2.85)). For example, if a,, € A, for every
n > 0, the series Y~ | a,, is convergent in A

Analogously, any series >~ by, of elements of A converges in A if and
only if lim, o by = 0in A (again by an application of Remark 2.62).

4. Any set .(AZk (k € NU{0}) is both open and closed in A. Thus, by (2.85), the

same is true of any (2, in A. More generally, see Proposition 2.77 below.

Proposition 2.77. Let J be any fixed subset of N U {0}. Then the set
H = {(Uj)j € A‘ uj € Aj for every j > 0and u; = 0 for every j € J}

is closed in the topological space A

Proof. Suppose {wy} is a sequence in H converging to w in A. We use for
wy, and w the notation in Remark 2.76-(1). Let jo € J be fixed. By the cited
remark, there exists k(jo) € IN such that, for all & > &(jo),

k k
wg = (uo,ul,ug,...,ujo, uj0+1,ujo+2,...). (2.87)

Since wi, € H for every k, its jo-component is null. By (2.87), this jo-
component equals the jyo-component of w. Since jy is arbitrary in H, this
proves that w € H. 0

Remark 2.78. For example, we can apply Proposition 2.77 in the cases when
J={0,1,...,k—1},or J = {0} or J = (N U {0}) \ {k}, in which cases we
obtain respectively the closed sets (2, A1 =[] i>1 Aj,and Ay.

The following lemma will be used frequently in the sequel.

Lemma 2.79 (Prolongation Lemma). Suppose A = P;,,A4; and B =

@D, Bj are graded UA algebras and let A, B be the corresponding topological
spaces of their formal power series.
Following (2.80), we use the notation ;! == @, Aj and 27 .= @, B;.
Suppose ¢ : A — B is a linear map with the following property:

There exists a sequence {ky,}, in IN such that lim k,, = oo and
noee (2.88)
p(92:) € 2F  foreveryn € IN.



104 2 Background Algebra

Then ¢ is uniformly continuous (considering A, B as subspaces of the metric spaces
A, B, respectzvelylé) Hence, ¢ can be extended in a unique way to a continuous
linear map & : A — B. Moreover, if v is a UAA morphism, the same is true of 3.

Proof. See page 430 in Chap.7. O
Remark 2.80. Theorem 2.75 can be applied to the graded algebras

V)= Z(V) and F(V) =Pk

§>0 §>0

(see (2.28) and (2.42), respectively). Thus, on the algebras .7 and .7 ® 7 we
are given metric space structures induced respectively by the topologically
admissible families {U} }; and {W} }x, where

Uu=P 7). Wi= @ 7,0

i>k ik

The formal power series related to the graded algebras & and . ® 7,

denoted henceforth by :?\(V) and 727 (V) (or, shortly, by 7 and 707 ),
are the algebras

V=[[7v). Fe7v)=[[ Z.iV) (2.89)

Jj=0 i+5>0

with operations as in (2.82) (respectively inherited from the operations on
(Z,-) and on (F ® 7 ,e)), respectively equipped with the metric space
structures induced by the topologically admissible families {Ur}r and
{/Wk} 1, Where

U= Z(v).,  Wi= [] Z,0V). (2.90)

Jizk i+j=>k

Convention. In order to avoid heavy notation, the operations ~ and ®
(see the notation in (2.82)) will usually appear without the “ " sign. This
slight abuse of notation is in accordance with (2.83).

16Which is the same as considering A, B as metric spaces with metrics induced by the
families {27!}, and {02F }, respectively (see (2.85)).
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As a consequence, we have

e~~~

J
T x T =T, (a);-(by); = <Z%‘k'bk>
k=0 >0 (2.91)
where aj,b; € 7;(V) for all j > 0;
— — — J
°: TRT X IRT — TRT, (a;);e(bj); = ( > aj—k 'bk)
k=0 >0 (2.92)
where a;,b; € @), —; Thk(V) forall j > 0.

The operation e on 7% can also be rewritten by using the double-

sequenced notation (u;;);; for the elements of TR7 (this means that
ui; € 7,,(V)=Z(V)® ;(V) for every i, j > 0): indeed, following (2.45),
we have

o: TRT x TRT — TRT
(ti)i e (big)ig = ( . Z+~ trs °?F,§)i,j20a (2.93)
r+r=i, s+s=j

where t; ;,t;; € (V) ® F;(V) foralli,j > 0.

Remark 2.81. When expressed in coordinate form on the product space T =
[1;>0 7j, the Lie bracket operation takes a particularly easy form: Indeed, if

u,v € 7 and u = (uj); and v = (v;);, with uj,v; € F;(V) (for every j € IN),
we have
[u, 0] = [(u));, (v5);] = (Zh+k:j [Uh,vk])jzo- (2.94)

Indeed, the following computation holds
[(us)s (v)5] = (ws)j - (v3)5 = (05); - (u));
J J
D () ()
k=0 k=0

(change the dummy index in the second sum)

B <zj: (5 - vk — vk .ujk)>j20 = (i:[uj'k,vk])jzo.

k=0 k=0

Jj=0 Jj=0

Now note that the last term in the above chain of equalities is indeed the
coordinate expression of [u,v], since (as uj_r € Jj_k, vx € J%) one has
[Wj—k,Vk] € [Tk, k| € Tjk @ Th = Tj. O
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In Chap. 3, we will have occasion to apply the following result.

Proposition 2.82 (7® 7 asa Subalgebra of F@7). Let V be a vector space.
With the notation of this section, the tensor product T V)® T (V') can be identified
with a subalgebra of ToT (V).

Indeed, we can identify the element (u;);®(v;); ofé\@ T (whereu;, v; € 7, (V)
for every i > 0) with the element (u; ® vj); ; of TRT, this identification being a

o~ —~

UAA morphism. Here, 7 (V') @ 7 (V) is equipped with the UA algebra structure

obtained, as in Proposition 2.41, from the UAA structure of (7 (V), ). Hereafter,

when writing f?\(V) ® f?\(V) < TRT (V'), we shall understand the previously
mentioned immersion:

cé\(V) & ?(V) E) (ul)z & (Uj)j — (ui & Uj) ; € @(V) (2.95)

Proof. See page 433 in Chap.7. O

o~

Remark 2.83. Let {au}i and {8y} be two sequences of elements in (V') such
that limy,_, o0 o = avand limy_, oo B, = B in (V). Then

lim @ f=a®p in T@T(V),
—00

where we consider a ® 3 and any oy, @ Py, as elements of Y (V') (according to
(2.95) in Proposition 2.82). For the proof, see page 434 in Chap.7.

Remark 2.84. Following the notation in (2.91) and (2.92) and by using the
immersion :7\(V) ® f?\(V) — J®7 (V) in (2.95), it is not difficult to prove
that

o~

(a@b)e(a®B)=(a-b)®(b-B), for every a,b,«, 8 € T(V), (2.96)

where this is meant as an equality of elements of 707 (V).

2.3.4 Some More Notation on Formal Power Series

Letn € Nand let S = {z1,...,2,} be a set of cardinality n. The free vector
space K(S) will be denoted by

K(z1,...,z5).
The algebras .7 (K(x1,...,z,)) and 9\(]1((:61, ..., Ty)) can be thought of as,
respectively, the algebra of polynomials in the n non-commuting indeterminates
Z1,...,%, and the algebra of formal power series in the n non-commuting
indeterminates x+, ..., Zn.
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Recall that .7 (K(z1,...,2,)) is isomorphic to Libas({z1,...,z,}), the
free UAA over {z1, ..., 2, } (see Theorem 2.40). Analogously, the Lie algebra
L(XK(z1,...,z,)) can be thought of as the Lie algebra of the Lie-polynomials in
the n non-commuting indeterminates w1, . .., x,. Recall that L(K(z1,...,z,))
is a free Lie algebra related to the set {z1,...,x,}, being isomorphic to
Lie({z1,...,zn}) (see Theorem 2.56).

When n = 1, it is customary to write

Kz] :== 7(K(z)) and K[z]]:= 7 (K(x)).
(Note that 7 (K(z)) and :7\(IK<17>) are commutative algebras!) Some very
important features of K[[x]] will be stated in Sect. 4.3 of Chap. 4 (and proved
in Chap.9).
Finally, when writing expressions like

— —~

T Kr,y), TKz,y), TKz,y,2)), TKzy,z2)),
we shall always mean (possibly without the need to say it explicitly) that the
sets {z,y} and {z,y, z} have cardinality, respectively, two and three.

For the sake of future reference, we explicitly state the contents of
Theorem 2.40 and 2.56 in the cases of two {z,y} and three {z,y, 2} non-
commuting indeterminates. We also seize the opportunity to introduce a
new notation &, ;. In what follows, by an abuse of notation, we identify the
canonical injection ¢ : X — 7 (K(X)) defined by

X 5 KX) S 7KX)),

with the set inclusion X — 7 (IK(X)).
Theorem 2.85. The following universal properties are satisfied.
(la). For every UA algebra A and every pair of elements a,b € A, there exists a
unique UAA morphism @y, - T (K(z,y)) — A such that
Pop(x)=a and Pup(y) =0. (2.97)

(1b). For every Lie algebra g and every pair of elements a,b € g, there exists a
unique LA morphism @5, : L(K(x,y)) — g such that (2.97) holds.

(2a). For every UA algebra A and every triple of elements a, b, c € A, there exists
a unique UAA morphism @4« T (K(z,y, z)) — A such that

Dope(r) =a, Papc(y)=0, and Dgp.(2)=c. (2.98)

(2b). For every Lie algebra g and every triple of elements a, b, c € g, there exists a
unique LA morphism @y p, . : L(K(x,y, z)) — @ such that (2.98) holds.
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2.4 The Universal Enveloping Algebra

The aim of this section is to introduce the so-called universal enveloping
algebra 7% (g) of a Lie algebra g and to collect some useful related results. In
particular, we will present the remarkable Poincaré-Birkhoff-Witt Theorem.

Throughout this section, g will denote a fixed Lie algebra and its Lie
bracket is denoted by [-,:]g (or simply by [-,-]). As usual, (7 (g),) is the
tensor algebra of (the vector space of) g. We denote by _# (g) (sometimes ¢
for short) the two-sided ideal in .7 (g) generated by the set

{z@y—yoz—|z,yly : v,y € g}

More explicitly, we have

F(9) = span{t~ (:c®y*y®a:f [:c,y]g) tlxyecg tt e f(g)} (2.99)

Remark 2.86. We remark that the ideal _# (g) is not homogeneous (in the natural
grading of 7 (g)). Indeed, in the sequence-style notation (¢;)r>o for the
elements of 7 (g) = @~ Zk(g), the element z ® y — y ® x — [x,y]4 is
rewritten as

Definition 2.87 (Universal Enveloping Algebra). With all the above nota-
tion, we consider the quotient space

%(9) = 7(0)/ 7 (9)
and we call it the universal enveloping algebra of g. We denote by
w:7(9) = % (g), m(t) = [t] y(g), t € T(9) (2.101)
the associated projection. The natural operation'” on % (g)
(@) x %(9) > (n(t),n(t) = w(t-), (1" € T(a)),

which equips % (g) with the structure of a UA algebra (see Proposition 2.12
on page 58), will be simply denoted by juxtaposition.

The natural injection g — 7 (g) induces a linear map

pig— %), pwz) = z]g (v €g), (2.102)

7This operation is well-posed because _# (g) is an ideal of 7 (g).
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that is, © = 7|y. The following important proposition proves that the Lie
bracket of g is turned by 1 into the commutator of % (g). As soon as we will
know that y is injective (a corollary of the Poincaré-Birkhoff-Witt Theorem),
this will prove that (up to an identification) every Lie bracket is a commutator
(in the very meaning used in this Book).

As usual, if % (g) is involved as a Lie algebra, it is understood to be
equipped with the associated commutator, which we denote by [-, |#.

Remark 2.88. By its very definition, the map © : F(g9) — % (g) is a UAA
morphism, whence it is a Lie algebra morphism, when 7 (g) and % (g) are
equipped with their appropriate commutators (see Remark 2.17). Note that
this does not prove (yet) that 1 is a Lie algebra morphism, since g (equipped
with its intrinsic Lie bracket) is not a Lie subalgebra of .7 (g) (equipped with
its commutator).

Remark 2.89. The set {w(1)} U u(g) generates % (g) as an algebra. (This
follows from the fact that {1} U g generates .7 (g) as an algebra, together
with the fact that 7 is a UAA morphism.)

Proposition 2.90. With the above notation, the map  in (2.102) is a Lie algebra
morphism, i.e.,

w([z,ylg) = p(@)uly) — wy)u(z),  foreveryx,y € g. (2.103)

In particular, p(g) is a Lie subalgebra of % (g), equipped with the associated
commutator-algebra structure.

Note that (2.103) can be rewritten as

w([z,ylg) = (@), u(y)la, foreveryz,y € g. (2.104)

Proof. First we remark that (2.103) is equivalent to 7 ([z, y|4) = T(2Qy—y®z),
which in its turn is equivalent toz ® y —y ® © — [z, ylg € _Z (g). This is true
(for any z,y € g) by the definition of # (g). O

Remark 2.91. Via the map 7, the grading .7 (g9) = @,-, Zk(g) turns into
%(9) = Wisom(Jk(g)) (in the sense of sum of vector subspaces) but
the family of vector spaces {n(Z%(g))}x>0 does not furnish a direct sum
decomposition of % (g). Indeed, if z,y € g we have

m(lz,ylg) =z @y —y® )
—_— —

en(1(9)) en(F2(9))

(and we shall see explicit examples where this does not vanish). This is
obviously due to the non-homogeneity of ¢ (g).
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As expected, % (g) has a universal property:

Theorem 2.92 (Universal Property of the Universal Enveloping Algebra).
Let g be a Lie algebra and let % (g) be its universal enveloping algebra.

(i) For every UA algebra (A, ) and for every Lie algebra morphism f : g — A,
there exists a unique UAA morphism f* : % (g) — A such that

f(u(x)) = f(z) foreveryx € g, (2.105)
thus making the following a commutative diagram:
!
g —
K l /
fﬂ
u(

g)

A

(if) Vice versa, suppose U, are respectively a UA algebra and a Lie algebra
morphism ¢ : g — U with the following property: For every UA algebra
(A, ) and for every Lie algebra morphism f : g — A, there exists a unique
UAA morphism f¢ : U — A such that

fe(p(x)) = f(x) foreveryx € g, (2.106)

thus making the following a commutative diagram:
!
—
A
Then U is canonically isomorphic to % (g), the isomorphism being " :
U (g) — U and its inverse being u¥ : U — % (g). Moreover, o = ¢ o p.

Furthermore (if 11y denotes the unit of U) the set {1y} Up(g) is a set of algebra
generators for U and U ~ 7 (p(g)), canonically as UA algebras.

A

@

I +— @

Proof. Explicitly, the map f* is defined by
ffru(e) A wt) = ft) (te T(g)), (2.107)

where f : 7 (g) — A is the unique UAA morphism extending f : g — A.
For the rest of the proof, see page 435 in Chap.7. O
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We are in a position to prove a useful result on the enveloping algebra of the
free Lie algebra generated by a vector space.

Proposition 2.93. Let X be any set. Let V := IK(X) denote the free vector space
over X. Let L(V') be the free Lie algebra generated by the vector space V' (i.e., L(V')
is the smallest Lie subalgebra of 7 (V') containing V).

Then % (L(V')) and F (V') are isomorphic (as unital associative algebras).

Proof. More explicitly, we can take as isomorphism j : Z (L(V)) — Z(V)
the only UAA morphism such that

Jj(m(t)) = u(t), foreveryte L(V). (2.108)

See page 437 in Chap. 7 for the proof. We remark that in that proof we will
not use explicitly the fact that £(IK(X)) is a free Lie algebra related to X
(proved in Theorem 2.56). O

Here we have the fundamental result on the universal enveloping algebra.

Theorem 2.94 (Poincaré-Birkhoff-Witt). Let g be a Lie algebra and let % (g)
be its universal enveloping algebra. Let 1 denote the unit of % (g) and let 11 be the
map in (2.102). Suppose g is endowed with an indexed (linear) basis {x; };cg, where
J is totally ordered by the relation <. Set X; := p(x;), fori € J.

Then the following elements form a linear basis of % (g):

1, X“Xln, where HEN, il,...,inG‘J, 1< <Xy (2109)
Proof. The (laborious) proof of this key result is given in Chap.7 (starting
from page 438). For other proofs, the Reader is referred for example to [25,
85,95,99,159,171]. 0

In the sequel, the Poincaré-Birkhoff-Witt Theorem will be referred to as PBW
for short. Apparently until 1956, the theorem was only referred to as the
“Birkhoff-Witt Theorem”: see Schmid [153], Grivel [74], Ton-That, Tran [168]
for a historical overview on this topic and for a description of (the long
forgotten) contribution of Poincaré to this theorem, dated back to 1900.

Corollary 2.95. Let g be a Lie algebra and let % (g) be its universal enveloping
algebra. Then the map p in (2.102) is injective, so that y1 - g — u(g) is a Lie algebra
isomorphism.
As a consequence, every Lie algebra can be identified with a Lie subalgebra of a
UA algebra (endowed with the commutator), in the following way:
_ both a UA algebra
(9, [+°lo) = (@), [ ) = % (g) (and a commutator—algebm) '
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Proof. Let x € g be such that p(z) = 0. With the notation of Theorem 2.94,
we have x = )7, 4, \; ;, where I C J is finite and the \; are scalars. Thus
0= (> ;eq Aixi) = > ;cq i Xi, which is possible iff A\; = 0 foreveryi € 7/,
since the vectors X; appear in the basis (2.109) of % (g), i.e., z = 0.

Hence, the map 1 : g — w(g) is a bijection and it is also a Lie algebra
morphism, in view of Proposition 2.90, when p(g) is equipped with the com-
mutator from the UA algebra % (g). O

By means of the PBW Theorem, we are able to give a short proof of the
existence of free Lie algebras generated by a vector space.

Proof (of Theorem 2.49, page 86). Let V be a vector space and let f : V' — g
be a linear map, g being a Lie algebra. We need to prove that there exists a
unique LA morphism f : £(V) — g prolonging f. The uniqueness is trivial,
once existence is proved. To this end, let us consider the LA morphism  :
g — % (g) in (2.102). Since the map po f : V — % (g) is linear and % (g) is a
UA algebra, by Theorem 2.38 there exists a UAA morphism po f : 7(V) —
% (g) prolonging .o f. Now we restrict p o f both in domain and codomain,
by considering the map

FiL(V)—pe),  Jt)=pof@t) (teL(v)).

To prove that fis well posed, we need to show that

po f(t) € u(g) foreveryte L(V). (2.110)

Since £(V') is Lie-generated by V' (see Proposition 2.47) it suffices to prove
(2.110) when t = [v1 - - [Up—1,0p] -+ -], for any n € N and v1,...,v, € V. To
this end (denoting by [-, -] the commutator of % (g)), we argue as follows:

po f(t) =[pwo f(v1)-[pwo flon-1), o f(vn)lew - ]u
= [u(f(v1)) - [u(f (vn=1)), u(f ()l - -l

In the first equality we applied the fact that y o f is a UAA morphism and
in the second equality the fact that o f coincides with po f on V. Now
the above right-hand side is an element of p(g) since f(v;) € g for every
i=1,...,nand u(g) is a Lie subalgebra of % (g) (see Proposition 2.90). This
proves (2.110). We now remark that fis an LA morphism (of the associated
commutator-algebras) since it is the restriction of p o f, which is an LA
morphism (being a UAA morphism).

Since i : g — p(g) is a Lie algebra isomorphism (thanks to Corollary
2.95), the map

ito Fra(v) L pe) g
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is an LA morphism, since both p~tand fare. Weset f:=p "o f It remains
to show that f prolongs f. This follows immediately from

F0) = (1o F(v) = (W o po f)(v) = f(v), VoveV.
This ends the proof. O

The following diagram describes the maps in the above argument:

f H
V——— 0 —— o) —— %(9)

f

"

We end the section with an example of how the injective map p : g — % (g)
can be used to perform computations involving the Lie bracket of a Lie
algebra (without “explicit knowledge” of the Lie bracket on g).

Example 2.96. We prove that, for every Lie algebra g, one has
la,[b,[a,b]]]g = —[b, [a, [b,a]]lg, foreverya,be g. (2.111)

Obviously, this computation can be a consequence only of the skew-symme-
try and the Jacobi identity, but it may not at first be obvious how to perform
the computation.'®

Let us use, instead, the injection i : g — % (g). Given arbitrary a,b € g,
we set A := p(a) and B := u(b). We begin by showing that

[A,[B,[A, Blllow = —[B, A, B, Alllo, in%/ g). (2.112)
18Indeed, (2.111) follows from the following argument: Set = := [a,b], y = a, 2 := b
and write the Jacobi identity [z, [y, 2]] + [v, [2,z]] + [z, [z,y]] = 0; the first summand is

[[a, b], [a, b]] which is null by skew-symmetry. Hence we get [a, [b, [a, b]]] + [b, [[a, b], a]] =0
which leads directly to (2.111), again by skew-symmetry.
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Indeed, unraveling the commutators (and dropping the subscript %)
[A,[B,[A, B]]] = [A,[B, AB — BA]| = [A, BAB — B>A — AB? + BAB]
= ABAB — AB*A — A’B* + ABAB+
— BABA + B*A® + AB*A — BABA
=2ABAB—2BABA+ B*A* — A’B.
Hence, by interchanging A and B we get
[B,[A,[B,A]]] =2BABA — 2 ABAB + A*B* — B*A?,

which proves (2.112). By exploiting (2.104), we thus get

ula, [b, [a, B]])g) “=" [1(a), [1n(b), [u(a), n(®))2 = [A, [B, [A, Blll2
CLY (B, 1A, (B, Alllas = —[u(b), [n(a), [n(b), p(a)]]]
(2.£4)

_M([b’ [a’ [b’ a]]]g)
This yields the identity

M([a’ [b’ [a’ bmg) = M(_[ba [CL, [ba a]]]g)

The injectivity of u now gives the claimed formula in (2.111). O
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