
Chapter 2

Survey and Overview

Rare category analysis is related to many research areas, including active
learning, where the goal is to improve the classification performance with
the fewest label requests to the labeling oracle; imbalanced classification,
where the goal is to construct a classifier for imbalanced data sets which is
able to identify the under represented classes; anomaly detection (outlier de-
tection), which refers to the problem of finding patterns in the data that do
not conform to expected behavior; clustering, which refers to the problem
of grouping similar data items into clusters; co-clustering, which generally
involves grouping the data from various dimensions; and unsupervised fea-
ture selection, where the goal is to select features for the sake of grouping
the data without any supervision. In this chapter, we review related work in
the above areas, highlighting their differences with rare category analysis.
Compared with these research areas, rare category analysis is relatively new.
In this chapter, we also briefly introduce some existing work on rare cate-
gory detection, which is the first task in supervised rare category analysis;
whereas the other tasks have not been addressed before.

2.1 Active Learning

The key idea behind active learning is that a machine learning algorithm can
achieve greater accuracy with fewer training labels if it is allowed to choose
the data from which it learns [Set10]. In active learning, we assume that the
class labels are obtained from a labeling oracle with some cost, and under a
fixed budget, we hope to maximally improve the performance of the learn-
ing algorithm. According to [Set10], there are three main settings in active
learning: membership query synthesis, stream-based selective sampling, and
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pool-based sampling.

Many early active learning algorithms belong to membership query syn-
thesis, such as [Ang87] [Ang01] [CGJ96]. One major problem with mem-
bership query synthesis is that the synthesized queries often have no practical
meanings, and thus no appropriate labels. On the other hand, with stream-
based active learning and pool-based sampling, the queries always corre-
spond to real examples. Therefore, their label information can be readily
provided by the oracle.

In stream-based selective sampling, given an unlabeled example, the
learner must decide whether to query its class label or to discard it. For
example, in [CAL92], Cohn et al compute a region of uncertainty, and query
examples within it; in [DE95], Dagan et al proposed committee-based sam-
pling, which evaluates the informativeness of an example by measuring the
degree of disagreement between several model variants and only queries the
more informative ones.

On the other hand, in pool-based sampling, queries are selected from a
pool of unlabeled examples. Its major difference from stream-based selective
sampling is the large amount of unlabeled data available at query time, which
reveals additional information about the underlying distribution. For exam-
ple, Tong et al [TKK01] proposed an active learning algorithm that mini-
mizes the size of the version space; Mccallum and Nigam [MN98] modified
the Query-by-Committee method of active learning to use unlabeled data for
density estimation, and combined this with EM to find the class labels of the
unlabeled examples.

It should be mentioned that in traditional active learning, initially we
have labeled examples from all the classes in order to build the very first
classifier, which can be improved by actively selecting the training data. On
the other hand, in rare category detection, initially we do not have any labeled
examples, and the goal is to discover at least one example from each minority
class with the fewest label requests. Combining rare category detection and
traditional active learning, it has been noticed in [BBL06] and [Das05] that
if the learning algorithm starts denovo, finding the initial labeled examples
from each class (i.e., rare category detection) becomes the bottleneck for
reducing the sampling complexity. Furthermore, in supervised rare category
analysis, following rare category detection, the second task is rare category
characterization, which works in a semi-supervised fashion. In this task, in
order to get a more accurate representation of the minority classes, we can
make use of active learning to select the most informative examples to be
added to the labeled set.
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2.2 Imbalanced Classification

In imbalanced classification, the goal is to construct an accurate classifier
that optimizes a discriminative criterion, such as balanced accuracy, G-mean,
etc [Cha09]. Existing methods can be roughly categorized into three groups
[Cha09], i.e., sampling-based methods [KM97][CBHK02], adapting learn-
ing algorithms by modifying objective functions or changing decision thresh-
olds [WC03] [HYKL04], and ensemble-based methods [SKW06][CLHB03].
To be specific, in sampling-based methods, some methods under-sample the
majority classes. For example, the one-sided sampling strategy proposed
in [KM97] employs Tomek links [Tom76] followed by closest nearest neigh-
bor [HAR68] to discard the majority class examples that lie in the bor-
derline region, are noisy or redundant. In contrast, some sampling-based
methods over-sample the hard examples. For example, the DataBoost-IM
method proposed in [GV04] generates synthetic examples according to the
hard examples identified during the boosting algorithm; the SMOTEBoost
algorithm proposed in [CLHB03] applies the SMOTE algorithm [CBHK02]
to create new examples from the minority class in each boosting round.
Furthermore, some methods combine over-sampling the minority class and
under-sampling the majority class. For example, the SMOTE algorithm com-
bined with under-sampling [CBHK02] was proven to outperform only under-
sampling the majority class and varying the loss ratios; in [TZCK09], differ-
ent rebalance heuristics were incorporated into SVM modeling to tackle the
problem of class imbalance, including over-sampling, under-sampling, etc.

Imbalanced classification and rare category characterization bear simi-
larity but also have some differences. On one hand, both tasks need labeled
examples from all the classes as input. On the other hand, imbalanced classi-
fication and rare category characterization have different goals as well as dif-
ferent output. To be specific, in rare category characterization, we only focus
on the minority classes, and aim to identify all (or nearly all) the rare exam-
ples from the unlabeled data set with high precision and recall; whereas in
imbalanced classification, the goal is to construct a classifier that optimizes
a discriminative criterion for both the majority and minority classes. Fur-
thermore, in rare category characterization, we are able to obtain a compact
representation for the minority classes, which can be provided to domain ex-
perts for better understanding of the learning results; whereas in imbalanced
classification, such representations are not provided.
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2.3 Anomaly Detection (Outlier Detection)

Anomaly detection refers to the problem of finding patterns in data that do
not conform to expected behavior [CBK09]. Anomalies are often referred to
as outliers. According to [CBK09], the majority of anomaly detection tech-
niques can be categorized into classification-based, nearest neighbor-based,
clustering-based, information theoretic, spectral, and statistical techniques.
For example, in [BWJ01], the authors propose a method based on a tech-
nique called pseudo-Bayes estimators to enhance an anomaly detection sys-
tem’s ability to detect new attacks while reducing the false alarm rate as
much as possible. In [RRS00], the authors propose a novel formulation for
distance-based outliers that is based on the distance of a point from its kth

nearest neighbor. Then they rank each point on the basis of its distance to
its kth nearest neighbor and declare the top n points in this ranking to be
outliers. In [YSZ02], the authors propose the FindOut algorithm, which is
an extension of the WaveCluster algorithm [SCZ98] in which the detected
clusters are removed from the data and the residual instances are declared as
anomalies. In [HXD05], the authors formally define the problem of outlier
detection in categorical data as an optimization problem from a global view-
point based on entropy minimization, and present a local-search heuristic-
based algorithm for efficiently finding feasible solutions. In [DGBK07], the
authors describe distributed algorithms for doing Principal Component Anal-
ysis (PCA) using random projection and sampling based techniques. Us-
ing the approximate principal components, they develop a distributed outlier
detection algorithm based on the fact that the last principal component en-
ables identification of data points which deviate sharply from the ‘correlation
structure’ of the data. And in [AY01], the authors discuss a new technique
for outlier detection which is especially suited to very high dimensional data
sets. The method works by finding lower dimensional projections which are
locally sparse, and cannot be discovered easily by brute force techniques
because of the number of combinations of possibilities.

In general, anomaly detection finds individual and isolated examples that
differ from a given class in an unsupervised fashion. Typically, there is no
way to characterize the anomalies since they are often different from each
other. There exist a few works dealing with the case where the anomalies
are clustered [PKGF03]. However, they still assume that the anomalies are
separable from the normal data points. On the other hand, in rare category
detection, each rare category consists of a group of points, which form a
compact cluster in the feature space and are self-similar. Furthermore, we
are dealing with challenging cases where the support regions of the majority
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and minority classes overlap with each other.

2.4 Clustering

According to [Fun01], clustering refers to the grouping together of similar
data items into clusters. Existing clustering algorithms can be categorized
into the following two main classes [Fun01]: parametric clustering and non-
parametric clustering. In general, parametric methods attempt to minimize
a cost function or an optimality criterion which associates a cost to each
example-cluster assignment. It can be further classified into two groups:
generative models and reconstructive models. In generative models, the ba-
sic idea is that the input examples are observations from a set of unknown
distributions. For example, in Gaussian mixture models [RR95], the data are
viewed as coming from a mixture of Gaussian probability distributions, each
representing a different cluster; in C-means fuzzy clustering [Dun73], the
membership of a point is shared among various clusters. On the other hand,
reconstructive methods generally attempt to minimize a cost function. For
example, K-means clustering forms clusters in numeric domains, partition-
ing examples into disjoint clusters [DHS00]; in Deterministic Annealing EM
Algorithm (DAEM) [HB97], the maximization of the likelihood function is
embedded in the minimization of the thermodynamic free energy, depending
on the temperature which controls the annealing process. For nonparametric
methods, two good representative examples are the agglomerative and di-
visive algorithms, also called hierarchical algorithms [Joh67], that produce
dendrograms.

In unsupervised rare category analysis, one important problem we want
to address is rare category selection, i.e., selecting a set of examples which
are likely to come from the minority classes. General-purpose clustering
algorithms do not fit here because the proportions of different classes are
very skewed and the support regions of the majority and minority classes
overlap with each other. In this case, general-purpose clustering algorithms
tend to overlook the minority classes and generate clusters within the ma-
jority classes. Therefore, we need to develop new methods for rare category
selection which leverage the property of the minority classes.

2.5 Co-clustering

The idea of using compression for co-clustering can be traced back to the
information-theoretic co-clustering algorithm [DMM03], where the normal-
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ized non-negative contingency table is treated as a joint probability distribu-
tion between two discrete random variables that take values over the rows
and columns. Then co-clustering is defined as a pair of mappings from rows
to row clusters and from columns to column clusters. According to informa-
tion theory, the optimal co-clustering is the one that minimizes the difference
between the mutual information of the original random variables and the
clustered random variables. The algorithm for minimizing the above crite-
rion intertwines both row and column clustering at all stages. Row clustering
is done by assessing closeness of each row distribution, in relative entropy,
to certain ‘row cluster prototypes’. Column clustering is done similarly, and
this process is iterated until it converges to a local minimum. It can be the-
oretically proven that the proposed algorithm never increases the criterion,
and gradually improves the quality of co-clustering.

Although the information-theoretic co-clustering algorithm can only be
applied to bipartite graphs, the idea behind this algorithm can be generalized
to more than two types of heterogeneous objects. For example, in [GLZ+07],
the authors proposed the CBGC algorithm. It aims to do collective clus-
tering for star-shaped inter-relationships among different types of objects.
First, it transforms the star-shaped structure into a set of bipartite graphs;
then it formulates a constrained optimization problem, where the objec-
tive function is a weighted sum of the Rayleigh quotients on different bi-
partite graphs, and the constraints are that clustering results for the same
type of objects should be the same. Follow-up work includes high order
co-clustering [GGP07]. Another example is the spectral relational cluster-
ing algorithm proposed in [LZWY06]. Unlike the previous algorithm, this
algorithm is not restricted to star-shaped structures. It is based on a general
model, collective factorization on related matrices. This model simultane-
ously clusters multi-type interrelated objects based on both the relation and
the feature information. It exploits the interactions between the hidden struc-
tures of different types of objects through the related factorizations which
share matrix factors, i.e., cluster indicator matrices. The resulting spec-
tral relational clustering algorithm iteratively updates the cluster indicator
matrices using the leading eigenvectors of a specially designed matrix until
convergence. More recently, the collective matrix factorization proposed by
Singh and Gordon [SG08a] [SG08b] can also be used for clustering k-partite
graphs.

Other related work includes (1) GraphScope [SFPY07], which uses a
similar information-theoretic criterion as cross-association for time-evolving
graphs to segment time into homogeneous intervals; and (2) multi-way dis-
tributional clustering (MDC) [BEYM05] which was demonstrated to outper-
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form the previous information-theoretic clustering algorithms at the time the
algorithm was proposed.

At first glance, one may apply co-clustering algorithms to simultane-
ously address the problem of rare category selection and feature selection
in unsupervised rare category analysis. The problem here is similar to the
one mentioned in Section 2.4. That is, due to the extreme skewness of the
class proportions and the overlapping support regions, general-purpose co-
clustering algorithms may not be able to correctly identify the few rare ex-
amples or the features relevant to the rare categories; whereas we propose
an algorithm for co-selecting the rare examples and the relevant features,
which addresses this problem by making use of the clustering property of
the minority classes.

2.6 Unsupervised Feature Selection

Generally speaking, existing feature selection methods in the unsupervised
setting can be categorized as wrapper models and filter models. The wrapper
models evaluate feature subsets based on the clustering results, such as the
FSSEM algorithm [DB00], the mixture-based approach which extends to
the unsupervised context the mutual-information based criterion [LJF02],
and the ELSA algorithm [KSM00]. The filter models are independent of
the clustering algorithm, such as the feature selection algorithm based on
maximum information compression index [MMP02], the feature selection
method using distance-based entropy [DCSL02], and the feature selection
method based on Laplacian score [HCN05].

In unsupervised rare category analysis, one of the problems we want
to address is feature selection, i.e., selecting a set of features relevant to the
minority classes. In our settings, since the class proportions are very skewed,
the general-purpose wrapper and filter methods would fail by selecting the
features primarily relevant to the majority classes. Therefore, we need new
feature selection methods that are tailored for rare category analysis.

2.7 Rare Category Detection

In rare category detection, the goal is to find at least one example from each
minority class with the help of a labeling oracle, minimizing the number of
label requests. Researchers have developed several methods for rare category
detection. For example, in [PM04], the authors assumed a mixture model to
fit the data, and experimented with different hint selection methods, of which
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Interleaving performs the best; in [FM06], the authors studied functions with
multiple output values, and used active sampling to identify an example for
each of the possible output values; in [DH08], the authors presented an active
learning scheme that exploits cluster structure in the data, which was proven
to be effective in rare category detection; and in [VW09], the authors pro-
posed a new approach to rare category detection based on hierarchical mean
shift, where a hierarchy is created by repeatedly applying mean shift with an
increasing bandwidth on the data. Different from most existing work on rare
category detection, which assumes that the majority and minority classes are
separable / near-separable from each other in the feature space, in Chapter 3
of this book, we target the more challenging cases where the support re-
gions of different classes are not separable. Furthermore, besides empirical
evaluations of the proposed algorithms, we also prove their effectiveness the-
oretically; whereas most existing algorithms do not have such guarantees.
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