
Chapter 4

PDEs with Diffusion

The aim of this chapter is to investigate the approximation of scalar PDEs with
diffusion. As a first step, we consider the Poisson problem with homogeneous
Dirichlet boundary condition

−�u = f in Ω, (4.1a)
u = 0 on ∂Ω, (4.1b)

and source term f ∈ L2(Ω). The scalar-valued function u is termed the potential
and the vector-valued function −∇u the diffusive flux.

In Sect. 4.1, we briefly describe the continuous setting for the model prob-
lem (4.1). Then, in the following sections, we discuss three possible approaches
to design a dG approximation for this problem. In Sect. 4.2, we present a heuris-
tic derivation of a suitable discrete bilinear form loosely following the same path
of ideas as in Chap. 2 hinging on consistency and discrete coercivity. There are,
however, substantial differences: a specific term needs to be added to recover
consistency, interface jumps as well as boundary values are penalized, and the
penalty term scales as the reciprocal of the local meshsize so that discrete coerciv-
ity is expressed using a mesh-dependent norm. A further important difference
is that we require to work at least with piecewise affine polynomials, thereby
excluding, for the time being, methods of finite volume-type. This derivation
yields the so-called Symmetric Interior Penalty (SIP) method of Arnold [14].
The error analysis follows fairly standard arguments and leads to optimal error
estimates for smooth exact solutions. We also present a more recent analysis
by the authors [132] in the case of low-regularity exact solutions. Then, using
liftings of the interface jumps and boundary values, we introduce in Sect. 4.3 the
important concept of discrete gradient. Applications include (1) a reformulation
of the SIP bilinear form that plays a central role in Sect. 5.2 to analyze the conver-
gence to minimal regularity solutions (as shown recently by the authors in [131]),
and (2) an elementwise formulation of the discrete problem leading to a local
conservation property in terms of numerical fluxes. Finally, the third approach
is pursued in Sect. 4.4 where we consider mixed dG methods that approximate
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120 Chapter 4. PDEs with Diffusion

both the potential and the diffusive flux. In such methods, local problems for
the discrete potential and diffusive flux are formulated using numerical fluxes
for both quantities, following the pioneering works of Bassi, Rebay, and cowork-
ers [34, 35] and Cockburn and Shu [112]. This viewpoint has been adopted by
Arnold, Brezzi, Cockburn, and Marini in [16] for a unified presentation of dG
methods for the Poisson problem. For simplicity, we focus here on the SIP
method and so-called Local Discontinuous Galerkin (LDG) methods [112]. In
both methods, the discrete diffusive flux can be eliminated locally. We postpone
the study of two-field dG methods to Sect. 7.3 in the more general context of
Friedrichs’ systems. Finally, we discuss hybrid mixed dG methods where addi-
tional degrees of freedom are introduced at interfaces, thereby allowing one to
eliminate locally both the discrete potential and the discrete diffusive flux. This
leads, in particular, to the so-called Hybridized Discontinuous Galerkin (HDG)
methods introduced by Cockburn, Gopalakrishnan, and Lazarov [97]; see also
Causin and Sacco [83] for a different approach based on a discontinuous Petrov–
Galerkin formulation and Droniou and Eymard [135] for similar ideas in the
context of hybrid mixed finite volume schemes.

The rest of this chapter is devoted to the study of diffusive PDEs that com-
prise additional terms with respect to the model problem (4.1). In Sect. 4.5, we
extend the SIP method analyzed in Sect. 4.2 to heterogeneous (anisotropic) diffu-
sion problems. The main ingredients are diffusion-dependent weighted averages
to formulate the consistency and symmetry terms in the discrete bilinear form
together with diffusion-dependent penalty parameters using the harmonic mean
of the diffusion coefficient at each interface. In Sect. 4.6, we analyze heteroge-
neous diffusion-advection-reaction problems. We combine the ideas of Sect. 4.5
to handle the diffusion term with those developed in Sect. 2.3 for the upwind dG
method to handle the advection-reaction term. The goal is a convergence analy-
sis that covers both diffusion-dominated and advection-dominated regimes. The
present analysis includes the case where the diffusion vanishes locally in some
parts of the domain. Finally, in Sect. 4.7, we consider the heat equation as a pro-
totype for time-dependent scalar PDEs with diffusion (that is, parabolic PDEs).
The approximation is based on the SIP method for space discretization and an
A-stable finite difference scheme in time; for simplicity, we focus on backward
(or implicit) Euler and BDF2 schemes.

4.1 Pure Diffusion: The Continuous Setting
In this section, we present some basic facts concerning the model problem (4.1).

4.1.1 Weak Formulation and Well-Posedness
The weak formulation of (4.1) is classical:

Find u ∈ V s.t. a(u, v) =
∫

Ω

fv for all v ∈ V , (4.2)
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with energy space V = H1
0 (Ω) :=

{
v ∈ H1(Ω) | v|∂Ω = 0

}
and bilinear form

a(u, v) :=
∫

Ω

∇u·∇v. (4.3)

Recalling the Poincaré inequality (see, e.g., Evans [153, p. 265] or Brézis [55,
p. 174]) stating that there is CΩ such that, for all v ∈ H1

0 (Ω),

‖v‖L2(Ω) ≤ CΩ‖∇v‖[L2(Ω)]d , (4.4)

we infer that the bilinear form a is coercive on V . Therefore, owing to the
Lax–Milgram Lemma, the weak problem (4.2) is well-posed.

4.1.2 Potential and Diffusive Flux
The PDE (4.1a) can be rewritten in mixed form as a system of first-order PDEs:

σ + ∇u = 0 in Ω, (4.5a)
∇·σ = f in Ω. (4.5b)

Definition 4.1 (Potential and diffusive flux). In the context of the mixed for-
mulation (4.5), the scalar-valued function u is termed the potential and the
vector-valued function σ := −∇u is termed the diffusive flux.

The derivation of dG methods to approximate the model problems (4.1) on a
given mesh Th hinges on the fact that the jumps of the potential and of the nor-
mal component of the diffusive flux vanish across interfaces. To allow for a more
compact notation, we define boundary averages and jumps (cf. Definition 1.17
for interface averages and jumps).

Definition 4.2 (Boundary averages and jumps). For a smooth function v, for
all F ∈ Fb

h, and for a.e. x ∈ F , we define the average and jump of v as

{{v}}F (x) = �v�F (x) := v(x).

The subscript as well as the dependence on x are omitted unless necessary.

Since the potential u is in the energy space V , we infer that, for all T ∈ Th

and all F ∈ FT , letting uT := u|T , the trace uT |F is in L2(F ). Furthermore, the
diffusive flux σ is in the space H(div;Ω) defined by (1.23). Traces on mesh faces
of the normal component of functions in H(div;Ω) are discussed in Sect. 1.2.6.
In particular, under the regularity assumption u ∈ W 2,1(Ω), there holds σ ∈
[W 1,1(Ω)]d, so that, for all T ∈ Th and all F ∈ FT , letting σT := σ|T and
σ∂T := σT ·nT on ∂T , the trace σ∂T |F is in L1(F ). This trace is in L2(F ) under
the stronger regularity assumption u ∈ H2(Ω) (the assumption u ∈ H3/2+ε(Ω),
ε > 0, is actually sufficient).

We can now examine the jumps of the potential and of the normal component
of the diffusive flux.
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Lemma 4.3 (Jumps of potential and diffusive flux). Assume u ∈ V ∩W 2,1(Ω).
Then, there holds

�u� = 0 ∀F ∈ Fh, (4.6a)

�σ�·nF = 0 ∀F ∈ F i
h. (4.6b)

Proof. Assertion (4.6a) results from Lemma 1.23 for interfaces and from Defini-
tion 4.2 for boundary faces. Assertion (4.6b) results from Lemma 1.24.

4.2 Symmetric Interior Penalty
Our goal is to approximate the solution of the model problem (4.2) using dG
methods in the broken polynomial space �k

d(Th) defined by (1.15). We set

Vh := �
k
d(Th),

with polynomial degree k ≥ 1 and Th belonging to an admissible mesh sequence.
The focus of this section is on a specific dG method, the Symmetric Interior
Penalty (SIP) method introduced by Arnold [14].

For simplicity, we enforce a somewhat strong regularity assumption on the
exact solution. A weaker regularity assumption is made in Sect. 4.2.5.

Assumption 4.4 (Regularity of exact solution and space V∗). We assume that
the exact solution u is such that

u ∈ V∗ := V ∩H2(Ω).

In the spirit of Sect. 1.3, we set V∗h := V∗ + Vh.

Without further knowledge on the exact solution u apart from the domain
Ω and the datum f ∈ L2(Ω), Assumption 4.4 can be asserted for instance if
the domain Ω is convex; see Grisvard [177]. Assumption 4.4 differs from the
concept of elliptic regularity (cf. Definition 4.24 below) since Assumption 4.4
only concerns the exact solution u.

4.2.1 Heuristic Derivation
To derive a suitable discrete bilinear form, we loosely follow the same path of
ideas as in Chap. 2 aiming at a discrete bilinear form that satisfies the consis-
tency requirement (1.32) and enjoys discrete coercivity. Moreover, we add a
(consistent) term to recover, at the discrete level, the symmetry of the continu-
ous problem.

4.2.1.1 Consistency

We begin localizing gradients to mesh elements in the exact bilinear form a, that
is, we set, for all (v,wh) ∈ V∗h × Vh,

a
(0)
h (v,wh) :=

∫
Ω

∇hv·∇hwh =
∑

T∈Th

∫
T

∇v·∇wh.
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To examine the consistency requirement (1.32), we integrate by parts on each
mesh element. This leads to

a
(0)
h (v,wh) = −

∑
T∈Th

∫
T

(�v)wh +
∑

T∈Th

∫
∂T

(∇v·nT )wh.

The second term on the right-hand side can be reformulated as a sum over mesh
faces in the form

∑
T∈Th

∫
∂T

(∇v·nT )wh =
∑

F∈Fi
h

∫
F

�(∇hv)wh�·nF +
∑

F∈Fb
h

∫
F

(∇v·nF )wh,

since for all F ∈ F i
h with F = ∂T1 ∩ ∂T2, nF = nT1 = −nT2 . Moreover,

�(∇hv)wh� = {{∇hv}}�wh� + �∇hv�{{wh}},

since letting ai = (∇v)|Ti , bi = wh|Ti , i ∈ {1, 2}, yields

�(∇hv)wh� = a1b1 − a2b2

= 1
2 (a1 + a2)(b1 − b2) + (a1 − a2) 1

2 (b1 + b2)
= {{∇hv}}�wh� + �∇hv�{{wh}}.

As a result, and accounting for boundary faces using Definition 4.2, yields
∑

T∈Th

∫
∂T

(∇v·nT )wh =
∑

F∈Fh

∫
F

{{∇hv}}·nF �wh� +
∑

F∈Fi
h

∫
F

�∇hv�·nF {{wh}}.

Hence,

a
(0)
h (v,wh) = −

∑
T∈Th

∫
T

(�v)wh +
∑

F∈Fh

∫
F

{{∇hv}}·nF �wh�

+
∑

F∈Fi
h

∫
F

�∇hv�·nF {{wh}}. (4.7)

To check consistency, we set v = u in (4.7). A consequence of (4.6b) is that, for
all wh ∈ Vh,

a
(0)
h (u,wh) =

∫
Ω

fwh +
∑

F∈Fh

∫
F

(∇u·nF )�wh�.

In order to match the consistency requirement (1.32), we are prompted to modify
a
(0)
h as follows: For all (v,wh) ∈ V∗h × Vh,

a
(1)
h (v,wh) :=

∫
Ω

∇hv·∇hwh −
∑

F∈Fh

∫
F

{{∇hv}}·nF �wh�.

It is clear that a(1)
h is consistent in the sense of (1.32), i.e., for all wh ∈ Vh,

a
(1)
h (u,wh) =

∫
Ω

fwh.
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4.2.1.2 Symmetry

A desirable property of the discrete bilinear form is to preserve the original
symmetry of the exact bilinear form. Indeed, symmetry can simplify the solution
of the resulting linear system and furthermore, it is a natural ingredient to
derive optimal L2-norm error estimates (cf. Sect. 4.2.4); nonsymmetric variants
are discussed in Sect. 5.3. In view of this remark, we set, for all (v,wh) ∈ V∗h×Vh,

acs
h (v,wh) :=

∫
Ω

∇hv·∇hwh −
∑

F∈Fh

∫
F

({{∇hv}}·nF �wh� + �v�{{∇hwh}}·nF ) ,

(4.8)
so that acs

h is symmetric on Vh × Vh The bilinear form acs
h remains consistent

owing to (4.6a). The superscript in acs
h indicates the consistency and symmetry

achieved so far. For future use, we record the following equivalent expression of
acs

h resulting from (4.7),

acs
h (v,wh) = −

∑
T∈Th

∫
T

(�v)wh +
∑

F∈Fi
h

∫
F

�∇hv�·nF {{wh}}

−
∑

F∈Fh

∫
F

�v�{{∇hwh}}·nF . (4.9)

4.2.1.3 Penalties on Interface Jumps and Boundary Values

The last requirement to match is discrete coercivity on the broken polynomial
space Vh with respect to a suitable norm. The difficulty with the discrete bilinear
form acs

h defined by (4.8) is that, for all vh ∈ Vh,

acs
h (vh, vh) = ‖∇hvh‖2

[L2(Ω)]d − 2
∑

F∈Fh

∫
F

{{∇hvh}}·nF �vh�,

and the second term on the right-hand side has no a priori sign so that, without
adding a further term, there is no hope for discrete coercivity (in some situations,
discrete inf-sup stability can be achieved without penalty; cf. Remark 4.14).
To achieve discrete coercivity, we add to acs

h a term penalizing interface and
boundary jumps, namely we set, for all (v,wh) ∈ V∗h × Vh,

asip
h (v,wh) := acs

h (v,wh) + sh(v,wh), (4.10)

with the stabilization bilinear form

sh(v,wh) :=
∑

F∈Fh

η

hF

∫
F

�v��wh�, (4.11)

where η > 0 is a user-dependent parameter and hF a local length scale associated
with the mesh face F ∈ Fh. We observe that, owing to (4.6a), adding the bilinear
form sh to acs

h does not alter the consistency and symmetry achieved so far.
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Moreover, Lemma 4.12 below shows that, provided the penalty parameter η is
large enough, the discrete bilinear form asip

h enjoys discrete coercivity on Vh.
We now present a simple choice for the local length scale hF .

Definition 4.5 (Local length scale hF ). For all F ∈ Fh, in dimension d ≥ 2, we
set hF to be equal to the diameter of the face F , while, in dimension 1, we set
hF := min(hT1 , hT2) if F ∈ F i

h with F = ∂T1∩∂T2 and hF := hT if F ∈ Fb
h with

F = ∂T ∩ ∂Ω. In all cases, for a mesh element T ∈ Th, hT denotes its diameter
(cf. Definition 1.13).

Remark 4.6 (Local length scale hF ). Other choices are possible for the local
length scale hF weighting the face penalties in the stabilization bilinear form
sh, e.g., the choice hF = {{h}} := 1

2 (hT1 + hT2) for all F ∈ F i
h, or the choice

hF = {{|T |d}}
|F |d−1

(that is, the mean value of the d-dimensional Hausdorff measures
of the neighboring elements divided by the (d−1)-dimensional Hausdorff measure
of the face, recalling that for d = 1, |F |0 = 1). Incidentally, we observe that
modifying the choice for the local length scale impacts the value of the minimal
threshold on the penalty parameter η for which discrete coercivity is achieved.

Combining (4.10) with (4.11) yields, for all (v,wh) ∈ V∗h × Vh,

asip
h (v,wh) =

∫
Ω

∇hv·∇hwh −
∑

F∈Fh

∫
F

({{∇hv}}·nF �wh� + �v�{{∇hwh}}·nF )

+
∑

F∈Fh

η

hF

∫
F

�v��wh�, (4.12)

or, equivalently using (4.9),

asip
h (v,wh) = −

∑
T∈Th

∫
T

(�v)wh +
∑

F∈Fi
h

∫
F

�∇hv�·nF {{wh}}

−
∑

F∈Fh

∫
F

�v�{{∇hwh}}·nF +
∑

F∈Fh

η

hF

∫
F

�v��wh�. (4.13)

The idea of weakly enforcing boundary and jump conditions on the discrete
solution using penalties can be traced back to the seventies, in particular the
work of Nitsche [248,249], Babuška [20], Babuška and Zlámal [24], Douglas and
Dupont [134], Baker [25], and Wheeler [306]. The discrete bilinear form asip

h

defined by (4.12) corresponds to the Symmetric Interior Penalty (SIP) method
introduced by Arnold [14]; henceforth, asip

h is called the SIP bilinear form. In the
present context, interior penalty means interior as well as boundary penalties.

Definition 4.7 (Consistency, symmetry, and penalty terms). The second, third,
and fourth terms on the right-hand side of (4.12) are respectively called consis-
tency, symmetry, and penalty terms.
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4.2.1.4 The Discrete Problem

The discrete problem is

Find uh ∈ Vh s.t. asip
h (uh, vh) =

∫
Ω

fvh for all vh ∈ Vh. (4.14)

Lemma 4.12 below states that provided the penalty parameter η is large enough,
the SIP bilinear form is coercive on Vh. Thus, owing to the Lax–Milgram Lemma,
the discrete problem (4.14) is well-posed. Moreover, a straightforward conse-
quence of the above derivation is consistency.

Lemma 4.8 (Consistency). Assume u ∈ V∗. Then, for all vh ∈ Vh,

asip
h (u, vh) =

∫
Ω

fvh.

Remark 4.9 (Rough right-hand side). At the continuous level, the Poisson prob-
lem can be posed for a right-hand side f ∈ V ′ = H−1(Ω), the dual space of the
energy space V = H1

0 (Ω), leading to the weak formulation

a(u, v) = 〈f, v〉V ′,V ∀v ∈ V.

Since the discrete space Vh is nonconforming in V , it is not possible, at the
discrete level, to take 〈f, vh〉V ′,V as right-hand side in (4.14). One possibility is
to use a smoothing operator Ih : Vh → Vh ∩H1

0 (Ω) and to consider the discrete
problem

Find uh ∈ Vh s.t. asip
h (uh, vh) = 〈f,Ihvh〉V ′,V for all vh ∈ Vh. (4.15)

One example of smoothing operator is the averaging operator considered in
Sect. 5.5.2. An important observation is that (4.15) is no longer consistent.
Remark 4.10 (Stencil). With an eye toward implementation, we identify the
elementary stencil (cf. Definition 2.26) associated with the SIP bilinear form.
For all T ∈ Th, the stencil of the volume contribution is just the element T ,
while the stencil associated with the consistency, symmetry, and penalty terms
consists of T and its neighbors in the sense of faces. Figure 4.1 illustrates the
stencil for a matching triangular mesh; cf. Sect.A.1.3 for further insight.

4.2.2 Other Boundary Conditions
The discrete problem (4.14), which was derived in the context of homogeneous
Dirichlet boundary conditions, needs to be slightly modified when dealing with
other boundary conditions. The modifications are designed so as to maintain
consistency when the exact solution satisfies other boundary conditions. For
instance, when (weakly) enforcing the nonhomogeneous Dirichlet boundary con-
dition u = g on ∂Ω with g ∈ H1/2(∂Ω), the discrete problem becomes

Find uh ∈ Vh s.t. asip
h (uh, vh) = lDh (g; vh) for all vh ∈ Vh,
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Fig. 4.1: Example of stencil of an element T ∈ Th when Th is a matching
triangular mesh; the mesh element T is highlighted in dark grey, and its three
neighbors, which all belong to the stencil, are highlighted in light grey ; the other
triangles do not belong to the stencil

with asip
h still defined by (4.12) and the new right-hand side

lDh (g; vh) :=
∫

Ω

fvh −
∫

∂Ω

g∇hvh·n +
∑

F∈Fb
h

η

hF

∫
F

gvh.

As a result, for the exact solution u ∈ V∗, a
sip
h (u, vh) = lDh (g; vh), for all

vh ∈Vh. Furthermore, when (weakly) enforcing the Robin boundary condition
γu+∇u·n = g on ∂Ω with g ∈ L2(∂Ω) and γ ∈ L∞(∂Ω) such that γ is nonneg-
ative a.e. on ∂Ω, the discrete problem becomes

Find uh ∈ Vh s.t. aR
h (uh, vh) = lRh (g; vh) for all vh ∈ Vh,

where, for all (v,wh) ∈ V∗h × Vh,

aR
h (v,wh) :=

∫
Ω

∇hv·∇hwh −
∑

F∈Fi
h

∫
Ω

({{∇hv}}·nF �wh� + �v�{{∇hwh}}·nF )

+
∑

F∈Fi
h

η

hF

∫
F

�v��wh� +
∑

F∈Fb
h

∫
F

γvhwh, (4.16)

and
lRh (g;wh) :=

∫
Ω

fwh +
∫

∂Ω

gwh.

As a result, for the exact solution u ∈ V∗, aR
h (u, vh) = lRh (g; vh), for all vh ∈Vh.

Moreover, we observe that, unlike in the Dirichlet case, the summations in the
consistency and symmetry terms are restricted to interfaces. Finally, the case
γ ≡ 0 corresponds to the Neumann problem. For this problem, the data must
comply with the compatibility condition

∫
Ω
f = −

∫
∂Ω
g, and the solution is
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determined up to an additive constant. One possibility is to additionally enforce∫
Ω uh = 0. In practice, the discrete problem can still be formulated using Vh as

trial and test space, and the additional constraint can be enforced by postpro-
cessing. Observing that the rank of the problem matrix is one unit less than its
size, the discrete solution can be obtained (1) using a direct solver with full piv-
oting, so that the zero pivot is encountered when processing the last line of the
matrix and a solution can be obtained by fixing an arbitrary value for the degree
of freedom left or (2) using an iterative solver which only requires matrix-vector
products. The most common linear algebra libraries (e.g., the PETSc library
[26]) offer specific functionalities to handle this case efficiently.

4.2.3 Basic Energy-Error Estimate
Let u solve the weak problem (4.2) and let uh solve the discrete problem (4.14).
The aim of this section is to estimate the approximation error (u − uh). The
convergence analysis is performed in the spirit of Theorem 1.35. We recall that
the space V∗ is specified in Assumption 4.4 and that V∗h = V∗ + Vh.

4.2.3.1 Discrete Coercivity

We aim at asserting this property using the following norm: For all v ∈ V∗h,

|||v|||sip :=
(
‖∇hv‖2

[L2(Ω)]d + |v|2J
)1/2

, (4.17)

with the jump seminorm

|v|J := (η−1sh(v, v))1/2 =

( ∑
F∈Fh

1
hF

‖�v�‖2
L2(F )

)1/2

. (4.18)

We observe that |||·|||sip is indeed a norm on V∗h, and even on the broken Sobolev
space H1(Th). The only nontrivial property to check is whether, for all v ∈
H1(Th), |||v|||sip = 0 implies v = 0. Clearly, |||v|||sip = 0 implies ‖∇hv‖[L2(Ω)]d = 0
and |v|J = 0. The first property yields ∇hv = 0 so that v is piecewise constant.
The second property implies that the interface and boundary jumps of v vanish.
Hence, v = 0.

Our first step toward establishing discrete coercivity for the SIP bilinear form
is a bound on the consistency term using the jump seminorm |·|J.

Lemma 4.11 (Bound on consistency term). For all (v,wh) ∈ V∗h × Vh,

∣∣∣∣∣
∑

F∈Fh

∫
F

{{∇hv}}·nF �wh�

∣∣∣∣∣ ≤
(∑

T∈Th

∑
F∈FT

hF ‖∇v|T ·nF ‖2
L2(F )

)1/2

|wh|J. (4.19)
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Proof. For all F ∈ F i
h with F = ∂T1 ∩ ∂T2, and ai = (∇v)|Ti ·nF , i ∈ {1, 2}, the

Cauchy–Schwarz inequality yields∫
F

{{∇hv}}·nF �wh� =
∫

F

1
2
(a1 + a2)�wh�

≤
(

1
2
hF (‖a1‖2

L2(F ) + ‖a2‖2
L2(F ))

)1/2

h
−1/2

F ‖�wh�‖L2(F ).

Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω,∫

F

{{∇hv}}·nF �wh� ≤ h
1/2

F ‖∇v|T ·nF ‖L2(F ) × h
−1/2

F ‖�wh�‖L2(F ).

Summing over mesh faces, using the Cauchy–Schwarz inequality, and regrouping
the face contributions for each mesh element yields the assertion.

We can now turn to the discrete coercivity of the SIP bilinear form. We
recall that N∂ , defined by (1.12), denotes the maximum number of mesh faces
composing the boundary of a generic mesh element and that this quantity is
bounded uniformly in h; cf. Lemma 1.41.

Lemma 4.12 (Discrete coercivity). For all η > η := C2
trN∂ where Ctr results

from the discrete trace inequality (1.37) and the parameter N∂ is defined
by (1.12), the SIP bilinear form defined by (4.12) is coercive on Vh with respect
to the |||·|||sip-norm, i.e.,

∀vh ∈ Vh, asip
h (vh, vh) ≥ Cη|||vh|||2sip,

with Cη := (η − C2
trN∂)(1 + η)−1.

Proof. Let vh ∈ Vh. Since, for all T ∈ Th and all F ∈ FT , hF ≤ hT (cf. Defini-
tion 4.5), we obtain using the discrete trace inequality (1.40),

∑
T∈Th

∑
F∈FT

hF ‖∇vh|T ·nF ‖2
L2(F ) ≤

∑
T∈Th

hT ‖∇vh|T ·nF ‖2
L2(∂T )

≤ C2
trN∂‖∇hvh‖2

[L2(Ω)]d ,

whence we infer from (4.19) that∣∣∣∣∣
∑

F∈Fh

∫
F

{{∇hvh}}·nF �vh�

∣∣∣∣∣ ≤ CtrN
1/2

∂ ‖∇hvh‖[L2(Ω)]d |vh|J.

As a result,

asip
h (vh, vh) ≥ ‖∇hvh‖2

[L2(Ω)]d − 2CtrN
1/2
∂ ‖∇hvh‖[L2(Ω)]d |vh|J + η|vh|2J.

We now use the following inequality: Let β be a positive real number, let η > β2;
then, for all x, y ∈ �,

x2 − 2βxy + ηy2 ≥ η − β2

1 + η
(x2 + y2).
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Applying this inequality with β = CtrN
1/2
∂ , x = ‖∇hvh‖[L2(Ω)]d , and y = |vh|J

yields the assertion.

Remark 4.13 (Modifying the local length scale). Recalling Remark 4.6, other
choices for the local length scale hF can be made when defining the stabi-
lization bilinear form sh. The jump seminorm |·|J is still defined by |v|J :=
(η−1sh(v, v))−1/2, and the proof of Lemma 4.12 can be deployed as above as long
as the chosen length scale is a lower bound for the diameter of both neighboring
elements; otherwise, an additional factor appears in the definition of the minimal
threshold η.
Remark 4.14 (Discrete stability without penalty). In one space dimension, the
discrete bilinear form acs

h enjoys discrete inf-sup stability without adding the
stabilization bilinear form sh for polynomial degrees k ≥ 2; see Burman, Ern,
Mozolevski, and Stamm [67]. Furthermore, in two and three space dimensions
and using piecewise affine discrete functions supplemented by suitable element
bubble functions, discrete inf-sup stability can be proven for the discrete bilinear
form acs

h again without adding the stabilization bilinear form sh; see Burman and
Stamm [70]. Finally, it is also possible to devise penalty strategies acting only
on the low-degree part of the jumps; see, e.g., Hansbo and Larson [184] and
Burman and Stamm [71].
Remark 4.15 (Poincaré inequality using the |||·|||sip-norm). It can be proven (cf.
Corollary 5.4) that there exists σ2, independent of h, such that

∀vh ∈ Vh, ‖vh‖L2(Ω) ≤ σ2|||vh|||sip. (4.20)

More generally, on the broken Sobolev space H1(Th), it is proven by Brenner [51]
(see also Arnold [14]) that, for d ∈ {2, 3}, there is σ′

2, independent of h, such
that

∀v ∈ H1(Th), ‖v‖L2(Ω) ≤ σ′
2|||v|||sip. (4.21)

4.2.3.2 Boundedness

We define on V∗h the norm

|||v|||sip,∗ :=

(
|||v|||2sip +

∑
T∈Th

hT ‖∇v|T ·nT ‖2
L2(∂T )

)1/2

. (4.22)

Lemma 4.16 (Boundedness). There is Cbnd, independent of h, such that

∀(v,wh) ∈ V∗h × Vh, asip
h (v,wh) ≤ Cbnd|||v|||sip,∗|||wh|||sip. (4.23)

Proof. Let (v,wh) ∈ V∗h × Vh. We observe that

asip
h (v,wh) =

∫
Ω

∇hv·∇hwh−
∑

F∈Fh

∫
F

{{∇hv}}·nF �wh�−
∑

F∈Fh

∫
F

�v�{{∇hwh}}·nF

+
∑

F∈Fh

η

hF

∫
F

�v��wh� := T1 + T2 + T3 + T4. (4.24)
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Using the Cauchy–Schwarz inequality yields |T1| ≤ ‖∇hv‖[L2(Ω)]d‖∇hwh‖[L2(Ω)]d

and |T4| ≤ η|v|J|wh|J. Moreover, owing to the bound (4.19) and since hF ≤ hT ,

|T2| ≤
(∑

T∈Th

hT ‖∇v|T ·nT ‖2
L2(∂T )

)1/2

|wh|J ≤ |||v|||sip,∗|wh|J ≤ |||v|||sip,∗|||wh|||sip,

by definition of the |||·|||sip,∗-norm. Finally, still owing to the bound (4.19) and
proceeding as in the proof of Lemma 4.12 leads to

|T3| ≤ CtrN
1/2

∂ |v|J‖∇hwh‖[L2(Ω)]d ≤ CtrN
1/2

∂ |||v|||sip|||wh|||sip.

Collecting the above bounds yields (4.23) with Cbnd = 2 + η + CtrN
1/2

∂ .

4.2.3.3 |||·|||sip-Norm Error Estimate and Convergence

A straightforward consequence of the above results together with Theorem 1.35
is the following error estimate.

Theorem 4.17 (|||·|||sip-norm error estimate). Let u ∈ V∗ solve (4.2). Let uh

solve (4.14) with asip
h defined by (4.12) and penalty parameter as in Lemma 4.12.

Then, there is C, independent of h, such that

|||u − uh|||sip ≤ C inf
vh∈Vh

|||u − vh|||sip,∗. (4.25)

To infer a convergence result from (4.25), we assume that the exact solution
is smooth enough and use Lemmata 1.58 and 1.59. The resulting estimate is
optimal both for the broken gradient and the jump seminorm.

Corollary 4.18 (Convergence rate in |||·|||sip-norm). Besides the hypotheses of
Theorem 4.17, assume u ∈ Hk+1(Ω). Then, there holds

|||u − uh|||sip ≤ Cuh
k, (4.26)

with Cu = C‖u‖Hk+1(Ω) and C independent of h.

Remark 4.19 (Bound on the jumps). The contribution of the jump seminorm to
the error |||u−uh|||sip can be controlled by the contribution of the broken gradient
under some assumptions. For instance, Lemma 5.30 shows that, on matching
simplicial meshes and for a large enough penalty parameter, there holds, up to
a positive factor independent of h,

|u− uh|J = |uh|J � ‖∇h(u− uh)‖[L2(Ω)]d + Rosc,Ω,

where the data oscillation term Rosc,Ω, defined by (5.34), converges to zero at
order hk+1 if f ∈ Hk(Ω) and at order hk+2 if f ∈ Hk+1(Ω). We also refer
the reader to Bonito and Nochetto [46] for a similar bound on the jumps on
general meshes, and to Ainsworth and Rankin [7, 9] for a sharper condition on
the penalty parameter on triangular meshes with hanging nodes.
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4.2.3.4 Analysis Using Only the |||·|||sip,∗-Norm

The convergence analysis of elliptic problems is often performed using a single
norm. Such an approach is possible here by working only with the |||·|||sip-norm
which turns out to be uniformly equivalent to the |||·|||sip,∗-norm on Vh.

Lemma 4.20 (Uniform equivalence of |||·|||sip- and |||·|||sip,∗-norms on Vh). The
|||·|||sip- and |||·|||sip,∗-norms are uniformly equivalent on Vh. Specifically,

Csip|||vh|||sip,∗ ≤ |||vh|||sip ≤ |||vh|||sip,∗ ∀vh ∈ Vh,

with Csip independent of h.

Proof. The upper bound is immediate, while the lower bound results from the
discrete trace inequality (1.40) and the uniform bound on N∂ .

A consequence of Lemma 4.20 is discrete coercivity on Vh in the form

∀vh ∈ Vh, asip
h (vh, vh) ≥ C ′

η|||vh|||2sip,∗,

with C ′
η independent of h. Moreover, an inspection at the proof of Lemma 4.16

leads to boundedness on V∗h × Vh in the form

∀(v,wh) ∈ V∗h × Vh, asip
h (v,wh) ≤ C ′

bnd|||v|||sip,∗|||wh|||sip,∗,

with C ′
bnd independent of h. Using the above results leads to the following

convergence results in the |||·|||sip,∗-norm.

Theorem 4.21 (|||·|||sip,∗-norm error estimate). Under the hypotheses of Theo-
rem 4.17, there is C, independent of h, such that

|||u− uh|||sip,∗ ≤ C inf
vh∈Vh

|||u − vh|||sip,∗. (4.27)

Corollary 4.22 (Convergence rate in |||·|||sip,∗-norm). Besides the hypotheses of
Theorem 4.17, assume u ∈ Hk+1(Ω). Then, there holds

|||u − uh|||sip,∗ ≤ Cuh
k, (4.28)

with Cu = C‖u‖Hk+1(Ω) and C independent of h.

Remark 4.23 (Comparison with |||·|||sip-norm estimates). The discrete coercivity
of asip

h is naturally expressed using the |||·|||sip-norm, whereas using the |||·|||sip,∗-
norm leads to the inclusion in the error estimate of the additional factor Csip

related to norm equivalence (cf. Lemma 4.20). Therefore, estimates (4.25) and
(4.26) deliver a sharper bound on the broken gradient and the jump seminorm.
However, estimates (4.27) and (4.28) convey additional information regarding
the convergence of the normal gradient at mesh element boundaries.
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4.2.4 L2-Norm Error Estimate
Using the broken Poincaré inequality (4.21), the |||·|||sip-norm estimate (4.26)
yields the L2-norm estimate

‖u− uh‖L2(Ω) ≤ σ′
2Cuh

k.

This estimate is suboptimal by one power in h. To remedy this drawback and
recover optimality, it is possible to resort to a duality argument (the so-called
Aubin–Nitsche argument [17]) under the following assumption.

Definition 4.24 (Elliptic regularity). We say that elliptic regularity holds true
for the model problem (4.2) if there is Cell, only depending on Ω, such that, for
all ψ ∈ L2(Ω), the solution to the problem:

Find ζ ∈ H1
0 (Ω) s.t. a(ζ, v) =

∫
Ω

ψv for all v ∈ H1
0 (Ω),

is in V∗ and satisfies
‖ζ‖H2(Ω) ≤ Cell‖ψ‖L2(Ω).

Elliptic regularity can be asserted if, for instance, the polygonal domain Ω is
convex; see Grisvard [177]. To derive an L2-norm error estimate, we extend the
SIP bilinear form to V∗h ×V∗h, so that both arguments of asip

h can belong to V∗.

Theorem 4.25 (L2-norm error estimate). Let u ∈ V∗ solve (4.2). Let uh

solve (4.14) with asip
h defined by (4.12). Assume elliptic regularity. Then, there

is C, independent of h, such that

‖u− uh‖L2(Ω) ≤ Ch|||u− uh|||sip,∗. (4.29)

Proof. We consider the auxiliary problem

Find ζ ∈ H1
0 (Ω) s.t. a(ζ, v) =

∫
Ω

(u− uh)v for all v ∈ H1
0 (Ω),

and use elliptic regularity to infer ‖ζ‖H2(Ω) ≤ Cell‖u − uh‖L2(Ω). Since ζ ∈ V∗,
�∇ζ�·nF = 0 on all F ∈ F i

h and �ζ� = 0 on all F ∈ Fh. Hence, (4.13) implies

asip
h (ζ, u − uh) =

∫
Ω

(−�ζ)(u − uh).

Exploiting the symmetry of asip
h and since −�ζ = u− uh, we obtain

asip
h (u− uh, ζ) = ‖u− uh‖2

L2(Ω).

Furthermore, since consistency implies Galerkin orthogonality (cf. Remark 1.32)
and letting π1

h be the L2-orthogonal projection onto �1
d(Th) ⊂ Vh (since k ≥ 1),

we infer
asip

h (u − uh, π
1
hζ) = 0.
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Hence, using the boundedness of asip
h on V∗h × V∗h which results from the fact

that asip
h (v,w) � |||v|||sip,∗|||w|||sip,∗ for all v,w ∈ V∗h, the approximation properties

of π1
h in the |||·|||sip,∗-norm, and the regularity of ζ, we obtain, up to multiplicative

factors independent of h,

‖u− uh‖2
L2(Ω) = asip

h (u− uh, ζ − π1
hζ)

� |||u − uh|||sip,∗|||ζ − π1
hζ|||sip,∗

� |||u − uh|||sip,∗h‖ζ‖H2(Th)

� |||u − uh|||sip,∗h‖u− uh‖L2(Ω).

Simplifying by ‖u− uh‖L2(Ω) yields (4.29).

A straightforward consequence of (4.28) and (4.29) is the following conver-
gence result for smooth solutions.

Corollary 4.26 (Convergence rate in L2-norm). Besides the hypotheses of The-
orem 4.17, assume elliptic regularity and u ∈ Hk+1(Ω). Then, there holds

‖u − uh‖L2(Ω) ≤ Cuh
k+1, (4.30)

with Cu = C‖u‖Hk+1(Ω) and C independent of h.

Estimate (4.30) is optimal. We emphasize that the symmetry of asip
h has

been used in the proof of Theorem 4.25.

Remark 4.27 (Adjoint-consistency). Following Arnold, Brezzi, Cockburn, and
Marini [16], the property asip

h (u−uh, ζ) =
∫
Ω(−�ζ)(u−uh), which results from

symmetry and consistency, can be termed adjoint consistency.

Remark 4.28 (Error estimates in other norms). We refer the reader, e.g., to
Chen and Chen [89] and to Guzmán [181] for pointwise error estimates on the
discrete solution and its broken gradient using weighted broken Sobolev norms.

4.2.5 Analysis for Low-Regularity Solutions
This section is devoted to the analysis of the SIP method under a regularity
assumption on the exact solution that is weaker than Assumption 4.4.

Assumption 4.29 (Regularity of exact solution and space V∗). We assume that
d ≥ 2 and that there is p ∈ ( 2d

d+2 , 2] such that, for the exact solution u,

u ∈ V∗ := V ∩W 2,p(Ω).

In the spirit of Sect. 1.3, we set V∗h := V∗ + Vh.

Assumption 4.29 requires p > 1 for d = 2 and p > 6
5 for d = 3. In particular,

we observe that, in two space dimensions, u ∈ W 2,p(Ω) with p > 1 holds true in
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polygonal domains; see, e.g., Dauge [119]. Moreover, using Sobolev embeddings
(see Evans [153, Sect. 5.6] or Brézis [55, Sect. IX.3]), Assumption 4.29 implies

u ∈ H1+αp(Ω), αp =
d+ 2

2
− d

p
> 0. (4.31)

We still consider the discrete problem (4.14) with the discrete bilinear form
asip

h defined by (4.12). The convergence analysis under the regularity assump-
tion 4.29 has been performed recently by Wihler and Rivière [308] in two space
dimensions and, using slightly different techniques, by the authors [132] in the
context of heterogeneous diffusion in any space dimension; cf. Sect. 4.5. We follow
here the approach of [132], building up on the analysis presented in Sect. 4.2.3 for
smooth solutions. In the present context of an exact solution with low-regularity,
we assume for simplicity k = 1. We also assume p < 2 since in the case p = 2,
Assumption 4.29 amounts to Assumption 4.4.

We already know that discrete coercivity holds true provided the penalty
parameter is chosen as in Lemma 4.12. Moreover, owing to Lemma 4.3, the
discrete bilinear form asip

h can be extended to V∗h × Vh, and consistency can
be asserted as in Lemma 4.8. Thus, it only remains to prove boundedness. To
this purpose, we need to redefine the |||·|||sip,∗-norm since functions in V∗ are such
that, for all T ∈ Th, ∇v|T ·nT is in Lp(∂T ), but not necessarily in L2(∂T ). Thus,
we now define on V∗h the norm

|||v|||sip,∗ :=

(
|||v|||psip +

∑
T∈Th

h
1+γp

T ‖∇v|T ·nT ‖p
Lp(∂T )

)1/p

, (4.32)

where γp := 1
2d(p − 2). We observe that, for p = 2, we recover the previous

definition (4.22) of the |||·|||sip,∗-norm. The value for γp is motivated by the
following boundedness result.

Lemma 4.30 (Boundedness). There is Cbnd, independent of h, such that

∀(v,wh) ∈ V∗h × Vh, asip
h (v,wh) ≤ Cbnd|||v|||sip,∗|||wh|||sip. (4.33)

Proof. Let (v,wh) ∈ V∗h × Vh. We need to bound the four terms T1, . . . ,T4

in (4.24). Proceeding as in the proof of Lemma 4.16, we obtain

|T1 + T3 + T4| ≤ C|||v|||sip|||wh|||sip,

with C independent of h, so that it only remains to bound the consistency
term T2. To this purpose, we proceed similarly to the proof of (4.19), but use
Hölder’s inequality instead of the Cauchy–Schwarz inequality. For all F ∈ F i

h

with F = ∂T1 ∩ ∂T2, and ai = (∇v)|Ti ·nF , i ∈ {1, 2}, Hölder’s inequality yields
∫

F

{{∇hv}}·nF �wh� =
∫

F

1
2
(a1 + a2)�wh�

≤
(

1
2
h

1+γp

F (‖a1‖p
Lp(F ) + ‖a2‖p

Lp(F ))
)1/p

h
−βp

F ‖�wh�‖Lq(F ),
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with βp = 1+γp

p and q = p
p−1 . Moreover, for all F ∈ Fb

h with F = ∂T ∩ ∂Ω,

∫
F

{{∇hv}}·nF �wh� ≤
(
h

1+γp

F ‖∇v|T ·nF ‖p
Lp(F )

)1/p

h
−βp

F ‖�wh�‖Lq(F ).

Owing to the inverse inequality (1.43) and since βp − 1
2 = (d − 1)( 1

q − 1
2 ), we

infer
h
−βp

F ‖�wh�‖Lq(F ) ≤ Cinv,q,2h
−1/2

F ‖�wh�‖L2(F ),

where Cinv,q,2 is independent of h and can be bounded uniformly in q (cf.
Remark 1.51). Combining the above bounds, summing over mesh faces, and
using Hölder’s inequality yields

∣∣∣∣∣
∑

F∈Fh

∫
F

{{∇hv}}·nF �wh�

∣∣∣∣∣ ≤
(∑

T∈Th

h
1+γp

T ‖∇v|T ·nT ‖p
Lp(∂T )

)1/p

× Cinv,q,2

( ∑
F∈Fh

(
h
−1/2

F ‖�wh�‖L2(F )

)q
)1/q

.

Since q ≥ 2, we obtain

( ∑
F∈Fh

(
h
−1/2

F ‖�wh�‖L2(F )

)q
)1/q

≤
( ∑

F∈Fh

(
h
−1/2

F ‖�wh�‖L2(F )

)2
)1/2

= |wh|J.

Hence,

∣∣∣∣∣
∑

F∈Fh

∫
F

{{∇hv}}·nF �wh�

∣∣∣∣∣ ≤
(∑

T∈Th

h
1+γp

T ‖∇v|T ·nT‖p
Lp(∂T )

)1/p

Cinv,q,2|wh|J,

whence we infer (4.33).

To state a convergence result, we need optimal polynomial approximation
for functions in V∗ = W 2,p(Ω). For simplicity, we restricted the presentation
of Sect. 1.4.4 to the Hilbertian setting. In the present non-Hilbertian setting, we
make the following assumption.

Assumption 4.31 (Optimal polynomial approximation in W 2,p(T )). The mesh
sequence (Th)h∈H is such that, for all h ∈ H, all T ∈ Th, and all v ∈ W 2,p(T ),
there holds

|v − πhv|W m,p(T ) ≤ Capph
2−m
T |v|W 2,p(T ) m ∈ {0, 1, 2}, (4.34a)

|v − πhv|Hm(T ) ≤ Capph
1+αp−m
T |v|W 2,p(T ) m ∈ {0, 1}, (4.34b)

with Capp independent of both T and h, while αp is defined by (4.31).
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Assumption 4.31 can be asserted for mesh sequences with star-shaped
property or finitely-shaped property; cf. Lemmata 1.61 and 1.62. We can
now turn to our main convergence result.

Theorem 4.32 (|||·|||sip-norm error estimate and convergence rate). Let u ∈ V∗
solve (4.2). Let uh solve (4.14) with asip

h defined by (4.12) and penalty parameter
as in Lemma 4.12. Then, there is C, independent of h, such that

|||u − uh|||sip ≤ C inf
vh∈Vh

|||u − vh|||sip,∗, (4.35)

where the |||·|||sip,∗-norm is defined by (4.32). Moreover, under Assumption 4.31,
there holds

|||u − uh|||sip ≤ Cuh
αp , (4.36)

with Cu = C|u|W 2,p(Ω) and C independent of h.

Proof. Estimate (4.35) is a direct consequence of Theorem 1.35 since we estab-
lished discrete coercivity, consistency, and boundedness. We now take vh = πhu
in (4.35). We first observe that, for all T ∈ Th, using (4.34a) together with the
continuous trace inequality (1.18) yields

‖∇(u− πhu)|T ·nT ‖Lp(∂T ) � h
1−1/p

T |u|W 2,p(T ),

where a � b means the inequality a ≤ Cb with generic positive C independent
of h and T . Since 1+γp

p + 1 − 1
p = αp, we infer

(∑
T∈Th

h
1+γp

T ‖∇(u − πhu)|T ·nT‖p
Lp(∂T )

)1/p

� hαp |u|W 2,p(Ω).

Moreover, using (4.34b) together with the continuous trace inequality (1.19)
yields

|||u− πhu|||sip � hαp |u|W 2,p(Ω).

Combining the two above bounds leads to (4.36).

The convergence rate in the error estimate (4.36) is optimal both for the
broken gradient and the jump seminorm.

4.3 Liftings and Discrete Gradients
Liftings are operators that map scalar-valued functions defined on mesh faces
to vector-valued functions defined on mesh elements. In the context of dG
methods, liftings act on interface and boundary jumps. They were introduced
by Bassi, Rebay, and coworkers [34, 35] in the context of compressible flows
and analyzed by Brezzi, Manzini, Marini, Pietra, and Russo [58, 59] in the
context of the Poisson problem (see also Perugia and Schötzau [257] for the
hp-analysis). Liftings have many useful applications. They can be combined
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with the broken gradient to define discrete gradients. Discrete gradients play
an important role in the design and analysis of dG methods. Indeed, they can
be used to formulate the discrete problem locally on each mesh element using
numerical fluxes. Moreover, as detailed in Sect. 5.1, they are instrumental in the
derivation of discrete functional analysis results, that, in turn, play a central role
in the convergence analysis to minimal regularity solutions (cf. Sect. 5.2). Lift-
ings can also be employed to define the stabilization bilinear form [35], yielding
a more convenient lower bound for the penalty parameter η; cf. Sect. 5.3.2.

4.3.1 Liftings: Definition and Stability
As before, we assume that the mesh Th belongs to an admissible mesh sequence.
For any mesh face F ∈ Fh and for any integer l ≥ 0, we define the (local) lifting
operator

rl
F : L2(F ) −→ [�l

d(Th)]d

as follows: For all ϕ ∈ L2(F ),
∫

Ω

rl
F (ϕ)·τh =

∫
F

{{τh}}·nFϕ ∀τh ∈ [�l
d(Th)]d. (4.37)

We observe that the support of rl
F (ϕ) consists of the one or two mesh elements

of which F is part of the boundary; using the set TF defined by (1.13) yields

supp(rl
F ) =

⋃
T∈TF

T . (4.38)

Moreover, whenever the mesh face F is a portion of a hyperplane (this hap-
pens, for instance, when working with simplicial meshes or with general meshes
consisting of convex elements), rl

F (ϕ) is colinear to the normal vector nF .

Lemma 4.33 (Bound on local lifting). Let F ∈ Fh and let l ≥ 0. For all
ϕ ∈ L2(F ), there holds

‖ rl
F (ϕ)‖[L2(Ω)]d ≤ Ctrh

−1/2

F ‖ϕ‖L2(F ). (4.39)

Proof. Let ϕ ∈ L2(F ). Equation (4.37), the fact that hF ≤ hT for all T ∈ TF ,
and the discrete trace inequality (1.37) yield

‖ rl
F (ϕ)‖2

[L2(Ω)]d =
∫

Ω

rl
F (ϕ)· rl

F (ϕ) =
∫

F

{{rl
F (ϕ)}}·nFϕ

≤
(

1
hF

∫
F

|ϕ|2
)1/2

×
(
hF

∫
F

|{{rl
F (ϕ)}}|2

)1/2

≤ h
−1/2

F ‖ϕ‖L2(F ) × Ctr

(
card(TF )−1

∑
T∈TF

∫
T

| rl
F (ϕ)|2

)1/2

,

whence (4.39) follows since card(TF )−1 ≤ 1 and since
∑

T∈TF

∫
T | rl

F (ϕ)|2 =
‖ rl

F (ϕ)‖2
[L2(Ω)]d owing to (4.38).
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For any integer l ≥ 0 and for any function v ∈ H1(Th), we define the (global)
lifting of its interface and boundary jumps as

Rl
h(�v�) :=

∑
F∈Fh

rl
F (�v�) ∈ [�l

d(Th)]d, (4.40)

being implicitly understood that rl
F acts on the function �v�F (which is in L2(F )

since v ∈ H1(Th)).

Lemma 4.34 (Bound on global lifting). Let l ≥ 0. For all v ∈ H1(Th), there
holds

‖Rl
h(�v�)‖[L2(Ω)]d ≤ N

1/2

∂

( ∑
F∈Fh

‖ rl
F (�v�)‖2

[L2(Ω)]d

)1/2

, (4.41)

so that
‖Rl

h(�v�)‖[L2(Ω)]d ≤ CtrN
1/2

∂ |v|J. (4.42)

Proof. Let v ∈ H1(Th). Owing to (4.38), we infer (Rl
h(�v�))|T =

∑
F∈FT

(rl
F (�v�))|T , so that using the Cauchy–Schwarz inequality, we obtain

‖Rl
h(�v�)‖2

[L2(Ω)]d =
∑

T∈Th

∫
T

∣∣∣∣∣
∑

F∈FT

rl
F (�v�)

∣∣∣∣∣
2

≤
∑

T∈Th

card(FT )
∑

F∈FT

∫
T

| rl
F (�vh�)|2

≤ max
T∈Th

card(FT )
∑

T∈Th

∑
F∈FT

∫
T

| rl
F (�vh�)|2

= max
T∈Th

card(FT )
∑

F∈Fh

‖ rl
F (�v�)‖2

[L2(Ω)]d ,

and the bound (4.41) follows using the definition (1.12) of N∂. Finally, (4.42)
results from (4.41) and the fact that

( ∑
F∈Fh

‖ rl
F (�v�)‖2

[L2(Ω)]d

)1/2

≤ Ctr|v|J,

owing to Lemma 4.33.

To illustrate in the case l = 0 (piecewise constant liftings), we obtain, for all
v ∈ H1(Th) and all T ∈ Th,

R0
h(�v�)|T =

∑
F∈FT

|F |d−1

|T |d
(vF − vT )nT,F , (4.43)

where nT,F is the outward normal to T on F , vT := v|T , and vF := 1
2(vT + v|T ′)

whenever F = ∂T ∩ ∂T ′, T �= T ′, while vF := 0 if F ∈ Fb
h. The (opposite of

the) above expression has been used as a gradient reconstruction in the context
of finite volume methods replacing vF by a consistent trace reconstruction (see
Eymard, Gallouët, and Herbin [158]); cf. also formula (5.28).
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4.3.2 Discrete Gradients: Definition and Stability
For any integer l ≥ 0, we define the discrete gradient operator

Gl
h : H1(Th) −→ [L2(Ω)]d,

as follows: For all v ∈ H1(Th),

Gl
h(v) := ∇hv − Rl

h(�v�). (4.44)

Proposition 4.35 (Bound on discrete gradient). Let l ≥ 0. For all v ∈ H1(Th),
there holds

‖Gl
h(v)‖[L2(Ω)]d ≤ (1 + C2

trN∂)1/2|||v|||sip,
where the |||·|||sip-norm is defined by (4.17).

Proof. Let v ∈ H1(Th). Using the triangle inequality together with (4.42) yields

‖Gl
h(v)‖[L2(Ω)]d ≤ ‖∇hv‖[L2(Ω)]d + ‖Rl

h(�v�)‖[L2(Ω)]d

≤ ‖∇hv‖[L2(Ω)]d + CtrN
1/2

∂ |v|J,

whence the assertion.

4.3.3 Reformulation of the SIP Bilinear Form
Let l ∈ {k − 1, k} and set, as in Sect. 4.2, Vh = �k

d(Th) with k ≥ 1 and Th

belonging to an admissible mesh sequence. Following Brezzi, Manzini, Marini,
Pietra, and Russo [58], it is interesting to observe that the bilinear form acs

h

defined by (4.8) can be equivalently written as follows: For all vh, wh ∈ Vh,

acs
h (vh, wh) =

∫
Ω

∇hvh·∇hwh−
∫

Ω

∇hvh·Rl
h(�wh�)−

∫
Ω

∇hwh·Rl
h(�vh�). (4.45)

This results from definitions (4.37) and (4.40) and the fact that ∇hvh and ∇hwh

are in [�l
d(Th)]d since l ≥ k − 1, so that, for all F ∈ Fh,

∫
F

{{∇hvh}}·nF �wh� =
∫

Ω

∇hvh· rl
F (�wh�).

Starting from (4.45) and using the definition (4.44) of the discrete gradient, we
infer, for all vh, wh ∈ Vh,

acs
h (vh, wh) =

∫
Ω

Gl
h(vh)·Gl

h(wh) −
∫

Ω

Rl
h(�vh�)·Rl

h(�wh�).

As a result, recalling that the SIP bilinear form considered in Sect. 4.2 is such
that asip

h = acs
h + sh with sh defined by (4.11), we obtain, for all vh, wh ∈ Vh,

asip
h (vh, wh) =

∫
Ω

Gl
h(vh)·Gl

h(wh) + ŝsiph (vh, wh), (4.46)
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with

ŝsiph (vh, wh) :=
∑

F∈Fh

η

hF

∫
F

�vh��wh� −
∫

Ω

Rl
h(�vh�)·Rl

h(�wh�). (4.47)

The most natural choice for l appears to be l = k−1 since the broken gradient is
in [�k−1

d (Th)]d. The choice l = k can facilitate the implementation of the method
in that it allows one to use the same polynomial basis for computing the liftings
and assembling the matrix.

The interest in using discrete gradients to formulate dG methods has been
recognized recently in various contexts, e.g., by Lew, Neff, Sulsky, and Ortiz
[232] and Ten Eyck and Lew [293] for linear and nonlinear elasticity, Buffa and
Ortner [61] and Burman and Ern [65] for nonlinear variational problems, and
the authors [131] for the Navier–Stokes equations; see also Agélas, Di Pietro,
Eymard, and Masson [6]. The expression (4.46) of the SIP bilinear form plays
a central role in Sect. 5.2 when analyzing the convergence to minimal regularity
solutions. This expression is also useful in Sect. 4.4 in the context of a mixed dG
approximation.

It is interesting to notice the following straightforward consequence of the
bound (4.42).

Proposition 4.36 (Discrete coercivity). For all vh ∈ Vh,

asip
h (vh, vh) ≥ ‖Gl

h(vh)‖2
[L2(Ω)]d + (η − C2

trN∂)|vh|2J.

In view of this result, the expression (4.46) for asip
h consists of two terms, both

yielding a nonnegative contribution whenever wh = vh and, as in Lemma 4.12,
η > C2

trN∂ . The first term can be seen as the discrete counterpart of the exact
bilinear form a (such that a(v,w) =

∫
Ω
∇v·∇w) and provides a control on the

discrete gradient in [L2(Ω)]d. The role of the second term is to strengthen the
discrete stability of the method.
Remark 4.37 (Extension to broken Sobolev spaces). We emphasize that the def-
inition (4.46) of asip

h is equivalent to (4.12) only at the discrete level. Differences
occur when extending the definitions (4.12) and (4.46) to larger spaces, e.g.,
broken Sobolev spaces. As discussed in Sect. 4.2.1, the SIP bilinear form defined
by (4.12) cannot be extended to the minimum regularity space H1(Ω) because
traces of gradients on mesh faces are used. Instead, the bilinear form defined
by (4.46) can be extended to the broken Sobolev space H1(Th). We denote
this extension by ãsip

h . Incidentally, ãsip
h is no longer consistent. For convergence

analysis to smooth solutions, Strang’s First Lemma (see [285] or, e.g., Braess [49,
p. 106]) dedicated to nonconsistent finite element methods can be used, whereby
the consistency error is estimated for u ∈ Hk+1(Ω) as follows: For all vh ∈ Vh,

ãsip
h (u − uh, vh) =

∑
F∈Fh

∫
F

{{∇u − πh(∇u)}}·nF �vh� ≤ Cuh
k|vh|J,

where πh denotes the L2-orthogonal projection onto Vh. As a result, the consis-
tency error tends optimally to zero as the meshsize goes to zero.
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4.3.4 Numerical Fluxes
DG methods can be viewed as high-order finite volume methods. The aim of
this section is to identify the local conservation properties associated with dG
methods. Such properties are important when the diffusive flux is to be used as
an advective velocity in a transport problem, as discussed, e.g., by Dawson, Sun,
and Wheeler [121] in the context of coupled porous media flow and contaminant
transport. While most discretization methods possess local conservation prop-
erties, the specificity of dG methods, together with finite volume and mixed
finite element methods, is to achieve local conservation at the element level as
opposed to vertex-centered or face-centered macro-elements; see, e.g., Eymard,
Hilhorst, and Vohralík [161].

Let T ∈ Th and let ξ ∈ �k
d(T ). Integration by parts shows that, for the exact

solution u, ∫
T

fξ = −
∫

T

(�u)ξ =
∫

T

∇u·∇ξ −
∫

∂T

(∇u·nT )ξ.

Therefore, defining on each mesh face F ∈ Fh the exact flux as

ΦF (u) := −∇u·nF , (4.48)

and recalling the notation εT,F = nT ·nF introduced in Sect. 2.2.3, we infer
∫

T

∇u·∇ξ +
∑

F∈FT

εT,F

∫
F

ΦF (u)ξ =
∫

T

fξ.

This is a local conservation property satisfied by the exact solution. Our goal is
to identify a similar relation satisfied by the discrete solution uh solving (4.14).
Using vh = ξχT as test function in (4.14) (where χT denotes the characteristic
function of T ), observing that ∇h(ξχT ) = (∇ξ)χT , and recalling the defini-
tion (4.12) of asip

h , we obtain
∫

T

fξ = asip
h (uh, ξχT ) =

∫
T

∇uh·∇ξ −
∑

F∈FT

∫
F

{{∇huh}}·nF �ξχT �

−
∑

F∈FT

∫
F

{{(∇ξ)χT }}·nF �uh� +
∑

F∈FT

η

hF

∫
F

�uh��ξχT �.

Let l ∈ {k − 1, k}. The first and third terms on the right-hand side sum up to∫
T
Gk−1

h (uh)·∇ξ since ∇ξ ∈ [�k−1
d (T )]d and l ≥ k − 1, while in the second and

fourth terms, we observe that �ξχT � = εT,F ξ. As a result, for all T ∈ Th and all
ξ ∈ �k

d(T ), ∫
T

Gl
h(uh)·∇ξ +

∑
F∈FT

εT,F

∫
F

φF (uh)ξ =
∫

T

fξ, (4.49)

with the numerical flux φF (uh) defined as

φF (uh) := −{{∇huh}}·nF +
η

hF
�uh�. (4.50)
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We notice that the two contributions to φF (uh) in (4.50) respectively stem from
the consistency term and the penalty term (cf. Definition 4.7). Equation (4.49)
is the local conservation property satisfied by the dG approximation. Interest-
ingly, the expression (4.50) is consistent with (4.48) since, for the exact solution
u, φF (u) = ΦF (u). We also observe that the local conservation property (4.49)
is richer than that encountered in finite volume methods, which can be recovered
by just taking ξ ≡ 1, i.e.,

∑
F∈FT

εT,F

∫
F

φF (uh) =
∫

T

f. (4.51)

4.4 Mixed dG Methods
In this section, we discuss mixed dG methods, that is, dG approximations to
the mixed formulation (4.5) with the homogeneous Dirichlet boundary condi-
tion (4.1b). Other boundary conditions can be considered. Such methods pro-
duce an approximation uh for the potential u and an approximation σh for the
diffusive flux σ.

Definition 4.38 (Discrete potential and discrete diffusive flux). Consistently
with Definition 4.1, the scalar-valued function uh is termed the discrete potential
and the vector-valued function σh the discrete diffusive flux.

First, we reformulate the SIP method of Sect. 4.2 as a mixed dG method and
show how the discrete diffusive flux can be eliminated locally. Then, we formulate
more general mixed dG methods in terms of local problems using numerical fluxes
for the discrete potential and the discrete diffusive flux following Bassi, Rebay,
and coworkers [34,35]. This leads, in particular, to the LDG methods introduced
by Cockburn and Shu [112]. In these methods, the discrete diffusive flux can
also be eliminated locally. Finally, we discuss hybrid mixed dG methods where
additional degrees of freedom are introduced at interfaces, thereby allowing one
to eliminate locally both the discrete potential and the discrete diffusive flux.

4.4.1 The SIP Method As a Mixed dG Method
One possible weak formulation of the mixed formulation (4.5) with the homo-
geneous Dirichlet boundary condition (4.1b) consists in finding (σ, u) ∈ X :=
[L2(Ω)]d ×H1

0 (Ω) such that⎧⎨
⎩
m(σ, τ) + b(τ, u) = 0 ∀τ ∈ [L2(Ω)]d,

−b(σ, v) =
∫

Ω

fv ∀v ∈ H1
0 (Ω),

(4.52)

where, for all σ, τ ∈ [L2(Ω)]d and all v ∈ H1
0 (Ω), we have introduced the bilinear

forms
m(σ, τ) :=

∫
Ω

σ·τ, b(τ, v) :=
∫

Ω

τ ·∇v.
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It is easily seen that (σ, u) ∈ X solves (4.52) if and only if σ = −∇u and u solves
the weak problem (4.2).

At the discrete level, a mixed dG approximation can be designed as follows.
We consider a polynomial degree k ≥ 1 for the approximation of the potential
and choose the polynomial degree l for the approximation of the diffusive flux
such that l ∈ {k − 1, k}. The relevant discrete spaces are

Σh := [�l
d(Th)]d, Uh := �

k
d(Th), Xh := Σh × Uh.

The discrete problem consists in finding (σh, uh) ∈ Xh such that
⎧⎨
⎩
m(σh, τh) + bh(τh, uh) = 0 ∀τh ∈ Σh,

−bh(σh, vh) + ŝsiph (uh, vh) =
∫

Ω

fvh ∀vh ∈ Uh,
(4.53)

with discrete bilinear form

bh(τh, vh) :=
∫

Ω

τh·Gl
h(vh),

where the discrete gradient operator Gl
h is defined by (4.44) and the stabilization

bilinear form ŝsiph by (4.47).

Proposition 4.39 (Elimination of discrete diffusive flux). The pair (σh, uh) ∈
Xh solves (4.53) if and only if

σh = −Gl
h(uh), (4.54)

and uh ∈ Uh is such that∫
Ω

Gl
h(uh)·Gl

h(vh) + ŝsiph (uh, vh) =
∫

Ω

fvh ∀vh ∈ Uh. (4.55)

Proof. The first equation in (4.53) yields
∫

Ω

(σh +Gl
h(uh))·τh = 0 ∀τh ∈ Σh.

Recalling that Gl
h(uh) = ∇huh − Rl

h(�uh�) and since l ≥ k − 1, we infer that
Gl

h(uh) ∈ Σh; therefore, (4.54) is satisfied. Substituting this relation into the
second equation of (4.53) yields (4.55). The converse is straightforward.

Proposition 4.39 shows that the mixed dG method (4.53) is in fact equivalent
to a problem in the sole unknown uh. In particular, the above choice for bh and
ŝsiph yields the SIP method of Sect. 4.2; cf. (4.46).
Remark 4.40 (H(div;Ω)-conformity of discrete diffusive flux). One drawback
of mixed dG approximations, and in particular (4.53), is that the discrete dif-
fusive flux σh = −Gl

h(uh) is not in H(div;Ω) because its normal component
is, in general, discontinuous across interfaces. This point is further examined
in Sect. 5.5 where we discuss a cost-effective, locally conservative diffusive flux
reconstruction obtained by postprocessing the discrete potential.
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4.4.2 Numerical Fluxes
In what follows, we focus for simplicity on equal-order approximations for the
potential and the diffusive flux, that is, we set l = k so that Σh := [�k

d(Th)]d,
while, as before, Uh := �k

d(Th). Similarly to Sect. 4.3.4, we can derive a local
formulation by localizing test functions to a single mesh element. Let T ∈ Th,
let ζ ∈ [�k

d(T )]d, and let ξ ∈ �k
d(T ). Integrating by parts in T , splitting the

boundary integral on ∂T as a sum over the mesh faces F ∈ FT , and setting
εT,F = nT ·nF , we infer for the exact solution that

∫
T

σ·ζ −
∫

T

u∇·ζ +
∑

F∈FT

εT,F

∫
F

uF (ζ·nF ) = 0,

−
∫

T

σ·∇ξ +
∑

F∈FT

εT,F

∫
F

(σF ·nF )ξ =
∫

T

fξ,

since σ = −∇u and ∇·σ = f . The traces uF and σF ·nF are single-valued on
each interface; cf. Lemma 4.3.

At the discrete level, the general form of the mixed dG approximation is
derived by introducing numerical fluxes for the discrete potential and for the
discrete diffusive flux. These two numerical fluxes, which are denoted by ûF and
σ̂F for all F ∈ Fh, are single-valued on each F ∈ Fh. The numerical flux ûF

is scalar-valued and the numerical flux σ̂F is vector-valued. We obtain, for all
T ∈ Th, all ζ ∈ [�k

d(T )]d, and all ξ ∈ �k
d(T ),

∫
T

σh·ζ −
∫

T

uh∇·ζ +
∑

F∈FT

εT,F

∫
F

ûF (ζ·nF ) = 0, (4.56a)

−
∫

T

σh·∇ξ +
∑

F∈FT

εT,F

∫
F

(σ̂F ·nF )ξ =
∫

T

fξ. (4.56b)

Lemma 4.41 (Numerical fluxes for SIP). For the SIP method, the numerical
fluxes are given by

ûF =

{
{{uh}} ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

(4.57a)

σ̂F = −{{∇huh}} + ηh−1
F �uh�nF ∀F ∈ Fh. (4.57b)

Proof. The assertion is obtained by testing the first equation in (4.53) with
τh = ζχT , where χT denotes the characteristic function of T , and testing the
second equation with vh = ξχT .

A first possible variant of the SIP method consists in keeping the defini-
tion (4.57a) for the numerical flux ûF and defining the numerical flux σ̂F as

σ̂F = {{σh}} + ηh−1
F �uh�nF .
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The resulting dG method belongs to the class of LDG methods. The discrete
diffusive flux σh can still be eliminated locally (since the numerical flux ûF only
depends on uh), and the discrete potential uh ∈ Uh is such that

aldg
h (uh, vh) =

∫
Ω

fvh ∀vh ∈ Uh,

with the discrete bilinear form

aldg
h (uh, vh) =

∫
Ω

∇huh·∇hvh −
∑

F∈Fh

∫
F

({{∇huh}}·nF �vh� + {{∇hvh}}·nF �uh�)

+
∫

Ω

Rk
h(�uh�)·Rk

h(�vh�) +
∑

F∈Fh

η

hF

∫
F

�uh��vh�

=
∫

Ω

Gk
h(uh)·Gk

h(vh) +
∑

F∈Fh

η

hF

∫
F

�uh��vh�.

A nice feature of the discrete bilinear form aldg
h is that discrete coercivity

holds on Uh with respect to the |||·|||sip-norm for any η > 0 (a simple choice is
η=1). The drawback is that the elementary stencil associated with the term∫
Ω

Rk
h(�uh�)·Rk

h(�vh�) consists of a given mesh element, its neighbors, and the
neighbors of its neighbors in the sense of faces; cf. Fig. 4.2. Such a stencil is
considerably larger than that associated with the SIP method; cf. Fig. 4.1.

More general forms of the LDG method can be designed with the numerical
fluxes

Fig. 4.2: Example of LDG stencil of an element T ∈ Th when Th is a matching
triangular mesh; the mesh element is highlighted in dark grey, and all the nine
other elements, highlighted in light grey, also belong to the stencil (compare with
Fig. 4.1)
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ûF =

{
{{uh}} + Υ·nF �uh� ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

σ̂F =

{
{{σh}} − Υ�σh�·nF + ηh−1

F �uh�nF ∀F ∈ F i
h,

σh + ηh−1
F uhn ∀F ∈ Fb

h,

where Υ is vector-valued and η > 0 is scalar-valued (in LDG methods, ηh−1
F is

often denoted by C11 and Υ by C12). Since the numerical flux ûF only depends
on uh, the discrete diffusive flux σh can be eliminated locally. The above form
of the diffusive fluxes ensures symmetry and discrete stability for the resulting
dG method. A simple choice for the penalty parameter is again η = 1, while
the auxiliary vector-parameter Υ can be freely chosen. LDG methods for the
Poisson problem have been extensively analyzed by Castillo, Cockburn, Perugia,
and Schötzau [80] (see also Castillo, Cockburn, Schötzau, and Schwab [81] for the
hp-analysis of LDG methods applied to diffusion-advection problems). In [80],
various choices of the penalty parameter C11 are discussed; the above choice
C11 = ηh−1

F leads to the same energy-norm error estimates as for the SIP method.
A particular choice for the vector-parameter Υ leading to superconvergence on
Cartesian grids has been studied by Cockburn, Kanschat, Perugia, and Schötzau
[100]. Variants of the LDG method aiming at reducing the stencil have been
discussed by Sherwin, Kirby, Peiró, Taylor, and Zienkiewicz [277], Peraire and
Persson [256], and Castillo [79].

A further variant of the SIP and LDG methods consists in considering the
numerical fluxes

ûF =

{
{{uh}} + ησ�σh�·nF ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

σ̂F = {{σh}} + ηu�uh�nF ∀F ∈ Fh.

Here, the penalty parameters ηu and ησ are positive user-dependent real num-
bers, and a simple choice is to set ηu = ησ = 1. This method is analyzed
in Sect. 7.3 in the more general context of Friedrichs’ systems. Because the
numerical flux ûF depends on σh, (4.56a) can no longer be used to express locally
the discrete diffusive flux σh in terms of the discrete potential uh. This precludes
the local elimination of σh and, therefore, enhances the computational cost of the
approximation method. The approach presents, however, some advantages since
it can be used with polynomial degree k = 0 and there is no minimal threshold
on the penalty parameters (apart from being positive). Moreover, the approxi-
mation on the diffusive flux is more accurate yielding convergence rates in the
L2-norm of order hk+1/2 for smooth solutions, as opposed to the convergence
rates of order hk delivered by the SIP method (cf. (4.26)).

Finally, we mention that an even more general presentation can allow for two-
valued numerical fluxes at interfaces; see Arnold, Brezzi, Cockburn, and Marini
[16] for a unified analysis of dG methods. Two-valued numerical fluxes are
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obtained, for instance, when rewriting the nonsymmetric dG methods discussed
in Sect. 5.3.1 as mixed dG methods.

4.4.3 Hybrid Mixed dG Methods
The key idea in hybrid mixed dG methods is to introduce additional degrees of
freedom at interfaces, thereby allowing one to eliminate locally both the discrete
potential and the discrete diffusive flux. Herein, we focus on the HDG methods
introduced by Cockburn, Gopalakrishnan, and Lazarov [97]; see also Causin and
Sacco [83] for a different approach based on a discontinuous Petrov–Galerkin
formulation, Droniou and Eymard [135] for similar ideas in the context of hybrid
mixed finite volume schemes, and Ewing, Wang, and Yang for hybrid primal dG
methods [154].

In the HDG method, the additional degrees of freedom are used to enforce
the continuity of the normal component of the discrete diffusive flux. These
additional degrees of freedom act as Lagrange multipliers in the discrete prob-
lem and can be interpreted as single-valued traces of the discrete potential on
interfaces. We introduce the discrete space

Λh :=
⊕

F∈Fi
h

�
k
d−1(F ).

A function μh ∈ Λh is such that, for all F ∈ F i
h, μh|F ∈ �k

d−1(F ). The discrete
unknowns (σh, uh, λh) ∈ Σh ×Uh ×Λh satisfy the following local problems: For
all T ∈ Th, all ζ ∈ [�k

d(T )]d, and all ξ ∈ �k
d(T ),

∫
T

σh·ζ −
∫

T

uh∇·ζ +
∑

F∈FT

εT,F

∫
F

ûF (ζ·nF ) = 0, (4.58a)

−
∫

T

σh·∇ξ +
∑

F∈FT

εT,F

∫
F

(σ̂T,F ·nF )ξ =
∫

T

fξ, (4.58b)

while normal diffusive flux continuity is enforced by setting, for all F ∈ FT ∩F i
h

and all μ ∈ �k
d−1(F ), ∫

F

�σ̂T,F �·nFμ = 0. (4.59)

Here, the numerical fluxes are such that

ûF =

{
λh ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

(4.60a)

σ̂T,F = σh|T + τT (uh|T − ûF )nT ∀F ∈ Fh, (4.60b)

with penalty parameter τT defined elementwise. We observe that (4.59) indeed
enforces �σ̂T,F �·nF = 0 for all F ∈ F i

h since �σ̂T,F �·nF ∈ �k
d−1(F ). As a result,

the quantity (σ̂T,F ·nF ) in (4.58b) is actually single-valued.
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Lemma 4.42 (HDG as mixed dG method). Let (σh, uh, λh) ∈ Σh × Uh × Λh

solve (4.58) and (4.59). Then, the pair (σh, uh) ∈ Σh × Uh solves the local
problems of the mixed dG formulation (4.56) with numerical fluxes such that,
for all F ∈ F i

h with F = ∂T1 ∩ ∂T2,

ûF = {{uh}} + C12·�uh�nF + C22�σh�·nF , (4.61a)
σ̂F = {{σh}} + C11�uh�nF − C12�σh�·nF , (4.61b)

with the parameters

C11 =
τ1τ2
τ1 + τ2

, C12 =
τ1 − τ2

2(τ1 + τ2)
nF , C22 =

1
τ1 + τ2

,

where τi := τTi , i ∈ {1, 2}. Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω, ûF = 0

and σ̂F = σh + τTuh.

Proof. Since �σ̂T,F �·nF = 0, we infer from (4.60b) that

�σh�·nF + 2{{τuh}} − 2{{τ}}ûF = 0.

Observing that {{τuh}} = {{τ}}{{uh}} + 1
4 �τ��uh�, we obtain

ûF = {{uh}} +
1
4

�τ�

{{τ}} �uh� +
1

2{{τ}} �σh�·nF ,

which yields (4.61a). Moreover, since the normal component of σ̂T,F is single-
valued, we infer

σ̂T,F ·nF = {{σh}}·nF +
1
2
�τuh� − 1

2
�τ�ûF .

Observing that �τuh� = �τ�{{uh}} + {{τ}}�uh�, we obtain

σ̂T,F ·nF = {{σh}}·nF +
1
2
�τ�({{uh}} − ûF ) +

1
2
{{τ}}�uh�.

Using (4.61a) to evaluate ûF in this expression and rearranging terms leads to

σ̂T,F ·nF = {{σh}}·nF +
τ1τ2
τ1 + τ2

�uh� − τ1 − τ2
2(τ1 + τ2)

�σh�·nF .

F

Fig. 4.3: Stencil S(F ) for HDG methods
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An inspection of (4.61b) shows that σ̂T,F ·nF = σ̂F ·nF , and this concludes the
proof.

We observe that the numerical flux ûF in (4.61a) depends on σh since C22 �= 0.
As a result, the discrete diffusive flux cannot be eliminated locally to derive a dis-
crete problem for the sole discrete potential. Instead, a computationally efficient
implementation of HDG methods consists in using (4.58) to eliminate locally
both the discrete potential and the discrete diffusive flux by static condensation
(similarly to mixed finite element methods; see, e.g., Arnold and Brezzi [15]), so
as to obtain, using (4.59), a discrete problem where the sole unknown is λh ∈ Λh.
For a given interface F ∈ F i

h with F = ∂T1 ∩ ∂T2, the stencil associated with
this interface is (cf. Fig. 4.3)

S(F ) = {F ′ ∈ F i
h | F ′ ∈ FT1 ∪ FT2}.

For matching simplicial meshes, the set S(F ) contains five interfaces for d = 2
and seven interfaces for d = 3.

HDG methods for elliptic problems have been analyzed by Cockburn, Dong,
and Guzmán [95] and Cockburn, Guzmán, and Wang [98] where error estimates
in various norms are derived for various choices of the penalty parameter τ .
In particular, L2-norm error estimates of order hk+1 can be derived both for
the potential and the diffusive flux for smooth solutions and polynomial order
k ≥ 0. Moreover, for k ≥ 1, a postprocessed potential converging at order
hk+2 can be derived, similarly to classical mixed finite element methods. The
extension of HDG methods to diffusion-advection methods is investigated by
Cockburn, Dong, Guzmán, Restelli, and Sacco [96] and Nguyen, Peraire, and
Cockburn [245].

4.5 Heterogeneous Diffusion
In this section, we consider a model problem with heterogeneous diffusion. To
approximate this problem using dG methods, we revisit the design and analysis
of the SIP method considered in Sect. 4.2 for the Poisson problem. Following
Dryja [136], we use diffusion-dependent weights to formulate the consistency
and symmetry terms in the discrete bilinear form and we penalize interface and
boundary jumps using a diffusion-dependent parameter scaling as the harmonic
mean of the diffusion coefficient. Such a penalty strategy is particularly impor-
tant in heterogeneous diffusion-advection-reaction equations (cf. Sect. 4.6) where
the diffusion coefficient takes locally small values leading to so-called advection-
dominated regimes. In this context, the exact solution exhibits sharp inner layers
which, in practice, are not resolved by the underlying meshes, so that excessive
penalty at such layers triggers spurious oscillations. Using the harmonic mean
of the diffusion coefficient to penalize jumps turns out to tune automatically
the amount of penalty and thereby avoid such oscillations. Incidentally, we also
observe that, in finite volume and mixed finite element schemes, the harmonic
mean of the diffusion coefficient is often considered at interfaces.
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4.5.1 The Continuous Setting
Let κ ∈ L∞(Ω) be the diffusion coefficient and assume that κ is uniformly
bounded from below in Ω by a positive real number. The anisotropic case,
where κ is actually �d,d-valued, is examined in Sect. 4.5.6. We are interested in
the problem

−∇·(κ∇u) = f in Ω,
u = 0 on ∂Ω,

with source term f ∈ L2(Ω). The weak form of this problem is

Find u ∈ V s.t. a(u, v) =
∫

Ω

fv for all v ∈ V , (4.62)

with energy space V = H1
0 (Ω) and bilinear form

a(u, v) :=
∫

Ω

κ∇u·∇v.

Owing to the above assumptions on the diffusion coefficient κ, the Lax–Milgram
Lemma implies that (4.62) is well-posed. The case where κ is constant in Ω
yields, up to rescaling, the Poisson problem; the latter can thus be viewed as a
prototype for homogeneous diffusion problems.

Adopting the terminology used for the Poisson problem (cf. Definition 4.1),
the �d-valued function

σ := −κ∇u

is termed the diffusive flux. By construction, σ ∈ H(div;Ω).
In practice, the diffusion coefficient has more regularity than just belonging

to L∞(Ω). Henceforth, we make the following assumption.

Assumption 4.43 (Partition of Ω). There is a partition PΩ := {Ωi}1≤i≤NΩ of
Ω such that

(i) Each Ωi, 1 ≤ i ≤ NΩ, is a polyhedron;

(ii) The restriction of κ to each Ωi, 1 ≤ i ≤ NΩ, is constant.

Remark 4.44 (Motivation for assumption 4.43). In groundwater flow applica-
tions, the partition PΩ results for instance from the partitioning of the porous
medium into various geological layers.

From a physical viewpoint, the normal component of the diffusive flux σ is
continuous across any interface ∂Ωi∩∂Ωj with positive (d−1)-dimensional Haus-
dorff measure. Assuming κ|Ωi �= κ|Ωj , this implies that the normal component of
∇u cannot be continuous across this interface. This fact modifies the regularity
that can be expected for the exact solution in heterogeneous diffusion problems
with respect to the Poisson problem.
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Fig. 4.4: Exact solution with diffusion heterogeneity parameter α = 0.5 (left)
and α = 0.01 (right); the two panels use different vertical scales

4.5.1.1 One-Dimensional Example

Let Ω = (−1, 1) be partitioned into two subdomains Ω1 = (−1, 0) and Ω2 = (0, 1)
such that κ|Ω1 = α and κ|Ω2 = 1 with positive parameter α. The exact solution
of (4.62) with f ≡ 1 is

u(x) =

{
a1(1 + x)2 + b1(1 + x) if x ∈ Ω1,

a2(x − 1)2 + b2(x− 1) if x ∈ Ω2,

where a1 = − 1
2α , a2 = − 1

2 , b1 = 1+3α
2α(1+α) , and b2 = − α+3

2(1+α) . Figure 4.4 presents
the exact solutions obtained with α = 0.5 (mild diffusion heterogeneity) and
α = 0.01 (strong diffusion heterogeneity). As expected, the exact solution is
only continuous at x = 0, but not differentiable, and the jump in the derivative
of the exact solution is more pronounced in the case of strong diffusion hetero-
geneity. Interestingly, the maximum value attained by the exact solution in Ω
is substantially affected by the diffusion heterogeneity.

4.5.1.2 Two-Dimensional Example

In dimension d ≥ 2, discontinuities in the diffusion coefficient can cause severe
singularities in the exact solution. Exact solutions of two-dimensional heteroge-
neous diffusion problems with zero right-hand side are explicitly constructed by
Kellogg [210]. A typical situation is the case where Ω = (−1, 1)2 is divided into
four quadrants, and the diffusion coefficient takes the value κ1 in the first and
third quadrants and the value κ2 in the second and fourth quadrants. Then,
it is possible to construct an exact solution with zero source term and suitable
nonhomogeneous Dirichlet boundary conditions such that, in polar coordinates,
u(r, θ) = rγv(θ) with a smooth function v. The exponent γ > 0 can be made as
small as desired by taking large values of the ratio κ1/κ2. Figure 4.5 illustrates
the exact solution for κ1/κ2 = 5 (left) and κ1/κ2 = 100 (right). In dimension 2,
regularity results take the form u ∈ H1+ε(Ω) with ε > 0 but arbitrary small. In
dimension 3, regularity results have been obtained by Nicaise and Sändig [247]
in some particular situations.
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Fig. 4.5: Exact solution for heterogeneous diffusion problem; Ω = (−1, 1)2 is
divided into four quadrants, and the diffusion coefficient takes the value κ1 in
the first and third quadrants and the value κ2 in the second and fourth quadrants;
left : κ1/κ2 = 5; right : κ1/κ2 = 100 (courtesy M. Vohralík)

4.5.2 Discretization
We aim at approximating the exact solution u of (4.62) by a dG method using
the discrete space

Vh := �
k
d(Th),

where �k
d(Th) is defined by (1.15) with polynomial degree k ≥ 1 and Th belonging

to an admissible mesh sequence. We consider the discrete problem:

Find uh ∈ Vh s.t. aswip
h (uh, vh) =

∫
Ω

fvh for all vh ∈ Vh, (4.63)

with the discrete bilinear form aswip
h yet to be designed.

4.5.2.1 Mesh Compatibility

An important assumption on the mesh sequence TH := (Th)h∈H is its compati-
bility with the partition PΩ.

Assumption 4.45 (Mesh compatibility). We suppose that the admissible mesh
sequence TH is such that, for each h ∈ H, each T ∈ Th is a subset of only one set
Ωi of the partition PΩ. In this situation, the meshes are said to be compatible
with the partition PΩ.

An example of compatible mesh is presented in Fig. 4.6. The motivation for
the above assumption is to prevent jumps of the diffusion coefficient κ to occur
inside mesh elements. Indeed, owing to Assumption 4.43, the diffusion coefficient
is piecewise constant on each mesh Th. This fact is often used in what follows.
The present setting can be enlarged, at the price of additional technicalities,
by assuming that the diffusion coefficient is piecewise smooth (e.g., piecewise
Lipschitz continuous). However, it is not reasonable to envisage a high-order dG
method to approximate an heterogeneous diffusion problem if the mesh is not
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Fig. 4.6: Partition PΩ (left) and compatible mesh (right)

compatible with the singularities of the diffusion coefficient. Indeed, the exact
solution is not expected to be sufficiently smooth across these singularities to
exploit the local degrees of freedom in the polynomial space.

4.5.2.2 Weighted Averages

While we keep Definitions 1.17 and 4.2 for interface and boundary jumps respec-
tively, it is convenient to introduce weighted averages.

Definition 4.46 (Weighted averages). To any interface F ∈ F i
h with F =

∂T1 ∩ ∂T2, we assign two nonnegative real numbers ωT1,F and ωT2,F such that

ωT1,F + ωT2,F = 1.

Then, for any scalar-valued function v defined on Ω that is smooth enough to
admit a possibly two-valued trace on all F ∈ F i

h, we define its weighted average
on F such that, for a.e. x ∈ F ,

{{v}}ω,F (x) := ωT1,F v|T1(x) + ωT2,F v|T2(x).

On boundary faces F ∈ Fb
h with F = ∂T ∩ ∂Ω, we set {{v}}ω,F (x) := v|T (x).

When v is vector-valued, the weighted average operator acts componentwise
on the function v. Whenever no confusion can arise, the subscript F and the
variable x are omitted and we simply write {{v}}ω .

Clearly, the usual (arithmetic) average of Definition 1.17 at interfaces corre-
sponds to the particular choice ωT1,F = ωT2,F = 1/2. Henceforth, we consider
a specific diffusion-dependent choice for the weights, namely, for all F ∈ F i

h,
F = ∂T1 ∩ ∂T2,

ωT1,F :=
κ2

κ1 + κ2
, ωT2,F :=

κ1

κ1 + κ2
,

where κi = κ|Ti , i ∈ {1, 2}. In particular, the case of homogeneous diffusion
yields the usual (arithmetic) averages.
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4.5.2.3 The SWIP Bilinear Form

In the context of heterogeneous diffusion problems, we modify the SIP bilinear
form defined by (4.12) as follows: For all (vh, yh) ∈ Vh × Vh,

aswip
h (vh, yh) :=

∫
Ω

κ∇hvh·∇hyh +
∑

F∈Fh

η
γκ,F

hF

∫
F

�vh��yh� (4.64)

−
∑

F∈Fh

∫
F

({{κ∇hvh}}ω·nF �yh� + �vh�{{κ∇hyh}}ω ·nF ) .

The quantity η > 0 denotes a user-dependent penalty parameter which is inde-
pendent of the diffusion coefficient, while the diffusion-dependent penalty param-
eter γκ,F is such that for all F ∈ F i

h, F = ∂T1 ∩ ∂T2,

γκ,F :=
2κ1κ2

κ1 + κ2
,

where, as above, κi = κ|Ti , i ∈ {1, 2}, while, for all F ∈ Fb
h, F = ∂T ∩ ∂Ω,

γκ,F := κ|T .

We notice that the above choice for the penalty parameter γκ,F on interfaces
corresponds to the harmonic mean of the values of the diffusion coefficient on
either side of the interface. Furthermore, we observe that, for all F ∈ F i

h,

γκ,F ≤ 2min(κ1, κ2). (4.65)

This property is used in the convergence analysis of Sect. 4.6.3 in the context of
diffusion-advection-reaction problems; cf., in particular, Remark 4.65.

The bilinear form aswip
h defined by (4.64) is termed the Symmetric Weighted

Interior Penalty (SWIP) bilinear form. It has been introduced by Dryja [136] for
heterogeneous diffusion problems and analyzed (in the more general context of
diffusion-advection-reaction problems) by Di Pietro, Ern, and Guermond [133]
and Ern, Stephansen, and Zunino [150]. The two differences with respect to
the more usual SIP bilinear form are the use of (diffusion-dependent) weighted
averages to formulate the consistency and symmetry terms and the presence
of the diffusion-dependent penalty parameter. Whenever κ is constant in Ω,
the usual (arithmetic) averages are recovered in the consistency and symmetry
terms. The possibility of using non-arithmetic averages in dG methods has been
pointed out and used in various contexts, e.g., by Stenberg [282], by Heinrich and
co-workers [188–190], and by Hansbo and Hansbo [182] in the context of unfitted
finite element methods based on Nitsche’s method. The idea of connecting the
actual value of the weights to the diffusion coefficient was also considered by
Burman and Zunino [73] in the context of mortaring techniques for a singularly
perturbed diffusion-advection equation.
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Lemma 4.47 (Reformulation of SWIP bilinear form). There holds, for all
(vh, yh) ∈ Vh × Vh,

aswip
h (vh, yh) = −

∑
T∈Th

∫
T

∇·(κ∇vh)yh +
∑

F∈Fh

η
γκ,F

hF

∫
F

�vh��yh� (4.66)

+
∑

F∈Fi
h

∫
F

�κ∇hvh�·nF {{yh}}ω −
∑

F∈Fh

∫
F

�vh�{{κ∇hyh}}ω·nF ,

where {{yh}}ω is the skew-weighted average value of yh defined as

{{yh}}ω := ωT2,F yh|T1 + ωT1,F yh|T2 .

Proof. Integrating by parts the first term in (4.64) yields
∫

Ω

κ∇hvh·∇hyh = −
∑

T∈Th

∫
T

∇·(κ∇vh)yh +
∑

T∈Th

∫
∂T

κ(∇vh·nT )yh. (4.67)

Rearranging the second term on the right-hand side as a sum over mesh faces
leads to

∑
T∈Th

∫
∂T

κ(∇vh·nT )yh =
∑

F∈Fi
h

∫
F

�(κ∇hvh)yh�·nF +
∑

F∈Fb
h

∫
F

κ(∇vh·n)yh.

We now observe that, for all F ∈ F i
h,

�(κ∇hvh)yh� = {{κ∇hvh}}ω�yh� + �κ∇hvh�{{yh}}ω.

To prove this identity, we set ai = (κ∇hvh)|Ti , bi = yh|Ti , ωi = ωTi,F , i ∈ {1, 2},
so that

�(κ∇hvh)yh� = a1b1 − a2b2

= (ω1a1 + ω2a2)(b1 − b2) + (a1 − a2)(ω2b1 + ω1b2)
= {{κ∇hvh}}ω�yh� + �κ∇hvh�{{yh}}ω,

since ω1 + ω2 = 1. As a result and accounting for boundary faces,

∑
T∈Th

∫
∂T

κ(∇vh·nT )yh =
∑

F∈Fh

∫
F

{{κ∇hvh}}ω·nF �yh�+
∑

F∈Fi
h

∫
F

�κ∇hvh�·nF {{yh}}ω.

Combining this expression with (4.64) and (4.67) yields the assertion.

4.5.3 Error Estimates for Smooth Solutions
In this section, we present the convergence analysis for the discrete prob-
lem (4.63) in the case where the exact solution is smooth enough to match the
following assumption.
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Assumption 4.48 (Regularity of exact solution and space V∗). We assume that
the exact solution u is such that

u ∈ V∗ := V ∩H2(PΩ).

In the spirit of Sect. 1.3, we set V∗h := V∗ + Vh.

Assumption 4.48 implies that, for all T ∈ Th, letting σT := −(κ∇u)|T and
σ∂T = σT ·nT on ∂T , the trace σ∂T |F is in L2(F ) for all F ∈ FT . Using
Lemma 1.23 for the jumps of the potential and proceeding as in the proof of
Lemma 1.24 for the jumps of the diffusive flux, we infer that the exact solution
satisfies

�u� = 0 ∀F ∈ Fh, (4.68a)

�κ∇u�·nF = 0 ∀F ∈ F i
h. (4.68b)

The convergence analysis is performed in the spirit of Theorem 1.35 by estab-
lishing discrete coercivity, consistency, and boundedness for aswip

h . The discrete
bilinear form aswip

h is extended to V∗h × Vh.

Lemma 4.49 (Consistency). Assume u ∈ V∗. Then, for all vh ∈ Vh,

aswip
h (u, vh) =

∫
Ω

fvh.

Proof. The result is a direct consequence of (4.66) and (4.68).

To formulate discrete stability in the context of heterogeneous diffusion, we
modify the |||·|||sip-norm considered for the Poisson problem (cf. (4.17)) as follows:
For all v ∈ V∗h,

|||v|||swip :=
(
‖κ1/2∇hv‖2

[L2(Ω)]d + |v|2J,κ

)1/2

, (4.69)

with the diffusion-dependent jump seminorm

|v|J,κ =

( ∑
F∈Fh

γκ,F

hF
‖�v�‖2

L2(F )

)1/2

. (4.70)

Before addressing the discrete coercivity of the SWIP bilinear form, we derive a
bound on the consistency term.

Lemma 4.50 (Bound on consistency term). For all (v, yh) ∈ V∗h × Vh,

∣∣∣∣∣
∑

F∈Fh

∫
F

{{κ∇hv}}ω·nF �yh�

∣∣∣∣∣ ≤
(∑

T∈Th

∑
F∈FT

hF ‖κ1/2∇v|T ·nF ‖2
L2(F )

)1/2

|yh|J,κ.

(4.71)
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Proof. For all F ∈ F i
h with F = ∂T1 ∩ ∂T2, ωi = ωTi,F , κi = κ|Ti , and ai =

κ
1/2

i (∇v)|Ti ·nF , i ∈ {1, 2}, the Cauchy–Schwarz inequality yields
∫

F

{{κ∇hv}}ω·nF �yh� =
∫

F

(ω1κ
1/2

1 a1 + ω2κ
1/2

2 a2)�yh�

≤
(

1
2
hF (‖a1‖2

L2(F ) + ‖a2‖2
L2(F ))

)1/2

×
(

2(ω2
1κ1 + ω2

2κ2)
1
hF

‖�yh�‖2
L2(F )

)1/2

,

and since 2(ω2
1κ1 + ω2

2κ2) = γκ,F , we infer

∫
F

{{κ∇hv}}ω·nF �yh� ≤
(

1
2
hF (‖a1‖2

L2(F ) + ‖a2‖2
L2(F ))

)1/2

×
(
γκ,F

hF

)1/2

‖�yh�‖L2(F ).

Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω,

∫
F

{{κ∇hv}}ω·nF �yh� ≤ h
1/2

F ‖(κ1/2∇v)|T ·nF ‖L2(F ) ×
(
γκ,F

hF

)1/2

‖�yh�‖L2(F ).

Summing over mesh faces, using the Cauchy–Schwarz inequality, and regrouping
the face contributions for each mesh element yields the assertion.

We now establish the discrete coercivity of the SWIP bilinear form under the
usual assumption that the penalty parameter η is large enough. An important
point is that the minimal threshold on the penalty parameter is independent of
the diffusion coefficient (it is actually the same as for the Poisson problem).

Lemma 4.51 (Discrete coercivity). For all η > η with η defined in Lemma 4.12,
the SWIP bilinear form defined by (4.64) is coercive on Vh with respect to the
|||·|||swip-norm, i.e.,

∀vh ∈ Vh, aswip
h (vh, vh) ≥ Cη|||vh|||2swip,

with Cη defined in Lemma 4.12.

Proof. Let vh ∈ Vh. Owing to the discrete trace inequality (1.40), the fact that
hF ≤ hT for all T ∈ Th and for all F ∈ FT , and since κ is piecewise constant on
Th, we infer from the bound (4.71) that

∣∣∣∣∣
∑

F∈Fh

∫
F

{{κ∇hvh}}ω ·nF �vh�

∣∣∣∣∣ ≤ CtrN
1/2

∂ ‖κ1/2∇hvh‖[L2(Ω)]d |vh|J,κ.

We conclude as in the proof of Lemma 4.12.
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A straightforward consequence of the Lax–Milgram Lemma is that the dis-
crete problem (4.63) is well-posed.

Our last step in the convergence analysis is to prove the boundedness of the
SWIP bilinear form. To formulate this result, we define on V∗h the norm

|||v|||swip,∗ :=

(
|||v|||2swip +

∑
T∈Th

hT ‖κ1/2∇v|T ·nT‖2
L2(∂T )

)1/2

.

Lemma 4.52 (Boundedness). There is Cbnd, independent of h and κ, such that

∀(v, yh) ∈ V∗h × Vh, aswip
h (v, yh) ≤ Cbnd|||v|||swip,∗|||yh|||swip.

Proof. Let (v, yh) ∈ V∗h × Vh and observe that

aswip
h (v, yh) :=

∫
Ω

κ∇hv·∇hyh +
∑

F∈Fh

η
γκ,F

hF

∫
F

�v��yh�

−
∑

F∈Fh

∫
F

{{κ∇hv}}ω·nF �yh� −
∑

F∈Fh

∫
F

�v�{{κ∇hyh}}ω·nF

= T1 + T2 + T3 + T4. (4.72)

Using the Cauchy–Schwarz inequality yields

|T1 + T2| ≤ (1 + η)|||v|||swip|||yh|||swip.

Moreover, owing to the bound (4.71),

|T3| ≤ |||v|||swip,∗|yh|J,κ ≤ |||v|||swip,∗|||yh|||swip

by definition of the |||·|||swip,∗-norm. Finally, still owing to the bound (4.71) and
proceeding as in the proof of Lemma 4.51 leads to

|T4| ≤ CtrN
1/2

∂ |v|J,κ‖κ1/2∇hyh‖[L2(Ω)]d ≤ CtrN
1/2

∂ |||v|||swip|||yh|||swip.

Collecting the above bounds yields the assertion with Cbnd = 2+η+CtrN
1/2

∂ .

A straightforward consequence of Theorem 1.35, together with Lemmata 1.58
and 1.59, is the following convergence result.

Theorem 4.53 (|||·|||swip-norm error estimate and convergence rate). Let u ∈
V∗ solve (4.62). Let uh solve (4.63) with aswip

h defined by (4.64) and penalty
parameter as in Lemma 4.12. Then, there is C, independent of h and κ, such
that

|||u − uh|||swip ≤ C inf
vh∈Vh

|||u − vh|||swip,∗.

Moreover, if u ∈ Hk+1(PΩ),

|||u− uh|||swip ≤ Cu‖κ‖
1/2

L∞(Ω)h
k,

with Cu = C‖u‖Hk+1(PΩ) and C independent of h and κ.
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Since the quantity C in the error estimates is independent of the diffusion
coefficient κ, the approximation method is robust with respect to diffusion het-
erogeneities (observing that the |||·|||swip-norm depends on κ). The convergence
rate in the |||·|||swip-norm is optimal, both for the broken gradient and the jump
seminorm.

4.5.4 Error Estimates for Low-Regularity Solutions
In this section, following [132], we present the convergence analysis for the dis-
crete problem (4.63) for an exact solution with low-regularity.

Assumption 4.54 (Regularity of exact solution and space V∗). We assume that
d ≥ 2 and that there is p ∈ ( 2d

d+2 , 2] such that, for the exact solution u,

u ∈ V∗ := V ∩W 2,p(PΩ).

In the spirit of Sect. 1.3, we set V∗h := V∗ + Vh.

Assumption 4.48 implies that, for all T ∈ Th, letting σT := −(κ∇u)|T and
σ∂T = σT ·nT on ∂T , the trace σ∂T |F is in Lp(F ) for all F ∈ FT . We adapt
the analysis of Sect. 4.2.5 for the Poisson problem to the present setting with
heterogeneous diffusion.

We already know that discrete coercivity holds true provided the penalty
parameter is chosen as in Lemma 4.12. Moreover, since the jump condi-
tions (4.68) still hold true, consistency can be asserted. Thus, it only remains
to prove boundedness, which we do by redefining on V∗h the |||·|||swip,∗-norm as

|||v|||swip,∗ :=

(
|||v|||pswip +

∑
T∈Th

h
1+γp

T ‖κ1/2∇v|T ·nT‖p
Lp(∂T )

)1/p

, (4.73)

where γp := 1
2d(p − 2). We observe that, for p = 2, we recover the previous

definition of the |||·|||swip,∗-norm. The value for γp is motivated by the following
boundedness result.

Lemma 4.55 (Boundedness). There is Cbnd, independent of h and κ, such that

∀(v,wh) ∈ V∗h × Vh, aswip
h (v,wh) ≤ Cbnd|||v|||swip,∗|||wh|||swip.

Proof. Let (v,wh) ∈ V∗h × Vh. We need to bound the four terms T1, . . . ,T4

in (4.72). Proceeding as in the proof of Lemma 4.52, we obtain

|T1 + T3 + T4| ≤ C|||v|||swip|||wh|||swip,

with C independent of h and κ, so that it only remains to bound the consistency
term T2. For all F ∈ F i

h with F = ∂T1∩∂T2, and ai = (κ1/2∇v)|Ti ·nF , i ∈ {1, 2},
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Hölder’s inequality yields
∫

F

{{κ∇hv}}ω ·nF �wh� =
∫

F

(ω1κ
1/2

1 a1 + ω2κ
1/2

2 a2)�wh�

≤
(

1
2
h

1+γp

F (‖a1‖p
Lp(F ) + ‖a2‖p

Lp(F ))
)1/p

× 21/p

(
(ωq

1κ
q/2

1 + ωq
2κ

q/2

2 )h−qβp

F ‖�wh�‖q
Lq(F )

)1/q

,

with βp = 1+γp

p and q = p
p−1 . Since q ≥ 2, we obtain

(ωq
1κ

q/2

1 +ωq
2κ

q/2

2 ) =
(κ1κ2)

q/2

(κ1 + κ2)q
(κ

q/2

1 +κ
q/2

2 ) ≤ (κ1κ2)
q/2

(κ1 + κ2)q
(κ1 +κ2)

q/2 = 2−q/2γ
q/2

κ,F .

Hence, since 21/p−1/2 ≤ 2,

∫
F

{{κ∇hv}}ω·nF �wh� ≤
(

1
2
h

1+γp

F (‖a1‖p
Lp(F ) + ‖a2‖p

Lp(F ))
)1/p

× 2γ
1/2

κ,Fh
−βp

F ‖�wh�‖Lq(F ).

Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω,

∫
F

{{κ∇hv}}ω·nF �wh� ≤
(
h

1+γp

F ‖κ1/2∇v|T ·nF ‖p
Lp(F )

)1/p

γ
1/2

κ,Fh
−βp

F ‖�wh�‖Lq(F ).

We can now conclude as in the proof of Lemma 4.30.

A straightforward consequence of Theorem 1.35 is the following convergence
result. The achieved convergence rates are optimal, both for the broken gradient
and the jump seminorm.

Theorem 4.56 (|||·|||swip-norm error estimate and convergence rate). Let u ∈
V∗ solve (4.62). Let uh solve (4.63) with aswip

h defined by (4.64) and penalty
parameter as in Lemma 4.12. Then, there is C, independent of h and κ, such
that

|||u − uh|||swip ≤ C inf
vh∈Vh

|||u − vh|||swip,∗,

where the |||·|||swip,∗-norm is defined by (4.73). Moreover, under Assumption 4.31,
there holds

|||u − uh|||swip ≤ Cuh
αp ,

with Cu = C|u|W 2,p(PΩ), C independent of h and κ, and αp = d+2
2 − d

p > 0.
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4.5.5 Numerical Fluxes
As for the Poisson problem in Sect. 4.3.4, it is possible to derive a local formula-
tion of the discrete problem (4.63) by localizing test functions to mesh elements.
To this purpose, we first modify the definition of the lifting operators and discrete
gradients (cf. Sects. 4.3.1 and 4.3.2) to account for diffusion heterogeneities. For
any face F ∈ Fh and for any integer l ≥ 0, we define the (local) lifting operator
rl
F,κ : L2(F ) → [�l

d(Th)]d as follows: For all ϕ ∈ L2(F ),
∫

Ω

κ rl
F,κ(ϕ)·τh =

∫
F

{{κτh}}ω·nFϕ ∀τh ∈ [�l
d(Th)]d. (4.74)

Clearly, if κ does not jump across F (so that κ is constant in the support
of rl

F,κ(ϕ)), definitions (4.37) and (4.74) produce the same result, but this is
no longer the case in the presence of diffusion heterogeneities. Then, for any
function v ∈ H1(Th), we define the (global) lifting of its interface and boundary
jumps as

Rl
h,κ(�v�) :=

∑
F∈Fh

rl
F,κ(�v�) ∈ [�l

d(Th)]d, (4.75)

being implicitly understood that rl
F,κ acts on the function �v�F (which is in

L2(F ) since v ∈ H1(Th)). If κ is constant in Ω, definitions (4.40) and (4.75)
produce the same result. Finally, the definition (4.44) of the discrete gradient is
extended to the heterogeneous diffusion case by setting, for all v ∈ H1(Th),

Gl
h,κ(v) := ∇hv − Rl

h,κ(�v�) ∈ [L2(Ω)]d.

Let T ∈ Th and let ξ ∈ �k
d(T ). Then, using vh = ξχT as test function in (4.63)

where χT is the characteristic function of T , proceeding as in Sect. 4.3.4, and
using the above definitions, we infer

∫
T

κGl
h,κ(uh)·∇ξ +

∑
F∈FT

εT,F

∫
F

φF (uh)ξ =
∫

T

fξ,

with l ∈ {k − 1, k}, εT,F = nT ·nF , and the numerical flux φF (uh) defined as

φF (uh) := −{{κ∇huh}}ω ·nF + η
γκ,F

hF
�uh�.

Remark 4.57 (Harmonic means). For all F ∈ F i
h with F = ∂T1 ∩ ∂T2 and

κi = κ|Ti , i ∈ {1, 2}, we observe that

−{{κ∇huh}}ω·nF = − κ2

κ1 + κ2
κ1(∇uh)|T1 ·nF − κ1

κ1 + κ2
κ2(∇uh)|T2 ·nF

= − 2κ1κ2

κ1 + κ2
{{∇huh}}·nF .

Thus, recalling that the jump seminorm of uh tends to zero as h→ 0, the leading-
order term in the numerical flux φF (uh) uses the harmonic mean of the diffusion
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coefficient. A motivation for using harmonic means can be given in the context
of heat transfer where κ represents the thermal conductivity, u the temperature,
and −κ∇u the heat flux. Consider an interface between a poorly conductive
medium (where κ is relatively small) and a highly conductive medium (where κ
is much larger), so that, at this interface, the harmonic mean of κ is close to the
value in the poorly conductive medium. Then, the heat transfer through this
interface is essentially governed by the poorly conductive medium.

4.5.6 Anisotropy
The above developments can be extended to the anisotropic case, that is, when
for a.e. x ∈ Ω, κ(x) is a symmetric tensor in �

d,d. Assuming that the lowest
eigenvalue of κ is uniformly bounded from below in Ω by a positive real number,
the model problem (4.62) is well-posed.

The SWIP bilinear form defined by (4.64) can be used to approximate hetero-
geneous anisotropic diffusion problems. Specifically, the weights {ωT1,F , ωT2,F }
and the penalty parameter γκ,F are evaluated on any interface F ∈ F i

h by using
the normal component of the diffusion tensor on both sides of that interface,
that is, for all F ∈ F i

h, F = ∂T1 ∩ ∂T2, we now let κi := nt
F (κ|Ti)nF , i ∈ {1, 2},

and we set as before

ωT1,F :=
κ2

κ1 + κ2
, ωT2,F :=

κ1

κ1 + κ2
, γκ,F :=

2κ1κ2

κ1 + κ2
.

Moreover, for all F ∈ Fb
h, F = ∂T ∩ ∂Ω, we set γκ,F := nt(κ|T )n. With these

modifications, the convergence analysis proceeds as in the isotropic case. Since
κ takes symmetric positive definite values, it is in particular possible to define
κ1/2 as the symmetric positive definite matrix such that κ1/2κ1/2 = κ. We refer
the reader to [133,150] for a detailed presentation of the convergence analysis.

4.6 Diffusion-Advection-Reaction
In this section, we consider a model diffusion-advection-reaction problem. The
design and analysis of the dG approximation combine the ideas of Sect. 4.5 to
handle the diffusion part and those of Sect. 2.3 to handle the advection-reaction
part. One issue of particular interest is the robustness of the approximation in
the singularly perturbed regime where advection-reaction effects dominate over
diffusion effects. In particular, we address at the end of this section the situation
where the diffusion coefficient can actually vanish locally, so that a first-order
PDE in some part of the domain is coupled to an elliptic PDE in the remaining
part.

4.6.1 The Continuous Setting
Let κ ∈ L∞(Ω) and assume that κ is uniformly bounded from below in Ω by a
positive real number; the singular limit where κ can actually vanish locally in
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some parts of Ω is addressed in Sect. 4.6.4. Moreover, we keep Assumption 4.43
so as to localize possible jumps in the diffusion coefficient. Let β ∈ [Lip(Ω)]d

be the advective velocity and let μ̃ ∈ L∞(Ω) be the reaction coefficient. We are
interested in the problem:

∇·(−κ∇u+ βu) + μ̃u = f in Ω,
u = 0 on ∂Ω,

with source term f ∈ L2(Ω). The weak form of this problem reads

Find u ∈ V s.t. a(u, v) =
∫

Ω

fv for all v ∈ V , (4.76)

with energy space V = H1
0 (Ω) and bilinear form

a(u, v) :=
∫

Ω

κ∇u·∇v −
∫

Ω

uβ·∇v +
∫

Ω

μ̃uv.

We observe that the advective term is written in conservative form. The �d-
valued function

Φ(u) = −κ∇u+ βu

is termed the diffusive-advective flux. By construction, Φ(u) is in H(div;Ω).
The diffusion-advection-reaction can be rewritten as

−∇·Φ(u) + μ̃u = f,

and the bilinear form a as

a(u, v) =
∫

Ω

−Φ(u)·∇v +
∫

Ω

μ̃uv. (4.77)

Since u ∈ H1(Ω) and β is smooth, it is equivalent to consider the advective
term in its non-conservative form, i.e.,

−∇·(κ∇u) + β·∇u+ μu = f,

with μ := μ̃+∇·β. However, if κ vanishes locally, the exact solution can feature
discontinuities, and the two forms are no longer equivalent. The conservative
form is more natural from a physical viewpoint since it expresses a basic conser-
vation principle. Indeed, integrating the diffusion-advection-reaction equation
over a control volume V ⊂ Ω, we obtain formally

∫
∂V

Φ(u)·nV +
∫

V

μ̃u =
∫

V

f,

where nV denotes the outward normal to ∂V . This equation expresses the fact
that the variation of u in the control volume V due to the diffusive and advective
exchanges through ∂V plus the quantity of u generated/depleted by reaction over
V is equal to the integral of the source term f over V .
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As in Sect. 2.1, we assume that there is a real number μ0 > 0 such that

Λ := μ̃+
1
2
∇·β = μ− 1

2
∇·β ≥ μ0 a.e. in Ω.

Hence, using integration by parts, the bilinear form a is coercive on V ,

∀v ∈ V, a(v, v) = ‖κ1/2∇v‖2
[L2(Ω)]d + ‖Λ1/2v‖2

L2(Ω).

Owing to the Lax–Milgram Lemma, (4.76) is therefore well-posed.

4.6.2 Discretization
We aim at approximating the exact solution u of (4.76) by a dG method using
the discrete space

Vh := �
k
d(Th),

where �k
d(Th) is defined by (1.15) with polynomial degree k ≥ 1 and Th belonging

to an admissible mesh sequence. We keep Assumption 4.45 on the compatibil-
ity of the meshes with the partition PΩ associated with the diffusion coeffi-
cient κ. Moreover, concerning the regularity of the exact solution, we assume
that (cf. Assumption 4.48)

u ∈ V∗ := V ∩H2(PΩ),

and we set, as before, V∗h = V∗ + Vh. It is also possible to analyze the
dG approximation in the case of low-regularity exact solutions matching only
Assumption 4.54.

The dG method considered herein combines the SWIP bilinear form of
Sect. 4.5 to handle the diffusion term and the upwind dG method of Sect. 2.3 to
handle the advection-reaction terms. Thus, we let, for all (v,wh) ∈ V∗h × Vh,

adar
h (v,wh) = aswip

h (v,wh) + aupw
h (v,wh), (4.78)

where (cf. (4.64))

aswip
h (v,wh) :=

∫
Ω

κ∇hv·∇hwh +
∑

F∈Fh

η
γκ,F

hF

∫
F

�v��wh�

−
∑

F∈Fh

∫
F

({{κ∇hv}}ω·nF �wh� + �v�{{κ∇hwh}}ω ·nF ) ,

and (cf. (2.34))

aupw
h (v,wh) =

∫
Ω

[μ̃vwh + ∇h·(βv)wh] +
∫

∂Ω

(β·n)�vwh

−
∑

F∈Fi
h

∫
F

(β·nF )�v�{{wh}} +
∑

F∈Fi
h

∫
F

γβ,F �v��wh�,
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or equivalently, after integrating by parts the advective derivative (cf. (2.35)),

aupw
h (v,wh) =

∫
Ω

[μ̃vwh − v(β·∇hwh)] +
∫

∂Ω

(β·n)⊕vwh

+
∑

F∈Fi
h

∫
F

(β·nF ){{v}}�wh� +
∑

F∈Fi
h

∫
F

γβ,F �v��wh�.

In what follows, we set

γβ,F :=
1
2
|β·nF |.

It is also possible to multiply γβ,F by a positive user-dependent parameter as
in Sect. 2.3 (cf., e.g., (2.33)), but the present choice is needed for consistency
reasons in Sect. 4.6.4 in the singular limit of locally vanishing diffusion; cf.
Remark 4.69. We also observe that the penalty terms can be grouped to obtain

∑
F∈Fi

h

(
η
γκ,F

hF
+

1
2
|β·nF |

)∫
F

�v��wh�.

In the diffusion-dominated regime where hF |β·nF | � γκ,F , the amount of penalty
introduced by the SWIP bilinear form suffices for discrete stability, and it is
possible to drop upwinding for the advective terms (that is, to approximate
the advective term using centered fluxes). The ratio hF |β·nF |/γκ,F is termed a
local Péclet number. In practice, local Péclet numbers are often large, generally
because the diffusion coefficient is (locally) small, so that upwinding is necessary.
In this situation, the exact solution features inner and outflow layers where it
varies quite sharply, and practical meshes may not be fine enough to resolve
these layers; we refer the reader, e.g., to Roos, Stynes, and Tobiska [274] for a
general overview on singularly perturbed diffusion-advection-reaction problems
and stabilized finite element approximations.

4.6.3 Error Estimates
To approximate the model problem (4.76), we consider the discrete problem:

Find uh ∈ Vh s.t. adar
h (uh, vh) =

∫
Ω

fvh for all vh ∈ Vh, (4.79)

where adar
h is the discrete bilinear form defined by (4.78). The convergence anal-

ysis is performed by establishing discrete stability, consistency, and boundedness
for adar

h . We begin with consistency.

Lemma 4.58 (Consistency). Assume u ∈ V∗. Then, for all wh ∈ Vh,

adar
h (u,wh) =

∫
Ω

fwh.
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Proof. The proof of Lemma 4.49 yields, for all wh ∈ Vh,

aswip
h (u,wh) =

∑
T∈Th

∫
T

∇·(−κ∇u)wh.

Moreover, adapting the proof of Lemma 2.27, we infer

aupw
h (u,wh) =

∑
T∈Th

∫
T

∇·(βu)wh +
∫

Ω

μ̃uwh.

Summing up and observing that ∇·(−κ∇u + βu) + μ̃u = f in all T ∈ Th yields
the assertion.

4.6.3.1 Analysis Based on Discrete Coercivity

The convergence analysis is performed in the spirit of Theorem 2.31 by com-
bining consistency (cf. Lemma 4.58) with discrete coercivity and boundedness
on orthogonal subscales for the discrete bilinear form adar

h . We recall that in
the context of the advection-reaction equation, we introduced in Sect. 2.1 the
reference time τc and the reference velocity βc such that

τc := {max(‖μ‖L∞(Ω), Lβ)}−1, βc := ‖β‖[L∞(Ω)]d ,

where Lβ is the Lipschitz module of β (cf. (2.5)). We define on V∗h the norm

|||v|||da� :=
(
|||v|||2swip + |v|2β + τ−1

c ‖v‖2
L2(Ω)

)1/2

, (4.80)

where the |||·|||swip-norm is defined by (4.69) and (4.70) while the |·|β-seminorm
is defined as

|v|β :=

⎛
⎝
∫

∂Ω

1
2
|β·n|v2 +

∑
F∈Fi

h

∫
F

1
2
|β·nF |�v�2

⎞
⎠

1/2

.

The two rightmost terms in (4.80) form the stability norm (cf. (2.37)) considered
in Sect. 2.3.2 for the advection-reaction equation.

Lemma 4.59 (Discrete coercivity). For all η > η with η defined in Lemma 4.12,
the discrete bilinear form adar

h defined by (4.78) is coercive on Vh, i.e.,

∀vh ∈ Vh, adar
h (vh, vh) ≥ min(1, τcμ0, Cη)|||vh|||2da�,

with Cη defined in Lemma 4.12.

Proof. Let vh ∈ Vh. Lemma 4.51 yields

aswip
h (vh, vh) ≥ Cη|||vh|||2swip.

Moreover, owing to Lemma 2.27,

aupw
h (vh, vh) ≥ min(1, τcμ0)

(
|vh|2β + τ−1

c ‖vh‖2
L2(Ω)

)
.

Combining these lower bounds yields the assertion.
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A straightforward consequence of the Lax–Milgram Lemma is that the dis-
crete problem (4.79) is well-posed.

The last ingredient is boundedness on orthogonal subscales for the discrete
bilinear form adar

h . To this purpose, we define on V∗h the norm

|||v|||da�,∗ :=

(
|||v|||2da� +

∑
T∈Th

βc‖v‖2
L2(∂T ) +

∑
T∈Th

hT ‖κ1/2∇v·nT ‖2
L2(∂T )

)1/2

.

Lemma 4.60 (Boundedness on orthogonal subscales). There is Cbnd, indepen-
dent of h and the data κ, β, and μ̃, such that

∀(v,wh) ∈ V∗ × Vh, adar
h (v − πhv,wh) ≤ Cbnd|||v − πhv|||da�,∗|||wh|||da�,

where πh denotes the L2-orthogonal projection onto Vh.

Proof. Combine Lemma 4.52 with Lemma 2.30. (The fact that the first argument
in adar

h is L2-orthogonal to Vh is only needed to apply Lemma 2.30.)

Proceeding as in the proof of Theorem 2.31 leads to the following error esti-
mate.

Theorem 4.61 (Error estimate). Let u ∈ V∗ solve (4.76). Let uh solve (4.79)
with adar

h defined by (4.78) and penalty parameter as in Lemma 4.12. Then, there
is C, independent of h and the data κ, β, and μ̃, such that

|||u − uh|||da� ≤ Cmax(1, τ−1
c μ−1

0 , C−1
η )|||u− πhu|||da�,∗. (4.81)

A convergence rate can be inferred from (4.81) using Lemmata 1.58 and 1.59
if the exact solution is smooth enough. Namely, if u ∈ Hk+1(Ω), (4.81) yields

|||u − uh|||da� ≤ C ′
u max(1, τ−1

c μ−1
0 , C−1

η )(κ1/2 + β
1/2
c h

1/2 + τ−
1/2

c h)hk , (4.82)

with κ := ‖κ‖L∞(Ω), C ′
u = C ′‖u‖Hk+1(Ω), and C ′ independent of h and the data

κ, β, and μ̃. The estimate can be simplified by dropping the last term under
the reasonable assumption that h ≤ βcτc; cf. (2.41). Moreover, observing that
hβc/κ represents a Péclet number and recalling the definition (4.80) of the |||·|||da�-
norm, we conclude that in the advection-dominated regime, the convergence rate
of |u − uh|β + τ

−1/2
c ‖u − uh‖L2(Ω) is of order hk+1/2 (as for the pure advection-

reaction problem; cf. Sect. 2.3.2), while in the diffusion-dominated regime, the
convergence rate of |||u−uh|||swip is of order hk (as for the purely diffusive problem;
cf. Sect. 4.5.3).

4.6.3.2 Analysis Based on Discrete Inf-Sup Condition

As shown in [133,150], the above convergence analysis can be improved by includ-
ing a bound on the advective derivative of the error. To this purpose, we need to
tighten the discrete stability norm. Indeed, using the |||·|||swip-norm contribution
to the |||·|||da�-norm to bound the advective derivative leads to an error bound
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that scales unfavorably with the Péclet number. Instead, we define on V∗h the
norm

|||v|||da� :=

(
|||v|||2da� +

∑
T∈Th

β−1
c hT ‖β·∇v‖2

L2(T )

)1/2

.

As in Sect. 2.3.3, asserting discrete stability in the |||·|||da�-norm requires proving
a discrete inf-sup condition.

Lemma 4.62 (Discrete inf-sup stability). There is Csta, independent of h and
the data κ, β, and μ̃, such that

∀vh ∈ Vh, Csta min(1, τcμ0, Cη)|||vh|||da� ≤ sup
wh∈Vh\{0}

adar
h (vh, wh)
|||wh|||da�

.

Proof. The proof is similar to that of Lemma 2.35. Let vh ∈ Vh and set � =
supwh∈Vh\{0}

adar
h (vh,wh)
|||wh|||da�

. Lemma 4.59 implies that

min(1, τcμ0, Cη)|||vh|||2da� ≤ adar
h (vh, vh) ≤ �|||vh|||da�.

To bound the contribution of the advective derivative in the expression for
|||vh|||da�, we consider the function wh ∈ Vh such that, for all T ∈ Th, wh|T =
β−1

c hT 〈β〉T ·∇vh where 〈β〉T denotes the mean value of β over T . To alleviate
the notation, we abbreviate as a � b the inequality a ≤ Cb with positive C
independent of h and the data κ, β, and μ̃.
(i) Let us bound |||wh|||da� by |||vh|||da�. As in the proof of Lemma 2.35, we obtain

|wh|2β + τ−1
c ‖wh‖2

L2(Ω) +
∑

T∈Th

β−1
c hT ‖β·∇wh‖2

L2(T ) � |||vh|||2da�.

Moreover, owing to the inverse inequality (1.36) and the fact that κ|T and 〈β〉T
are constant in any mesh element T ∈ Th,

‖κ1/2∇hwh‖2
[L2(Ω)]d =

∑
T∈Th

κ|Tβ−2
c h2

T ‖∇(〈β〉T ·∇vh)‖2
L2(T )

�
∑

T∈Th

κ|T ‖∇vh‖2
[L2(T )]d = ‖κ1/2∇hvh‖2

[L2(Ω)]d .

In addition, for all F ∈ F i
h with F = ∂T1 ∩ ∂T2,

γκ,F

hF
‖�wh�‖2

L2(F ) ≤ 2
γκ,F

hF
β−2

c

∑
i∈{1,2}

h2
Ti
‖〈β〉Ti ·(∇vh)|Ti‖2

L2(F )

�
∑

i∈{1,2}
κ|Ti‖∇vh‖2

[L2(Ti)]d
,

where we have used the discrete trace inequality (1.37), the mesh regularity, and
the bound (4.65) on γκ,F . Hence,

|wh|J,κ � ‖κ1/2∇hvh‖[L2(Ω)]d ,
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and collecting the above bounds yields |||wh|||da� � |||vh|||da�.
(ii) Proceeding as in step (ii) of the proof of Lemma 2.35, we observe that

∑
T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T ) = adar
h (vh, wh) − aswip

h (vh, wh) −
∫

Ω

μvhwh

+
∑

T∈Th

β−1
c hT

∫
T

(β·∇vh)(β − 〈β〉T )·∇vh

−
∫

∂Ω

(β·n)�vhwh +
∑

F∈Fi
h

∫
F

(β·nF )�vh�{{wh}}

−
∑

F∈Fi
h

∫
F

1
2
|β·nF |�vh��wh� = T1 + . . . + T7.

Clearly, |T1| ≤ �|||wh|||da� � �|||vh|||da� and

|T2| = |aswip
h (vh, wh)| � |||vh|||da�|||wh|||da� � |||vh|||da�|||vh|||da�.

Finally, the terms T3, . . . ,T7 are those already bounded in the proof of
Lemma 2.35. As a result,

∑
T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T ) � �|||vh|||da� + |||vh|||da�|||vh|||da� + |||vh|||2da�.

We conclude as in the proof of Lemma 2.35.

To formulate a boundedness result, we define on V∗h the norm

|||v|||da�,∗ :=

(
|||v|||2da� +

∑
T∈Th

βc

(
h−1

T ‖v‖2
L2(T ) + ‖v‖2

L2(∂T )

)

+
∑

T∈Th

hT ‖κ1/2∇v·nT‖2
L2(∂T )

)1/2

.

Lemma 4.63 (Boundedness). There is Cbnd, independent of h and the data κ,
β, and μ̃, such that

∀(v,wh) ∈ V∗h × Vh, adar
h (v,wh) ≤ Cbnd|||v|||da�,∗|||wh|||da�.

Proof. Combine Lemma 4.52 with Lemma 2.36.

A straightforward consequence of Theorem 1.35 is the following error
estimate.

Theorem 4.64 (Error estimate). Under the hypotheses of Theorem 4.61, there
is C, independent of h and the data κ, β, and μ̃, such that

|||u − uh|||da� ≤ Cmax(1, τ−1
c μ−1

0 , C−1
η ) inf

vh∈Vh

|||u− vh|||da�,∗. (4.83)
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Finally, a convergence rate can be inferred from (4.83) using Lemmata 1.58
and 1.59 if u ∈ Hk+1(Ω) since (4.83) yields an error estimate with the same
upper bound as in (4.82), namely

|||u− uh|||da� ≤ C ′
u max(1, τ−1

c μ−1
0 , C−1

η )(κ1/2 + β
1/2
c h

1/2 + τ−
1/2

c h)hk .

Thus, in the advection-dominated regime, the convergence rate of |u − uh|β +
τ
−1/2
c ‖u − uh‖L2(Ω) + (

∑
T∈Th

β−1
c hT ‖β·∇v‖2

L2(T ))
1/2 is of order hk+1/2 (as for

the pure advection-reaction problem; cf. Sect. 2.3.3), while in the diffusion-
dominated regime, the convergence rate of |||u−uh|||swip is of order hk (as for the
purely diffusive problem; cf. Sect. 4.5.3).

Remark 4.65 (Harmonic means in the penalty term). The bound (4.65) plays
an important role in the proof of Lemma 4.62 since it allows one to bound the
jump seminorm |wh|J,κ. We observe that this bound results from the fact that
the harmonic mean of the diffusion coefficient is used to penalize jumps across
interfaces in the SWIP bilinear form.

Remark 4.66 (Numerical fluxes). A local formulation using numerical fluxes can
be derived for the discrete problem (4.79) by combining the results of Sect. 4.5.5
for the diffusion terms and those of Sect. 2.3.4 for the advection-reaction terms.
Specifically, letting T ∈ Th and ξ ∈ �k

d(T ), we infer (compare with (4.77))
∫

T

(κGl
h,κ(uh) − uhβ)·∇ξ +

∫
T

μ̃uhξ +
∑

F∈FT

εT,F

∫
F

φF (uh)ξ =
∫

T

fξ,

with l ∈ {k − 1, k}, εT,F = nT ·nF , and the numerical flux φF (uh) defined as

φF (uh) :=

{
(−{{κ∇huh}}ω + β{{uh}})·nF + (η γκ,F

hF
+ 1

2 |β·nF |)�uh� if F ∈ F i
h,

−κ∇huh·n + (β·n)⊕uh + η
γκ,F

hF
uh if F ∈ Fb

h.

Remark 4.67 (Anisotropic diffusion). In the case of anisotropic diffusion, the
SWIP bilinear form is modified as discussed in Sect. 4.5.6. The convergence
analysis based on discrete coercivity can be extended to this case. However,
it is not clear how to extend the proof of Lemma 4.62 since the bound on
‖κ1/2∇hwh‖[L2(Ω)]d uses the assumption that κ is scalar-valued; see [150] for
further discussion.

4.6.4 Locally Vanishing Diffusion
In this section, we are interested in the case where κ only takes nonnegative
values in the domain Ω, a typical example being that κ vanishes in some parts
of Ω. In the anisotropic case, a more complex situation is that where κ only
takes symmetric semidefinite values, for instance because different eigenvalues
of κ vanish in different parts of Ω.
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4.6.4.1 The Continuous Setting

As before, we keep Assumption 4.43 so as to localize the jumps of κ, and we
consider the resulting partition PΩ. We say that I is a partition interface if:

(a) I has positive (d− 1)-dimensional Hausdorff measure.

(b) I is part of a hyperplane, say HI .

(c) There are distinct Ωi and Ωj belonging to PΩ such that I = HI ∩∂Ωi ∩∂Ωj .

Partition interfaces are collected into the set IΩ and points in Ω belonging to
partition interfaces are collected into the set IΩ. Of particular interest are
those partition interfaces for which the normal component of the diffusion tensor
becomes singular on one of its sides, say Ωj . Specifically, we set

I0,Ω := {I ∈ IΩ | nt
I(κ|Ωi )nI > nt

I(κ|Ωj )nI = 0},

where nI denotes a unit normal vector to I, and without loss of generality we
assume that nI points from Ωi toward Ωj . On a (partition) interface I ∈ I0,Ω,
we loosely say that the subdomain Ωi is the diffusive side and the subdomain
Ωj the nondiffusive side. Points in Ω belonging to (partition) interfaces in I0,Ω

are collected into the set I0,Ω. It is important to identify those points in I0,Ω

where the advective field flows from the diffusive side to the nondiffusive side
and to distinguish them from the remaining points, namely

I+
0,Ω := {x ∈ I0,Ω | (β·nI)(x) > 0},

I−
0,Ω := {x ∈ I0,Ω | (β·nI)(x) < 0},

and we assume that (β·nI)(x) �= 0 for a.e. x ∈ I0,Ω. Following Di Pietro, Ern, and
Guermond [133], we consider the following diffusion-advection-reaction problem
with locally vanishing diffusion

∇·(−κ∇u+ βu) + μ̃u = f in Ω \ I0,Ω, (4.84a)
u = 0 on ∂Ωκ,β , (4.84b)

where
∂Ωκ,β := {x ∈ ∂Ω | ntκn > 0 or β·n < 0},

and supplemented with the following conditions on I0,Ω:

�−κ∇u+ βu�·nI = 0 on I0,Ω, (4.85a)

�u� = 0 on I+
0,Ω. (4.85b)

We observe that (4.84b) enforces a homogeneous Dirichlet condition if ntκn > 0
(as for pure diffusion problems) or if β·n < 0 (as for advection-reaction prob-
lems). Moreover, (4.85a) enforces the continuity of the normal component of the
diffusive-advective flux on the whole partition interface I0,Ω, whereas (4.85b)
enforces the continuity of the exact solution only on I+

0,Ω, that is, where the
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advection field flows from the diffusive side toward the nondiffusive side, while
the exact solution can jump across I−

0,Ω. We also notice that combining (4.85a)
and (4.85b) yields �κ∇u�·nI = 0 across I+

0,Ω (recall that β is smooth so that its
normal component is continuous across partition interfaces). Since κ|Ωj ·nI =0
on the nondiffusive side, this yields the homogeneous Neumann condition
(κ∇u)|Ωi ·nI = 0 on the diffusive side.

The mathematical analysis of the model problem (4.84) with conditions (4.85)
can be found in [133]. We only give here a brief motivation for condition (4.85b).
In one space dimension, these conditions were derived by Gastaldi and Quar-
teroni [165], where it is proven that the solution uε of the following regularized
problem with suitable boundary conditions:

(−κu′ε + βuε)′ + μ̃uε − εu′′ε = f, (4.86)

converges in L2(Ω), as ε→ 0, to the so-called viscosity solution of (4.84a) which
satisfies conditions (4.85). As an example, let Ω = (0, 1) be partitioned into
Ω1 =

(
0, 1

3

)
, Ω2 =

(
1
3 ,

2
3

)
, and Ω3 =

(
2
3 , 1
)

and set f = 0, μ = 0, β = 1,
κ|Ω1∪Ω3 = 1, and κ|Ω2 = 0. Then, I0,Ω =

{
1
3 ,

2
3

}
with I+

0,Ω =
{

1
3

}
and I−

0,Ω ={
2
3

}
. The viscosity solution to (4.86) with the boundary conditions u(0) = 1

and u(1) = 0 is (cf. Fig. 4.7)

u|Ω1 = u|Ω2 = 1, u|Ω3 = 1 − e(x−1).

This solution satisfies (4.85).

4.6.4.2 Discretization

We set Vh = �k
d(Th) with k ≥ 1 and Th belonging to an admissible mesh sequence

satisfying Assumption 4.45. In addition, we assume that each (mesh) interface
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Fig. 4.7: Exact solution with vanishing diffusion
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F ∈ F i
h such that F ∩I0,Ω has positive (d−1)-dimensional Hausdorff measure is

either a subset of I−
0,Ω or of I+

0,Ω. We define F i∗
h as the set of (mesh) interfaces

such that F ∩I0,Ω is a subset of I−
0,Ω. Without loss of generality, we assume that

the normal nF to each F ∈ F i∗
h points from the diffusive side, say Ω1, to the

nondiffusive side, say Ω2. As a result, the weights at F are such that ωT1,F = 0
and ωT2,F = 1. We also assume that each boundary face F ∈ Fb

h is either a
subset of ∂Ωκ,β or of ∂Ω\∂Ωκ,β , and we define Fb∗

h as the set of boundary faces
that are a subset of ∂Ω \ ∂Ωκ,β . With these definitions, we obtain

�u� = 0 ∀F ∈ Fh \ (F i∗
h ∪ Fb∗

h ). (4.87)

The key property is that the discrete bilinear form adar
h defined by (4.78)

remains consistent even in the singular limit of vanishing diffusion.

Lemma 4.68 (Consistency). For all vh ∈ Vh,

adar
h (u, vh) =

∫
Ω

fvh.

Proof. Let vh ∈ Vh. Consider first the contribution of the SWIP bilinear form.
Owing to (4.66) and (4.87),

aswip
h (u, vh) = −

∑
T∈Th

∫
T

∇·(κ∇u)vh +
∑

F∈Fh

η
γκ,F

hF

∫
F

�u��vh�

+
∑

F∈Fi
h

∫
F

�κ∇hu�·nF {{vh}}ω −
∑

F∈Fh

∫
F

�u�{{κ∇hvh}}ω·nF

= −
∑

T∈Th

∫
T

∇·(κ∇u)vh +
∑

F∈Fi∗
h ∪Fb∗

h

η
γκ,F

hF

∫
F

�u��vh�

+
∑

F∈Fi∗
h

∫
F

�κ∇hu�·nF {{vh}}ω −
∑

F∈Fi∗
h ∪Fb∗

h

∫
F

�u�{{κ∇hvh}}ω·nF ,

where we have used the fact that �κ∇u�·nF = 0 on all F ∈ F i
h \ F i∗

h owing
to (4.85). Moreover, for all F ∈ F i∗

h , γκ,F = 0 and {{κ∇hvh}}ω·nF = 0 owing to
the definition of the penalty parameter and the weights. Similarly, owing to the
boundary condition (4.84b), ntκn = 0 for all F ∈ Fb∗

h . As a result,

aswip
h (u, vh) = −

∑
T∈Th

∫
T

∇·(κ∇u)vh +
∑

F∈Fi∗
h

∫
F

�κ∇hu�·nF vh|Ω1 ,

where we have used the fact that {{vh}}ω = vh|Ω1 since ωT1,F = 0 and ωT2,F = 1.
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Consider now the contribution of the upwind bilinear form, namely

aupw
h (u, vh) =

∑
T∈Th

∫
T

[μ̃uvh + ∇·(βu)vh] +
∫

∂Ω

(β·n)�uvh

−
∑

F∈Fi
h

∫
F

(β·nF )�u�{{vh}} +
∑

F∈Fi
h

∫
F

1
2
|β·nF |�u��vh�

=
∑

T∈Th

∫
T

[μ̃uvh + ∇·(βu)vh] −
∑

F∈Fi∗
h

∫
F

(β·nF )�u�vh|Ω1 ,

where we have used (4.87), (β·n)� = 0 on all F ∈ Fb∗
h , and that the upwind side

is the nondiffusive side on all F ∈ F i∗
h so that

−(β·nF )�u�{{vh}} +
1
2
|β·nF |�u��vh� = −(β·nF )�u�

(
{{vh}} +

1
2
�vh�

)

= −(β·nF )�u�vh|Ω1 .

Summing up yields

adar
h (u, vh) =

∑
T∈Th

∫
T

(∇·(−κ∇u+ βu) + μ̃u)vh +
∑

F∈Fi∗
h

∫
F

�κ∇u − βu�·nF vh|Ω1

=
∑

T∈Th

∫
T

(∇·(−κ∇u+ βu) + μ̃u)vh,

owing to (4.85a). The assertion follows.

Remark 4.69 (Amount of upwinding). The choice γβ,F = 1
2 |β·nF |, corresponding

to the usual amount of upwinding, is instrumental in the above proof so as to
combine the two terms multiplying vh|Ω1 and recover the jump of the total
diffusive-advective flux.

The rest of the convergence analysis proceeds as in Sect. 4.6.3 yielding the
error estimates (4.81) and (4.83). We observe that the approximate solution
exhibits, like the exact solution, a finite jump across I−

0,Ω. The approximation
error on this jump is controlled via the |·|β-seminorm present in the error esti-
mates.

To illustrate with a two-dimensional example, we consider Ω = (0, 1)2 par-
titioned into the two subdomains depicted in the left panel of Fig. 4.8. The
subdomain Ω1 is a trapezoidal inclusion. The diffusion is anisotropic and such
that

κ|Ω1 =
[

1 0
0 0.5

]
, κ|Ω2 =

[
0 0
0 1

]
.

The advection field is horizontal and uniform with β = (−5, 0), and the reaction
coefficient is uniform with μ̃ = 1. The partition interface I0,Ω consists of the two
vertical sides of Ω1, with I+

0,Ω equal to the left side and I−
0,Ω to the right side.

The approximate solution obtained with the above dG method and polynomial
degree k = 1 is shown in the right panel of Fig. 4.8, showing that the expected
behavior of the exact solution is captured accurately. In particular, the jump
across I−

0,Ω is clearly visible.
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Ω1

Ω2

I+
0,Ω

I−
0,Ω

b
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Fig. 4.8: Two-dimensional example of heterogeneous and anisotropic diffusion-
advection-reaction problem: problem setting (left) and approximate dG solution
(right)

4.7 An Unsteady Example: The Heat Equation
To illustrate the approximation of unsteady scalar PDEs with diffusion, we con-
sider the heat equation, which we approximate in space using the SIP scheme
of Sect. 4.2 and in time using (implicit) A-stable finite difference schemes, e.g.,
the backward Euler and BDF2 schemes. Implicit time-marching is usually pre-
ferred for parabolic problems because explicit schemes lead to the stringent
parabolic CFL condition δt ≤ Ch2 where δt is the time step and h the meshsize.

4.7.1 The Continuous Setting
For given finite time tF > 0, source term f , and initial datum u0, we consider
the unsteady version of the Poisson problem (4.1), namely,

∂tu−�u = f in Ω × (0, tF), (4.88a)
u = 0 on ∂Ω × (0, tF), (4.88b)

u(·, t = 0) = u0 in Ω. (4.88c)

Problem (4.88) is termed the heat equation.
We recall (cf. Sect. 3.1.1) that, for a function ψ defined on the space-time

cylinder Ω× (0, tF), we consider ψ as a function of the time variable with values
in a Hilbert space, say V , spanned by functions of the space variable, in such a
way that

ψ : (0, tF) � t �−→ ψ(t) ≡ ψ(·, t) ∈ V.

We also recall that, for an integer l ≥ 0, C l(V ) denotes the space of V -valued
functions that are l times continuously differentiable in the interval [0, tF].
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We take the source term f in C0(L2(Ω)). Moreover, we are interested in
smooth solutions such that

u ∈ C0(H1
0 (Ω)) ∩ C1(L2(Ω)).

This implies, in particular, that the initial datum u0 is in the energy space
H1

0 (Ω). In addition, since u ∈ C0(H1
0 (Ω)) ∩ C1(L2(Ω)), dtu ∈ L2(Ω) for all

t ∈ (0, tF), so that we consider the following weak formulation of (4.88): For all
t ∈ [0, tF],

(dtu, v)L2(Ω) + a(u, v) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω), (4.89)

where, as in the steady case, a(u, v) =
∫
Ω
∇u·∇v.

We now establish the basic stability result for (4.89).

Lemma 4.70 (Stability). Let u ∈ C0(H1
0 (Ω)) ∩ C1(L2(Ω)) solve (4.89). Then,

for all t ∈ [0, tF],

‖u(t)‖2
L2(Ω) +

∫ t

0

‖∇u(s)‖2
[L2(Ω)]d ds ≤ ‖u0‖2

L2(Ω) + C2
Ω

∫ t

0

‖f(s)‖2
L2(Ω) ds,

where CΩ results from the Poincaré inequality (4.4).

Proof. For a fixed t ∈ (0, tF), selecting u(t) as a test function in (4.89) and
using the Cauchy–Schwarz inequality followed by the Poincaré inequality (4.4),
we infer

1
2
dt‖u(t)‖2

L2(Ω) + ‖∇u(t)‖2
[L2(Ω)]d = (f(t), u(t))L2 (Ω)

≤ CΩ‖f(t)‖L2(Ω)‖∇u(t)‖[L2(Ω)]d

≤ C2
Ω

2
‖f(t)‖2

L2(Ω) +
1
2
‖∇u(t)‖2

[L2(Ω)]d .

Rearranging terms and integrating in time yields the assertion.

4.7.2 Discretization
As in Chap. 3, we focus on the method of lines in which the time evolution prob-
lem (4.89) is first semidiscretized in space yielding a system of coupled ODEs
which is then discretized in time. Specifically, we consider space semidiscretiza-
tion by the SIP dG method of Sect. 4.2 together with a backward (also called
implicit) Euler scheme for time discretization. The BDF2 scheme to discretize
in time is addressed in Sect. 4.7.4.

4.7.2.1 Space Semidiscretization

Let Vh = �k
d(Th) with polynomial degree k ≥ 1 and Th belonging to an admissible

mesh sequence. The spaces V∗ and V∗h are defined in Assumption 4.4.
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The discrete problem is formulated as follows: For all t ∈ [0, tF],

(dtuh, vh)L2(Ω) + asip
h (uh, vh) = (f, vh) ∀vh ∈ Vh,

with bilinear form asip
h defined by (4.10). We introduce the discrete differential

operator Asip
h : V∗h → Vh such that, for all (v,wh) ∈ V∗h × Vh,

(Asip
h v,wh)L2(Ω) = asip

h (v,wh).

The discrete operator Asip
h can be used to formulate the space semidiscrete prob-

lem in the following form: For all t ∈ [0, tF],

dtuh(t) +Asip
h uh(t) = fh(t), (4.90)

with initial condition uh(0) = πhu0 and source term

fh(t) = πhf(t) ∀t ∈ [0, tF],

where πh denotes, as usual, the L2-orthogonal projection onto Vh. Choosing a
basis for Vh, the space semidiscrete evolution problem (4.90) can be transformed
into a system of coupled ODEs for the time-dependent components of uh(t) on
the selected basis. Written in component form, (4.90) leads to the appearance
of the mass matrix in front of the time derivative. In the context of dG methods,
the mass matrix is block-diagonal; cf. Sect.A.1.2.

We now state the important properties of the discrete operator Asip
h . These

properties result from the consistency, discrete coercivity, and boundedness of
the SIP bilinear form.

Lemma 4.71 (Properties of Asip
h ). The discrete operator Asip

h satisfies the fol-
lowing properties:

(i) Consistency: For the exact solution u, assuming u ∈ C0(V∗),

πhdtu(t) +Asip
h u(t) = fh(t) ∀t ∈ [0, tF].

(ii) Discrete coercivity: For all vh ∈ Vh,

(Asip
h vh, vh)L2(Ω) ≥ Csta|||vh|||2sip.

(iii) Boundedness: For all (v,wh) ∈ V∗h × Vh,

(Asip
h v,wh)L2(Ω) ≤ Cbnd|||v|||sip,∗|||wh|||sip.

Here, Csta and Cbnd are independent of h and δt, the |||·|||sip-norm is defined
by (4.17), and the |||·|||sip,∗-norm by (4.22).
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4.7.2.2 Time Discretization

To discretize in time the space semidiscrete problem (4.90), we introduce a
partition of (0, tF) into N intervals of length δt (the time step) so that Nδt = tF;
more generally, a variable time step can be considered. For n ∈ {0, . . . ,N}, a
superscript n indicates the value of a function at the discrete time tn := nδt.

For a function v ∈ C1(V ) with some function space V of the space variable,
we introduce the backward Euler operator δ(1)t such that, for all n ∈ {1, . . . ,N},

δ
(1)
t vn :=

vn − vn−1

δt
∈ V, (4.91)

thereby providing a first-order finite difference approximation of the time deriva-
tive dtv

n. The discrete solution is obtained from the backward Euler scheme,

δ
(1)
t un+1

h + Asip
h un+1

h = fn+1
h , (4.92)

with the initial condition u0
h = πhu0 and the source term fn+1

h = πhf
n+1 for all

n ∈ {0, . . . ,N − 1}. Problem (4.92) can be equivalently rewritten as

un+1
h + δtAsip

h un+1
h = un

h + δtfn+1
h ,

thus highlighting the fact that un+1
h is obtained from un

h by solving a linear
problem. In what follows, we abbreviate as a � b the inequality a ≤ Cb with
positive C independent of h, δt, and f .

4.7.3 Error Estimates
The analysis follows a path similar to that deployed in Sect. 3.1 for the unsteady
advection-reaction equation. We first derive the error equation, then establish
an energy estimate and finally infer the convergence result. The analysis is
much simpler than in Sect. 3.1 since we use an implicit scheme to march in time.
Indeed, contrary to explicit schemes, implicit schemes are dissipative.

Letting
ξn
h := un

h − πhu
n, ξn

π := un − πhu
n, (4.93)

the approximation error at the discrete time tn is decomposed as

un − un
h = ξn

π − ξn
h .

Lemma 4.72 (Error equation). Assume u ∈ C0(V∗) ∩ C2(L2(Ω)). Then,

δ
(1)
t ξn+1

h = −Asip
h ξn+1

h + αn+1
h , (4.94)

with αn+1
h := Asip

h ξn+1
π − πhθ

n+1 and θn+1 := δt−1
∫ tn+1

tn (tn − t)d2
tu(t) dt.

Proof. A Taylor expansion in time yields

un = un+1 − δtdtu
n+1 −

∫ tn+1

tn

(tn − t)d2
tu(t) dt, (4.95)
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i.e.,
δ
(1)
t un+1 = dtu

n+1 + θn+1.

Projecting this equation onto Vh and replacing πhdtu
n+1 by fn+1

h − Asip
h un+1

owing to consistency, we obtain

δ
(1)
t πhu

n+1 + Asip
h un+1 = fn+1

h + πhθ
n+1. (4.96)

Subtracting (4.96) from (4.92) yields the assertion.

We now derive an energy estimate for the discrete scheme.

Lemma 4.73 (Energy estimate). Assume u ∈ C0(V∗) ∩ C2(L2(Ω)). Then, for
all n ∈ {0, . . . ,N − 1}, there holds

‖ξn+1
h ‖2

L2(Ω) − ‖ξn
h‖2

L2(Ω) + ‖ξn+1
h − ξn

h‖2
L2(Ω) + δtCsta|||ξn+1

h |||2sip
� δt(|||ξn+1

π |||2sip,∗ + C2
uδt

2), (4.97)

with Cu := ‖d2
tu‖C0(L2(Ω)).

Proof. Testing (4.94) with δtξn+1
h , we obtain

‖ξn+1
h ‖2

L2(Ω) + δt(Asip
h ξn+1

h , ξn+1
h )L2(Ω)

= (ξn
h , ξ

n+1
h )L2(Ω) + δt(Asip

h ξn+1
π , ξn+1

h )L2(Ω) − δt(θn+1, ξn+1
h )L2(Ω),

since (πhθ
n+1, ξn+1

h )L2(Ω) = (θn+1, ξn+1
h )L2(Ω). Using the algebraic relation ab =

1
2a

2 + 1
2b

2 − 1
2 (a− b)2 for the first term on the right-hand side, the above energy

equality becomes

‖ξn+1
h ‖2

L2(Ω) + ‖ξn+1
h − ξn

h‖2
L2(Ω) + 2δt(Asip

h ξn+1
h , ξn+1

h )L2(Ω)

= ‖ξn
h‖2

L2(Ω) + 2δt(Asip
h ξn+1

π , ξn+1
h )L2(Ω) − 2δt(θn+1, ξn+1

h )L2(Ω).

Using discrete coercivity and boundedness of Asip
h together with the Cauchy–

Schwarz inequality, we obtain

‖ξn+1
h ‖2

L2(Ω) + ‖ξn+1
h − ξn

h‖2
L2(Ω) + 2δtCsta|||ξn+1

h |||2sip
≤ ‖ξn

h‖2
L2(Ω) + 2Cbndδt|||ξn+1

π |||sip,∗|||ξn+1
h |||sip + 2δt‖θn+1‖L2(Ω)‖ξn+1

h ‖L2(Ω).

Owing to the discrete Poincaré inequality (4.20),

‖ξn+1
h ‖2

L2(Ω) + ‖ξn+1
h − ξn

h‖2
L2(Ω) + 2δtCsta|||ξn+1

h |||2sip
≤ ‖ξn

h‖2
L2(Ω) + 2Cbndδt|||ξn+1

π |||sip,∗|||ξn+1
h |||sip + 2σ2δt‖θn+1‖L2(Ω)|||ξn+1

h |||sip.

Using Young’s inequality for the two rightmost terms yields

‖ξn+1
h ‖2

L2(Ω) + ‖ξn+1
h − ξn

h‖2
L2(Ω) + δtCsta|||ξn+1

h |||2sip
≤ ‖ξn

h‖2
L2(Ω) + Cδt(|||ξn+1

π |||2sip,∗ + ‖θn+1‖2
L2(Ω)).
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Finally, proceeding as in the proof of Lemma 3.20, we infer

‖θn+1‖L2(Ω) � Cuδt,

whence the assertion.

Remark 4.74 (Dissipation in backward Euler scheme). The dissipative nature of
the backward Euler scheme is reflected by the presence of the time increment
‖ξn+1

h −ξn
h‖2

L2(Ω) on the left-hand side of the energy estimate (4.97). We observe
that, up to a factor δt, the increment ξn+1

h −ξn
h can be interpreted as a first-order

finite difference approximation of the time derivative of the error component
in Vh.

Finally, we arrive at our main convergence result.

Theorem 4.75 (Convergence). Let u ∈ C0(V∗) ∩ C2(L2(Ω)) solve (4.89) and
let (un

h)1≤n≤N solve (4.92) with u0
h = πhu0. Assume u ∈ C0(Hk+1(Ω)). Then,

there holds

‖uN − uN
h ‖L2(Ω) +

(
Csta

N∑
n=1

δt|||un − un
h|||2sip

)1/2

� χ1δt+ χ2h
k, (4.98)

with χ1 = t
1/2

F ‖d2
tu‖C0(L2(Ω)) and χ2 = ‖u‖C0(Hk+1(Ω)).

Proof. Summing (4.97) for n ∈ {0, . . . ,N − 1}, dropping the nonnegative con-
tribution ‖ξn+1

h − ξn
h‖2

L2(Ω), and observing that ξ0h = 0, we obtain

‖ξN
h ‖2

L2(Ω) + δtCsta

N∑
n=1

|||ξn
h |||2sip � δt

N∑
n=1

|||ξn
π |||2sip,∗ + tFC

2
uδt

2.

Recalling the results of Sect. 4.2.3, we infer that, for all n ∈ {1, . . . ,N},
|||ξn

π |||sip,∗ � hk‖un‖Hk+1(Ω). Hence,

‖ξN
h ‖2

L2(Ω) + δtCsta

N∑
n=1

|||ξn
h |||2sip � (χ1δt+ χ2h

k)2.

Using the triangle inequality ‖uN −uN
h ‖L2(Ω) ≤ ‖ξN

π ‖L2(Ω) +‖ξN
h ‖L2(Ω) together

with
N∑

n=1

δt|||un − un
h|||2sip ≤ 2

N∑
n=1

δt
(
|||ξn

h |||2sip + |||ξn
π |||2sip

)
,

and observing that

‖ξN
π ‖2

L2(Ω) + δtCsta

N∑
n=1

|||ξn
π |||2sip � (χ2h

k)2,

yields the assertion.
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4.7.4 BDF2 Time Discretization
To improve the convergence rate in time, we can consider higher-order backward
approximations of the time derivative dtu. In this section, we briefly examine
time discretization using the second-order backward difference formula (BDF2).
We show, in particular, that, also in this case, stability is related to the dissipa-
tive nature of the scheme. We proceed as in Sect. 4.7.3, whereby we derive the
error equation, establish an energy estimate, and finally infer the convergence
result.

For a function v ∈ C1(V ), we introduce the BDF2 operator δ(2)t such that,
for all n ∈ {2, . . . ,N},

δ
(2)
t vn :=

3vn − 4vn−1 + vn−2

2δt
∈ V,

thereby providing a second-order finite difference approximation of the time
derivative dtv

n. Then, the discrete solution is obtained from

δ
(1)
t u1

h + Asip
h

u0
h + u1

h

2
=
f0

h + f1
h

2
, (4.99a)

δ
(2)
t un+1

h + Asip
h un+1

h = fn+1
h for n ∈ {1, . . . ,N − 1}, (4.99b)

with u0
h = πhu0. The operator δ(2)t cannot be used for the first time step n = 1,

since only the initial value is available. In (4.99a), the value u1
h is computed

from u0
h using the Crank–Nicolson scheme which is also second-order accurate

in time.
We first derive the error equation, recalling that the components ξn

h and ξn
π

of the approximation errors are defined by (4.93).

Lemma 4.76 (Error equation). Assume u ∈ C0(V∗) ∩ C3(L2(Ω)). Then,

δ
(1)
t ξ1h +Asip

h

ξ0h + ξ1h
2

= α1
h, (4.100)

where α1
h := Asip

h
ξ0

π+ξ1
π

2 − πhθ
1, θ1 := − 1

2δt
−1
∫ δt

0
t(δt − t)d3

tu(t) dt, and, for all
n ∈ {1, . . . ,N − 1},

δ
(2)
t ξn+1

h + Asip
h ξn+1

h = αn+1
h , (4.101)

where αn+1
h := Asip

h ξn+1
π − πhθ

n+1 and

θn+1 := δt−1

∫ tn+1

tn

(tn − t)2d3
tu(t) dt − 1

4
δt−1

∫ tn+1

tn−1
(tn−1 − t)2d3

tu(t) dt.

Proof. We observe that

δ
(1)
t u1 = dtu

1 − δt−1

∫ δt

0

td2
tu(t) dt,

δ
(1)
t u1 = dtu

0 + δt−1

∫ δt

0

(δt− t)d2
tu(t) dt,
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so that, integrating by parts in time,

δ
(1)
t u1 = dt

u0 + u1

2
+

1
2
δt−1

∫ δt

0

(δt− 2t)d2
tu(t) dt = dt

u0 + u1

2
+ θ1.

Proceeding as in the proof of Lemma 4.72 yields (4.100). Furthermore, for all
n ∈ {2, . . . ,N}, a direct calculation shows that

δ
(2)
t un+1 = dtu

n+1 + θn+1,

and proceeding again as in the proof of Lemma 4.72 yields (4.101).

We can now derive the energy estimate.

Lemma 4.77 (Energy estimate). Assume u ∈ C0(V∗)∩C3(L2(Ω)). Then, there
holds

‖ξ1h‖2
L2(Ω) + δtCsta|||ξ1h|||2sip � δt

(
|||ξ1π|||2sip,∗ + |||ξ0π|||2sip,∗ + C2

uδt
4
)
, (4.102)

and, for all n ∈ {1, . . . ,N − 1},

‖ξn+1
h ‖2

L2(Ω) − ‖ξn
h‖2

L2(Ω) + ‖2ξn+1
h − ξn

h‖2
L2(Ω) − ‖2ξn

h − ξn−1
h ‖2

L2(Ω)

+ ‖δttξn+1
h ‖2

L2(Ω) + δtCsta|||ξn+1
h |||2sip � δt

(
|||ξn+1

π |||2sip,∗ + C2
uδt

4
)
, (4.103)

with Cu := ‖d3
tu‖C0(L2(Ω)) and δttξn+1

h := ξn+1
h − 2ξn

h + ξn−1
h .

Proof. Testing (4.100) with δtξ1h, observing that ξ0h = 0, rearranging terms,
and using ‖θ1‖L2(Ω) � Cuδt

2 yields (4.102). Furthermore, testing (4.101) with
4δtξn+1

h , we infer

4δt(δ(2)t ξn+1
h , ξn+1

h )L2(Ω) + 4δt(Ahξ
n+1
h , ξn+1

h )L2(Ω) = 4δt(αn+1
h , ξn+1

h )L2(Ω).

We observe that

4δt(δ(2)t ξn+1
h , ξn+1

h )L2(Ω) = ‖ξn+1
h ‖2

L2(Ω) − ‖ξn
h‖2

L2(Ω)

+ ‖2ξn+1
h − ξn

h‖2
L2(Ω) − ‖2ξn

h − ξn−1
h ‖2

L2(Ω)

+ ‖δttξn+1
h ‖2

L2(Ω).

Finally, we bound (αn+1
h , ξn+1

h )L2(Ω) by proceeding as in the proof of Lemma 4.73
using ‖θn+1‖L2(Ω) � Cuδt

2 for all n ∈ {1, . . . ,N − 1}.

Remark 4.78 (Dissipation in BDF2 scheme). The dissipative nature of the BDF2
scheme is reflected by the term ‖δttξn+1

h ‖2
L2(Ω) on the left-hand side of (4.103).

We observe that, up to a factor δt2, δttξn+1
h can be interpreted as a second-order

finite difference approximation of the second-order time derivative of the error
component in Vh.
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Finally, we arrive at our main convergence result. The proof is skipped since
it is similar to that of Theorem 4.75.

Theorem 4.79 (Convergence). Let u ∈ C0(V∗) ∩ C3(L2(Ω)) solve (4.89) and
let (un

h)1≤n≤N solve (4.99) with u0
h = πhu0. Assume u ∈ C0(Hk+1(Ω)). Then,

there holds

‖uN − uN
h ‖L2(Ω) +

(
Csta

N∑
n=1

δt|||un − un
h|||2sip

)1/2

� χ1δt
2 + χ2h

k,

with χ1 = t
1/2

F ‖d3
tu‖C0(L2(Ω)) and χ2 = ‖u‖C0(Hk+1(Ω)).

4.7.5 Improved C0(L2(Ω))-Error Estimate
The error estimate (4.98) is suboptimal for the term ‖uN−uN

h ‖L2(Ω) by one power
in h. Following the ideas of Wheeler [305], a sharper result can be obtained by
replacing the L2-orthogonal projector in (4.93) by the so-called elliptic projector
πell ∈ L(V∗, Vh) such that, for all w ∈ V∗, πellw ∈ Vh solves

asip
h (πellw, vh) = asip

h (w, vh) ∀vh ∈ Vh,

or, equivalently,
Asip

h πellw = Asip
h w.

If elliptic regularity holds (cf. Definition 4.24), there is C, independent of h, such
that, for all w ∈ V∗ ∩Hk+1(Ω),

‖w − πellw‖L2(Ω) ≤ Chk+1‖w‖Hk+1(Ω). (4.104)

Redefining the components of the approximation error as

ζn
π := un − πellu

n, ζn
h := πellu

n − un
h,

the approximation error at the discrete time tn is now decomposed as

un − un
h = ζn

π + ζn
h .

We consider again the backward Euler operator δ(1)t defined by (4.91).

Lemma 4.80 (Error equation). Assume u ∈ C0(V∗) ∩ C2(L2(Ω)). Then,

δ
(1)
t ζn+1

h + Asip
h ζn+1

h = αn+1
h , (4.105)

with αn+1
h := πhδ

(1)
t ζn+1

π − πhθ
n+1 and θn+1 defined in Lemma 4.72.

Proof. Recalling that δ(1)t un+1 = dtu
n+1 + θn+1 and observing that δ(1)t un+1 =

δ
(1)
t πellu

n+1 + δ
(1)
t ζn+1

π , we obtain

δ
(1)
t πellu

n+1 = dtu
n+1 + θn+1 − δ

(1)
t ζn+1

π .
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Projecting this equation onto Vh, replacing πhdtu
n+1 by fn+1

h − Asip
h un+1, and

observing that Asip
h πellu

n+1 = Asip
h un+1, we infer

δ
(1)
t πellu

n+1 = fn+1
h − Asip

h πellu
n+1 + πhθ

n+1 − πhδ
(1)
t ζn+1

π .

Subtracting this relation from (4.92) yields the assertion.

The difference between (4.105) and (4.94) lies in the residual αn+1
h . When

using the elliptic projector, the term Asip
h ζn+1

π in αn+1
h is replaced πhδ

(1)
t ζn+1

π .
This is a key point, since the latter scales in space as hk+1 (cf. the proof of
Theorem 4.82 below), while the former only scales as hk.

The next step is to derive an energy estimate. The proof is skipped since it
is similar to that of Lemma 4.73.

Lemma 4.81 (Energy estimate). For all n ∈ {0, . . . ,N − 1}, there holds

‖ζn+1
h ‖2

L2(Ω) − ‖ζn
h ‖2

L2(Ω) + ‖ζn+1
h − ζn

h ‖2
L2(Ω) + δtCsta|||ζn+1

h |||2sip
� δt(‖δ(1)t ζn+1

π ‖2
L2(Ω) + C2

uδt
2), (4.106)

with Cu := ‖d2
tu‖C0(L2(Ω)).

Finally, we arrive at our improved convergence result.

Theorem 4.82 (Convergence). Let u ∈ C0(V∗) ∩ C2(L2(Ω)) solve (4.89) and
additionally assume that u ∈ C1(Hk+1(Ω)). Then,

‖uN − uN
h ‖L2(Ω) � χ1δt+ χ2h

k+1,

with χ1 = t
1/2

F ‖d2
tu‖C0(L2(Ω)) and χ2 = t

1/2

F ‖u‖C1(Hk+1(Ω)).

Proof. We first observe that

δ
(1)
t ζn+1

π = πellδ
(1)
t un+1 − δ

(1)
t un+1,

so that, owing to (4.104),

‖δ(1)t ζn+1
π ‖L2(Ω) � hk+1‖δ(1)t un+1‖Hk+1(Ω).

Moreover,

‖δ(1)t un+1‖2
Hk+1(Ω) =

∑
|α|≤k+1

∫
Ω

1
δt2

∣∣∣∣∣
∫ tn+1

tn

∂αdtu(s) ds

∣∣∣∣∣
2

≤
∑

|α|≤k+1

∫
Ω

1
δt

∫ tn+1

tn

|∂αdtu(s)|2 ds

=
1
δt

∫ tn+1

tn

‖dtu(s)‖2
Hk+1(Ω) ds

≤ ‖dtu‖2
C0(Hk+1(Ω)) ≤ ‖u‖2

C1(Hk+1(Ω)).
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Then, summing (4.106) for n ∈ {0, . . . ,N − 1}, dropping the nonnegative
contribution ‖ζn+1

h − ζn
h ‖2

L2(Ω), and observing that ζ0
h = 0 we obtain

‖ζN
h ‖2

L2(Ω) + δtCsta

N∑
n=1

|||ζn
h |||2sip � (χ1δt+ χ2h

k+1)2. (4.107)

Owing to the triangle inequality, ‖uN − uN
h ‖L2(Ω) ≤ ‖ζN

π ‖L2(Ω) + ‖ζN
h ‖L2(Ω) and

we conclude using (4.104).

Remark 4.83 (Superconvergence of δt
∑N

n=1 |||ζn
h |||2sip). The error decomposition

based on ζn
h and ζn

π can also be used to derive an energy-error estimate of

order hk in space. The bound (4.107) shows that
(∑N

n=1 δt|||ζn
h |||2sip

)1/2

scales as

hk+1, and, therefore, superconverges. The leading order term in the energy-error

estimate is the projection term
(∑N

n=1 δt|||ζn
π |||sip

)1/2

which scales as hk.
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