Chapter 2
Mathematical Approaches to Modeling Science
from an Algorithmic-Historiography Perspective

Diana Lucio-Arias and Andrea Scharnhorst

2.1 A Narrative of the History of Mathematical Models
of Science

The accumulative nature of knowledge requires systematic ways to comprehend and
make sense of what we know. In the case of scientific knowledge, this requirement
is enhanced by the importance given to science as a driver of social and economic
progress. The persistent interest in a “science of science” or a “social studies of
science” is a consequence of the reflexive endeavor to comprehend and assimilate
science and the growth of scientific knowledge — perhaps together with policy
intentions to design evaluation and stimulus mechanisms.

This interest has led to significant efforts to define and refine ways of modeling,
representing, and understanding science in the scientific community — efforts unre-
stricted to single disciplines or intellectual traditions. Reflection upon knowledge
production co-evolves with knowledge production itself. It reaches from early
philosophy to the arts, encompassing attempts to order knowledge. One famous
example of how to order knowledge is the arbor scientiae of the philosopher
Raimudus Lullus (1232-1316) (Dominguez Reboiras et al. 2002).

At the same time, in our modern understanding, the old symbol of the tree also
encompasses the idea of evolution. To characterize the evolution of the science sys-
tem (natural sciences, social sciences, humanities, and arts), its growth and differen-
tiation, mathematical models are one possible scientific method. This book reviews
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the transfer of models belonging to different branches of an imagined “(sub)tree
of mathematics” to scientometrics. Mathematical models in scientometrics are
developed to understand better the structure and evolution of the imagined whole
tree of knowledge, and so the circle closes. In this chapter, the metaphor of the
tree reoccurs once more in the method used to depict the history of mathematical
modeling of the sciences. Treelike structures are the core of the historiographic
method where, constructed from citations of key papers, they illustrate the evolution
of knowledge.

Mathematical models of the sciences do not stand alone in our modern day
but stem from formulations made earlier in time. Mathematics has penetrated
almost all other scientific disciplines. We not only know mathematical physics and
mathematical biology, but also mathematical economics, mathematical sociology,
mathematical psychology and mathematical finance.! Although there is no field of
“mathematical science studies,” the emergence of quantitative studies of science —
bibliometrics, scientometrics, informetrics — came along naturally together with
mathematical approaches. Not surprisingly, methods of statistics are well estab-
lished in scientometrics (Egghe and Rousseau 1990). However, applications of
mathematical models to the dynamics of the science system form relatively singular
and isolated events. This observation, together with an increasing need for modeling
dynamic processes in science, was not only the trigger for this book, but also the
starting point for this chapter.

We can attempt to categorize mathematical models of science according to
the phenomena they try to explain and the epistemic approaches they follow.
Phenomena include: growth and distribution of expenditures for education and
research across countries and fields; number of PhD’s in different fields; growth
of the number of publications; formation of and competition between scientific
fields; citation structures; and different productivity patterns among researchers
from different disciplines, taking into account age and gender. Epistemic approaches
differ according to their perspective (which can be micro or macro), their basic
elements, their units of analysis, and how major dynamic mechanisms of the
system under study are identified. Scientific methods are part of the epistemics,
so models of science can differ by their use of mathematical technique and
mathematical language (see Borner et al. in Chap. 1). Concerning mathematical
approaches applied to the sciences as an object, we observe a mixture between new
mathematical techniques available and newly emerging scientific fields.

In Fig. 2.1, we try to sketch the appearance and diffusion of some mathematical
models of science. This sketch is based on the insights of one author who did

! The appearance of separate subject classifications for these subfields or specialization in the
Mathematics Subject Classification (MSC) — a system used to categorize items covered by
the two reviewing databases, Mathematical Reviews (MR) and Zentralblatt MATH (Zbl) — can
indicate the consolidation of mathematical approaches in these fields. According to the MSC2010,
mathematical economics encompasses 37 subclasses, mathematical sociology 6, mathematical
psychology 5, and mathematical finance 9 (see http://www.ams.org/mathscinet/msc/msc2010.
html).


http://www.ams.org/mathscinet/msc/msc2010.html
http://www.ams.org/mathscinet/msc/msc2010.html
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her PhD in this area in 1988 and kept publishing in the field (Scharnhorst 1988;
Bruckner et al. 1990). In the upper part of Fig. 2.1, branches of mathematics are
selected (labeled according to the Mathematics Subject Classification) according to
their relevance for models of science. Of course, inside mathematics, these branches
overlap and form a fabric (Boyack and Klavans 2009), or turbulent, reacting-
diffusing fluids, rather than a static tree with separable branches. The lower part
of Fig.2.1 depicts growth curves of certain models of science. However, there
is no linear causality between a certain progress in mathematics and its possible
application to the science system, even if we indicate relations by arrows as in
Fig.2.1. Few models enter the field of scientometrics via biology, psychology,
economy, or physics. Last but not least, it all depends if researchers are intrigued
enough by the problem to model mathematically the sciences as a cognitive and
social system.

For the time being, we would like to stick to such a narrative that combines
epistemic streams running across different disciplines with the first occurrence of
certain types of models applied to science as a system. In the main part of the
paper, we search for empirical evidence supporting or contradicting this historical
narrative.

We state that in parallel with the emergence and spreading of “approaches
and techniques” (for example, stochastic distributions at the end of the nineteenth
century; the emergence of system science and operations research; the paradigmatic
change in physics towards irreversible, dissipative and complex processes; and the
rise of rule-base agent modeling, to name only a few), researchers — most of the time
also pioneers in developing these methods — were curious also to apply them to an
environment in which they felt at home: the academic system.

For instance, Lotka described the skewed distribution of the productivity of
scientists (Lotka 1926) as part of his more general approach to apply methods
of (statistical) physics to evolution in nature as well as society (Lotka 1911).
Sterman’s system-dynamics model of Kuhn’s scientific revolution (Sterman 1985)
is embedded in his overall work on complex social systems, part of the emergence
of system dynamics as a specific mathematical systems theory (Sterman 1992), and
just another exemplification of feedback loops and complex correlations between
dynamic micromechanisms. Goffman modeled the diffusion of ideas similarly to
the spreading of diseases, and other researchers (Nowakowska, Kochen, Yablonsky,
Bruckner et al.) compared the emergence of scientific fields to the evolution
of biological species. They all made use of differential equations and master
equations at the moment non-linear differential equations became very popular
ways to describe the dynamics of complex systems (Nicolis and Prigogine 1977).
Gilbert’s agent-based model of science (1997) marks the entry and spread of rule-
based modeling into mathematical and computational sociology (Epstein and Axtell
1996), for which Gilbert also did pioneering work (Gilbert and Troitzsch 2005).
Furthermore, the interest of Gilbert was also obviously triggered by his earlier work
on the history and sociology of science (Gilbert and Mulkay 1984).

But not in all cases do we find a strict temporal correlation between the
establishment of the mathematical method and its testing out for the science system
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as one specific social system. In the case of game theory, developed in the 1930s and
1940s (see von Neumann and Morgenstern 1944), only now is the method tested
upon science itself (see Hanauske in Chap. 5).

Moreover, there are differences in the way the scientific community has
embraced these pioneering approaches. Lotka’s law is known today as a classic law
in scientometrics. Stochastic processes, which can explain also Lotka’s law, have
been present almost the whole time (e.g., Gldanzel and Schubert 1995; Van Raan
2006; Egghe 2005). However, Lotka’s general framework of a physics of evolution
applicable to processes in nature and society did not travel. Even more, his famous
systems of non-linear differential equations (Lotka—Volterra equations), applied
extensively in mathematical biology (Lotka 1925), did not travel, at least not
through Lotka’s own initiation. Although Goffman’s epidemic model belongs to
the same type of models, the link to Lotka—Volterra equations has been made
explicit only in the 1980s. After seeing a first rush in the 1960s, 1970s and 1980s,
epidemic models themselves only reappeared in the context of epidemic processes
on networks, together with the emergence of a cross-disciplinary network science
(2005), from 2000 onwards. In the same context of the revival of networks, other
early network models like Price’s gain a second period of attention. In contrast,
applications of agent-based models and system-dynamics models remain rare
occurrences. Yet, agent-based models — outside of scientometrics and independent
from it — have been embraced by computational philosophy, which uses concepts
and mathematical approaches for epistemic spaces and dynamics quite similar to
those used in scientometrics ((Weisberg and Muldoon 2009) see Payette in Chap. 4).
All in all, the impression emerges that mathematical models applied to science
come in waves, remain relatively independent from each other, and form more an
ephemeral than a persistent thread in scientometrics (Fig.2.1).

This is quite interesting. Why, unlike other sciences, does the modeling of science
dynamics appear as a process of eternal beginning, and why does it still lack a
coherent theoretical framework? Can we find facts for such an impression now
turned into a hypothesis? Can bibliometrics confirm that we indeed are faced today
with modeling approaches to science that are scattered, while older approaches
might have been obliterated or forgotten with time? Can historiographic analysis
also reveal some of the causes for such a situation?

The purpose of this chapter is to counter an individual account of science history
with a bibliometric study. We present a historiography of mathematical models
and approaches to science. This will give the opportunity to reveal the cognitive
history of the models. What might seem unrelated today might share a cognitive or
disciplinary memory or might stem from significant older papers that had citation
relations between them. We follow this section with a description of the method
of algorithmic historiography to reveal scientific developments. This method is
later used to (a) delineate the cognitive historiography of today’s mathematical
approaches to science and (b) illustrate approaches to science constituting a lasting
thread that may have been forgotten or obliterated by new models.
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2.2 The Use of Bibliometrics in Science History — Algorithmic
Historiography

Publishing as a means of communicating, corroborating, or refuting scientific
findings is a crucial operation for the development of scientific knowledge (Lucio-
Arias and Leydesdorff 2009). For this reason, citation practices have also become
established in this discursive construction of scientific knowledge (Wouters 1999).
Early in the invention of citation indexing, which was primarily aimed at advancing
information retrieval, Garfield proposed to use these databases to reconstruct the
history of scientific ideas (Garfield et al. 1964). The bibliographic information
contained in a collection of published articles and their references makes historical
reconstruction through citations a collective and social enterprise (ibid.). However,
one has to keep in mind that looking at citations represents a specific empirical
method. Both bibliometrics and scientometrics have known a long and continuing
debate over the meaning of citations in knowledge production, dissemination, and
reconstruction (De Bellis 2009). Recently, it has been observed that “it remains
a question what actually bibliometrics can add to science history based on text
analysis and eye witness accounts” (Scharnhorst and Garfield 2010). The method
of algorithmic historiography as applied in the following is therefore used as one
possible empirical method to test some of the hypotheses presented in the previous
section, and the results make explicit the limitations of this method.

The notion of algorithmic historiography is supported by the introduction of
HistCite™ as a bibliometric tool that aids the process of uncovering transmissions
of knowledge that lead to scientific breakthroughs (Pudovkin and Garfield 2002).
It relies on citation data to describe historically scientific fields, specialties, and
breakthroughs (Garfield 1979). The software creates a mini-citation matrix for any
set of documents retrieved from the ISI Web of Science, facilitating historical
reconstructions based on a literary simplification of science (Garfield et al. 2003b,a,
2005). Depending on the seed nodes selected to start the citation, mining the method
can be applied to a scientific field or a journal, the oeuvre of a scholar, or an
individual paper (Scharnhorst and Garfield 2010).

The method of utilizing the textual footprint of scientific discoveries and break-
throughs to reconstruct their history has been employed in scientometrics. Citations
might be considered as the memory carriers of the system, and their use as nodes
in network-like historiographs can be further enhanced by using algorithms from
network and information theory (Lucio-Arias and Leydesdorff 2008). Even though
this approach is used to a lesser extent by philosophers and historians of science, the
algorithmic approach to historical reconstruction enables us to include more variety
in the perspective than a reconstruction based on dispersed narratives (Kranakis and
Leydesdorff 1989). This approach, labeled scientometric historiography, relies on
citation networks to build descriptive reconstructions of history, assuming that these
networks reflect a transmission or flow of ideas between papers.

Possible biases caused by the use of citations for empirical reconstructions
might include the overestimation of contributions from elite scientists (MacRoberts
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and MacRoberts 1987, 1989), negative or critical citations, or the perfunctory
acknowledgement of earlier work. Nevertheless, different studies have agreed that
around 70% of the references used in a scientific paper correspond to criteria of
scientific relevance (Vinkler 1996; Krampen et al. 2007). In other words, 70% of
citations respond to the normative theory of citing (Cronin 1984), which justifies
the value of citation analysis for historical reconstruction of scientific fields. We
use the main-path algorithm from social network analysis to identify those central
documents in the citation networks. Specifically, we use the Search Path Link
Count available in Pajek which accounts for the number of all possible search
paths through the network emanating from an origin (Hummon and Doreian 1989;
Batagelj 2003). These main paths have been acknowledged to identify documents
that build on previous work, while acting as authorities for later works (Yin
et al. 2006). These documents can be expected to be associated with thematic or
methodological transitions in the development of a topic (Carley et al. 1993) and
are significant for writing the history of science (Hummon and Doreian 1989).

In the following sections, we use two different approaches to chronological
networks of citations. Citations allow us to study the diffusion of ideas among
documents. But citations can also be understood in the process of codifying
scientific knowledge. They link older texts to today’s scientific knowledge while
providing information about the cognitive position of scientific knowledge claims,
which through citations and references get contextualized in scientific repertoires
and trajectories. Citations give disciplinary context to publications. We will take
both of these perspectives into account in the following sections. In the first part of
the results section, we will present the bibliographic history of mathematical models
used today to study science. We expect to encounter well-known pioneers like the
models mentioned throughout the book, but we will also encounter lesser-known
models that may have been obliterated or forgotten over time. We will show how dif-
ferent threads are codified in relation to different “classical” or seminal approaches
to mathematical models of science. The second reading given in the results section
corresponds to the trajectories constructed from the diffusion of seminal approaches
to science modeling. We reconstruct the diffusion of the ideas introduced by Alfred
J. Lotka, Derek de Solla Price, and William Goffman based on citation analysis.

2.3 Data Selection and Analysis Design

In this chapter, we use bibliometrics to study and follow the implementation
of mathematical models for science. The purpose will be to uncover different
characteristics of the process of codifying mathematical models that have been
published in the last 5 years in selected journals of Library and Information Science.
In this section, we look at the knowledge base of this set of papers to determine
their cohesiveness. The method of using mathematics to model the structure and
behavior of science presents scattered trajectories that could respond to the lack
of a unifying theory or intellectual base. In a later section, some of the models
that appear in chapters of this book will be presented from the perspective of their
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Table 2.1 Statistics of the search: present to past

Journal Documents  Inside citations  Total citations
JASIST 50 39 416
Scientometrics 47 44 271

IP&M 20 5 63

J. Informetrics 20 13 53

Total documents 137

Source: ISI Web of Science, query May 25, 2010, HistCite™.

diffusion trajectories. This will emphasize possible recombinations, cognitive links,
or disciplinary shifts that affect the appropriation of the models in the scientific com-
munity. In this specific section, the diffusion trajectories are detailed in relation to
the characteristics of the models presented in the introductory chapter of this book.

All our analyses are based on retrievals from the Thomson Reuters Web of
Science, which can easily be read by the HistCite™ software.

For the cognitive history of contemporary papers using (or referring to) mathe-
matical models of science (Present to past analysis — Sect. 2.4.1), we selected four
major journals in ISI’s subject category of Library and Information Science. The
selection of the journals was determined by their popularity inside the community of
the information sciences. For retrieving documents using mathematical approaches
to science, we first used a topical search in the ISI Web of Science? that retrieved
2,876 documents. However, we encountered the problem that the majority of them
were not in line with the purpose of our study. For this reason, we decided to down-
load all documents published in Scientometrics, Journal of the American Society
for Information Science and Technology, Journal of Informetrics, and Information
Processing and Management in the period considered. We made a manual selection
based on the titles, abstracts, and full text (when necessary) of those documents that
used mathematical approaches (ideally models) to explain science. The drawback
of this last approach is that there are various mathematical models in existence.
There is also an ambiguity in the use of the word “model” and even “mathematical
model.” Many of the documents selected claimed to be modeling approaches but
failed to have all the specifications necessary to be considered as such. Table 2.1
gives an overview of the number of retrieved documents per journal, as well as the
citations inside the retrieved set of documents (inside citations) and in the whole
web of science (total citations).> Table 2.1 also presents a summary of the volume
of papers selected according to the sample of journals taken. The whole set of 137
documents selected as referring to mathematical models of science for 2005-2010
is available at the end of this chapter in Appendix 1.

The software HistCite™ was used to build the inner-citation matrix of these
documents to illustrate their cognitive relatedness. Because they might be related in
a citation window larger than the years considered, the set was expanded to include
the most highly cited documents inside the set.

2 Query used: ts = (model* same (science or scientific or knowledge)).
3For comparable analysis, the whole data set can be requested from the authors.
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For the second part of the analysis, the diffusion trajectories of three different
models were chosen according to their relevance and impact in scientometric
studies. We chose Lotka’s law, Goffman’s epidemic model, and Price’s network
model. The three models differ in character. Lotka’s law is a statistical description
(a descriptive model) of certain structures in science. Goffman’s model departs from
assumptions of basic mechanisms of science on a micro level to reveal structures on
a macro level due to the dynamics imposed. It can be used for description as well as
for prediction. Price’s network model is a conceptual one that reflects upon possible
disciplinary meanings that emerge from the network structures formed by citation
relations between papers. It is empirically verified and exemplifies phenomena such
as obliteration, the relation between references and citations, and the emergence of
research fronts. However, there is only a small step between descriptive models
and predictive models. Distributions, as in the case of Lotka’s law, have been
explained from stochastic processes. Price has himself later proposed mathematical
models for the micromechanisms behind some of the features he explores in his
“Network™ paper (Price 1976). The popularity of Lotka’s law as one of the few
basic laws of science and the fact that it operates at the border between descriptive
and predictive models were the reasons we included Lotka’s law in our selection.
In the case of Price’s network model, we chose an example of a comprehensive and
classical description of a basic pattern in scientific communication that has inspired

Table 2.2 Seed documents

Model Seed documents # cites Citation
(papers window (in
considered) years)

Lotka—Volterra Lotka, A.J. (1926). The frequency 612 1939-2010

model distribution of scientific
productivity, J. Wash. Acad.
Sci., 16: 317

Price network Price, D.J.D. (1965). Networks of 497 1978-2010

model scientific papers. The pattern of

bibliographic references
indicates the nature of the
scientific front, Science, 149
(3683): 510-515

Goffman epidemic Goffman, W. (1966). Mathematical 73 1975-2010

model Approach to Spread of

Scientific Ideas — History of
Mast Cell Research, Nature,
212 (5061): 449
Goffman, W., & Newill, V.A.
(1964). Generalization of
Epidemic Theory: An
Application to the
Transmission of Ideas, Nature
204: 225.

Source: IST Web of Science, query May 25, 2010.
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many other reflections, some of them mathematical. We explain each model at the
beginning of the corresponding results section.

Table 2.2 depicts the documents that were used as seed documents for these
models. It shows the amount of times the chosen seed documents were cited and the
publication years of those citing documents. All documents citing these seeding doc-
uments were downloaded and analyzed according to their modeling characteristics.

The downloaded citing documents were content analyzed to identify the purpose
of the paper (if it was a mathematical approach, an application or refutation of
informetric laws with empirical evidence, an evaluation or assessment exercise in
a specific context, etc.).

2.4 Results

2.4.1 The Current Presence of Mathematical Modeling in
Library and Information Science — Following Traces
Jrom the Present to the Past

To analyze the intellectual base of the papers that are currently applying mathemati-
cal models to study science, we started from our sample database (Table 2.1), which
consists of 137 documents published in leading journals in ISI’s subject category
of Library and Information Science from 2005 to 2010. These papers were taken
as seeds for a HistCite™ analysis with the purpose of tracing the citation relations
inside the set. The resulting historiograph (Fig.2.2) depicts documents as nodes,
where the size of the node represents the amount of citations it gets inside the
considered set (outside citations are not taken into account). The arrow represents a
citation relation. We start from the current papers, dig into their bibliographies and
look for cross-connections. We also try to see how persistent models are, and which
mathematical models we encounter.

Figure 2.2 shows the citation diagram for the current mathematical approaches to
science. The number of the nodes corresponds to the numbers of the 137 documents
in table 2.6 in the first appendix. Most of the nodes are related to stochastic processes
in informetric data.

Already, one sees that the documents dealing with mathematical models belong
to different, isolated threads. We present a zoom of four of them in the subsequent
figures and label the nodes that are cited inside the set with their bibliographic
references.

]

i

i

Fig. 2.2 HistCite™ output of papers using mathematical approaches to understand the science
system — overview
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Fig. 2.3 First thread in the current HistCite™ graph of mathematical model papers

In the first group, from left, we find a paper by Van Raan (29) about statistical
properties of indicators. Some of the papers in our set emphasize modeling and
explaining through mathematical formulations citing behavior and growth (e.g.,
Nodes 4, 10, 15,21, 38, 42, 63, 64, 65, 83 and 108). The complete list of documents
of this first group can be found in table 2.8.

As we move in Fig.2.2 from left to right (or from Figs.2.3 to 2.6), more
sophistication is added to the approaches, going from explanations and refinements
based on the Hirsch index, to model impact and relevance of authors, to research
group behavior (e.g., Nodes 29, 70, 83). However, most of the papers explain the
static structure of science. In the last few years, the efforts that have been undertaken
to explain growth in the system of science seem unrelated to the rest of the papers
(e.g., Nodes 2, 13,70, 76, 96).

In the second group, we find papers about network algorithms and approaches
to mapping science — particularly, old and new approaches (Small 48, Borner 46,
Klavans 47) and Chen’s citespace software (28). This thread interestingly binds
mapping and network approaches with predictive models on epidemics of idea
spreading (Bettencourt 76) and the peer review process (Bornmann 67). (A list of
all papers is given in table2.9 of Appendix 3.) All the nodes for the year 2009
correspond to the “Science of Science” special issue of the Journal of Informetrics.

A third group entails a paper about statistical features of the Hirsh-index, the
newest challenge to bibliometric rankings (e.g., Nodes 34, 35, 56). Documents in
the third thread are illustrated in Figure 2.5 and detailed in table 2.10 of appendix 3.
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Egghe L. (2005), Xekelaki E. (2005), Burrell Q. (2005),
2005 JASIST, 56:669 Scientometrics, 62:293 Scientometrics, 64:247

Egghe L, 2006,
Scientometrics, 69:121

Glanzel W. (2006)

Zitt M/ (2p06), Scientometrics, 67:315
IP&M, 42\1513
2006
©
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Sdentometrics\ 77:377
2008
2009
2010

Fig. 2.5 Third thread in the current HistCite™ graph of mathematical model papers

The documents in the fourth thread (Fig2.6) are detailed in table2.11 of the same
appendix.

Comparing our analysis of the different threads with Fig. 2.7, one can see that
although many of the documents treat similar issues (especially stochastic behavior),
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Fig. 2.6 Fourth thread in the current HistCite™ graph of mathematical model papers

there is no clear relation between them. For instance, Node 76 (in Fig. 2.4) represents
the paper by Bettencourt, Kaiser, Kaur, Castillo-Chavez & Wojick from 2008 that
reuses the model of epidemic approaches for the transmission of ideas; as can be
seen in the historiograph, this node does not have any citation relation with the
other papers in the set.

Strikingly, the bibliometric analysis seems indeed to confirm the historic narra-
tive. Mathematical models of the sciences are divided into different branches and
exist largely in isolation, as can be seen by the occurrence of many single points at
the right side of both Figs.2.2 and 2.7.

The isolation of the sets might respond to functional differentiation that results
from the growth in scientific publications, and that allows scientists to reduce
the levels of complexity in different disciplines (Lucio-Arias and Leydesdorff
2009). This means that the apparent isolation between sets might be reduced when
looking at the bibliographic antecedents of these models. In Fig.2.7, the most
cited documents outside the set of the 137 documents selected for treating science
with mathematical models and approaches were incorporated to construct a new
historiograph.

From Fig.2.7, it can be deduced that, even if different papers are not closely
related to other contemporary approaches, they seem to have a common cognitive
historiography, and there is a consensus on classical or seminal approaches to
current modeling exercises to understand the sciences. In Fig.2.7, the main path
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Fig. 2.7 HistCite™ output of papers using mathematical approaches to understand the science
system, enhanced with their cognitive history

of the set is highlighted in gray. Lotka’s seminal paper, which originated Lotka’s
law on scientific productivity based on the skewed distributions of authors, is
the starting point; due to the interdisciplinary nature of the paper, the next two
documents highlighted in the main path — Barabasi and Albert (1999) and Albert
and Barabasi (2002) — are also foreign to the field of Library and Information
Science and, more specifically, to scientometrics. These papers deal with networks
as random graphs from a physics perspective; the next nodes in the main path
(36, 77 and 90 — Van Raan (2006, 2008a, 2008b) reflect the discourse about the
importance of impact upon research groups and individuals. Interestingly, from this
wider perspective, statistical physics and complex networks, as well as rankings and
indicators, seem to be interwoven into one network of exchange of ideas.

The scattered impression depicted in Figs. 2.2-2.6 reflects the sparse relatedness
of mathematical approaches inside of Library and Information Science. It can also
be interpreted as a lack of consolidation around mathematical methods and as
competition between different threads of mathematical modeling that are related
in principle but divided in practice. Figure 2.7 shows that when overlooking larger
parts of the scientific landscape, these isolated branches or points are interconnected.
One could say that the generic and universal character of mathematical approaches
that can act as bridging and transporting structures of knowledge diffusion is more
visible in Fig.2.7. In any case, the comparison of Figs.2.2 and 2.7 shows the
relevance of the selection of the seed nodes. It also shows the restriction of a too
inner-field perspective. The position of mathematical modeling in scientometrics
cannot be fully understood from the field’s perspective only. We need to look at the
tension of evolution inside of one field and among different fields. “Neighboring
fields™* of Library and Information Sciences might be seen as a relative constant
and as a neglected environment if it concerns threads inside of LIS that are mature.
For a rather marginal topic such as dynamic models of science, they gain importance
as a source of ideas travelling into LIS.

For Fig. 2.7, the set of 137 documents dealing with mathematical approximations
to science from the perspective of Library and Information Science was studied;

“4Independently how we define neighborhood here.
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included in the set were the most highly cited documents (144 documents in total
detailed in table 2.7). While the recent documents could be considered the research
front of the field, the highly cited ones can be considered the intellectual base (Chen
2006). The main path has been acknowledged in scientometric studies to represent
the backbone of a journal or a field (Hummon and Doreian 1989; Carley et al. 1993).
Nevertheless, the main path depicted in Fig.2.7, although highlighting important
documents in the topic of mathematical models of science, cannot be taken as
the main achievements of the field. The reason is that the set does not represent
a cohesive specialty or discipline.

We used bibliographic coupling of authors to measure cognitive cohesiveness
in terms of similarities between reference lists in the set of papers. This coupling
technique uses author names as variables and the references as cases. To correct for
productive authors with many papers, cosine normalization is applied. Figure 2.8
illustrates the results for 187 authors publishing mathematical models of science.

While Figs. 2.2-2.7 illustrate the citation network as a chronological network of
citation where documents are organized according to their publishing year and their
bibliographic antecedents and descendents, the coupling in Fig. 2.8 corresponds to
authors based on the similarities of the referenced works in their papers. It supports
the suggestion of Fig.2.8 of a common cognitive history in these approaches to
modeling science.

2.4.2 The History of Mathematical Modeling of the Science
System — Following Traces from the Past to the Present

2.4.2.1 Lotka, Goffman, Price: Overall Growth and Diffusion of Reception

In this section, we present the diffusion trajectories of three specific models: Lotka’s
law (as discussed in Chap. 3 of this book), Goffman’s epidemic model (see also
Chap. 3), and the network model introduced by Derek de Solla Price (addressed
also in Chap. 7 of this book, Fortunato et al.). Even though the three models remain
very relevant in the information sciences, their impact measured in terms of citations
varies (see Fig. 2.9 and 2.10). Lotka and Price are still widely cited, while Goffman
has received less attention throughout the years. The total number of citations is 612
for Lotka’s paper of 1926, 73 citations for Goffman’s two papers, and 497 for Price’s
paper from 1965. It should be noted that even though the four seminal papers chosen
for the analysis describe models applied specifically to the study and understanding
of the science system, none of them were published in Library and Information
Science journals. Additionally, only Price is considered a pioneer in the scientific
community. His influence results from a series of documents and papers that keep
him visible in the scientometric community. Both Derek de Solla Price and Alfred
J. Lotka have around 50 papers in the ISI Web of Science, while William Goffman
has little more than 25.
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Fig. 2.9 Growth of papers citing the three historical models — Lotka’s law, Goffman’s model, and
Price’s model. The yearly citations of Goffman’s two papers are shown within the inlay

Figure 2.9 shows the annual number of citations for three cases. In the case of
Lotka, we see that his model is still influential eight decades after its publication,
although it took some years for it to become popular in the scientific community.
The reception of Price and Lotka (at least of their papers of 1926 and 1965) seems
to be similar. Although there is also an underlying growth of the Web of Science,
the reception of both papers grows together with the consolidation of scientometrics
as a field (Lucio-Arias and Leydesdorff 2009).

For the case of Goffman, there are few documents citing the two selected papers.
Therefore, we have displayed the annual citation numbers in an additional figure
as an inlay in Fig.2.9. From this bar chart, we can see that the annual numbers
are small, the papers disappear from the radar now and then, and there is a kind
of revival of popularity beginning around 2000. With its more robust growth of
perception, the Price model also seems to gain popularity after 2000. Actually, both
models — Goffman’s as well as Price’s — have also been discussed together with the
emergence of network science and the application of network science to the science
system (Borner et al. 2007).

We also display the HistCite™ graphs for all three cases (four papers) for a visual
impression. As can be seen from Fig. 2.10, they are quite different in nature. While
the graphs are very dense for the case of Lotka’s and Price’s models, in the case of
Goffman’s model there are fewer nodes and a more sparsely connected network. We
will look into the diffusion pattern in all three cases separately in more detail.
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Fig. 2.10 Historiographs for Lotka (left), Goffman (middle), and Price (right) — overview

2.4.2.2 Physics of Evolution: From Biological Species to Productive
Actors — A.J. Lotka

Lotka’s law reflects a regularity concerning the productivity of scholars (measured
by the number of publications). Lotka found that a majority of authors (consisting
of a given set of authors) only produce one publication in a given period of time
and only very few authors publish larger amounts of articles. If the number of
authors with n publications is plotted against the aggregated volume of publications,
we find an inverted power law with an exponent that is in many cases near 2.
Lotka’s law is an empirical law with authors as the basic unit of analysis. It is
one of the fundamental bibliometric laws that, relatively speaking, can be easily
tested against very different bibliometric samples, which explains its overwhelming
success. Researchers have discussed how collaboration influences productivity (e.g.
Kretschmer and Kretschmer 2007) and how productivity patterns change between
different generations of researchers (e.g. Fronczak et al. 2007). But Lotka’s law
is more than just a statistical regularity. It belongs to a class of mathematical
distributions that are characteristic of complex processes not only in social systems,
but also in natural systems (Bak 1996). For information processes, even the label
of “Lotkaian informetrics” has been used by Egghe in his systematic mathematical
analysis of functions used to describe Lotka’s law. Lotka’s mathematical model is
a descriptive one. But it can be used as a litmus test for any predictive model of
scientific activity that also entails scientists and publications. For instance, in his
agent-based model, through which topics, papers and authors find each other and
form scientific fields, Gilbert (1997) calculated Lotka’s law to see if his artificial
science simulation reveals structures similar to real science.

Details about Lotka’s law are given in Chap. 3 of this book. The emphasis here is
on its diffusion through the years, the applications of the law, and the characteristics
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Fig. 2.11 Historiograph of documents citing Lotka’s law and main path

of those documents citing it. A total of 612 documents cite “The frequency
distribution of scientific productivity,” Alfred Lotka’s 1926 paper published in
the Journal of the Washington Academy of Sciences. The number of publications
dealing with the informetric law of the skewed distribution of publications is so
large that it is possible to verify Lotka’s law using a set of papers devoted to his law
of scientific productivity (Yablonsky 1980).

The reconstruction of the diffusion trajectories of Lotka using HistCite™ (see
Fig.2.10, right) illustrates cohesiveness in the set: authors citing Lotka are also both
aware of each other and citing each other. Figure 2.10 also gives an impression
of the size and density of the network of papers citing Lotka’s paper of 1926 (the
graph is not displayed for detailed inspection’). Lotka’s law is cited in more than 200
different journals, but more than 50% of them correspond to the ISI subject category
of Library and Information Science. This way, the graph also reflects the dominance
of Scientometrics as part of LIS disciplines inside the set. The graph illustrates
how Lotka’s law becomes a relevant “knowledge item” that binds papers together
in the flows of information and knowledge production and that contributes to a
consolidation of scientometrics as a scientific field, for which a high connectivity
of networks of citations is one important feature. For a slightly more detailed
inspection, we reproduce the historiograph using as a threshold at least five citations
from other documents of the set (91 nodes).

In Fig. 2.11, the nodes of the main path or backbone are highlighted and labeled.
There is an important volume of documents that either refers to Lotka’s formula in
a more rhetorical way or discusses mechanisms for and implications of this law in
the light of social theories. But most of the documents highlighted by the main path

SWe will provide a on-line version for detailed inspection.
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Table 2.3 Main path of documents citing Lotka

First PY Journal Title

Author

Zunde, P 1969 JASIST Indexing consistency and quality

Fairthor, RA 1969 J.DOC. Progress in documentation —
empirical hyperbolic
distributions

(Bradford—Zipf—-Mandelbrot)
for bibliometric description
and prediction

Price, DJD 1976 JASIST General theory of bibliometric and
other cumulative advantage
processes

Rao, IKR 1980 JASIST Distribution of scientific
productivity and social-change

Pao, ML 1985 IP&M Lotka law — a testing procedure

Pao, ML 1986 JASIS An empirical-examination of
Lotka law

Egghe, L 1990 J. INFORMATION The duality of informetric systems

SCIENCE with applications to the
empirical laws

Burrell, Q1 1993 JASIST Yes, the GIGP really does work —
and is workable

Huber, JC 1998 JASIST Cumulative advantage and

success-breeds-success: the
value of time pattern analysis

Huber, JC 1999 SCIENTOMETRICS Inventive productivity and the
statistics of exceedances
Huber, JC 2001 SCIENTOMETRICS Scientific production: a statistical

analysis of authors in
mathematical logic

Huber, IC 2002 JASIST A new model that generates
Lotka’s law

of Fig. 2.11 (dark circles) entail mathematical formulations or applications (e.g., for
descriptive statistics of research fields, journals, or specific regions or countries).
Most of the documents using Lotka’s law rely on empirical data at a meso level
of aggregation (101-10,000 records). A bibliographic description of the documents
belonging to the main path is available in Table 2.3. Most of these papers discuss
Lotka’s law in the context of specific distribution functions and stochastic processes
that lead to them.

2.4.2.3 The Case of Modeling the Spreading of Ideas
as a Disease — W. Goffman

Goffman’s model describes the spreading out of an idea as analogous to the
spreading of a disease. Similar to Lotka’s law, which is part of the long history in
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the study of statistical distributions, the epidemic model Goffman adopted has a long
history. In 1927, Kermack and McKendrick published a mathematical model that is
still known as the SIR model. This model describes the spreading out of a disease
in terms of the relative growth of three subpopulations: the number of susceptible
but uninfected individuals (S), the number of infected individuals (I) who carry
the disease and can spread it further to the S-group, and the number of recovered
individuals (R) who cannot be reinfected again. Obviously, the growth of infected
individuals depends on the number of available susceptible individuals and is slowed
down by recovering. Goffman applied this idea to science. The number of “infected”
researchers represents the researchers working at an idea or in a field. The R-group
has lost interest and the S-group forms the reservoir for further growth. Unlike
Lotka’s law, for which only one key publication can be found, Goffman published
work about this model over the course of several years, and also with different co-
authors (Harmon 2008). For our analysis, we identified two main publications that
still gain sufficient recognition.

Goffman’s model entails many more variables (three instead of one) and
many more parameters than Lotka’s law. Although it has been tested empirically
(Wagner-Dobler 1999), the number of “susceptible” researchers is not easy to
estimate (Burger and Bujdoso 1985). Nevertheless, one prediction of Goffman’s
model can easily be measured: the growth of a scientific field. Scientometrics has
produced a large amount of growth studies of new scientific fields. Correspondingly,
the literature about growth laws in science also makes references to Goffman’s
model as one possible explanation of such observed growth curves (Tabah 1999).
Consequently, Goffman’s model has been extended — from the growth of one field
(based on the interaction of researchers at three different stages) to the growth of a
group of fields (Bruckner et al. 1990). It has also been extended from a group-based
model, where the probability of being “infected” with an idea is the same for each
subgroup member, to a network-based model, in which the concrete transmission
path and the topology of all possible contacts matter (Bettencourt et al. 2009;
Lambiotte and Panzarasa 2009).

This history of perception is visible in the main path of the HistCite™ graph
(darker nodes in Fig.2.12). The 73 citing documents are published in 47 journals
illustrating a much more dispersed trajectory of diffusion. Although the Goffman
epidemic model is known in the scientometric community, the participation of
Library and Information Science journals among the documents citing the seed
papers is never as relevant as was the case for Lotka’s law.

The main-path analysis also reveals that there is nearly 10-year between the
documents in the main path, meaning that once in a decade a paper appears that
reminds us of or reviews epidemic models and related approaches (Table 2.4).
Beginning in 2000, however, the situation changes. Works by Bettencourt et al.
(2008, 2009), and later Lambiotte et al. (2009), mark the emergence of the theory of
complex-networks in statistical physics (Scharnhorst 2003; Pyka and Scharnhorst
2009). This represents a solid hype, in which new attention from physicists was
drawn to the science system.
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Table 2.4 Main path of documents citing Goffman

First PY Journal Title
Author
Bujdoso, E 1982 J. RADIOANAL CHEM Prompt nuclear analysis — growth and
trends — a scientometric study
Bruckner, E 1990 SCIENTOMETRICS The application of evolution models
in scientometrics
Wilson, CS 1999 ANNUAL REVIEW OF Informetrics
INFORMATION
SCIENCE AND
TECHNOLOGY
Tabah, AN 1999 ANNUAL REVIEW OF Literature dynamics: studies on
INFORMATION growth, diffusion, and epidemics
SCIENCE AND
TECHNOLOGY
Bettencourt, 2006 PHYSICA A The power of a good idea:
LMA Quantitative modeling of the

spread of ideas from
epidemiological models

Bettencourt, 2008 SCIENTOMETRICS Population modeling of the
LMA emergence and development of
scientific fields
Lambiotte, R 2009 JOURNAL OF Communities, knowledge creation,
INFORMETRICS and information diffusion
Chen, CM 2009 JOURNAL OF Towards an explanatory and
INFORMETRICS computational theory of scientific
discovery
Bettencourt, 2009 JOURNAL OF Scientific discovery and topological
LMA INFORMETRICS transitions in collaboration
networks

The science system is a social system for which large (digital) data sets are
available. These sets entail a lot of relational information from which different
networks can be built and analyzed (Havemann 2009). At the moment, the complex-
networks community has shifted its focus from analyzing the structure (as the
logical first step of a statistical analysis) to examining the evolution of the network
structure (Pastor-Satorras and Vespignani 2004), and further to studying dynamic
processes on complex-network topologies. Epidemic modeling has experienced an
important revival, and it has been accompanied by a revival of epidemic models of
science. The new network science has also influenced the reception of our last case.

2.4.2.4 Network Dynamics from Science and Beyond — Derek de Solla Price

Derek de Solla Price is considered one of the pioneers in the field of Sciento-
metrics. He has written about many different topics, and his work is still highly
cited in the scientometric community. In 1965, he published a relatively short
paper in the journal Science entitled “Networks of papers.” Although this paper
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Fig. 2.13 Historiograph of documents citing Price’s network model of scientific papers and
main path

contains only a few formulas, it has established a foundation for further study of
scientific communication, including mathematical models. Price begins his paper
with the observation that citations are skewed in their distribution. He examines
the consequences of the (exponential) growth of publications (one of his other
major findings) for the future distribution of citations, and he argues that although
references and citations form a balance, their distribution over papers differs
fundamentally. Citations are not homogeneously distributed over the growing body
of literature. Instead, they cluster in time and space (defined as sets of papers).
Based on these structures, we can identify research fronts. Citing is the recursive and
constitutive process that redefines, reshapes, and re-creates scientific knowledge for
each generation of scholars. Price visualizes the evolution of networks of papers. He
not only reflects upon fundamental bibliographic questions such as classification, he
also points to a number of unknown or unclear characteristics of the self-organized,
collective process of references, later addressed by measurements and models.
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Table 2.5 Main path of documents citing Price

47

First PY Journal Title
Author
Griffith, BC 1979 1.DOC Aging of scientific literature —
citation analysis
Vlachy, J 1985 SCIENTOMETRICS Citation histories of scientific
publications — the data sources
Marton, J 1985 SCIENTOMETRICS Obsolescence or immediacy —
evidence supporting Price
hypothesis
Vlachy, J 1986 CZECH J PHYSICS Scientometric analyses in physics —
where we stand
Macroberts, 1989 JASIST Problems of citation analysis — a
BR critical review
Seglen, PO 1992 JASIST The skewness of science
Seglen, PO 1994 JASIST Causal relationship between article
citedness and journal impact
Wilson, CS 1999 ANNUAL REVIEW OF Informetrics
INFORMATION
SCIENCE AND
TECHNOLOGY
Borner, K 2003 ANNUAL REVIEW OF Visualizing knowledge domains
INFORMATION
SCIENCE AND
TECHNOLOGY
Moya- 2004 SCIENTOMETRICS A new technique for building maps
Anegon, F of large scientific domains
based on the cocitation of
classes and categories
Boyack, KW 2005 SCIENTOMETRICS Mapping the backbone of science
Leydesdorff, L 2006 JASIST Can scientific journals be classified
in terms of aggregated
journal-journal citation relations
using the journal citation
reports?
Leydesdorff, L 2007 JASIST Betweenness centrality as an

indicator of the
interdisciplinarity of scientific
journals

Due to Price’s overall relevance to the scientometric community and his rich

trajectory of published papers relevant to this field, documents citing Price’s network
model are mostly published in journals of Library and Information Science. This is
similar to the case of Lotka’s law. In Price’s case, we also present the HistCite™
graph for visual inspection (Fig.2.13).

The historiograph shown in Fig.2.13 illustrates a cohesive set of documents
similar to the case of Lotka’s law. However, the authors citing Price do not possess
the same awareness of each other as was for the case for authors using the Lotka
model. For this reason, it was possible to lower the threshold used in Lotka’s case
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(citing at least five other documents) to all those documents citing at least three
other documents (96 nodes). The network is less dense, justifying a lower threshold.
The documents in the main path (dark labeled nodes in Fig.2.13) are detailed in
Table 2.5.

A comparison of the backbone of Lotka and Price reinforces the impression that
comes with an inspection of all journals in the two data sets. Both authors and both
models are part of the knowledge base of scientometrics and are fully embraced by
the community. This can still not be said for Goffman, however.

2.5 Concluding Remarks

To a certain extent, the analysis from present to past and from past to present
complement each other. We found empirical evidence for the narrative drawn at
the beginning of this chapter. In particular, the scattered and partly isolated nature
of mathematical approaches could be made visible with the help of citation analysis.
We found different schools or threads of mathematical approaches and models in a
wide sense in LIS — led by statistical analysis and stochastic processes. But although
they all draw on a more widely connected network of mathematical approaches,
they do not communicate this among each other. We also found evidence for the
still relatively marginal role of dynamic models in the set of current papers in LIS,
as well as in the way Goffman (as one of the proponents of dynamic models) is
hardly recognized in the LIS community.

Concerning the relation between predictive and descriptive models of science,
which is one of the topics addressed by this book (see in particular Chap. 1),
our empirical analysis underlines once more that when mathematical models are
currently applied to describe the development of science at all, they rather focus on
an analysis of the current state in a descriptive way. However, each mathematical
model with a dynamic component also has the potential to be applied for prediction.
Let us give an example: Lotka’s law of productivity is just a mathematical function
between variables (number of scientists, number of their publications) that can be
empirically tested. This means it is predictive in its essence. However, any stochastic
process proposed to explain the establishment of Lotka’s law as a quasi-stationary
distribution of a dynamic process makes assumptions about micromechanisms of
behavior. One possible assumption is that the probability of producing an additional
article depends on the number of articles an author has already produced. Such a rule
can be implemented in models explicitly designed to test the collective outcome of
behavioral rules on the level of individuals (such as Gilbert’s model). We can also
use such assumptions about micromechanisms and the parameters of Lotka’s law
to predict the productivity of a certain scientific community. However, only a few
attempts have been made to turn mathematical models of science into predictive
models for scientific development (see Fronczak et al. 2007). This may have more
to do with the actual focus of research agendas than the potential of mathematical
models as such.
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When talking about “predictive modeling,” what is often expressed is the wish to
forecast a new idea or a new field. However, in the history of mathematical models
of science, one of the predictive models in posse (Goffman’s epidemic model) has
been mainly applied in esse to the history of scientific fields (e.g., (Wagner-Dobler
1999)). There are two reasons for this apparent mismatch. First, innovative ideas
and new fields representing “real” breakthroughs cannot be predicted by definition.
Otherwise, there would not be structural changes of the whole science system, only
minor alterations of existing knowledge. Now, what can be predicted also depends
on how we define innovation and new ideas. We might reasonably be able to suggest
the directions of incremental scientific progress, but not (as said before) radical
innovations. In this respect, predictive models are condemned to fail. Peter Allen
used to express it in this way: “The more ‘credible’ predictions are, the more likely
they are to NOT happen” (Cited in Ebeling and Scharnhorst (2009)).

Yet, while models might fail to predict actual innovations, they have a great and
often overlooked potential to analyze the circumstances under which innovations —
new ideas and new fields emerging independently of their essence — will most likely
arise. Only some of the modeling attempts in the past figuring in our analysis
have discussed this aspect (Bruckner et al. 1990). Understood in this way, the
potential of models to predict “innovative sciences” — their collaboration pattern,
their selection mechanisms, their institutional frames, and so on — is unlimited, and
still unexplored. Within such a frame, both descriptive (or, better, statistical) models
and predictive (or, better, dynamical) models can be applied. The first can depict
characteristics of successful science in the past and search for similar patterns in
the present; the second can formulate hypotheses about mechanisms for successful
science, test them empirically in the past, and shape them for the present by means
of science policy.

Having pointed to this need of modeling for forecasting conditions of events
rather than the events themselves, we immediately have to admit that differentiating
and tracing such a use of mathematical models is almost impossible by the analysis
of citations only. Again, citation analysis can point us to interesting areas to look at
more closely. But for the actual use, application, and interpretation of models, we
either have to rely on manual inspection or on other kind of references that relate
a model to a certain use. That seems to be even harder to trace semi-automatically
than the pure appearance of mathematical models.

What we have done in this analysis is to describe the current state of diffusion
of mathematical modeling ideas irrespectively of their actual use. Already, this
confronted us with a lot of problems. To trace an adoption pattern as sketched in
Fig. 2.1, we would need to be able to automatically extract all documents (across all
disciplines) that address the application of the mathematical models to the science
system. Moreover, we would also like to see in parallel the bibliometric traces of
the mathematical branches feeding these models. However, there is no consistent
indexing of documents (outside of knowledge-domain-specific databases) concern-
ing the methods they apply. We also found that there is no term-keyword-subject
combination that delivers a specific enough set of documents for mathematical
models in science over the whole Web of Science database. This is why we have
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chosen the combination of tracing known model approaches to science (over all
disciplines) with screening a set of established LIS journals for the appearance of
mathematical modeling.

Despite this limited-sampling approach and specific-citation perspective, we
found evidence both for the relatively isolated existence of mathematical modeling
and its implicit commonly shared knowledge base. We also saw the influence
of developments in other fields on the implementation of new methods in LIS.
The emergence of the so-called new network science (Barabasi 2002) and the
interest from statistical physics and, in a wider sense, complexity research (all three
representing the mother disciplines for dynamic processes) do not remain without
resonance in scientometrics. Partly, we observe a diffusion of new researchers;
partly, we also observe a taking up of themes and methods by established scien-
tometricians who in some way received their primary academic forming in natural
sciences and mathematics.

Our experiments show that developments in scientometrics cannot be understood
from an inner-situated perspective only. The use of mathematical dynamic models
to describe the sciences is not restricted to LIS journals. Actually, some interesting
developments in this area take place at very different locations, such as in journals of
computational philosophy (see Chap. 4 of this book), sociology (see Chap. 6 of this
book), and physics. But the universal nature of mathematical dynamic approaches —
their variety in methods and topics addressed — makes it impossible to set up a
string of keywords with which one can easily extract a good sample of mathematical
models applied to the science system. The same holds for a past-to-present analysis.
Mathematical models applied to science can pop up in all places. We selected
three researchers — Lotka, Goffman, and Price — who performed pioneering work
relevant to scientometrics, who have been interested in dynamic processes, and
who have developed mathematical models and/or ideas that have been central
for modeling. There might be many other researchers who have done interesting
modeling experiments and might only be rediscovered by chance. But even for
our three “landmark” scholars, it is not easy for us to pick one publication from
their oeuvre that fully represents their “science model” and nothing else. The work
of an individual scholar is like a journey through a landscape of science. Partly
discovering the existing landscape for her/himself and partly creating this landscape,
the scholar leaves marks and traces and is marked and imprinted by their journey.
One might argue that there is a certain arbitrariness in the selection of our cases and
the seed nodes for the historiographic methods. Indeed, we are aware of this. We do
not claim comprehensiveness; instead, we aim for an insightful illustration of the
complexity of knowledge and model transfer in science. Our practical problems in
the selection of samples also reflect a more fundamental problem.

The diffusion of ideas and methods across the sciences is a combination
of the progress of knowledge inside specialties and a diffusion of knowledge
between specialties in which knowledge is not just transmitted but also altered. The
evolution of knowledge entails processes of specification as well as generalization.
Correspondingly, in the cognitive and social space, specialties and invisible colleges
emerge and disappear, merge and split up, take form, stabilize, transform, and
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Fig. 2.14 Models travelling between generic and specific levels

pass different stages of life cycles, all based on a constant flow of creation and
recombination of elementary units of knowledge. This eternal flow also influences
the travel of mathematical models. Approaches to mathematical modeling can
emerge on a generic mathematical level or inside of a specialty or knowledge
domain. Independently from where they appear first, they are embedded in a cycle
of (re)generalization and (re)specification (Fig. 2.14). One of these special fields can
be scientometrics. Mathematical models can be developed specifically for science.
However, they will always share a generic structural element with other models and
contribute to this pool. On the other side, from the general pool of models they
can expect entries of new model ideas along all possible lines of mathematical
modeling. Mathematical models and approaches to science can be the result of
applying different mathematical approaches that have been used in other disciplines.
For example, some models using entropy statistics stem from the Mathematical
Theory of Communications, which originally addressed an engineering problem but
which has been applied in more social sciences like economics.

This feature of the model-building process — the cycle between generalization
and specification — makes it very complicated to trace a model transfer bibliometri-
cally. It also makes it hard to produce an overview of possible dynamic models of
science, which in principle encompass all dynamic modeling approaches.

Therefore, we applied a practical approach by concentrating on LIS journals for
the analysis of the present situation and by depicting a few “classics” from the past.
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The combination of both approaches provides bibliometric evidence for less cited
mathematical approaches that have been fading away, for models that have been
only recently (re)discovered, and for a shared underlying cognitive reference space
that is not always visible in direct citations. Our study also illustrates the process of
spreading new ideas and demonstrates how these can eventually converge. It can be
expected that such a historiographic study can be used as a departure point for an
evaluation of certain mathematical models. What are the characteristics of the most
successful models? Do they tend to be more universal or domain specific? Are they
multi-leveled? We can also imagine applying some of the characteristics of models
discussed in the Introduction Chapter in a future analysis. For instance, one could
ask about the quantitative or qualitative nature of the models applied, the type of
behavior in science targeted, and the representation used for results.

Last but not least, one remark. In our historic narrative at the beginning of this
chapter, we argued that eventually there need to be researchers who are intrigued
and curious enough to test mathematical models. However, while researchers as
the source of ideas remain utterly important, mathematical modeling will still
remain ephemeral if it is to be an activity driven by curiosity and not by demand.
The creativity of the human imagination is triggered by curiosity as well as by a
societal demand for a certain type of knowledge, method, and models. There is no
sustainable modeling without a thorough theoretical foundation, and, in this respect,
models should be mainly guided by theory.

One could argue that, compared to other fields and disciplines, scientometrics is a
relatively young field and has therefore not yet penetrated or been open to complex
models very much. But dynamic modeling of the science system will not emerge
if there is not a need to apply relatively complex, computational-intensive models
that also require diverse collaborations. The pertinent growth of the science system,
the scarcity of resources (human and material), and the increasing complexity that
requires other mechanisms of control might all be decisive in triggering a collective
action for Modeling Science Dynamics.

Appendix 1: Papers Using Mathematical Approaches
to Understand the Science System (Fig. 2.1)

Table 2.6 Statistics of the search: Present to past

Node Bibliographic metadata Times cited
1 Torvik VI, 2005, ] AM SOC INF SCI TECHNOL, V56, P140 18

2 Xekalaki E, 2005, SCIENTOMETRICS, V62, P293 1

3 Santos JB, 2005, SCIENTOMETRICS, V62, P329 2

4 Simkin MV, 2005, SCIENTOMETRICS, V62, P367 8

5 Bailon-Moreno R, 2005, SCIENTOMETRICS, V63, P231 1

(continued)
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Node Bibliographic metadata Times cited
6 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P664 2
7 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P669 8
8 Sombatsompop N, 2005, ] AM SOC INF SCI TECHNOL, V56, P676 15
9 Matia K, 2005, J AM SOC INF SCI TECHNOL, V56, P893 10
10 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P935 13
11 Efron M, 2005, J AM SOC INF SCI TECHNOL, V56, P969 4
12 Liang LM, 2005, J AM SOC INF SCI TECHNOL, V56, P1045 10
13 Burrell QL, 2005, SCIENTOMETRICS, V64, P247 5
14 Morris SA, 2005, ] AM SOC INF SCI TECHNOL, V56, P1250 5
15 Burrell QL, 2005, INFORM PROCESS MANAGE, V41, P1317 8
16 Egghe L, 2005, INFORM PROCESS MANAGE, V41, P1330 2
17 Shan S, 2005, INFORM PROCESS MANAGE, V41, P1369 2
18 Lafouge T, 2005, INFORM PROCESS MANAGE, V41, P1387 3
19 Payne N, 2005, INFORM PROCESS MANAGE, V41, P1495 1
20 Coccia M, 2005, SCIENTOMETRICS, V65, P307 0
21 Burrell QL, 2005, SCIENTOMETRICS, V65, P381 11
22 Dominich S, 2006, INFORM PROCESS MANAGE, V42, P1 0
23 Zuccala A, 2006, ] AM SOC INF SCI TECHNOL, V57, P152 14
24 Aksnes DW, 2006, J AM SOC INF SCI TECHNOL, V57, P169 13
25 Klavans R, 2006, J AM SOC INF SCI TECHNOL, V57, P251 33
26 Ackermann E, 2006, SCIENTOMETRICS, V66, P451 0
27 Martens BVD, 2006, ] AM SOC INF SCI TECHNOL, V57, P330 1
28 Chen CM, 2006, J AM SOC INF SCI TECHNOL, V57, P359 67
29 van Raan AFJ, 2006, ] AM SOC INF SCI TECHNOL, V57, P408 21
30 Choi J, 2006, INFORM PROCESS MANAGE, V42, P331 5
31 Wei CP, 2006, INFORM PROCESS MANAGE, V42, P350 12
32 Izsak J, 2006, SCIENTOMETRICS, V67, P107 2
33 Yoo SH, 2006, SCIENTOMETRICS, V69, P57 0
34 Egghe L, 2006, SCIENTOMETRICS, V69, P121 67
35 Glanzel W, 2006, SCIENTOMETRICS, V67, P315 73
36 Burrell QL, 2006, SCIENTOMETRICS, V67, P323 0
37 Rousseau R, 2006, J] AM SOC INF SCI TECHNOL, V57, P1404 2
38 Burrell QL, 2006, ] AM SOC INF SCI TECHNOL, V57, P1406 4
39 Samoylenko I, 2006, ] AM SOC INF SCI TECHNOL, V57, P1461 7
40 Peng D, 2006, SCIENTOMETRICS, V69, P271 0
41 Roth C, 2006, SCIENTOMETRICS, V69, P429 5
42 Mingers J, 2006, INFORM PROCESS MANAGE, V42, P1451 6
43 Zitt M, 2006, INFORM PROCESS MANAGE, V42, P1513 17
44 Su 'Y, 2006, J AM SOC INF SCI TECHNOL, V57, P1977 0
45 Van Den Besselaar P, 2006, SCIENTOMETRICS, V68, P377 10
46 Borner K, 2006, SCIENTOMETRICS, V68, P415 8
47 Klavans R, 2006, SCIENTOMETRICS, V68, P475 15
48 Small H, 2006, SCIENTOMETRICS, V68, P595 23
49 Contreras C, 2006, SCIENTOMETRICS, V69, P689 3
50 Kretschmer H, 2007, ] INFORMETR, V1, P308 1
51 Jarneving B, 2007, J INFORMETR, V1, P338 0
52 Burrell QL, 2007, J INFORMETR, V1, P16 22

(continued)
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Table 2.6 (continued)

Node  Bibliographic metadata Times cited
53 Leydesdorff L, 2007, J AM SOC INF SCI TECHNOL, V58, P25 14
54 McDonald JD, 2007, ] AM SOC INF SCI TECHNOL, V58, P39 4
55 Koike A, 2007, J AM SOC INF SCI TECHNOL, V58, P51 2
56 Egghe L, 2007, J AM SOC INF SCI TECHNOL, V58, P452 29
57 Na SH, 2007, INFORM PROCESS MANAGE, V43, P302 1
58 Lucio-Arias D, 2007, SCIENTOMETRICS, V70, P603 3
59 Egghe L, 2007, J INFORMETR, V1, P115 5
60 Shibata N, 2007, J AM SOC INF SCI TECHNOL, V58, P872 2
61 Zitt M, 2007, INFORM PROCESS MANAGE, V43, P834 0
62 Zhao DZ, 2007, J AM SOC INF SCI TECHNOL, V58, P1285 2
63 Rousseau R, 2007, J AM SOC INF SCI TECHNOL, V58, P1551 3
64 Nadarajah S, 2007, SCIENTOMETRICS, V72, P291 1
65 Simkin MV, 2007, J AM SOC INF SCI TECHNOL, V58, P1661 6
66 Morris SA, 2007, ] AM SOC INF SCI TECHNOL, V58, P1764 4
67 Bornmann L, 2007, SCIENTOMETRICS, V73, P139 1
68 de Moya-Anegon F, 2007, J AM SOC INF SCI TECHNOL, V58, P2167 9
69 Lariviere V, 2008, J AM SOC INF SCI TECHNOL, V59, P288 12
70 van Raan AF]J, 2008, J] AM SOC INF SCI TECHNOL, V59, P565 7
71 Bornmann L, 2008, ] AM SOC INF SCI TECHNOL, V59, P830 38
72 Chavalarias D, 2008, SCIENTOMETRICS, V75, P37 3
73 Li XY, 2008, INFORM PROCESS MANAGE, V44, P991 0
74 Wan XJ, 2008, INFORM PROCESS MANAGE, V44, P1032 3
75 Molinari A, 2008, SCIENTOMETRICS, V75, P339 7
76 Bettencourt LMA, 2008, SCIENTOMETRICS, V75, P495 7
77 Kim H, 2008, SCIENTOMETRICS, V75, P535 2
78 Harmon G, 2008, INFORM PROCESS MANAGE, V44, P1634 0
79 Bornmann L, 2008, ] INFORMETR, V2, P217 2
80 Yu HR, 2008, ] INFORMETR, V2, P240 0
81 Egghe L, 2008, SCIENTOMETRICS, V76, P117 4
82 Egghe L, 2008, ] AM SOC INF SCI TECHNOL, V59, P1608 13
83 van Raan AFJ, 2008, J AM SOC INF SCI TECHNOL, V59, P1631 3
84 Egghe L, 2008, ] AM SOC INF SCI TECHNOL, V59, P1688 2
85 Ahlgren P, 2008, SCIENTOMETRICS, V76, P273 3
86 Burrell QL, 2008, INFORM PROCESS MANAGE, V44, P1794 1
87 Bornmann L, 2008, ] INFORMETR, V2, P280 0
88 Ye FY, 2008, J INFORMETR, V2, P288 2
89 Quirin A, 2008, J AM SOC INF SCI TECHNOL, V59, P1912 2
90 Lucio-Arias D, 2008, ] AM SOC INF SCI TECHNOL, V59, P1948 3
91 Levitt JM, 2008, J AM SOC INF SCI TECHNOL, V59, P1973 3
92 Cecchini RL, 2008, INFORM PROCESS MANAGE, V44, P1863 1
93 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P2133 0
94 Davis PM, 2008, ] AM SOC INF SCI TECHNOL, V59, P2186 6
95 Egghe L, 2008, SCIENTOMETRICS, V77, P377 3
96 Szydlowski M, 2009, SCIENTOMETRICS, V78, P99 0
97 Wallace ML, 2009, J AM SOC INF SCI TECHNOL, V60, P240 1
98 Jensen P, 2009, SCIENTOMETRICS, V78, P467 0

(continued)
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Node Bibliographic metadata Times cited
99 Costas R, 2009, J] AM SOC INF SCI TECHNOL, V60, P740 3
100 Perez JM, 2009, INFORM PROCESS MANAGE, V45, P356 0
101 Sandstrom U, 2009, SCIENTOMETRICS, V79, P341 1
102 Borner K, 2009, ] INFORMETR, V3, P161 0
103 Chen CM, 2009, ] INFORMETR, V3, P191 2
104 Bettencourt LMA, 2009, J INFORMETR, V3, P210 4
105 Frenken K, 2009, ] INFORMETR, V3, P222 2
106 Skupin A, 2009, J INFORMETR, V3, P233 2
107 Lucio-Arias D, 2009, J INFORMETR, V3, P261 6
108 Zhao YY, 2009, SCIENTOMETRICS, V80, P91 0
109 Elmacioglu E, 2009, SCIENTOMETRICS, V80, P195 0
110 Zhu SF, 2009, INFORM PROCESS MANAGE, V45, P555 1
111 Deineko VG, 2009, SCIENTOMETRICS, V80, P819 0
112 Egghe L, 2009, J INFORMETR, V3, P290 2
113 Wallace ML, 2009, J INFORMETR, V3, P296 2
114 Yu LP, 2009, ] INFORMETR, V3, P304 0
115 Kwakkel JH, 2009, J AM SOC INF SCI TECHNOL, V60, P2064 0
116 He ZL, 2009, J AM SOC INF SCI TECHNOL, V60, P2151 0
117 Tseng YH, 2009, SCIENTOMETRICS, V81, P73 1
118 Egghe L, 2009, ] AM SOC INF SCI TECHNOL, V60, P2362 1
119 Bornmann L, 2009, SCIENTOMETRICS, V81, P407 1
120 Ye FY, 2009, SCIENTOMETRICS, V81, P493 0
121 Egghe L, 2009, SCIENTOMETRICS, V81, P567 0
122 Lucio-Arias D, 2009, J] AM SOC INF SCI TECHNOL, V60, P2488 0
123 Luk R, 2009, ] AM SOC INF SCI TECHNOL, V60, P2587 0
124 Guan JC, 2009, SCIENTOMETRICS, V81, P683 0
125 Kiss 1Z, 2010, J INFORMETR, V4, P74 0
126 Bornmann L, 2010, J INFORMETR, V4, P83 1
127 Guan JC, 2010, SCIENTOMETRICS, V82, P165 0
128 Egghe L, 2010, SCIENTOMETRICS, V82, P243 0
129 Yu G, 2010, SCIENTOMETRICS, V82, P249 0
130 Xu ZB, 2010, INFORM PROCESS MANAGE, V46, P143 0
131 Pepe A, 2010, J AM SOC INF SCI TECHNOL, V61, P567 0
132 Liang LM, 2010, J INFORMETR, V4, P201 0
133 Minguillo D, 2010, J AM SOC INF SCI TECHNOL, V61, P772 0
134 Zhang HZ, 2010, J] AM SOC INF SCI TECHNOL, V61, P964 0
135 Egghe L, 2010, SCIENTOMETRICS, V83, P455 0
136 Wray KB, 2010, SCIENTOMETRICS, V83, P471 0
137 Schiebel E, 2010, SCIENTOMETRICS, V83, P765 0
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Appendix 2: Cognitive Historiography of Papers Using

Mathematical Approaches to Understand the Science System

(Fig. 2.2)

Table 2.7 Statistics of the search: Present to past

Node Bibliographic metadata

Times cited

1 Lotka AJ, 1926, ] WASHINGTON ACADEMY, V16, P317

2 PRICE DID, 1965, SCIENCE, V149, P510

3 PRICE DID, 1976, ] AMER SOC INFORM SCI, V27, P292

4 Barabdasi AL, 1999, SCIENCE, V286, P509

5 Albert R, 2002, REV MOD PHYS, V74, P47

6 Torvik VI, 2005, J AM SOC INF SCI TECHNOL, V56, P140

7 Xekalaki E, 2005, SCIENTOMETRICS, V62, P293

8 Santos JB, 2005, SCIENTOMETRICS, V62, P329

9 Simkin MV, 2005, SCIENTOMETRICS, V62, P367

10 Bailon-Moreno R, 2005, SCIENTOMETRICS, V63, P231

11 Egghe L, 2005, ] AM SOC INF SCI TECHNOL, V56, P664

12 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P669

13 Sombatsompop N, 2005, J AM SOC INF SCI TECHNOL, V56, P676
14 Matia K, 2005, J AM SOC INF SCI TECHNOL, V56, P§93

15 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P935

16 Efron M, 2005, ] AM SOC INF SCI TECHNOL, V56, P969

17 Liang LM, 2005, J AM SOC INF SCI TECHNOL, V56, P1045
18 Burrell QL, 2005, SCIENTOMETRICS, V64, P247

19 Morris SA, 2005, J AM SOC INF SCI TECHNOL, V56, P1250
20 Hirsch JE, 2005, PROC NAT ACAD SCI USA, V102, P16569
21 Burrell QL, 2005, INFORM PROCESS MANAGE, V41, P1317
22 Egghe L, 2005, INFORM PROCESS MANAGE, V41, P1330
23 Shan S, 2005, INFORM PROCESS MANAGE, V41, P1369

24 Lafouge T, 2005, INFORM PROCESS MANAGE, V41, P1387
25 Payne N, 2005, INFORM PROCESS MANAGE, V41, P1495
26 Coccia M, 2005, SCIENTOMETRICS, V65, P307

27 Burrell QL, 2005, SCIENTOMETRICS, V65, P381

28 Bornmann L, 2005, SCIENTOMETRICS, V65, P391

29 Dominich S, 2006, INFORM PROCESS MANAGE, V42, P1
30 Zuccala A, 2006, ] AM SOC INF SCI TECHNOL, V57, P152
31 Aksnes DW, 2006, ] AM SOC INF SCI TECHNOL, V57, P169
32 Klavans R, 2006, ] AM SOC INF SCI TECHNOL, V57, P251
33 Ackermann E, 2006, SCIENTOMETRICS, V66, P451

34 Martens BVD, 2006, ] AM SOC INF SCI TECHNOL, V57, P330
35 Chen CM, 2006, ] AM SOC INF SCI TECHNOL, V57, P359
36 van Raan AFJ, 2006, J] AM SOC INF SCI TECHNOL, V57, P408
37 Choi J, 2006, INFORM PROCESS MANAGE, V42, P331

38 Wei CP, 2006, INFORM PROCESS MANAGE, V42, P350

39 Izsak J, 2006, SCIENTOMETRICS, V67, P107

40 Yoo SH, 2006, SCIENTOMETRICS, V69, P57

317
664
332
4818
4030
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Node  Bibliographic metadata Times cited
41 Egghe L, 2006, SCIENTOMETRICS, V69, P121 67
42 Glanzel W, 2006, SCIENTOMETRICS, V67, P315 73
43 Burrell QL, 2006, SCIENTOMETRICS, V67, P323 0
44 Rousseau R, 2006, J AM SOC INF SCI TECHNOL, V57, P1404 2
45 Burrell QL, 2006, J AM SOC INF SCI TECHNOL, V57, P1406 4
46 Samoylenko I, 2006, J AM SOC INF SCI TECHNOL, V57, P1461 7
47 Peng D, 2006, SCIENTOMETRICS, V69, P271 0
48 Roth C, 2006, SCIENTOMETRICS, V69, P429 5
49 Mingers J, 2006, INFORM PROCESS MANAGE, V42, P1451 6
50 Zitt M, 2006, INFORM PROCESS MANAGE, V42, P1513 17
51 Su 'Y, 2006, J AM SOC INF SCI TECHNOL, V57, P1977 0
52 Van Den Besselaar P, 2006, SCIENTOMETRICS, V68, P377 10
53 Borner K, 2006, SCIENTOMETRICS, V68, P415 8
54 Klavans R, 2006, SCIENTOMETRICS, V68, P475 15
55 Small H, 2006, SCIENTOMETRICS, V68, P595 23
56 Contreras C, 2006, SCIENTOMETRICS, V69, P689 3
57 Kretschmer H, 2007, ] INFORMETR, V1, P308 1
58 Jarneving B, 2007, J INFORMETR, V1, P338 0
59 Burrell QL, 2007, J INFORMETR, V1, P16 22
60 Leydesdorff L, 2007, J AM SOC INF SCI TECHNOL, V58, P25 14
61 McDonald JD, 2007, J AM SOC INF SCI TECHNOL, V58, P39 4
62 Koike A, 2007, J AM SOC INF SCI TECHNOL, V58, P51 2
63 Egghe L, 2007, ] AM SOC INF SCI TECHNOL, V58, P452 29
64 Na SH, 2007, INFORM PROCESS MANAGE, V43, P302 1
65 Lucio-Arias D, 2007, SCIENTOMETRICS, V70, P603 3
66 Egghe L, 2007, J INFORMETR, V1, P115 5
67 Shibata N, 2007, J AM SOC INF SCI TECHNOL, V58, P872 2
68 Zitt M, 2007, INFORM PROCESS MANAGE, V43, P834 0
69 Zhao DZ, 2007, J AM SOC INF SCI TECHNOL, V58, P1285 2
70 Rousseau R, 2007, J AM SOC INF SCI TECHNOL, V58, P1551 3
71 Nadarajah S, 2007, SCIENTOMETRICS, V72, P291 1
72 Simkin MV, 2007, J AM SOC INF SCI TECHNOL, V58, P1661 6
73 Morris SA, 2007, ] AM SOC INF SCI TECHNOL, V58, P1764 4
74 Bornmann L, 2007, SCIENTOMETRICS, V73, P139 1
75 de Moya-Anegon F, 2007, J AM SOC INF SCI TECHNOL, V58, P2167 9
76 Lariviere V, 2008, J AM SOC INF SCI TECHNOL, V59, P288 12
77 van Raan AFJ, 2008, J] AM SOC INF SCI TECHNOL, V59, P565 7
78 Bornmann L, 2008, ] AM SOC INF SCI TECHNOL, V59, P830 38
79 Chavalarias D, 2008, SCIENTOMETRICS, V75, P37 3
80 Li XY, 2008, INFORM PROCESS MANAGE, V44, P991 0
81 ‘Wan XJ, 2008, INFORM PROCESS MANAGE, V44, P1032 3
82 Molinari A, 2008, SCIENTOMETRICS, V75, P339 7
83 Bettencourt LMA, 2008, SCIENTOMETRICS, V75, P495 7
84 Kim H, 2008, SCIENTOMETRICS, V75, P535 2
85 Harmon G, 2008, INFORM PROCESS MANAGE, V44, P1634 0
86 Bornmann L, 2008, ] INFORMETR, V2, P217 2

(continued)
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Node Bibliographic metadata Times cited
87 Yu HR, 2008, ] INFORMETR, V2, P240 0
88 Egghe L, 2008, SCIENTOMETRICS, V76, P117 4
89 Egghe L, 2008, ] AM SOC INF SCI TECHNOL, V59, P1608 13
90 van Raan AFJ, 2008, J AM SOC INF SCI TECHNOL, V59, P1631 3
91 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P1688 2
92 Ahlgren P, 2008, SCIENTOMETRICS, V76, P273 3
93 Burrell QL, 2008, INFORM PROCESS MANAGE, V44, P1794 1
94 Bornmann L, 2008, J INFORMETR, V2, P280 0
95 Ye FY, 2008, J INFORMETR, V2, P288 2
96 Quirin A, 2008, J AM SOC INF SCI TECHNOL, V59, P1912 2
97 Lucio-Arias D, 2008, ] AM SOC INF SCI TECHNOL, V59, P1948 3
98 Levitt JM, 2008, J AM SOC INF SCI TECHNOL, V59, P1973 3
99 Cecchini RL, 2008, INFORM PROCESS MANAGE, V44, P1863 1
100 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P2133 0
101 Davis PM, 2008, J AM SOC INF SCI TECHNOL, V59, P2186 6
102 Egghe L, 2008, SCIENTOMETRICS, V77, P377 3
103 Szydlowski M, 2009, SCIENTOMETRICS, V78, P99 0
104 Wallace ML, 2009, ] AM SOC INF SCI TECHNOL, V60, P240 1
105 Jensen P, 2009, SCIENTOMETRICS, V78, P467 0
106 Costas R, 2009, J] AM SOC INF SCI TECHNOL, V60, P740 3
107 Perez JM, 2009, INFORM PROCESS MANAGE, V45, P356 0
108 Sandstrom U, 2009, SCIENTOMETRICS, V79, P341 1
109 Borner K, 2009, ] INFORMETR, V3, P161 0
110 Chen CM, 2009, ] INFORMETR, V3, P191 2
111 Bettencourt LMA, 2009, ] INFORMETR, V3, P210 4
112 Frenken K, 2009, ] INFORMETR, V3, P222 2
113 Skupin A, 2009, J INFORMETR, V3, P233 2
114 Lucio-Arias D, 2009, ] INFORMETR, V3, P261 6
115 Zhao YY, 2009, SCIENTOMETRICS, V80, P91 0
116 Elmacioglu E, 2009, SCIENTOMETRICS, V80, P195 0
117 Zhu SF, 2009, INFORM PROCESS MANAGE, V45, P555 1
118 Deineko VG, 2009, SCIENTOMETRICS, V80, P819 0
119 Egghe L, 2009, J] INFORMETR, V3, P290 2
120 Wallace ML, 2009, J INFORMETR, V3, P296 2
121 Yu LP, 2009, J] INFORMETR, V3, P304 0
122 Kwakkel JH, 2009, J AM SOC INF SCI TECHNOL, V60, P2064 0
123 He ZL, 2009, J AM SOC INF SCI TECHNOL, V60, P2151 0
124 Tseng YH, 2009, SCIENTOMETRICS, V81, P73 1
125 Egghe L, 2009, ] AM SOC INF SCI TECHNOL, V60, P2362 1
126 Bornmann L, 2009, SCIENTOMETRICS, V81, P407 1
127 Ye FY, 2009, SCIENTOMETRICS, V81, P493 0
128 Egghe L, 2009, SCIENTOMETRICS, V81, P567 0
129 Lucio-Arias D, 2009, ] AM SOC INF SCI TECHNOL, V60, P2488 0
130 Luk R, 2009, J AM SOC INF SCI TECHNOL, V60, P2587 0
131 Guan JC, 2009, SCIENTOMETRICS, V81, P683 0
132 Kiss 1Z, 2010, J INFORMETR, V4, P74 0

(continued)
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Node Bibliographic metadata Times cited
133 Bornmann L, 2010, J INFORMETR, V4, P83 1
134 Guan JC, 2010, SCIENTOMETRICS, V82, P165 0
135 Egghe L, 2010, SCIENTOMETRICS, V82, P243 0
136 Yu G, 2010, SCIENTOMETRICS, V82, P249 0
137 Xu ZB, 2010, INFORM PROCESS MANAGE, V46, P143 0
138 Pepe A, 2010, J AM SOC INF SCI TECHNOL, V61, P567 0
139 Liang LM, 2010, J INFORMETR, V4, P201 0
140 Minguillo D, 2010, J AM SOC INF SCI TECHNOL, V61, P772 0
141 Zhang HZ, 2010, J AM SOC INF SCI TECHNOL, V61, P964 0
142 Egghe L, 2010, SCIENTOMETRICS, V83, P455 0
143 Wray KB, 2010, SCIENTOMETRICS, V83, P471 0
144 Schiebel E, 2010, SCIENTOMETRICS, V83, P765 0

Appendix 3: Papers from Threads in Figs. 2.3-2.6

Table 2.8 Documents in Fig. 2.3

Node  Author Year Journal Title
4 Simkin, MV 2005 SCIENTOMETRICS Stochastic modeling of citation
slips
10 Egghe, L 2005 JASIST Zipfian and Lotkaian continuous
concentration theory
12 Liang, LM 2005 JASIST R-sequences: Relative indicators
for the rhythm of science
15 Burrell, QL 2005 INFORMATION Symmetry and other
PROCESSING & transformation features of
MANAGEMENT Lorenz/Leimkuhler
representations of informetric
data
21 Burrell, QL 2005 SCIENTOMETRICS Are “sleeping beauties” to be
expected?
29 van Raan, AFJ 2006 JASIST Statistical properties of
Bibliometric indicators:
Research group indicator
distributions and correlations
38 Burrell, QL 2006 JASIST On Egghe’s version of continuous
concentration theory
42 Mingers, J 2006 INFORMATION Modeling citation behavior in
PROCESSING & Management Science journals
MANAGEMENT

(continued)
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Node  Author Year Journal Title

63 Rousseau, R 2007 JASIST On Egghe’s construction of
Lorenz curves

64 Nadarajah, S 2007 SCIENTOMETRICS Models for citation behavior

65 Simkin, MV 2007 JASIST A mathematical theory of citing

69 Lariviere, V 2008 JASIST Long-term variations in the aging
of scientific literature: From
exponential growth to
steady-state science
(1900-2004)

70 van Raan, AFJ 2008 JASIST Self-citation as an
impact-reinforcing mechanism
in the science system

83 van Raan, AFJ 2008 JASIST Scaling rules in the science

system: Influence of
field-specific citation
characteristics on the impact
of research groups

Table 2.9 Documents in Fig. 2.4

Node Author Year Journal

Title

25 Klavans, R 2006 JASIST

28 Chen, CM 2006 JASIST

45 Van Den 2006 SCIENTOMETRICS
Besselaar, P

46 Borner, K 2006 SCIENTOMETRICS
47 Klavans, R 2006 SCIENTOMETRICS
48 Small, H 2006 SCIENTOMETRICS
58 Lucio-Arias, D 2007 SCIENTOMETRICS

Identifying a better measure
of relatedness for
mapping science

CiteSpace II: Detecting and
visualizing emerging
trends and transient
patterns in scientific
literature

Mapping research topics
using word-reference
co-occurrences: A
method and an
exploratory case study

Mapping the diffusion of
scholarly knowledge
among major US
research institutions

Quantitative evaluation of
large maps of science

Tracking and predicting
growth areas in science

Knowledge emergence in
scientific
communication: from
“fullerenes” to
“nanotubes”

(continued)
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Node  Author Year Journal Title
60 Shibata, N 2007 JASIST Topological analysis of citation
networks to discover the
future core articles
67 Bornmann, L 2007 SCIENTOMETRICS Row-column (RC) association
model applied to grant peer
review
72 Chavalarias, D 2008 SCIENTOMETRICS Bottom-up scientific field
detection for dynamical and
hierarchical science mapping,
methodology and case study
76 Bettencourt, LMA 2008 SCIENTOMETRICS Population modeling of the
emergence and development
of scientific fields
79 Bornmann, L 2008 JOURNAL OF Latent Markov modeling applied
INFORMETRICS to grant peer review
90 Lucio-Arias, D 2008 JASIST Main-path analysis and
path-dependent transitions in
HistCite (TM)-based
historiograms
102 Borner, K 2009 JOURNAL OF Visual conceptualizations and
INFORMETRICS models of science
103 Chen, CM 2009 JOURNAL OF Towards an explanatory and
INFORMETRICS computational theory of
scientific discovery
104 Bettencourt, LMA 2009 JOURNAL OF Scientific discovery and
INFORMETRICS topological transitions in
collaboration networks
105 Frenken, K 2009 JOURNAL OF Spatial scientometrics: Towards a
INFORMETRICS cumulative research program
106 Skupin, A 2009 JOURNAL OF Discrete and continuous
INFORMETRICS conceptualizations of science:
Implications for knowledge
domain visualization
107 Lucio-Arias, D 2009 JOURNAL OF The dynamics of exchanges and
INFORMETRICS references among scientific
texts, and the autopoiesis of
discursive knowledge
Table 2.10 Documents in Fig. 2.5
Node  Author Year Journal Title
2 Xekalaki, E 2005 SCIENTOMETRICS Comments on the paper of Shan
et al.: The multivariate
Waring distribution
7 Egghe, L 2005 JASIST The power of power laws and an

interpretation of Lotkaian
informetric systems as
self-similar fractals

(continued)
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Node Author Year Journal Title
13 Burrell, QL 2005 SCIENTOMETRICS The use of the generalized
Waring process in modelling
informetric data
34 Egghe, L 2006 SCIENTOMETRICS An informetric model for the
Hirsch-index
35 Glanzel, W 2006 SCIENTOMETRICS On the h-index — A mathematical
approach to a new measure of
publication activity and
citation impact
43 Zitt, M 2006 INFORMATION Delineating complex scientific
PROCESSING & fields by an hybrid
MANAGEMENT lexical-citation method: An
application to nanosciences
52 Burrell, QL 2007 JOURNAL OF Hirsch’s h-index: A stochastic
INFORMETRICS model
56 Egghe, L 2007 JASIST Dynamic h-index: The Hirsch
index in function of time
81 Egghe, L 2008 JASIST A Model for the Size-Frequency
Function of Coauthor Pairs
95 Egghe, L 2008 SCIENTOMETRICS The mathematical relation
between the impact factor
and the uncitedness factor
Table 2.11 Documents in Fig. 2.3
Node  Author Year  Journal Title
14 Morris, SA 2005  JASIST Manifestation of emerging
specialties in journal literature:
A growth model of papers,
references, exemplars,
bibliographic coupling,
cocitation, and clustering
coefficient distribution
39 Samoylenko, I ~ 2006  JASIST Visualizing the scientific world and
its evolution
50 Kretschmer, H 2007 JOURNAL OF Lotka’s distribution and distribution
INFORMETRICS of co-author pairs’ frequencies
53 Leydesdorff, L 2007  JASIST Visualization of the citation impact
environments of scientific
journals: An online mapping
exercise
66 Morris, SA 2007  JASIST Manifestation of research teams in
journal literature: A growth
model of papers, coauthorship,
weak ties, authors,
collaboration, and Lotka’s law
68 de Moya- 2007  JASIST Visualizing the marrow of science

Anegon, F
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