
10 DOLFIN: a C++/Python finite element library
By Anders Logg, Garth N. Wells and Johan Hake

DOLFIN is a C++/Python library that functions as the main user interface of FEniCS. In this
chapter, we review the functionality of DOLFIN. We also discuss the implementation of some key
features of DOLFIN in detail. For a general discussion on the design and implementation of DOLFIN,
we refer to Logg and Wells (2010).

10.1 Overview

A large part of the functionality of FEniCS is implemented as part of DOLFIN. It provides a problem
solving environment for models based on partial differential equations and implements core parts
of the functionality of FEniCS, including data structures and algorithms for computational meshes
and finite element assembly. To provide a simple and consistent user interface, DOLFIN wraps the
functionality of other FEniCS components and external software, and handles the communication
between these components.

Figure 10.1 presents an overview of the relationships between the components of FEniCS and
external software. The software map presented in the figure shows a user application implemented
on top of the DOLFIN user interface, either in C++ or in Python. User applications may also be devel-
oped using FEniCS Apps, a collection of solvers implemented on top of FEniCS/DOLFIN. DOLFIN
itself functions as both a user interface and a core component of FEniCS. All communication between
a user program, other core components of FEniCS and external software is routed through wrapper
layers that are implemented as part of the DOLFIN user interface. In particular, variational forms ex-
pressed in the UFL form language (Chapter 17) are passed to the form compiler FFC (Chapter 11) or
SFC (Chapter 15) to generate UFC code (Chapter 16), which can then be used by DOLFIN to assemble
linear systems. In the case of FFC, this code generation depends on the finite element backend FIAT
(Chapter 13), the just-in-time compilation utility Instant (Chapter 14) and the optional optimizing
backend FErari (Chapter 12). Finally, the plotting capabilities provided by DOLFIN are implemented
by Viper. Some of this communication is exposed to users of the DOLFIN C++ interface, which
requires a user to explicitly generate UFC code from a UFL form file by calling a form compiler on
the command-line.

DOLFIN also relies on external software for important functionality such as the linear algebra
libraries PETSc, Trilinos, uBLAS and MTL4, and the mesh partitioning libraries ParMETIS and
SCOTCH (Pellegrini).

A. Logg et al., Automated Solution of Differential Equations by the Finite Element Method, Lecture Notes
in Computational Science and Engineering 84, DOI 10.1007/978-3-642-23099-8__10,
© Springer-Verlag Berlin Heidelberg 2012

173

174 Chapter 10. DOLFIN: a C++/Python finite element library

DOLFIN

FIAT FErariInstant

FEniCS Apps

UFC

ViperSyFi

PETScPETScPETScPETSc uBLASuBLASuBLASuBLAS UMFPACKUMFPACKUMFPACKUMFPACK SCOTCHSCOTCHSCOTCHSCOTCHNumPyNumPyNumPyNumPy VTKVTKVTKVTK

UFL

ApplicationApplicationApplicationApplication

Applications

Interfaces

Core components

External libraries

TrilinosTrilinosTrilinosTrilinos GMPGMPGMPGMP ParMETISParMETISParMETISParMETIS CGALCGALCGALCGAL MPIMPIMPIMPI SLEPcSLEPcSLEPcSLEPc

FFC

Figure 10.1: DOLFIN functions
as the main user interface of
FEniCS and handles the
communication between the
various components of FEniCS
and external software. Solid
lines indicate dependencies and
dashed lines indicate data flow.

10.2 User interfaces

DOLFIN provides two user interfaces. One interface is implemented as a traditional C++ library, and
another interface is implemented as a standard Python module. The two interfaces are near-identical,
but in some cases particular language features of either C++ or Python require variations in the
interfaces. In particular, the Python interface adds an additional level of automation by employing
run-time (just-in-time) code generation. Below, we comment on the design and implementation of
the two user interfaces of DOLFIN.

10.2.1 C++ interface

The DOLFIN C++ interface is designed as a standard object-oriented C++ library. It provides classes
such as Matrix, Vector, Mesh, FiniteElement, FunctionSpace and Function, which model important
concepts for finite element computing (see Figure 10.2). It also provides a small number of free
functions (a function that is not a member function of a class), most notably assemble and solve,
which can be used in conjunction with DOLFIN class objects to implement finite element solvers.
The interface is designed to be as simple as possible, and without compromising on generality. When
external software is wrapped, a simple and consistent user interface is provided to allow the rapid
development of solvers without needing to deal with differences in the interfaces of external libraries.
However, DOLFIN has been designed to interact flexibly with external software. In particular, in
cases where DOLFIN provides wrappers for external libraries, such as the Matrix and Vector classes
which wrap data structures from linear algebra libraries like PETSc and Trilinos, advanced users
may, if necessary, access the underlying data structures in order to use native functionality from the
wrapped external libraries.

Chapter 10. DOLFIN: a C++/Python finite element library 175

Figure 10.2: Schematic
overview of some of the most
important components and
classes of DOLFIN. Arrows
indicate dependencies.

To solve partial differential equations using the DOLFIN C++ interface, users must express finite
element variational problems in the UFL form language. This is accomplished by entering the forms
into separate .ufl files and compiling those files using a form compiler to generate UFC-compliant
C++ code. The generated code may then be included in a DOLFIN C++ program. We return to this
issue in Section 10.3.

To use DOLFIN from C++, users need to include one or more header files from the DOLFIN C++
library. In the simplest case, one includes the header file dolfin.h, which in turn includes all other
DOLFIN header files:

C++ code
#include <dolfin.h>

using namespace dolfin;

int main()

{

return 0;

}

10.2.2 Python interface

Over the last decade, Python has emerged as an attractive choice for the rapid development of sim-
ulation codes for scientific computing. Python brings the benefits of a high-level scripting language,
the strength of an object-oriented language and a wealth of libraries for numerical computation.

The bulk of the DOLFIN Python interface is automatically generated from the C++ interface
using SWIG (Beazley, 1996; SWIG). Since the functionality of both the C++ and Python interfaces
are implemented as part of the DOLFIN C++ library, DOLFIN is equally efficient via the C++ and
Python interfaces for most operations.

The DOLFIN Python interface offers some functionality that is not available from the C++ inter-
face. In particular, the UFL form language is seamlessly integrated into the Python interface and code
generation is automatically handled at run-time. To use DOLFIN from Python, users need to import

176 Chapter 10. DOLFIN: a C++/Python finite element library

functionality from the DOLFIN Python module. In the simplest case, one includes all functionality
from the Python module named dolfin:

Python code
from dolfin import *

10.3 Functionality

DOLFIN is organized as a collection of libraries (modules), with each covering a certain area of
functionality. We review here these areas and explain the purpose and usage of the most commonly
used classes and functions. The review is bottom-up; that is, we start by describing the core low-level
functionality of DOLFIN (linear algebra and meshes) and then move upwards to describe higher level
functionality. For further details, we refer to the DOLFIN Programmer’s Reference on the FEniCS
Project web page and to Logg and Wells (2010).

10.3.1 Linear algebra

DOLFIN provides a range of linear algebra objects and functionality, including vectors, dense and
sparse matrices, direct and iterative linear solvers and eigenvalues solvers, and does so via a simple
and consistent interface. For the bulk of underlying functionality, DOLFIN relies on third-party
libraries such as PETSc and Trilinos. DOLFIN defines the abstract base classes GenericTensor,
GenericMatrix and GenericVector, and these are used extensively throughout the library. Imple-
mentations of these generic interfaces for a number of backends are provided in DOLFIN, thereby
achieving a common interface for different backends. Users can also wrap other linear algebra back-
ends by implementing the generic interfaces.

Matrices and vectors. The simplest way to create matrices and vectors is via the classes Matrix and
Vector. In general, Matrix and Vector represent distributed linear algebra objects that may be stored
across (MPI) processes when running in parallel. Consistent with the most common usage in a finite
element library, a Vector uses dense storage and a Matrix uses sparse storage. A Vector can be
created as follows:

C++ code
Vector x;

Python code
x = Vector()

and a matrix can be created by:

C++ code
Matrix A;

Python code
A = Matrix()

In most applications, a user may need to create a matrix or a vector, but most operations on the
linear algebra objects, including resizing, will take place inside the library and a user will not have
to operate on the objects directly.

Chapter 10. DOLFIN: a C++/Python finite element library 177

The following code illustrates how to create a vector of size 100:

C++ code
Vector x(100);

Python code
x = Vector(100)

A number of backends support distributed linear algebra for parallel computation, in which case the
vector x will have global size 100, and DOLFIN will partition the vector across processes in (near)
equal-sized portions.

Creating a Matrix of a given size is more involved as the matrix is sparse and in general needs
to be initialized (data structures allocated) based on the structure of the sparse matrix (its sparsity
pattern). Initialization of sparse matrices is handled by DOLFIN when required.

While DOLFIN supports distributed linear algebra objects for parallel computation, it is rare that
a user is exposed to details at the level of parallel data layouts. The distribution of objects across
processes is handled automatically by the library.

Solving linear systems. The simplest approach to solving the linear system Ax = b is to use

C++ code
solve(A, x, b);

Python code
solve(A, x, b)

DOLFIN will use a default method to solve the system of equations. Optional arguments may be
given to specify which algorithm to use when solving the linear system and, in the case of an iterative
method, which preconditioner to use:

C++ code

solve(A, x, b, "lu");
solve(A, x, b, "gmres", "ilu");

Python code
solve(A, x, b, "lu");

solve(A, x, b, "gmres", "ilu")

Which methods and preconditioners that are available depends on which linear algebra backend
DOLFIN has been configured with. To list the available solver methods and preconditioners, the
following commands may be used:

C++ code
list_lu_solver_methods();

list_krylov_solver_methods();

list_krylov_solver_preconditioners();

Python code
list_lu_solver_methods()

list_krylov_solver_methods()

list_krylov_solver_preconditioners()

178 Chapter 10. DOLFIN: a C++/Python finite element library

Using the function solve is straightforward, but it offers little control over details of the solution
process. For many applications, it is desirable to exercise a degree of control over the solution process
and reuse solver objects throughout a simulation.

The linear system Ax = b can be solved using LU decomposition (a direct method) as follows:

C++ code

LUSolver solver(A);
solver.solve(x, b);

Python code

solver = LUSolver(A)
solver.solve(x, b)

Alternatively, the operator A associated with the linear solver can be set post-construction:

C++ code
LUSolver solver;

solver.set_operator(A);

solver.solve(x, b);

Python code
solver = LUSolver()

solver.set_operator(A)

solver.solve(x, b)

This can be useful when passing a linear solver via a function interface and setting the operator
inside a function.

In some cases, the system Ax = b may be solved a number of times for a given matrix A and
different vectors b, or for different A but with the same nonzero structure. If the nonzero structure
of A does not change, then some efficiency gains for repeated solves can be achieved by informing
the LU solver of this fact:

C++ code

solver.parameters["same_nonzero_pattern"] = true;

Python code
solver.parameters["same_nonzero_pattern"] = True

In the case that A does not change, the solution time for subsequent solves can be reduced dramati-
cally by re-using the LU factorization of A. Re-use of the factorization is controlled by the parameter
"reuse_factorization".

It is possible for some backends to prescribe the specific LU solver to be used. This depends on
the backend, which solvers that have been configured by DOLFIN and how third-party linear algebra
backends have been configured.

The system of equations Ax = b can be solved using a preconditioned Krylov solver by:

C++ code
KrylovSolver solver(A);

solver.solve(x, b);

Chapter 10. DOLFIN: a C++/Python finite element library 179

Python code
solver = KrylovSolver(A)

solver.solve(x, b)

The above will use a default preconditioner and solver, and default parameters. If a KrylovSolver is
constructed without a matrix operator A, the operator can be set post-construction:

C++ code

KrylovSolver solver;
solver.set_operator(A);

solver.solve(x, b);

Python code
solver = KrylovSolver()

solver.set_operator(A)

solver.solve(x, b)

In some cases, it may be useful to use a preconditioner matrix P that differs from A:

C++ code
KrylovSolver solver;

solver.set_operators(A, P);
solver.solve(x, b);

Python code
solver = KrylovSolver()

solver.set_operators(A, P)
solver.solve(x, b)

Various parameters for Krylov solvers can be set. Some common parameters are:

Python code
solver = KrylovSolver()

solver.parameters["relative_tolerance"] = 1.0e-6

solver.parameters["absolute_tolerance"] = 1.0e-15

solver.parameters["divergence_limit"] = 1.0e4
solver.parameters["maximum_iterations"] = 10000

solver.parameters["error_on_nonconvergence"] = True

solver.parameters["nonzero_initial_guess"] = False

The parameters may be set similarly from C++. Printing a summary of the convergence of a
KrylovSolver and printing details of the convergence history can be controlled via parameters:

C++ code

KrylovSolver solver;
solver.parameters["report"] = true;

solver.parameters["monitor_convergence"] = true;

Python code
solver = KrylovSolver()

solver.parameters["report"] = True

solver.parameters["monitor_convergence"] = True

The specific Krylov solver and preconditioner to be used can be set at construction of a solver object.
The simplest approach is to set the Krylov method and the preconditioner via string descriptions.
For example:

180 Chapter 10. DOLFIN: a C++/Python finite element library

C++ code
KrylovSolver solver("gmres", "ilu");

Python code
solver = KrylovSolver("gmres", "ilu")

The above specifies the Generalized Minimum Residual (GMRES) method as a solver, and incomplete
LU (ILU) preconditioning.

When backends such as PETSc and Trilinos are configured, a wide range of Krylov methods and
preconditioners can be applied, and a large number of solver and preconditioner parameters can be
set. In addition to what is described here, DOLFIN provides more advanced interfaces which permit
finer control of the solution process. It is also possible for users to provide their own preconditioners.

Solving eigenvalue problems. DOLFIN uses the library SLEPc, which builds on PETSc, to solve eigen-
value problems. The SLEPc interface works only with PETSc-based linear algebra objects. Therefore,
it is necessary to use PETSc-based objects, or to set the default linear algebra backend to PETSc and
downcast objects (as explained in the next section). The following code illustrates the solution of the
eigenvalue problem Ax = λx:

C++ code

// Create matrix
PETScMatrix A;

// Code omitted for setting the entries of A

// Create eigensolver
SLEPcEigenSolver eigensolver(A);

// Compute all eigenvalues of A

eigensolver.solve();

// Get first eigenpair

double lambda_real, lambda_complex;

PETScVector x_real, x_complex;

eigensolver.get_eigenpair(lambda_real, lambda_complex, x_real, x_complex, 0);

Python code
Create matrix

A = PETScMatrix()

Code omitted for setting the entries of A

Create eigensolver

eigensolver = SLEPcEigenSolver(A)

Compute all eigenvalues of A
eigensolver.solve()

Get first eigenpair

lambda_r, lambda_c, x_real, x_complex = eigensolver.get_eigenpair(0)

The real and complex components of the eigenvalue are returned in lambda_real and lambda_complex,
respectively, and the real and complex components of the eigenvector are returned in x_real and
x_complex, respectively.

Chapter 10. DOLFIN: a C++/Python finite element library 181

To create a solver for the generalized eigenvalue problem Ax = λMx, the eigensolver can be
constructed using A and M:

C++ code
PETScMatrix A;

PETScMatrix M;

// Code omitted for setting the entries of A and M

SLEPcEigenSolver eigensolver(A, M);

Python code
A = PETScMatrix()
M = PETScMatrix()

Code omitted for setting the entries of A and M

eigensolver = SLEPcEigenSolver(A, M)

There are many options that a user can set via the parameter system to control the eigenvalue problem
solution process. To print a list of available parameters, call info(eigensolver.parameters, true)

and info(eigensolver.parameters, True) from C++ and Python, respectively.

Selecting a linear algebra backend. The Matrix, Vector, LUSolver and KrylovSolver objects are all
based on a specific linear algebra backend. The default backend depends on which backends are en-
abled when DOLFIN is configured. The backend can be set via the global parameter
"linear_algebra_backend". To use PETSc as the linear algebra backend:

C++ code
parameters["linear_algebra_backend"] = "PETSc";

Python code

parameters["linear_algebra_backend"] = "PETSc"

This parameter should be set before creating linear algebra objects. To use Epetra from the Trilinos
collection, the parameter "linear_algebra_backend" should be set to "Epetra". For uBLAS, the
parameter should be set to "uBLAS" and for MTL4, the parameter should be set to "MTL4".

Users can explicitly create linear algebra objects that use a particular backend. Generally, such
objects are prefixed with the name of the backend. For example, a PETSc-based vector and LU solver
are created by:

C++ code
PETScVector x;

PETScLUSolver solver;

Python code
x = PETScVector()

solver = PETScLUSolver()

182 Chapter 10. DOLFIN: a C++/Python finite element library

Solving nonlinear systems. DOLFIN provides a Newton solver in the form of the class NewtonSolver

for solving nonlinear systems of equations of the form

F(x) = 0, (10.1)

where x ∈ Rn and F : Rn → Rn. To solve such a problem using the DOLFIN Newton solver, a
user needs to provide a subclass of NonlinearProblem. The purpose of a NonlinearProblem object is
to evaluate F and the Jacobian of F, which will be denoted by J : Rn → Rn × Rn. An outline of a
user-provided MyNonlinearProblem class for solving a nonlinear differential equation is shown below.

C++ code
class MyNonlinearProblem : public NonlinearProblem

{

public:

// Constructor

MyNonlinearProblem(const Form& L, const Form& a,

const BoundaryCondition& bc) : L(L), a(a), bc(bc) {}

// User-defined residual vector F
void F(GenericVector& b, const GenericVector& x)

{

assemble(b, L);

bc.apply(b, x);

}

// User-defined Jacobian matrix J

void J(GenericMatrix& A, const GenericVector& x)

{

assemble(A, a);
bc.apply(A);

}

private:

const Form& L;
const Form& a;

const BoundaryCondition& bc;

};

A MyNonlinearProblem object is constructed using a linear form L, that when assembled corre-
sponds to F, and a bilinear form a, that when assembled corresponds to J. The classes Form

and BoundaryCondition used in the example are discussed in more detail later. The same MyNon-

linearProblem class can be defined in Python:

Python code

class MyNonlinearProblem(NonlinearProblem):
def __init__(self, L, a, bc):

NonlinearProblem.__init__(self)

self.L = L

self.a = a

self.bc = bc
def F(self, b, x):

assemble(self.L, tensor=b)

self.bc.apply(b, x)

def J(self, A, x):

assemble(self.a, tensor=A)
self.bc.apply(A)

Chapter 10. DOLFIN: a C++/Python finite element library 183

Once a nonlinear problem class has been defined, a NewtonSolver object can be created and the
Newton solver can be used to compute the solution vector x to the nonlinear problem:

C++ code
MyNonlinearProblem problem(L, a, bc);

NewtonSolver newton_solver;

newton_solver.solve(problem, u.vector());

Python code
problem = MyNonlinearProblem(L, a, bc)

newton_solver = NewtonSolver()

newton_solver.solve(problem, u.vector())

A number of parameters can be set for a NewtonSolver. Some parameters that determine the behavior
of the Newton solver are:

Python code
newton_solver = NewtonSolver()

newton_solver.parameters["maximum_iterations"] = 20
newton_solver.parameters["relative_tolerance"] = 1.0e-6

newton_solver.parameters["absolute_tolerance"] = 1.0e-10

newton_solver.parameters["error_on_nonconvergence"] = False

The parameters may be set similarly from C++. When testing for convergence, usually a norm of the
residual F is checked. Sometimes it is useful instead to check a norm of the iterative correction dx.
This is controlled by the parameter "convergence_criterion", which can be set to "residual", for
checking the size of the residual F, or "incremental", for checking the size of the increment dx.

For more advanced usage, a NewtonSolver can be constructed with arguments that specify the
linear solver and preconditioner to be used in the solution process.

10.3.2 Meshes

A central part of DOLFIN is its mesh library and the Mesh class. The mesh library provides data
structures and algorithms for computational meshes, including the computation of mesh connectivity
(incidence relations), mesh refinement, mesh partitioning and mesh intersection.

The mesh library is implemented in C++ and has been optimized to minimize storage require-
ments and to enable efficient access to mesh data. In particular, a DOLFIN mesh is stored in a small
number of contiguous arrays, on top of which a light-weight object-oriented layer provides a view to
the underlying data. For a detailed discussion on the design and implementation of the mesh library,
we refer to Logg (2009).

Creating a mesh. DOLFIN provides functionality for creating simple meshes, such as meshes of unit
squares and unit cubes, spheres, rectangles and boxes. The following code demonstrates how to
create a 16 × 16 triangular mesh of the unit square (consisting of 2 × 16 × 16 = 512 triangles) and a
16 × 16 × 16 tetrahedral mesh of the unit cube (consisting of 6 × 16 × 16 × 16 = 24, 576 tetrahedra).

C++ code
UnitSquare unit_square(16, 16);

UnitCube unit_cube(16, 16, 16);

184 Chapter 10. DOLFIN: a C++/Python finite element library

Python code
unit_square = UnitSquare(16, 16)

unit_cube = UnitCube(16, 16, 16)

Simplicial meshes (meshes consisting of intervals, triangles or tetrahedra) may be constructed ex-
plicitly by specifying the cells and vertices of the mesh. An interface for creating simplicial meshes is
provided by the class MeshEditor. The following code demonstrates how to create a mesh consisting
of two triangles covering the unit square:

C++ code
Mesh mesh;

MeshEditor editor;
editor.open(mesh, 2, 2);

editor.init_vertices(4);

editor.init_cells(2);

editor.add_vertex(0, 0.0, 0.0);

editor.add_vertex(1, 1.0, 0.0);
editor.add_vertex(2, 1.0, 1.0);

editor.add_vertex(3, 0.0, 1.0);

editor.add_cell(0, 0, 1, 2);

editor.add_cell(1, 0, 2, 3);

editor.close();

Python code
mesh = Mesh();

editor = MeshEditor();

editor.open(mesh, 2, 2)
editor.init_vertices(4)

editor.init_cells(2)

editor.add_vertex(0, 0.0, 0.0)

editor.add_vertex(1, 1.0, 0.0)

editor.add_vertex(2, 1.0, 1.0)
editor.add_vertex(3, 0.0, 1.0)

editor.add_cell(0, 0, 1, 2)

editor.add_cell(1, 0, 2, 3)

editor.close()

Reading a mesh from file. Although the built-in classes UnitSquare and UnitCube are useful for testing,
a typical application will need to read from file a mesh that has been generated by an external mesh
generator. To read a mesh from file, simply supply the filename to the constructor of the Mesh class:

C++ code
Mesh mesh("mesh.xml");

Python code
mesh = Mesh("mesh.xml")

Chapter 10. DOLFIN: a C++/Python finite element library 185

Meshes must be stored in the DOLFIN XML format. The following example illustrates the XML
format for a 2 × 2 mesh of the unit square:

XML code
<?xml version="1.0" encoding="UTF-8"?>

<dolfin xmlns:dolfin="http://fenicsproject.org">

<mesh celltype="triangle" dim="2">

<vertices size="9">
<vertex index="0" x="0" y="0"/>

<vertex index="1" x="0.5" y="0"/>

<vertex index="2" x="1" y="0"/>

<vertex index="3" x="0" y="0.5"/>

<vertex index="4" x="0.5" y="0.5"/>
<vertex index="5" x="1" y="0.5"/>

<vertex index="6" x="0" y="1"/>

<vertex index="7" x="0.5" y="1"/>

<vertex index="8" x="1" y="1"/>

</vertices>

<cells size="8">
<triangle index="0" v0="0" v1="1" v2="4"/>

<triangle index="1" v0="0" v1="3" v2="4"/>

<triangle index="2" v0="1" v1="2" v2="5"/>

<triangle index="3" v0="1" v1="4" v2="5"/>

<triangle index="4" v0="3" v1="4" v2="7"/>
<triangle index="5" v0="3" v1="6" v2="7"/>

<triangle index="6" v0="4" v1="5" v2="8"/>

<triangle index="7" v0="4" v1="7" v2="8"/>

</cells>

</mesh>

</dolfin>

Meshes stored in other data formats may be converted to the DOLFIN XML format using the com-
mand dolfin-convert, as explained in more detail below.

Mesh entities. Conceptually, a mesh (modeled by the class Mesh), consists of a collection of mesh
entities. A mesh entity is a pair (d, i), where d is the topological dimension of the mesh entity and i
is a unique index of the mesh entity. Mesh entities are numbered within each topological dimension
from 0 to nd − 1, where nd is the number of mesh entities of topological dimension d.

For convenience, mesh entities of topological dimension 0 are referred to as vertices, entities of
dimension 1 as edges, entities of dimension 2 as faces. Entities of codimension 1 are referred to as
facets and entities of codimension 0 as cells. These concepts are summarized in Figure 10.3 and
Table 10.1. We note that a triangular mesh consists of vertices, edges and cells, and that the edges
may alternatively be referred to as facets and the cells as faces. We further note that a tetrahedral
mesh consists of vertices, edges, faces and cells, and that the faces may alternatively be referred to
as facets. These concepts are implemented by the classes MeshEntity, Vertex, Edge, Face, Facet and
Cell. These classes do not store any data. Instead, they are light-weight objects that provide views of
the underlying mesh data. A MeshEntity may be created from a Mesh, a topological dimension and
an index. The following code demonstrates how to create various entities on a mesh:

C++ code

MeshEntity entity(mesh, 0, 33); // vertex number 33
Vertex vertex(mesh, 33); // vertex number 33

Cell cell(mesh, 25); // cell number 25

186 Chapter 10. DOLFIN: a C++/Python finite element library

Figure 10.3: Each entity of a
mesh is identified by a pair
(d, i) which specifies the
topological dimension d and a
unique index i for the entity
within the set of entities of
dimension d.

Entity Dimension Codimension
Vertex 0 D
Edge 1 D − 1
Face 2 D − 2

Facet D − 1 1
Cell D 0

Table 10.1: Mesh entities and their dimensions/codimensions. The codimension of an entity is D − d
where D is the maximal dimension and d is the dimension.

Python code
entity = MeshEntity(mesh, 0, 33) # vertex number 33

vertex = Vertex(mesh, 33) # vertex number 33

cell = Cell(mesh, 25) # cell number 25

Mesh topology and geometry. The topology of a mesh is stored separately from its geometry. The
topology of a mesh is a description of the relations between the various entities of the mesh, while
the geometry describes how those entities are embedded in Rd.

Users are rarely confronted with the MeshTopology and MeshGeometry classes directly since most
algorithms on meshes can be expressed in terms of mesh iterators. However, users may some-
times need to access the dimension of a Mesh, which involves accessing either the MeshTopology

or MeshGeometry, which are stored as part of the Mesh, as illustrated in the following code examples:

C++ code
uint gdim = mesh.topology().dim();

uint tdim = mesh.geometry().dim();

Python code
gdim = mesh.topology().dim()

tdim = mesh.geometry().dim()

It should be noted that the topological and geometric dimensions may differ. This is the case in par-
ticular for the boundary of a mesh, which is typically a mesh of topological dimension D embedded
in RD+1. That is, the geometry dimension is D + 1.

Chapter 10. DOLFIN: a C++/Python finite element library 187

0 1 2 3

0 – × – ×
1 × × – –
2 – – – –
3 × × – ×

Table 10.2: DOLFIN computes the connectivity d → d′ of a mesh for any pair d, d′ = 0, 1, . . . , D. The
table indicates which connectivity pairs (indicated by ×) have been computed in order to compute
the connectivity 1 → 1 (edge–edge connectivity) for a tetrahedral mesh.

Mesh connectivity. The topology of a Mesh is represented by the connectivity (incidence relations) of
the mesh, which is a complete description of which entities of the mesh are connected to which
entities. Such connectivity is stored in DOLFIN by the MeshConnectivity class. One such data
set is stored as part of the class MeshTopology for each pair of topological dimensions d → d′ for
d, d′ = 0, 1, . . . , D, where D is the topological dimension.

When a Mesh is created, a minimal MeshTopology is created. Only the connectivity from cells
(dimension D) to vertices (dimension 0) is stored (MeshConnectivity D → 0). When a certain con-
nectivity is requested, such as for example the connectivity 1 → 1 (connectivity from edges to edges),
DOLFIN automatically computes any other connectivities required for computing the requested con-
nectivity. This is illustrated in Table 10.2, where we indicate which connectivities are required to
compute the 1 → 1 connectivity. The following code demonstrates how to initialize various kinds of
mesh connectivity for a tetrahedral mesh (D = 3):

C++ code
mesh.init(2); // Compute faces

mesh.init(0, 0); // Compute vertex neighbors for each vertex

mesh.init(1, 1); // Compute edge neighbors for each edge

Python code
mesh.init(2) # Compute faces

mesh.init(0, 0) # Compute vertex neighbors for each vertex

mesh.init(1, 1) # Compute edge neighbors for each edge

Mesh iterators. Algorithms operating on a mesh can often be expressed in terms of iterators. The
mesh library provides the general iterator MeshEntityIterator for iteration over mesh entities, as
well as the specialized mesh iterators VertexIterator, EdgeIterator, FaceIterator, FacetIterator
and CellIterator.

The following code illustrates how to iterate over all incident (connected) vertices of all vertices
of all cells of a given mesh. Two vertices are considered as neighbors if they both belong to the same
cell. For simplex meshes, this is equivalent to an edge connecting the two vertices.

C++ code
for (CellIterator c(mesh); !c.end(); ++c)

for (VertexIterator v0(*c); !v0.end(); ++v0)

for (VertexIterator v1(*v0); !v1.end(); ++v1)

cout << *v1 << endl;

188 Chapter 10. DOLFIN: a C++/Python finite element library

Python code
for c in cells(mesh):

for v0 in vertices(c):

for v1 in vertices(v0):

print v1

This may alternatively be implemented using the general iterator MeshEntityIterator as follows:

C++ code

uint D = mesh.topology().dim();
for (MeshEntityIterator c(mesh, D); !c.end(); ++c)

for (MeshEntityIterator v0(*c, 0); !v0.end(); ++v0)

for (MeshEntityIterator v1(*v0, 0); !v1.end(); ++v1)

cout << *v1 << endl;

Python code
D = mesh.topology().dim()

for c in entities(mesh, D):

for v0 in entities(c, 0):
for v1 in entities(v0, 0):

print v1

Mesh functions. A useful class for storing data associated with a Mesh is the MeshFunction class.
This makes it simple to store, for example, material parameters, subdomain indicators, refinement
markers on the Cells of a Mesh or boundary markers on the Facets of a Mesh. A MeshFunction is
a discrete function that takes a value on each mesh entity of a given topological dimension d. The
number of values stored in a MeshFunction is equal to the number of entities nd of dimension d. A
MeshFunction is templated over the value type and may thus be used to store values of any type.
For convenience, named MeshFunctions are provided by the classes VertexFunction, EdgeFunction,
FaceFunction, FacetFunction and CellFunction. The following code illustrates how to create a
pair of MeshFunctions, one for storing subdomain indicators on Cells and one for storing boundary
markers on Facets:

C++ code
CellFunction<uint> sub_domains(mesh);

sub_domains.set_all(0);
for (CellIterator cell(mesh); !cell.end(); ++cell)

{

Point p = cell.midpoint();

if (p.x() > 0.5)

sub_domains[cell] = 1;
}

FacetFunction<uint> boundary_markers(mesh);

boundary_markers.set_all(0);

for (FacetIterator facet(mesh); !facet.end(); ++facet)
{

Point p = facet.midpoint();

if (near(p.y(), 0.0) || near(p.y(), 1.0))

boundary_markers[facet] = 1;

}

Chapter 10. DOLFIN: a C++/Python finite element library 189

Python code
sub_domains = CellFunction("uint", mesh)

sub_domains.set_all(0)

for cell in cells(mesh):

p = cell.midpoint()

if p.x() > 0.5:
sub_domains[cell] = 1

boundary_markers = FacetFunction("uint", mesh)

boundary_markers.set_all(0)

for facet in facets(mesh):
p = facet.midpoint()

if near(p.y(), 0.0) or near(p.y(), 1.0):

boundary_markers[facet] = 1

Mesh data. The MeshData class provides a simple way to associate data with a Mesh. It allows
arbitrary MeshFunctions (and other quantities) to be associated with a Mesh. The following code
illustrates how to attach and retrieve a MeshFunction named "sub_domains" to/from a Mesh:

C++ code
MeshFunction<uint>* sub_domains = mesh.data().create_mesh_function("sub_domains");

sub_domains = mesh.data().mesh_function("sub_domains");

Python code
sub_domains = mesh.data().create_mesh_function("sub_domains")

sub_domains = mesh.data().mesh_function("sub_domains")

To list data associated with a given Mesh, issue the command info(mesh.data(), true) in C++ or
info(mesh.data(), True) in Python.

Mesh refinement. A Mesh may be refined, by either uniform or local refinement, by calling the refine

function, as illustrated in the code examples below.

C++ code
// Uniform refinement

mesh = refine(mesh);

// Local refinement

CellFunction<bool> cell_markers(mesh);

cell_markers.set_all(false);

Point origin(0.0, 0.0, 0.0);

for (CellIterator cell(mesh); !cell.end(); ++cell)
{

Point p = cell.midpoint();

if (p.distance(origin) < 0.1)

cell_markers[cell] = true;

}
mesh = refine(mesh, cell_markers);

190 Chapter 10. DOLFIN: a C++/Python finite element library

Figure 10.4: A locally refined
mesh obtained by repeated
marking of the cells close to one
of the corners of the unit cube.

Python code
Uniform refinement

mesh = refine(mesh)

Local refinement
cell_markers = CellFunction("bool", mesh)

cell_markers.set_all(False)

origin = Point(0.0, 0.0, 0.0)

for cell in cells(mesh):

p = cell.midpoint()
if p.distance(origin) < 0.1:

cell_markers[cell] = True

mesh = refine(mesh, cell_markers)

Currently, local refinement defaults to recursive refinement by edge bisection (Rivara, 1984, 1992).
An example of a locally refined mesh obtained by a repeated marking of the cells close to one of the
corners of the unit cube is shown in Figure 10.4.

Parallel meshes. When running a program in parallel on a distributed memory architecture (using
MPI by invoking the program with the mpirun wrapper), DOLFIN automatically partitions and dis-
tributes meshes. Each process then stores a portion of the global mesh as a standard Mesh object. In
addition, it stores auxiliary data needed for correctly computing local-to-global maps on each process
and for communicating data to neighboring regions. Parallel computing with DOLFIN is discussed
in Section 10.4.

10.3.3 Finite elements

The concept of a finite element as discussed in Chapters 2 and 3 (the Ciarlet definition) is imple-
mented by the DOLFIN FiniteElement class. This class is implemented differently in the C++ and
Python interfaces.

The C++ implementation of the FiniteElement class relies on code generated by a form compiler
such as FFC or SFC, which are discussed in Chapters 11 and 15, respectively. The class FiniteElement
is essentially a wrapper class for the UFC class ufc::finite_element. A C++ FiniteElement pro-
vides all the functionality of a ufc::finite_element. Users of the DOLFIN C++ interface will
typically not use the FiniteElement class directly, but it is an important building block for the
FunctionSpace class, which is discussed below. However, users developing advanced algorithms

Chapter 10. DOLFIN: a C++/Python finite element library 191

that require run-time evaluation of finite element basis function will need to familiarize themselves
with the FiniteElement interface. For details, we refer to the DOLFIN Programmer’s Reference.

The Python interface also provides a FiniteElement class. The Python FiniteElement class is
imported directly from the UFL Python module (see Chapter 17). As such, it is just a label for a
particular finite element that can be used to define variational problems. Variational problems are
more conveniently defined in terms of the DOLFIN FunctionSpace class, so users of the Python
interface are rarely confronted with the FiniteElement class. However, advanced users who wish
to develop algorithms in Python that require functionality defined in the UFC interface, such as
run-time evaluation of basis functions, can access such functionality by explicitly generating code
from within the Python interface. This can be accomplished by a call to the DOLFIN jit function
(just-in-time compilation), which takes as input a UFL FiniteElement and returns a pair containing
a ufc::finite_element and a ufc::dofmap. The returned objects are created by first generating the
corresponding C++ code, then compiling and wrapping that C++ code into a Python module. The
returned objects are therefore directly usable from within Python.

The degrees of freedom of a FiniteElement can be plotted directly from the Python interface
by a call to plot(element). This will draw a picture of the shape of the finite element, along with
a graphical representation of its degrees of freedom in accordance with the notation described in
Chapter 3.

Table 10.3 lists the finite elements currently supported by DOLFIN (and the toolchain FIAT–UFL–
FFC/SFC–UFC). A FiniteElement may be specified (from Python) using either its full name or its
short symbol, as illustrated in the code example below:

UFL code
element = FiniteElement("Lagrange", tetrahedron, 5)

element = FiniteElement("CG", tetrahedron, 5)

element = FiniteElement("Brezzi-Douglas-Marini", triangle, 3)

element = FiniteElement("BDM", triangle, 3)

element = FiniteElement("Nedelec 1st kind H(curl)", tetrahedron, 2)

element = FiniteElement("N1curl", tetrahedron, 2)

Name Symbol

Argyris ARG
Arnold–Winther AW
Brezzi–Douglas–Marini BDM
Crouzeix–Raviart CR
Discontinuous Lagrange DG
Hermite HER
Lagrange CG
Mardal–Tai–Winther MTW
Morley MOR
Nédélec 1st kind H(curl) N1curl
Nédélec 2nd kind H(curl) N2curl
Raviart–Thomas RT

Table 10.3: List of finite elements supported by DOLFIN 1.0. Elements in grey italics are partly
supported in FEniCS but not throughout the entire toolchain.

192 Chapter 10. DOLFIN: a C++/Python finite element library

10.3.4 Function spaces

The DOLFIN FunctionSpace class represents a finite element function space Vh, as defined in Chap-
ter 2. The data of a FunctionSpace is represented in terms of a triplet consisting of a Mesh, a DofMap

and a FiniteElement:

FunctionSpace = (Mesh, DofMap, FiniteElement).

The Mesh defines the computational domain and its discretization. The DofMap defines how the
degrees of freedom of the function space are distributed. In particular, the DofMap provides the
function tabulate_dofs which maps the local degrees of freedom on any given cell of the Mesh to
global degrees of freedom. The DofMap plays a role in defining the global regularity of the finite
element function space. The FiniteElement defines the local function space on any given cell of the
Mesh. Note that if two or more FunctionSpaces are created on the same Mesh, that Mesh is shared
between the two FunctionSpaces.

Creating function spaces. As for the FiniteElement class, FunctionSpaces are handled differently in
the C++ and Python interfaces. In C++, the instantiation of a FunctionSpace relies on generated code.
As an example, we consider here the creation of a FunctionSpace representing continuous piecewise
linear Lagrange polynomials on triangles. First, the corresponding finite element must be defined in
the UFL form language. We do this by entering the following code into a file named Lagrange.ufl:

UFL code
element = FiniteElement("Lagrange", triangle, 1)

We may then generate C++ code using a form compiler such as FFC:

Bash code
ffc -l dolfin Lagrange.ufl

This generates a file named Lagrange.h that we may include in our C++ program to instantiate a
FunctionSpace on a given Mesh:

C++ code
#include <dolfin.h>

#include "Lagrange.h"

using namespace dolfin;

int main()

{

UnitSquare mesh(8, 8);

Lagrange::FunctionSpace V(mesh);

...

return 0;

}

In typical applications, a FunctionSpace is not generated through a separate .ufl file, but is instead
generated as part of the code generation for a variational problem.

From the Python interface, one may create a FunctionSpace directly, as illustrated by the follow-
ing code which creates the same function space as the above example (piecewise linear Lagrange
polynomials on triangles):

Chapter 10. DOLFIN: a C++/Python finite element library 193

Python code
mesh = UnitSquare(8, 8)

V = FunctionSpace(mesh, "Lagrange", 1)

Mixed spaces. Mixed function spaces may be created from arbitrary combinations of function spaces.
As an example, we consider here the creation of the Taylor–Hood function space for the discretization
of the Stokes or incompressible Navier–Stokes equations. This mixed function space is the tensor
product of a vector-valued continuous piecewise quadratic function space for the velocity field and
a scalar continuous piecewise linear function space for the pressure field. This may be easily defined
in either a UFL form file (for code generation and subsequent inclusion in a C++ program) or directly
in a Python script as illustrated in the following code examples:

UFL code
V = VectorElement("Lagrange", triangle, 2)

Q = FiniteElement("Lagrange", triangle, 1)
W = V*Q

Python code
V = VectorFunctionSpace(mesh, "Lagrange", 2)

Q = FunctionSpace(mesh, "Lagrange", 1)

W = V*Q

DOLFIN allows the generation of arbitrarily nested mixed function spaces. A mixed function
space can be used as a building block in the construction of a larger mixed space. When a mixed
function space is created from more than two function spaces (nested on the same level), then one
must use the MixedElement constructor (in UFL/C++) or the MixedFunctionSpace constructor (in
Python). This is because Python will interpret the expression V*Q*P as (V*Q)*P, which will create a
mixed function space consisting of two subspaces: the mixed space V*Q and the space P. If that is not
the intention, one must instead define the mixed function space using MixedElement([V, Q, P]) in
UFL/C++ or MixedFunctionSpace([V, Q, P]) in Python.

Subspaces. For a mixed function space, one may access its subspaces. These subspaces differ, in
general, from the function spaces that were used to create the mixed space in their degree of free-
dom maps (DofMap objects). Subspaces are particularly useful for applying boundary conditions to
components of a mixed element. We return to this issue below.

10.3.5 Functions

The Function class represents a finite element function uh in a finite element space Vh as defined in
Chapter 2:

uh(x) =
N

∑
j=1

Ujφj(x), (10.2)

where U ∈ RN is the vector of degrees of freedom for the function uh and {φj}N
j=1 is a basis for Vh .

A Function is represented in terms of a FunctionSpace and a GenericVector:

Function = (FunctionSpace, GenericVector).

The FunctionSpace defines the function space Vh and the GenericVector holds the vector U of de-
grees of freedom; see Figure 10.5. When running in parallel on a distributed memory architecture,
the FunctionSpace and the GenericVector are distributed across the processes.

194 Chapter 10. DOLFIN: a C++/Python finite element library

uh

Th

T

Figure 10.5: A piecewise linear
finite element function uh on a
mesh consisting of triangular
elements. The vector of degrees
of freedom U is given by the
values of uh at the mesh
vertices.

Creating functions. function!creation

To create a Function on a FunctionSpace, one simply calls the constructor of the Function class
with the FunctionSpace as the argument, as illustrated in the following code examples:

C++ code
Function u(V);

Python code
u = Function(V)

If two or more Functions are created on the same FunctionSpace, the FunctionSpace is shared
between the Functions.

A Function is typically used to hold the computed solution to a partial differential equation. One
may then obtain the degrees of freedom U by solving a system of equations, as illustrated in the
following code examples:

C++ code
Function u(V);

solve(A, u.vector(), b);

Python code
u = Function(V)

solve(A, u.vector(), b)

The process of assembling and solving a linear system is handled automatically by the classes
Linear/NonlinearVariationalSolver, which will be discussed in more detail below.

Function evaluation. A Function may be evaluated at arbitrary points inside the computational do-
main1. The value of a Function is computed by first locating the cell of the mesh containing the

1One may also evaluate a Function outside of the computational domain by setting the global parameter value
"allow_extrapolation" to true. This may sometimes be necessary when evaluating a Function on the boundary of a do-
main since round-off errors may result in points slightly outside of the domain.

Chapter 10. DOLFIN: a C++/Python finite element library 195

given point, and then evaluating the linear combination of basis functions on that cell. Finding the
cell exploits an efficient search tree algorithm that is implemented as part of CGAL.

The following code examples illustrate function evaluation in the C++ and Python interfaces for
scalar- and vector-valued functions:

C++ code
Evaluation of scalar function
double scalar = u(0.1, 0.2, 0.3);

Evaluation of vector-valued function

Array<double> vector(3);

u(vector, 0.1, 0.2, 0.3);

Python code
Evaluation of scalar function

scalar = u(0.1, 0.2, 0.3)

Evaluation of vector-valued function

vector = u(0.1, 0.2, 0.3)

When running in parallel with a distributed mesh, functions can only be evaluated at points located
in the portion of the mesh that is stored by the local process.

Subfunctions. For Functions constructed on a mixed FunctionSpace, subfunctions (components) of
the Function can be accessed, for example to plot the solution components of a mixed system. Sub-
functions may be accessed as either shallow or deep copies. By default, subfunctions are accessed as
shallow copies, which means that the subfunctions share data with their parent functions. They
provide views to the data of the parent function. Sometimes, it may also be desirable to access
subfunctions as deep copies. A deep copied subfunction does not share its data (namely, the vector
holding the degrees of freedom) with the parent Function. Both shallow and deep copies of Function
objects are themselves Function objects and may (with some exceptions) be used as regular Function
objects.

Creating shallow and deep copies of subfunctions is done differently in C++ and Python, as
illustrated by the following code examples:

C++ code
Function w(W);

// Create shallow copies

Function& u = w[0];

Function& p = w[1];

// Create deep copies
Function uu = w[0];

Function pp = w[1];

Python code
w = Function(W)

Create shallow copies

u, p = w.split()

Create deep copies

uu, pp = w.split(deepcopy=True)

196 Chapter 10. DOLFIN: a C++/Python finite element library

Note that component access, such as w[0], from the Python interface does not create a new Function

object as in the C++ interface. Instead, it creates a UFL expression that denotes a component of the
original Function.

10.3.6 Expressions

The Expression class is closely related to the Function class in that it represents a function that can be
evaluated on a finite element space. However, where a Function must be defined in terms of a vector
of degrees of freedom, an Expression may be freely defined in terms of, for example, coordinate
values, other geometric entities, or a table lookup.

An Expression may be defined in both C++ and Python by subclassing the Expression class
and overloading the eval function, as illustrated in the following code examples which define the
function f (x, y) = sin x cos y as an Expression:

C++ code
class MyExpression : public Expression

{

void eval(Array<double>& values, const Array<double>& x) const

{

values[0] = sin(x[0])*cos(x[1]);
}

};

MyExpression f;

Python code
class MyExpression(Expression):

def eval(self, values, x):

values[0] = sin(x[0])*cos(x[1])

f = MyExpression()

For vector-valued (or tensor-valued) Expressions, one must also specify the value shape of the
Expression. The following code examples demonstrate how to implement the vector-valued function
g(x, y) = (sin x, cos y). The value shape is defined slightly differently in C++ and Python.

C++ code
class MyExpression : public Expression

{

void eval(Array<double>& values, const Array<double>& x) const

{
values[0] = sin(x[0]);

values[1] = cos(x[1]);

}

uint value_rank() const

{
return 1;

}

uint value_dimension(uint i) const

{
return 2;

}

};

MyExpression g;

Chapter 10. DOLFIN: a C++/Python finite element library 197

Python code
class MyExpression(Expression):

def eval(self, values, x):

values[0] = sin(x[0])

values[1] = cos(x[1])

def value_shape(self):

return (2,)

g = MyExpression()

The above functor construct for the definition of expressions is powerful and allows a user to define
complex expressions, the evaluation of which may involve arbitrary operations as part of the eval

function. For simple expressions like f (x, y) = sin x cos y and g(x, y) = (sin x, cos y), users of the
Python interface may, alternatively, use a simpler syntax:

Python code
f = Expression("sin(x[0])*cos(x[1])")

g = Expression(("sin(x[0])", "cos(x[1])"))

The above code will automatically generate subclasses of the DOLFIN C++ Expression class that
overload the eval function. This has the advantage of being more efficient, since the callback to the
eval function takes place in C++ rather than in Python.

A feature that can be used to implement a time-dependent Expression in the Python interface is
to use a variable name in an Expression string. For example, one may use the variable t to denote
time:

Python code

h = Expression("t*sin(x[0])*cos(x[1])", t=0.0)
while t < T:

h.t = t

...

t += dt

The t variable has here been used to create a time-dependent Expression. Arbitrary variable
names may be used as long as they do not conflict with the names of built-in functions, such as sin

or exp.
In addition to the above examples, the Python interface allows the direct definition of (more

complex) subclasses of the C++ Expression class by supplying C++ code for their definition. For
more information, we refer to the DOLFIN Programmer’s Reference.

10.3.7 Variational forms

DOLFIN relies on the FEniCS toolchain FIAT–UFL–FFC/SFC–UFC for the evaluation of finite element
variational forms. Variational forms expressed in the UFL form language (Chapter 17) are compiled
using one of the form compilers FFC or SFC (Chapters 11 and 15), and the generated UFC code
(Chapter 16) is used by DOLFIN to evaluate (assemble) variational forms.

198 Chapter 10. DOLFIN: a C++/Python finite element library

The UFL form language allows a wide range of variational forms to be expressed in a language
close to the mathematical notation, as exemplified by the following expressions defining (in part) the
bilinear and linear forms for the discretization of a linear elastic problem:

UFL code

a = inner(sigma(u), epsilon(v))*dx
L = dot(f, v)*dx

This should be compared to the corresponding mathematical notation:

a(u, v) =
∫

Ω
σ(u) : ε(v) dx, (10.3)

L(v) =
∫

Ω
f · v dx. (10.4)

Here, ε(v) = (grad v + (grad v)T)/2 denotes the symmetric gradient and σ(v) = 2μ ε(v) + λtr ε(v)I
is the stress tensor. For a detailed presentation of the UFL form language, we refer to Chapter 17.

The code generation process must be handled explicitly by users of the C++ interface by calling a
form compiler on the command-line. To solve the linear elastic problem above for a specific choice of
parameter values (the Lamé constants μ and λ), a user may enter the following code in a file named
Elasticity.ufl2 :

UFL code
V = VectorElement("Lagrange", tetrahedron, 1)

u = TrialFunction(V)
v = TestFunction(V)

f = Coefficient(V)

E = 10.0

nu = 0.3

mu = E / (2.0*(1.0 + nu))

lmbda = E*nu / ((1.0 + nu)*(1.0 - 2.0*nu))

def sigma(v):

return 2.0*mu*sym(grad(v)) + lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

a = inner(sigma(u), sym(grad(v)))*dx

L = dot(f, v)*dx

This code may be compiled using a UFL/UFC compliant form compiler to generate UFC C++ code.
For example, using FFC:

Bash code
ffc -l dolfin Elasticity.ufl

2Note that ‘lambda’ has been deliberately misspelled since it is a reserved keyword in Python.

Chapter 10. DOLFIN: a C++/Python finite element library 199

This generates a C++ header file (including implementation) named Elasticity.h which may be
included in a C++ program and used to instantiate the two forms a and L:

C++ code
#include <dolfin.h>

#include "Elasticity.h"

using namespace dolfin;

int main()

{

UnitSquare mesh(8, 8);

Elasticity::FunctionSpace V(mesh);

Elasticity::BilinearForm a(V, V);
Elasticity::LinearForm L(V);

MyExpression f; // code for the definition of MyExpression omitted

L.f = f;

return 0;

}

The instantiation of the forms involves the instantiation of the FunctionSpace on which the forms are
defined. Any coefficients appearing in the definition of the forms (here the right-hand side f) must
be attached after the creation of the forms.

Python users may rely on automated code generation, and define variational forms directly as
part of a Python script:

Python code
from dolfin import *

mesh = UnitSquare(8, 8)

V = VectorFunctionSpace(mesh, "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)
f = MyExpression() # code emitted for the definition of f

E = 10.0

nu = 0.3

mu = E / (2.0*(1.0 + nu))
lmbda = E*nu / ((1.0 + nu)*(1.0 - 2.0*nu))

def sigma(v):

return 2.0*mu*sym(grad(v)) + lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

a = inner(sigma(u), sym(grad(v)))*dx

L = dot(f, v)*dx

This script will trigger automatic code generation for the definition of the FunctionSpace V. Code
generation of the two forms a and L is postponed until the point when the corresponding discrete
operators (the matrix and vector) are assembled.

10.3.8 Finite element assembly

A core functionality of DOLFIN is the assembly of finite element variational forms. Given a vari-
ational form (a), DOLFIN assembles the corresponding discrete operator (A). The assembly of the

200 Chapter 10. DOLFIN: a C++/Python finite element library

discrete operator follows the general algorithm described in Chapter 6. The following code illus-
trates how to assemble a scalar (m), a vector (b) and a matrix (A) from a functional (M), a linear form
(L) and a bilinear form (a), respectively:

C++ code

Vector b;
Matrix A;

double m = assemble(M);

assemble(b, L);

assemble(A, a);

Python code
m = assemble(M)

b = assemble(L)

A = assemble(a)

The assembly of variational forms from the Python interface automatically triggers code gener-
ation, compilation and linking at run-time. The generated code is automatically instantiated and
sent to the DOLFIN C++ compiler. As a result, finite element assembly from the Python interface
is equally efficient as assembly from the C++ interface, with only a small overhead for handling the
automatic code generation. The generated code is cached for later reuse, hence repeated assembly of
the same form or running the same program twice does not re-trigger code generation. Instead, the
previously generated code is automatically loaded from cache.

DOLFIN provides a common assembly algorithm for the assembly of tensors of any rank (scalars,
vectors, matrices, . . .) for any form. This is possible since the assembly algorithm relies on the
GenericTensor interface, portions of the assembly algorithm that depend on the variational form
and its particular discretization are generated prior to assembly, and the mesh interface is dimension-
independent. The assembly algorithm accepts a number of optional arguments that control whether
the sparsity of the assembled tensor should be reset before assembly and whether the tensor should
be zeroed before assembly. Arguments may also be supplied to specify subdomains of the Mesh if
the form is defined over particular subdomains (using dx(0), dx(1) etc.).

In addition to the assemble function, DOLFIN provides the assemble_system function which
assembles a pair of forms consisting of a bilinear and a linear form and applies essential boundary
conditions during the assembly process. The application of boundary conditions as part of the call
to assemble_system preserves symmetry of the matrix being assembled (see Chapter 6).

The assembly algorithms have been parallelized for both distributed memory architectures
(clusters) using MPI and shared memory architectures (multi-core) using OpenMP. This is discussed
in more detail in Section 10.4.

10.3.9 Boundary conditions

DOLFIN handles the application of both Neumann (natural) and Dirichlet (essential) boundary con-
ditions.3 Natural boundary conditions are usually applied via the variational statement of a problem,
whereas essential boundary conditions are usually applied to the discrete system of equations.

3As noted in Chapter 2, Dirichlet boundary conditions may sometimes be natural and Neumann boundary conditions may
sometimes be essential.

Chapter 10. DOLFIN: a C++/Python finite element library 201

Natural boundary conditions. Natural boundary conditions typically appear as boundary terms as
the result of integrating by parts a partial differential equation multiplied by a test function. As a
simple example, we consider the linear elastic variational problem. The partial differential equation
governing the displacement of an elastic body may be expressed as

−div σ(u) = f in Ω,

σ · n = g on ΓN ⊂ ∂Ω,

u = u0 on ΓD ⊂ ∂Ω,

(10.5)

where u is the unknown displacement field to be computed, σ(u) is the stress tensor, f is a given
body force, g is a given traction on a portion ΓN of the boundary, and u0 is a given displacement on
a portion ΓD of the boundary. Multiplying by a test function v and integrating by parts, we obtain

∫
Ω

σ(u) : ε(v) dx −
∫

∂Ω
(σ · n) · v ds =

∫
Ω

f · v dx, (10.6)

where we have used the symmetry of σ(u) to replace grad v by the symmetric gradient ε(v). Since
the displacement u is known on the Dirichlet boundary ΓD, we let v = 0 on ΓD. Furthermore, we
replace σ · n by the given traction g on the remaining (Neumann) portion of the boundary ΓN to
obtain ∫

Ω
σ(u) : ε(v) dx =

∫
Ω

f · v dx +
∫

ΓN

g · v ds. (10.7)

The following code demonstrates how to implement this variational problem in the UFL form lan-
guage, either as part of a .ufl file or as part of a Python script:

UFL code
a = inner(sigma(u), sym(grad(v)))*dx

L = dot(f, v)*dx + dot(g, v)*ds

To specify that the boundary integral dot(g, v)*ds should only be evaluated along the Neumann
boundary ΓN, one must specify which part of the boundary is included in the ds integral. If there
is only one Neumann boundary, then one may simply write the ds integral as an integral over the
entire boundary, including the Dirichlet boundary as the test function v will be set to zero along the
Dirichlet boundary.

In cases where there is more than one Neumann boundary condition, one must instead specify the
Neumann boundary in terms of a FacetFunction. This FacetFunction must specify for each facet of
the Mesh to which part of the boundary it belongs. For the current example, an appropriate strategy
is to mark each facet on the Neumann boundary by 0 and all other facets (including facets internal
to the domain) by 1. This can be accomplished in a number of different ways. One simple way to do
this is to use the program MeshBuilder and graphically mark the facets of the Mesh. Another option
is through the DOLFIN class SubDomain. The following code illustrates how to mark all boundary
facets to the left of x = 0.5 as the first Neumann boundary and all other boundary facets as the
second Neumann boundary. Note the use of the on_boundary argument supplied by DOLFIN to the
inside function. This argument informs whether a point is located on the boundary ∂Ω of Ω, and
this allows us to mark only facets that are on the boundary and to the left of x = 0.5. Also note
the use of DOLFIN_EPS which makes sure that we include points that, as a result of finite precision
arithmetic, may be located just to the right of x = 0.5.

202 Chapter 10. DOLFIN: a C++/Python finite element library

C++ code
class NeumannBoundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{

return x[0] < 0.5 + DOLFIN_EPS && on_boundary;
}

};

NeumannBoundary neumann_boundary;

FacetFunction<uint> exterior_facet_domains(mesh);
exterior_facet_domains.set_all(1);

neumann_boundary.mark(exterior_facet_domains, 0);

Python code
class NeumannBoundary(SubDomain):

def inside(self, x, on_boundary):

return x[0] < 0.5 + DOLFIN_EPS and on_boundary

neumann_boundary = NeumannBoundary()

exterior_facet_domains = FacetFunction("uint", mesh)
exterior_facet_domains.set_all(1)

neumann_boundary.mark(exterior_facet_domains, 0)

When combined with integrals defined using ds(0) and ds(1), those integrals will correspond to
integration over the domain boundary to the left of x = 0.5 and all facets to the right of x = 0.5,
respectively.

Once the boundaries have been specified as a FacetFunction, that object can be used to define
the corresponding domains of integration. This is done differently in C++ and Python. From C++,
one must assign to the ds member variable of the corresponding forms:

C++ code
a.ds = exterior_facet_domains;

L.ds = exterior_facet_domains;

In addition to exterior_facet_domains specified in terms of the ds member variable, one may sim-
ilarly specify cell_domains using the dx member variable and interior_facet_domains using the
dS variable. Note that different forms may potentially use different definitions of their boundaries.
From Python, one may simply connect the boundary definition to the corresponding measure by
subscripting:

Python code
dss = ds[neumann_boundary]

a = ... + g*v*dss(0) + h*v*dss(1) + ...

The correct specification of boundaries is a common error source. For debugging the specification
of boundary conditions, it can be helpful to plot the FacetFunction that specifies the boundary
markers by writing the FacetFunction to a VTK file (see the file I/O section) or using the plot

command. When using the plot command, the plot shows the facet values interpolated to the
vertices of the Mesh. As a result, care must be taken to interpret the plot close to domain boundaries
(corners) in this case. The issue is not present in the VTK output.

Essential boundary conditions. The application of essential boundary conditions is handled by the
class DirichletBC. Using this class, one may specify a Dirichlet boundary condition in terms of a

Chapter 10. DOLFIN: a C++/Python finite element library 203

FunctionSpace, a Function or an Expression, and a subdomain. The subdomain may be specified
either in terms of a SubDomain object or in terms of a FacetFunction. A DirichletBC specifies that
the solution should be equal to the given value on the given subdomain.

The following code examples illustrate how to define the Dirichlet condition u(x) = u0(x) = sin x
on the Dirichlet boundary ΓD (assumed here to be the part of the boundary to the right of x = 0.5)
for the elasticity problem (10.5) using the SubDomain class. Alternatively, the subdomain may be
specified using a FacetFunction.

C++ code
class DirichletValue : public Expression

{

void eval(Array<double>& values, const Array<double>& x) const
{

values[0] = sin(x[0]);

}

};

class DirichletBoundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{

return x[0] > 0.5 - DOLFIN_EPS && on_boundary;

}
};

DirichletValue u_0;

DirichletBoundary Gamma_D;

DirichletBC bc(V, u_0, Gamma_D);

Python code
class DirichletValue(Expression):

def eval(self, value, x):
values[0] = sin(x[0])

class DirichletBoundary(SubDomain):

def inside(self, x, on_boundary):

return x[0] > 0.5 - DOLFIN_EPS and on_boundary

u_0 = DirichletValue()

Gamma_D = DirichletBoundary()

bc = DirichletBC(V, u_0, Gamma_D)

Python users may also use the following compact syntax:

Python code
u_0 = Expression("sin(x[0])")

bc = DirichletBC(V, u_0, "x[0] > 0.5 && on_boundary")

To speed up the application of Dirichlet boundary conditions, users of the Python interface may also
use the function compile_subdomains. For details of this, we refer to the DOLFIN Programmer’s
Reference.

204 Chapter 10. DOLFIN: a C++/Python finite element library

A Dirichlet boundary condition can be applied to a linear system or to a vector of degrees of
freedom associated with a Function, as illustrated by the following code examples:

C++ code
bc.apply(A, b);

bc.apply(u.vector());

Python code
bc.apply(A, b)

bc.apply(u.vector())

The application of a Dirichlet boundary condition to a linear system will identify all degrees of
freedom that should be set to the given value and modify the linear system such that its solution
respects the boundary condition. This is accomplished by zeroing and inserting 1 on the diagonal
of the rows of the matrix corresponding to Dirichlet values, and inserting the Dirichlet value in
the corresponding entry of the right-hand side vector. This application of boundary conditions
does not preserve symmetry. If symmetry is required, one may alternatively consider using the
assemble_system function which applies Dirichlet boundary conditions symmetrically as part of the
assembly process.

Multiple boundary conditions may be applied to a single system or vector. If two different bound-
ary conditions are applied to the same degree of freedom, the last applied value will overwrite any
previously set values.

10.3.10 Variational problems

Variational problems (finite element discretizations of partial differential equations) can be easily
solved in DOLFIN using the solve function. Both linear and nonlinear problems can be solved.
A linear problem must be expressed in the following canonical form: find u ∈ V such that

a(u, v) = L(v) ∀ v ∈ V̂. (10.8)

A nonlinear problem must be expressed in the following canonical form: find u ∈ V such that

F(u; v) = 0 ∀ v ∈ V̂. (10.9)

In the case of a linear variational problem specified in terms of a bilinear form a and a linear form L,
the solution is computed by assembling the matrix A and vector b of the corresponding linear system,
then applying boundary conditions to the system, and finally solving the linear system. In the case
of a nonlinear variational problem specified in terms of a linear form F and a bilinear form J (the
derivative or Jacobian of F), the solution is computed by Newton’s method.

The code examples below demonstrate how to solve a linear variational problem specified in
terms of a bilinear form a, a linear form L and a list of Dirichlet boundary conditions given as
DirichletBC objects:

C++ code
std::vector<const BoundaryCondition*> bcs;
bcs.push_back(&bc0);

bcs.push_back(&bc1);

bcs.push_back(&bc2);

Function u(V);

solve(a == L, u, bcs);

Chapter 10. DOLFIN: a C++/Python finite element library 205

Python code
bcs = [bc0, bc1, bc2]

u = Function(V)

solve(a == L, u, bcs=bcs)

To solve a nonlinear variational problem, one must supply a linear form F and, in the case of
C++, its derivative J, which is a bilinear form. In Python, the derivative is computed automatically
but may also be specified manually. In many cases, the derivative can be easily computed using the
function derivative, either in a .ufl form file or as part of a Python script. We here demonstrate
how a nonlinear problem may be solved using the Python interface. Nonlinear variational problems
may be solved similarly in C++.

Python code

u = Function(V)
v = TestFunction(V)

F = inner((1 + u**2)*grad(u), grad(v))*dx - f*v*dx

Let DOLFIN compute Jacobian

solve(F == 0, u, bcs=bcs)

Differentiate to get Jacobian

J = derivative(F, u)

Supply Jacobian manually
solve(F == 0, u, bcs=bcs, J=J)

More advanced control over the solution process may be gained by using the classes Linear-

Variational{Problem,Solver} and NonlinearVariational{Problem,Solver}. Use of these classes is
illustrated by the following code examples:

Python code

u = Function(V)
problem = LinearVariationalProblem(a, L, u, bcs=bcs)

solver = LinearVariationalSolver(problem)

solver.parameters["linear_solver"] = "gmres"

solver.parameters["preconditioner"] = "ilu"

solver.solve()

Python code
u = Function(V)

problem = NonlinearVariationalProblem(F, u, bcs=bcs, J=J)

solver = NonlinearVariationalSolver(problem)

solver.parameters["linear_solver"] = "gmres"

solver.parameters["preconditioner"] = "ilu"
solver.solve()

These classes may be used similarly from C++.
The solver classes provide a range of parameters that can be adjusted to control the solution

process. For example, to view the list of available parameters for a LinearVariationalSolver or
NonlinearVariationalSolver, issue the following commands:

C++ code
info(solver.parameters, true)

Python code
info(solver.parameters, True)

206 Chapter 10. DOLFIN: a C++/Python finite element library

Suffix File format

.xml DOLFIN XML format

.ele / .node Triangle file format

.mesh Medit format, generated by TetGen with option -g

.msh / .gmsh Gmsh version 2.0 format

.grid Diffpack tetrahedral grid format

.inp Abaqus tetrahedral grid format

.e / .exo Sandia Exodus II file format

.ncdf ncdump’ed Exodus II file format

.vrt/.cell Star-CD tetrahedral grid format

Table 10.4: List of file formats supported by the dolfin-convert script.

10.3.11 File I/O and visualization

Preprocessing. DOLFIN has capabilities for mesh generation only in the form of the built-in meshes
UnitSquare, UnitCube, etc. External software must be used to generate more complicated meshes.
To simplify this process, DOLFIN provides a simple script dolfin-convert to convert meshes from
other formats to the DOLFIN XML format. Currently supported file formats are listed in Table 10.4.
The following code illustrates how to convert a mesh from the Gmsh format (suffix .msh or .gmsh) to
the DOLFIN XML format:

Bash code
dolfin-convert mesh.msh mesh.xml

Once a mesh has been converted to the DOLFIN XML file format, it can be read into a program, as
illustrated by the following code examples:

C++ code
Mesh mesh("mesh.xml");

Python code
mesh = Mesh("mesh.xml")

Postprocessing. To visualize a solution (Function), a Mesh or a MeshFunction, the plot command4

can be issued, from either C++ or Python:

C++ code
plot(u);

plot(mesh);
plot(mesh_function);

Python code
plot(u)

plot(mesh)
plot(mesh_function)

4The plot command requires a working installation of the viper Python module. Plotting finite elements requires access
to FFC and the soya Python plotting module.

Chapter 10. DOLFIN: a C++/Python finite element library 207

Figure 10.6: Plotting a mesh
using the DOLFIN plot
command, here the mesh
dolfin-1.xml.gz distributed
with DOLFIN.

Figure 10.7: Plotting a scalar
and a vector-valued function
using the DOLFIN plot
command, here the pressure
(left) and velocity (right) from a
solution of the Stokes equations
on the mesh from Figure 10.6.

Example plots generated using the plot command are presented in Figures 10.6 and 10.7. From
Python, one can also plot expressions and finite elements:

Python code
plot(grad(u))

plot(u*u)

element = FiniteElement("BDM", tetrahedron, 3)

plot(element)

To enable interaction with a plot window (rotate, zoom) from Python, call the function interactive,
or add an optional argument interactive=True to the plot command.

The plot command provides rudimentary plotting, and advanced postprocessing is better han-
dled by external software such as ParaView and MayaVi2. This is easily accomplished by storing the
solution (a Function object) to file in PVD format (ParaView Data, an XML-based format). This can
be done in both C++ and Python by writing to a file with the .pvd extension, as illustrated in the
following code examples:

C++ code

File file("solution.pvd");
file << u;

208 Chapter 10. DOLFIN: a C++/Python finite element library

Python code
file = File("solution.pvd")

file << u

The standard PVD format is ASCII based, hence the file size can become very large for large data sets.
To use a compressed binary format, a string "compressed" can be used when creating a PVD-based
File object:

C++ code
File file("solution.pvd", "compressed");

If multiple Functions are written to the same file (by repeated use of <<), then the data is interpreted
as a time series, which may then be animated in ParaView or MayaVi2. Each frame of the time series
is stored as a .vtu (VTK unstructured data) file, with references to these files stored in the .pvd file.
When writing time-dependent data, it can be useful to store the time t of each snapshot. This is done
as illustrated below:

C++ code
File file("solution.pvd", "compressed");

file << std::make_pair<const Function*, double>(&u, t);

Python code
file = File("solution.pvd", "compressed");
file << (u, t)

Storing the time is particularly useful when animating simulations that use a varying time step.
The PVD format supports parallel post-processing. When running in parallel, a single .pvd file is

created and a .vtu file is created for the data on each partition. Results computed in parallel can be
viewed seamlessly using ParaView.

DOLFIN XML format. DOLFIN XML is the native format of DOLFIN. An advantage of XML is that
it is a robust and human-readable format. If the files are compressed, there is also little overhead in
terms of file size compared to a binary format.

Many of the classes in DOLFIN can be written to and from DOLFIN XML files using the standard
stream operators << and >>, as illustrated in the following code examples:

C++ code
File vector_file("vector.xml");

vector_file << vector;

vector_file >> vector;

File mesh_file("mesh.xml");

mesh_file << mesh;

mesh_file >> mesh;

File parameters_file("parameters.xml");
parameters_file << parameters;

parameters_file >> parameters;

Chapter 10. DOLFIN: a C++/Python finite element library 209

Python code
vector_file = File("vector.xml")

vector_file << vector

vector_file >> vector

mesh_file = File("mesh.xml")
mesh_file << mesh

mesh_file >> mesh

parameters_file = File("parameters.xml")

parameters_file << parameters
parameters_file >> parameters

One cannot read/write Function and FunctionSpace objects since the representation of a
FunctionSpace (and thereby the representation of a Function) relies on generated code.

DOLFIN automatically handles reading and writing of gzipped XML files. Thus, one may save
space by storing meshes and other data in gzipped XML files (with suffix .xml.gz).

Time series. For time-dependent problems, it may be useful to store a sequence of solutions or
meshes in a format that enables fast reading/writing of data. For this purpose, DOLFIN provides
the TimeSeries class. This enables the storage of a series of Vectors (of degrees of freedom) and/or
Meshes. The following code illustrates how to store a series of Vectors and Meshes to a TimeSeries:

C++ code
TimeSeries time_series("simulation_data");

while (t < T)

{
...

time_series.store(u.vector(), t);

time_series.store(mesh, t);

t += dt;

}

Python code
time_series = TimeSeries("simulation_data")

while t < T:

...

time_series.store(u.vector(), t)
time_series.store(mesh, t)

t += dt

Data in a TimeSeries are stored in a binary format with one file for each stored dataset (Vector or
Mesh) and a common index. Data may be retrieved from a TimeSeries by calling the retrieve mem-
ber function as illustrated in the code examples below. If a dataset is not stored at the requested time,
then the values are interpolated linearly for Vectors. For Meshes, the closest data point will be used.

C++ code
time_series.retrieve(u.vector(), t);

time_series.retrieve(mesh, t);

Python code
time_series.retrieve(u.vector(), t)

time_series.retrieve(mesh, t)

210 Chapter 10. DOLFIN: a C++/Python finite element library

10.3.12 Logging / diagnostics

DOLFIN provides a simple interface for the uniform handling of log messages, including warnings
and errors. All messages are collected to a single stream, which allows the destination and formatting
of the output from an entire program, including the DOLFIN library, to be controlled by the user.

Printing messages. Informational messages from DOLFIN are normally printed using the info com-
mand. This command takes a string argument and an optional list of variables to be formatted, much
like the standard C printf command. Note that the info command automatically appends a newline
to the given string. Alternatively, C++ users may use the dolfin::cout and dolfin::endl objects for
C++ style formatting of messages as illustrated below.

C++ code
info("Assembling system of size %d x %d.", M, N);

cout << "Assembling system of size " << M << " x " << N << "." << endl;

Python code
info("Assembling system of size %d x %d." % (M, N))

The info command and the dolfin::cout/endl objects differ from the standard C printf command
and the C++ std::cout/endl objects in that the output is directed into a special stream, the output
of which may be redirected to destinations other than standard output. In particular, one may
completely disable output from DOLFIN, or select the verbosity of printed messages, as explained
below.

Warnings and errors. In addition to the info command, DOLFIN provides the commands warning

and error that can be used to issue warnings and errors, respectively. These two commands work in
much the same way as the info command. However, the warning command will prepend the given
message with "*** Warning: " and the error command will raise an exception that can be caught,
from both C++ and Python. Both commands will also print the message at a log level higher than
messages printed using info.

Setting the log level. The DOLFIN log level determines which messages routed through the logging
system will be printed. Only messages on a level higher than or equal to the current log level are
printed. The log level of DOLFIN may be set using the function set_log_level. This function expects
an integer value that specifies the log level. To simplify the specification of the log level, one may
use one of a number of predefined log levels as listed in Table 10.5. The default log level is INFO.
Log messages may be switched off entirely by calling the command set_log_active(false) from
C++ and set_log_active(False) from Python. For technical reasons, the log level for debugging
messages is named DBG in C++ and DEBUG in Python. This is summarized in Table 10.5.

Log level value

ERROR 40
WARNING 30
INFO 20

PROGRESS 16
DBG / DEBUG 10

Table 10.5: Log levels in DOLFIN.

Chapter 10. DOLFIN: a C++/Python finite element library 211

To print messages at an arbitrary log level, one may specify the log level to the log command, as
illustrated in the code examples below.

C++ code
info("Test message"); // will be printed

cout << "Test message" << endl; // will be printed

log(DBG, "Test message"); // will not be printed

log(15, "Test message"); // will not be printed

set_log_level(DBG);

info("Test message"); // will be printed

cout << "Test message" << endl; // will be printed

log(DBG, "Test message"); // will be printed

log(15, "Test message"); // will be printed

set_log_level(WARNING);

info("Test message"); // will not be printed

cout << "Test message" << endl; // will not be printed

warning("Test message"); // will be printed
std::cout << "Test message" << std::endl; // will be printed!

Python code
info("Test message") # will be printed

log(DEBUG, "Test message") # will not be printed

log(15, "Test message") # will not be printed

set_log_level(DEBUG)

info("Test message") # will be printed

log(DEBUG, "Test message") # will be printed

log(15, "Test message") # will be printed

set_log_level(WARNING)

info("Test message") # will not be printed

warning("Test message") # will be printed

print "Test message" # will be printed!

Printing objects. Many of the standard DOLFIN objects can be printed using the info command, as
illustrated in the code examples below.

C++ code
info(vector);
info(matrix);

info(solver);

info(mesh);

info(mesh_function);

info(function);

info(function_space);
info(parameters);

Python code
info(vector)

info(matrix)

info(solver)
info(mesh)

info(mesh_function)

info(function)

info(function_space)

info(parameters)

212 Chapter 10. DOLFIN: a C++/Python finite element library

The above commands will print short informal messages. For example, the command info(mesh)

may result in the following output:

Generated code
<Mesh of topological dimension 2 (triangles) with 25 vertices and 32 cells, ordered>

In the Python interface, the same short informal message can be printed by calling print mesh. To
print more detailed data, one may set the verbosity argument of the info function to true (defaults
to false), which will print a detailed summary of the object.

C++ code
info(mesh, true);

Python code
info(mesh, True)

The detailed output for some objects may be very lengthy.

Tasks and progress bars. In addition to basic commands for printing messages, DOLFIN provides a
number of commands for organizing the diagnostic output from a simulation program. Two such
commands are begin and end. These commands can be used to nest the output from a program; each
call to begin increases the indentation level by one unit (two spaces), while each call to end decreases
the indentation level by one unit.

Another way to provide feedback is via progress bars. DOLFIN provides the Progress class for
this purpose. Although an effort has been made to minimize the overhead of updating the progress
bar, it should be used with care. If only a small amount of work is performed in each iteration of
a loop, the relative overhead of using a progress bar may be substantial. The code examples below
illustrate the use of the begin/end commands and the progress bar.

C++ code
begin("Starting nonlinear iteration.");

info("Updating velocity.");

info("Updating pressure.");

info("Computing residual.");

end();

Progress p("Iterating over all cells.", mesh.num_cells());

for (CellIterator cell(mesh); !cell.end(); ++cell)

{

...
p++;

}

Progress q("Time-stepping");

while (t < T)

{
...

t += dt;

q = t / T;

}

Chapter 10. DOLFIN: a C++/Python finite element library 213

Python code
begin("Starting nonlinear iteration.")

info("Updating velocity.")

info("Updating pressure.")

info("Computing residual.")

end()

p = Progress("Iterating over all cells.", mesh.num_cells())

for cell in cells(mesh):

...

p += 1

q = Progress("Time-stepping")

while t < T:

...

t += dt
q.update(t / T)

Setting timers. Timing can be accomplished using the Timer class. A Timer is automatically started
when it is created, and automatically stopped when it goes out of scope. Creating a Timer at the start
of a function is therefore a convenient way to time that function, as illustrated in the code examples
below.

C++ code
void solve(const Matrix& A, Vector& x, const Vector& b)

{

Timer timer("Linear solve");

...

}

Python code
def solve(A, b):

timer = Timer("Linear solve")
...

return x

One may explicitly call the start and stop member functions of a Timer. To directly access the value
of a timer, the value member function can be called. A summary of the values of all timers created
during the execution of a program can be printed by calling the list_timings function.

10.3.13 Parameters

DOLFIN keeps a global database of parameters that control the behavior of its various components.
Parameters are controlled via a uniform type-independent interface that allows the retrieval of param-
eter values, modification of parameter values, and the addition of new parameters to the database.
Different components (classes) of DOLFIN also rely on parameters that are local to each instance of
the class. This permits different parameter values to be set for different objects of a class.

Parameter values can be either integer-valued, real-valued (standard double), string-valued or
boolean-valued. Parameter names must not contain spaces.

Accessing parameters. Global parameters can be accessed through the global variable parameters.
The below code illustrates how to print the values of all parameters in the global parameter database,
and how to access and change parameter values.

214 Chapter 10. DOLFIN: a C++/Python finite element library

C++ code
info(parameters, True);

uint num_threads = parameters["num_threads"];

bool allow_extrapolation = parameters["allow_extrapolation"];

parameters["num_threads"] = 8;

parameters["allow_extrapolation"] = true;

Python code

info(parameters, True)
num_threads = parameters["num_threads"]

allow_extrapolation = parameters["allow_extrapolation"]

parameters["num_threads"] = 8

parameters["allow_extrapolation"] = True

Parameters that are local to specific components of DOLFIN can be controlled by accessing the
member variable named parameters. The following code illustrates how to set some parameters for
a Krylov solver:

C++ code
KrylovSolver solver;

solver.parameters["absolute_tolerance"] = 1e-6;
solver.parameters["report"] = true;

solver.parameters("gmres")["restart"] = 50;

solver.parameters("preconditioner")["reuse"] = true;

Python code
solver = KrylovSolver()

solver.parameters["absolute_tolerance"] = 1e-6

solver.parameters["report"] = True
solver.parameters["gmres"]["restart"] = 50

solver.parameters["preconditioner"]["reuse"] = True

The above example accesses the nested parameter databases "gmres" and "preconditioner". DOLFIN
parameters may be nested to arbitrary depths, which helps with organizing parameters into different
categories. Note the subtle difference in accessing nested parameters in the two interfaces. In the
C++ interface, nested parameters are accessed by brackets ("..."), and in the Python interface are
they accessed by square brackets ["..."]. The parameters that are available for a certain component
can be viewed by using the info function.

Adding parameters. Parameters can be added to an existing parameter database using the add mem-
ber function which takes the name of the new parameter and its default value. It is also simple to
create new parameter databases by creating a new instance of the Parameters class. The following
code demonstrates how to create a new parameter database and adding to it a pair of integer-valued
and floating-point valued parameters:

C++ code
Parameters parameters("my_parameters");

my_parameters.add("foo", 3);

my_parameters.add("bar", 0.1);

Python code
my_parameters = Parameters("my_parameters")

my_parameters.add("foo", 3)
my_parameters.add("bar", 0.1)

Chapter 10. DOLFIN: a C++/Python finite element library 215

A parameter database resembles the dict class in the Python interface. A user can iterate over the
keys, values and items:

Python code
for key, value in parameters.items():

print key, value

A Python dict can also be used to update a Parameter database:

Python code
d = dict(num_threads=4, krylov_solver=dict(absolute_tolerance=1e-6))

parameters.update(d)

A parameter database can also be created in more compact way in the Python interface:

Python code
my_parameters = Parameters("my_parameters", foo=3, bar=0.1,

nested=Parameters("nested", baz=True))

Parsing command-line parameters. Command-line parameters may be parsed into the global param-
eter database or into any other parameter database. The following code illustrates how to parse
command-line parameters in C++ and Python, and how to pass command-line parameters to the
program:

C++ code

int main(int argc, char* argv[])
{

...

parameters.parse(argc, argv);

...

}

Python code
parameters.parse()

Bash code
python myprogram.py --num_threads 8 --allow_extrapolation true

Storing parameters to file. It can be useful to store parameter values to file, for example to document
which parameter values were used to run a simulation or to reuse a set of parameter values from
a previous run. The following code illustrates how to write and then read back parameter values
to/from a DOLFIN XML file:

C++ code
File file("parameters.xml");

file << parameters;

file >> parameters;

Python code
file = File("parameters.xml")

file << parameters

file >> parameters

216 Chapter 10. DOLFIN: a C++/Python finite element library

At startup, DOLFIN automatically scans the current directory and the directory .config/fenics in
the user’s home directory (in that order) for a file named dolfin_parameters.xml. If found, these
parameters are read into DOLFIN’s global parameter database.

10.4 Implementation notes

In this section, we comment on specific aspects of the implementation of DOLFIN, including parallel
computing, the generation of the Python interface, and just-in-time compilation.

10.4.1 Parallel computing

DOLFIN supports parallel computing on multi-core workstations through to massively parallel su-
percomputers. It is designed such that users can perform parallel simulations using the same code
that is used for serial computations.

Two paradigms for parallel simulation are supported. The first paradigm is multithreading for
shared memory machines. The second paradigm is fully distributed parallelization for distributed
memory machines. For both paradigms, special preprocessing of a mesh is required. For multi-
threaded parallelization, a so-called coloring approach is used (see Figure 10.8a), and for distributed
parallelization a mesh partitioning approach is used (see Figure 10.8b). Aspects of these two ap-
proaches are discussed below. It is also possible to combine the approaches, thereby yielding hybrid
approaches to leverage the power of modern clusters of multi-core processors.

Shared memory parallel computing. Multithreaded assembly for finite element matrices and vectors
on shared memory machines is supported using OpenMP. It is activated by setting the number of
threads to use via the parameter system. For example, the code

C++ code
parameters["num_threads"] = 6;

instructs DOLFIN to use six threads in the assembly process. During assembly, DOLFIN loops
over the cells or cell facets in a mesh, and computes local contributions to the global matrix or vector,
which are then added to the global matrix or vector. When using multithreaded assembly, each thread
is assigned a collection of cells or facets for which it is responsible. This is transparent to the user.

The use of multithreading requires design care to avoid race conditions, which occur if multiple
threads attempt to write to the same memory location at the same time. Race conditions will typi-
cally result in unpredictable behavior of a program. To avoid race conditions during assembly, which

Figure 10.8: A mesh that is
(a) colored based on facet
connectivity such that cells that
share a common facet have
different colors and (b)
partitioned into 12 parts, with
each partition indicated by a
color.

Chapter 10. DOLFIN: a C++/Python finite element library 217

would occur if two threads were to add values to a global matrix or vector at almost the same time,
DOLFIN uses a graph coloring approach. Before assembly, the mesh on a given process is ‘colored’
such that each cell is assigned a color (which in practice is an integer) and such that no two neighbor-
ing cells have the same color. The sense in which cells are neighbors for a given problem depends on
the type of finite element being used. In most cases, cells that share a vertex are considered neighbors,
but in other cases cells that share edges or facets may be considered neighbors. During assembly,
cells are assembled by color. All cells of the first color are shared among the threads and assembled,
and this is followed by the next color. Since cells of the same color are not neighbors, and therefore
do not share entries in the global matrix or vector, race conditions will not occur during assembly.
The coloring of a mesh is performed in DOLFIN using either the interface to the Boost Graph Library
or the interface to Zoltan (which is part of the Trilinos project). Figure 10.8a shows a mesh that has
been colored such that no two neighboring cells (in the sense of a shared facet) are of the same color.

Multithreaded support in third-party linear algebra libraries is limited at the present time, but is
an area of active development. The LU solver PaStiX, which can be accessed via the PETSc linear
algebra backend, supports multithreaded parallelism.

Distributed memory parallel computing. Fully distributed parallel computing is supported using the
Message Passing Interface (MPI). To perform parallel simulations, DOLFIN should be compiled with
MPI and a parallel linear algebra backend (such as PETSc or Trilinos) enabled. To execute a parallel
simulation, a DOLFIN program should be launched using mpirun (the name of the program to launch
MPI programs may differ on some computers). A C++ program using 16 processes can be executed
using:

Bash code
mpirun -n 16 ./myprogram

and for Python:

Bash code
mpirun -n 16 python myprogram.py

DOLFIN supports fully distributed parallel meshes, which means that each processor has a copy
of only the portion of the mesh for which it is responsible. This approach is scalable since no
processor is required to hold a copy of the full mesh. An important step in a parallel simulation is
the partitioning of the mesh. DOLFIN can perform mesh partitioning in parallel using the libraries
ParMETIS and SCOTCH (Pellegrini). The library to be used for mesh partitioning can be specified
via the parameter system, e.g., to use SCOTCH:

C++ code
parameters["mesh_partitioner"] = "SCOTCH";

or to use ParMETIS:

Python code

parameters["mesh_partitioner"] = "ParMETIS"

Figure 10.8b shows a mesh that has been partitioned in parallel into 12 domains. One process would
take responsibility for each domain.

If a parallel program is launched using MPI and a parallel linear algebra backend is enabled, then
linear algebra operations will be performed in parallel. In most applications, this will be transparent

218 Chapter 10. DOLFIN: a C++/Python finite element library

to the user. Parallel output for postprocessing is supported through the PVD output format, and is
used in the same way as for serial output. Each process writes an output file, and the single main
output file points to the files produced by the different processes.

10.4.2 Implementation and generation of the Python interface

The DOLFIN C++ library is wrapped to Python using the Simplified Wrapper and Interface Gen-
erator SWIG (Beazley, 1996; SWIG); see Chapter 19 for more details. The wrapped C++ library is
accessible in a Python module named cpp residing inside the main dolfin module of DOLFIN. This
means that the compiled module, with all its functions and classes, can be accessed directly by:

Python code

from dolfin import cpp
Function = cpp.Function

assemble = cpp.assemble

The classes and functions in the cpp module have the same functionality as the corresponding classes
and functions in the C++ interface. In addition to the wrapper layer automatically generated by
SWIG, the DOLFIN Python interface relies on a number of components implemented directly in
Python. Both are imported into the Python module named dolfin. In the following sections, the
key customizations to the DOLFIN interface that facilitate this integration are presented. The Python
interface also integrates well with the NumPy and SciPy toolkits, which is also discussed below.

10.4.3 UFL integration and just-in-time compilation

In the Python interface, the UFL form language has been integrated with the Python wrapped
DOLFIN C++ module. When explaining the integration, we use in this section the notation dolfin::Foo

or dolfin::bar to denote a C++ class or function in DOLFIN. The corresponding SWIG-wrapped
classes or functions will be referred to as cpp.Foo and cpp.bar. A class in UFL will be referred to
as ufl.Foo and a class in UFC as ufc::foo (note lower case). The Python classes and functions in
the added Python layer on top of the wrapped C++ library, will be referred to as dolfin.Foo or
dolfin.bar. The prefixes of the classes and functions are sometimes skipped for convenience. Most
of the code snippets presented in this section are pseudo code. Their purpose is to illustrate the
logic of a particular method or function. Parts of the actual code may be intentionally excluded. An
interested reader can examine particular classes or functions in the code for a full understanding of
the implementation.

Construction of function spaces. In the Python interface, ufl.FiniteElement and dolfin::Function-

Space are integrated. The declaration of a FunctionSpace is similar to that of a ufl.FiniteElement,
but instead of a cell type (for example, triangle) the FunctionSpace constructor takes a cpp.Mesh

(dolfin.Mesh):

Python code
mesh = UnitSquare(8, 8)
V = FunctionSpace(mesh, "Lagrange", 1)

In the Python constructor of FunctionSpace, a ufl.FiniteElement is instantiated. The FiniteElement

is passed to a just-in-time (JIT) compiler, which returns compiled and Python-wrapped ufc objects:
a ufc::finite_element and a ufc::dofmap. These two objects, together with the mesh, are used

Chapter 10. DOLFIN: a C++/Python finite element library 219

to instantiate a cpp.FunctionSpace. The following pseudo code illustrates the instantiation of a
FunctionSpace from the Python interface:

Python code
class FunctionSpace(cpp.FunctionSpace):

def __init__(self, mesh, family, degree):

Figure out the domain from the mesh topology

if mesh.topology().dim() == 2:

domain = ufl.triangle
else:

domain = ufl.tetrahedron

Create the UFL FiniteElement

self.ufl_element = ufl.FiniteElement(family, domain, degree)

JIT compile and instantiate the UFC classes

ufc_element, ufc_dofmap = jit(self.ufl_element)

Instantiate DOLFIN classes and finally the FunctionSpace

dolfin_element = cpp.FiniteElement(ufc_element)
dolfin_dofmap = cpp.DofMap(ufc_dofmap, mesh)

cpp.FunctionSpace.__init__(self, mesh, dolfin_element, dolfin_dofmap)

Constructing arguments (trial and test functions). The ufl.Argument class (the base class of
ufl.TrialFunction and ufl.TestFunction) is subclassed in the Python interface. Instead of using a
ufl.FiniteElement to instantiate the classes, a DOLFIN FunctionSpace is used:

Python code
u = TrialFunction(V)

v = TestFunction(V)

The ufl.Argument base class is instantiated in the subclassed constructor by extracting the
ufl.FiniteElement from the passed FunctionSpace, which is illustrated by the following pseudo
code:

Python code
class Argument(ufl.Argument):

def __init__(self, V, index=None):

ufl.Argument.__init__(self, V.ufl_element, index)

self.V = V

The TrialFunction and TestFunction are then defined using the subclassed Argument class:

Python code
def TrialFunction(V):

return Argument(V, -1)

def TestFunction(V):

return Argument(V, -2)

Coefficients, functions and expressions. When a UFL form is defined using a Coefficient, a user must
associate with the form either a discrete finite element Function or a user-defined Expression before
the form is assembled. In the C++ interface of DOLFIN, a user needs to explicitly carry out this
association (L.f = f). In the Python interface of DOLFIN, the ufl.Coefficient class is combined

220 Chapter 10. DOLFIN: a C++/Python finite element library

with the DOLFIN Function and Expression classes, and the association between the coefficient as
a symbol in the form expression (Coefficient) and its value (Function or Expression) is automatic.
A user can therefore assemble a form defined using instances of these combined classes directly:

Python code
class Source(Expression):

def eval(self, values, x):

values[0] = sin(x[0])

v = TestFunction(V)

f = Source()

L = f*v*dx

b = assemble(L)

The Function class in the Python interface inherits from both ufl.Coefficient and cpp.Function,
as illustrated by the following pseudo code:

Python code
class Function(ufl.Coefficient, cpp.Function):

def __init__(self, V):

ufl.Coefficient.__init__(self, V.ufl_element)

cpp.Function().__init__(self, V)

The actual constructor also includes logic to instantiate a Function from other objects. A more
elaborate logic is also included to handle access to subfunctions.

A user-defined Expression can be created in two different ways: (i) as a pure Python Expression;
or (ii) as a JIT compiled Expression. A pure Python Expression is an object instantiated from a
subclass of Expression in Python. The Source class above is an example of this. Pseudo code for the
constructor of the Expression class is similar to that for the Function class:

Python code
class Expression(ufl.Coefficient, cpp.Expression):

def __init__(self, element=None):

if element is None:

element = auto_select_element(self.value_shape())

ufl.Coefficient.__init__(self, element)
cpp.Expression(element.value_shape())

If the ufl.FiniteElement is not defined by the user, DOLFIN will automatically choose an element
using the auto_select_element function. This function takes the value shape of the Expression

as argument. This has to be supplied by the user for vector- or tensor-valued Expressions, by
overloading the value_shape method. The base class cpp.Expression is initialized using the value
shape of the ufl.FiniteElement.

The actual code is considerably more complex than indicated above, as the same class, Expression,
is used to handle both JIT compiled and pure Python Expressions. Also note that the actual subclass
is eventually generated by a metaclass in Python, which makes it possible to include sanity checks for
the declared subclass.

The cpp.Expression class is wrapped by a so-called director class in the SWIG-generated C++ layer.
This means that the whole Python class is wrapped by a C++ subclass of dolfin::Expression. Each
virtual method of the C++ base class is implemented by the SWIG-generated subclass in C++. These
methods call the Python version of the method, which the user eventually implements by subclassing
cpp.Expression in Python.

Chapter 10. DOLFIN: a C++/Python finite element library 221

Just-in-time compilation of expressions. The performance of a pure Python Expression may be sub-
optimal because of the callback from C++ to Python each time the Expression is evaluated. To
circumvent this, a user can instead subclass the C++ version of Expression using a JIT compiled
Expression. Because the subclass is implemented in C++, it will not involve any callbacks to Python,
and can therefore be significantly faster than a pure Python Expression. A JIT compiled Expression

is generated by passing a string of C++ code to the Expression constructor:

Python code
e = Expression("sin(x[0])")

The passed string is used to generate a subclass of dolfin::Expression in C++, where it is inlined
into an overloaded eval method. The final code is JIT compiled and wrapped to Python using
Instant (see Chapter 14). The generated Python class is then imported into Python. The class is not
yet instantiated, as the final JIT compiled Expression also needs to inherit from ufl.Coefficient.
To accomplish this, we dynamically create a class which inherits from both the generated class and
ufl.Coefficient.

Classes in Python can be created during run-time by using the type function. The logic of creating
a class and returning an instance of that class is handled in the __new__ method of dolfin.Expression,
as illustrated by the following pseudo code:

Python code
class Expression(object):

def __new__(cls, cppcode=None):

if cls.__name__ != "Expression":

return object.__new__(cls)

cpp_base = compile_expressions(cppcode)

def __init__(self, cppcode):
...

generated_class = type("CompiledExpression",

(Expression, ufl.Coefficient, cpp_base),

{"__init__": __init__})

return generated_class()

The __new__ method is called when a JIT compiled Expression is instantiated. However, it will
also be called when a pure Python subclass of Expression is instantiated during initialization of the
base-class. We handle the two different cases by checking the name of the instantiated class. If the
name of the class is not "Expression", then the call originates from the instantiation of a subclass
of Expression. When a pure Python Expression is instantiated, like the Source instance in the code
example above, the __new__ method of object is called and the instantiated object is returned. In
the other case, when a JIT compiled Expression is instantiated, we need to generate the JIT compiled
base class from the passed Python string, as explained above. This is done by calling the function
compile_expressions. Before type is called to generate the final class, an __init__ method for the
class is defined. This method initiates the new object by automatically selecting the element type
and setting dimensions for the created Expression. This procedure is similar to what is done for the
Python derived Expression class. Finally, we construct the new class which inherits the JIT compiled
class and ufl.Coefficient by calling type.

The type function takes three arguments: the name of the class ("CompiledExpression"), the bases
of the class (Expression, ufl.Coefficient, cpp_base), and a dict defining the interface (methods
and attributes) of the class. The only new method or attribute we provide to the generated class is
the __init__ method. After the class is generated, we instantiate it and the object is returned to the
user.

222 Chapter 10. DOLFIN: a C++/Python finite element library

Assembly of UFL forms. The assemble function in the Python interface of DOLFIN enables a user to
directly assemble a declared UFL form:

Python code
mesh = UnitSquare(8, 8)

V = FunctionSpace(mesh, "Lagrange", 1)

u = TrialFunction(V)
v = TestFunction(V)

c = Expression("sin(x[0])")

a = c*dot(grad(u), grad(v))*dx

A = assemble(a)

The assemble function is a thin wrapper layer around the wrapped cpp.assemble function. The
following pseudo code illustrates what happens in this layer:

Python code
def assemble(form, tensor=None, mesh=None):

dolfin_form = Form(form)

if tensor is None:

tensor = create_tensor(dolfin_form.rank())
if mesh is not None:

dolfin_form.set_mesh(mesh)

cpp.assemble(dolfin_form, tensor)

return tensor

Here, form is a ufl.Form, which is used to generate a dolfin.Form, as explained below. In addition to
the form argument, a user can choose to provide a tensor and/or a mesh. If a tensor is not provided,
one will automatically be generated by the create_tensor function. The optional mesh is needed if
the form does not contain any Arguments, or Functions; for example when a functional containing
only Expressions is assembled. Note that the length of the above signature has been shortened.
Other arguments to the assemble function exist but are skipped here for clarity.

The following pseudo code demonstrates what happens in the constructor of dolfin.Form, where
the base class cpp.Form is initialized from a ufl.Form:

Python code
class Form(cpp.Form):

def __init__(self, form):

compiled_form, form_data = jit(form)

function_spaces = extract_function_spaces(form_data)

coefficients = extract_coefficients(form_data)

cpp.Form.__init__(self, compiled_form, function_spaces, coefficients)

The form is first passed to the dolfin.jit function, which calls the registered form compiler to
generate code and JIT compile it. There are presently two form compilers that can be chosen: "ffc"
and "sfc" (see Chapters 11 and 15). Each one of these form compilers defines its own jit function,
which eventually will receive the call. The form compiler can be chosen by setting:

Python code
parameters["form_compiler"]["name"] = "sfc"

The default form compiler is "ffc". The jit function of the form compiler returns the JIT compiled
ufc::form together with a ufl.FormData object. The latter is a data structure containing metadata

Chapter 10. DOLFIN: a C++/Python finite element library 223

for the ufl.form, which is used to extract the function spaces and coefficients that are needed to
instantiate a cpp.Form. The extraction of these data is handled by the extract_function_spaces and
the extract_coefficients functions.

10.4.4 NumPy and SciPy integration

The values of the Matrix and Vector classes in the Python interface of DOLFIN can be viewed as
NumPy arrays. This is done by calling the array method of the vector or matrix:

Python code

A = assemble(a)
AA = A.array()

Here, A is a matrix assembled from the form a. The NumPy array AA is a dense structure and all
values are copied from the original data. The array function can be called on a distributed matrix or
vector, in which case it will return the locally stored values.

Direct access to linear algebra data. Direct access to the underlying data is possible for the uBLAS and
MTL4 linear algebra backends. A NumPy array view into the data will be returned by the method
data:

Python code
parameters["linear_algebra_backend"] = "uBLAS"

b = assemble(L)

bb = b.data()

Here, b is a uBLAS vector and bb is a NumPy view into the data of b. Any changes to bb will directly
affect b. A similar method exists for matrices:

Python code
parameters["linear_algebra_backend"] = "MTL4"

A = assemble(a)

rows, columns, values = A.data()

The data is returned in a compressed row storage format as the three NumPy arrays rows, columns
and values. These are also views of the data that represent A. Any changes in values will directly
result in a corresponding change in A.

Sparse matrix and SciPy integration. The rows, columns and values data structures can be used to
instantiate a csr_matrix from the scipy.sparse module (Jones et al., 2009):

Python code
from scipy.sparse import csr_matrix

rows, columns, values = A.data()

csr = csr_matrix((values, columns, rows))

The csr_matrix can then be used with other Python modules that support sparse matrices, such as
the scipy.sparse module and pyamg, which is an algebraic multigrid solver (Bell et al., 2011).

Slicing vectors. NumPy provides a convenient slicing interface for NumPy arrays. The Python in-
terface of DOLFIN also provides such an interface for vectors (see Chapter 19 for details of the
implementation). A slice can be used to access and set data in a vector:

224 Chapter 10. DOLFIN: a C++/Python finite element library

Python code
Create copy of vector

b_copy = b[:]

Slice assignment (c can be a scalar, a DOLFIN vector or a NumPy array)

b[:] = c

Set negative values to zero

b[b < 0] = 0

Extract every second value
b2 = b[::2]

A difference between a NumPy slice and a slice of a DOLFIN vector is that a slice of a NumPy
array provides a view into the original array, whereas in DOLFIN we provide a copy. A list/tuple of
integers or a NumPy array can also be used to both access and set data in a vector:

Python code
b1 = b[[0, 4, 7, 10]]

b2 = b[array((0, 4, 7, 10))]

10.5 Historical notes

The first public version of DOLFIN, version 0.2.0, was released in 2002. At that time, DOLFIN
was a self-contained C++ library with minimal external dependencies. All functionality was then
implemented as part of DOLFIN itself, including linear algebra and finite element form evaluation.
Although only piecewise linear elements were supported, DOLFIN provided rudimentary automated
finite element assembly of variational forms. The form language was implemented by C++ operator
overloading. For an overview of the development of the FEniCS form language and an example of
the early form language implemented in DOLFIN, see Chapter 11.

Later, parts of the functionality of DOLFIN have been moved to either external libraries or other
FEniCS components. In 2003, the FEniCS project was born and shortly after, with the release of
version 0.5.0 in 2004, the form evaluation system in DOLFIN was replaced by an automated code
generation system based on FFC and FIAT. In the following year, the linear algebra was replaced
by wrappers for PETSc data structures and solvers. At this time, the DOLFIN Python interface
(PyDOLFIN) was introduced. Since then, the Python interface has developed from a simple auto-
generated wrapper layer for the DOLFIN C++ functionality to a mature problem-solving environ-
ment with support for just-in-time compilation of variational forms and integration with external
Python modules like NumPy.

In 2006, the DOLFIN mesh data structures were simplified and reimplemented to improve ef-
ficiency and expand functionality. The new data structures were based on a light-weight object-
oriented layer on top of an underlying data storage by plain contiguous C/C++ arrays and improved
the efficiency by orders of magnitude over the old implementation, which was based on a fully object-
oriented implementation with local storage of all mesh entities like cells and vertices. The first release
of DOLFIN with the new mesh library was version 0.6.2.

In 2007, the UFC interface was introduced and the FFC form language was integrated with the
DOLFIN Python interface. Just-in-time compilation was also introduced. The following year, the
linear algebra interfaces of DOLFIN were redesigned to allow flexible handling of multiple linear
algebra backends. In 2009, a major milestone was reached when parallel computing was introduced
in DOLFIN.

Chapter 10. DOLFIN: a C++/Python finite element library 225

Over the years, DOLFIN has undergone a large number of changes to its design, interface and
implementation. However, since the release of DOLFIN 0.9.0, which introduced a redesign of the
DOLFIN function classes based on the new function space abstraction, only minor changes have been
made to the interface. Since the release of version 0.9.0, most work has gone into refining the interface,
implementing missing functionality, fixing bugs and improving documentation, in anticipation of the
first stable release of DOLFIN, version 1.0.

http://www.springer.com/978-3-642-23098-1

