1 A FEniCS tutorial

By Hans Petter Langtangen

This chapter presents a FEniCS tutorial to get new users quickly up and running with solving
differential equations. FEniCS can be programmed both in C++ and Python, but this tutorial focuses
exclusively on Python programming since this is the simplest approach to exploring FEniCS for
beginners and it does not compromise on performance. After having digested the examples in this
tutorial, the reader should be able to learn more from the FEniCS documentation and from the other
chapters in this book.

1.1 Fundamentals

FEniCS is a user-friendly tool for solving partial differential equations (PDEs). The goal of this
tutorial is to get you started with FEniCS through a series of simple examples that demonstrate

¢ how to define the PDE problem in terms of a variational problem,

* how to define simple domains,

¢ how to deal with Dirichlet, Neumann, and Robin conditions,

¢ how to deal with variable coefficients,

¢ how to deal with domains built of several materials (subdomains),

* how to compute derived quantities like the flux vector field or a functional of the solution,
* how to quickly visualize the mesh, the solution, the flux, etc.,

* how to solve nonlinear PDEs in various ways,

* how to deal with time-dependent PDEs,

* how to set parameters governing solution methods for linear systems,

¢ how to create domains of more complex shape.

The mathematics of the illustrations is kept simple to better focus on FEniCS functionality and syntax.
This means that we mostly use the Poisson equation and the time-dependent diffusion equation
as model problems, often with input data adjusted such that we get a very simple solution that
can be exactly reproduced by any standard finite element method over a uniform, structured mesh.
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This latter property greatly simplifies the verification of the implementations. Occasionally we insert
a physically more relevant example to remind the reader that changing the PDE and boundary
conditions to something more real might often be a trivial task.

FEniCS may seem to require a thorough understanding of the abstract mathematical version of the
finite element method as well as familiarity with the Python programming language. Nevertheless, it
turns out that many are able to pick up the fundamentals of finite elements and Python programming
as they go along with this tutorial. Simply keep on reading and try out the examples. You will be
amazed of how easy it is to solve PDEs with FEniCS!

Reading this tutorial obviously requires access to a machine where the FEniCS software is in-
stalled. Section 1.7.5 explains briefly how to install the necessary tools. All the examples discussed
in the following are available as executable Python source code files in a directory tree.

1.1.1 The Poisson equation

Our first example regards the Poisson problem,

—Au=f inQ,

1.1
u=1ug onadQ (L.1)

Here, u = u(x) is the unknown function, f = f(x) is a prescribed function, A is the Laplace
operator (also often written as V2), Q is the spatial domain, and 9Q is the boundary of Q. A
stationary PDE like this, together with a complete set of boundary conditions, constitute a boundary-
value problem, which must be precisely stated before it makes sense to start solving it with FEniCS.

In two space dimensions with coordinates x and y, we can write out the Poisson equation (1.1) as

?u  u
—W—a—yz:f(x/]/)- (1.2)

The unknown u is now a function of two variables, u(x, y), defined over a two-dimensional domain
Q.

The Poisson equation (1.1) arises in numerous physical contexts, including heat conduction, elec-
trostatics, diffusion of substances, twisting of elastic rods, inviscid fluid flow, and water waves. More-
over, the equation appears in numerical splitting strategies of more complicated systems of PDEs, in
particular the Navier-Stokes equations.

Solving a physical problem with FEniCS consists of the following steps:

1. Identify the PDE and its boundary conditions.
2. Reformulate the PDE problem as a variational problem.

3. Make a Python program where the formulas in the variational problem are coded, along with
definitions of input data such as f, up, and a mesh for (2 in (1.1).

4. Add statements in the program for solving the variational problem, computing derived quanti-
ties such as Vu, and visualizing the results.

We shall now go through steps 2—4 in detail. The key feature of FEniCS is that steps 3 and 4 result
in fairly short code, while most other software frameworks for PDEs require much more code and
more technically difficult programming.

1.1.2 Variational formulation

FEniCS makes it easy to solve PDEs if finite elements are used for discretization in space and the
problem is expressed as a variational problem. Readers who are not familiar with variational problems
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will get a brief introduction to the topic in this tutorial, and in the forthcoming chapter, but getting
and reading a proper book on the finite element method in addition is encouraged. Section 1.7.6
contains a list of some suitable books.

The core of the recipe for turning a PDE into a variational problem is to multiply the PDE by a
function v, integrate the resulting equation over (), and perform integration by parts of terms with
second-order derivatives. The function v which multiplies the PDE is in the mathematical finite
element literature called a test function. The unknown function u to be approximated is referred to as
a trial function. The terms test and trial function are used in FEniCS programs too. Suitable function
spaces must be specified for the test and trial functions. For standard PDEs arising in physics and
mechanics such spaces are well known.

In the present case, we first multiply the Poisson equation by the test function v and integrate:

- /Q(Au)v dx = /va dx. (1.3)

Then we apply integration by parts to the integrand with second-order derivatives:

—./('E(Au)vdx = /QVu -Vodx — /BQ g—Zvds, (1.4)

where du/on is the derivative of u in the outward normal direction on the boundary. The test
function v is required to vanish on the parts of the boundary where u is known, which in the present
problem implies that v = 0 on the whole boundary d(). The second term on the right-hand side of
(1.4) therefore vanishes. From (1.3) and (1.4) it follows that

/QVu-Vvdx:/vadx. (1.5)

This equation is supposed to hold for all v in some function space V. The trial function u lies in some
(possibly different) function space V. We refer to (1.5) as the weak form of the original boundary-value
problem (1.1).

The proper statement of our variational problem now goes as follows: find u € V such that

/Vu-Vvdx:/fvdx VoeV. (1.6)
0 0

The trial and test spaces V and V are in the present problem defined as

V ={ve H(Q): v = ug on 90},

N (1.7)
V={ve HY(Q):v=0o0n00}.

In short, H!(Q) is the mathematically well-known Sobolev space containing functions v such that v?
and |Vo|? have finite integrals over (). The solution of the underlying PDE must lie in a function
space where also the derivatives are continuous, but the Sobolev space H'(Q) allows functions with
discontinuous derivatives. This weaker continuity requirement of u in the variational statement (1.6),
caused by the integration by parts, has great practical consequences when it comes to constructing
finite elements.

To solve the Poisson equation numerically, we need to transform the continuous variational prob-
lem (1.6) to a discrete variational problem. This is done by introducing finite-dimensional test and
trial spaces, often denoted as V;, C V and V, C V. The discrete variational problem reads: find
uy € Vi, C V such that

/ Vuy, - Vodx = / fodx YoeV,cV. (1.8)
Ja Jao
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The choice of V}, and V, follows directly from the kind of finite elements we want to apply in our
problem. For example, choosing the well-known linear triangular element with three nodes implies
that Vj, and V}, are the spaces of all piecewise linear functions over a mesh of triangles, where the
functions in V}, are zero on the boundary and those in Vj, equal 1y on the boundary.

The mathematics literature on variational problems writes u;, for the solution of the discrete prob-
lem and u for the solution of the continuous problem. To obtain (almost) a one-to-one relationship
between the mathematical formulation of a problem and the corresponding FEniCS program, we
shall use u for the solution of the discrete problem and u, for the exact solution of the continuous
problem, if we need to explicitly distinguish between the two. In most cases, we will introduce the
PDE problem with u as unknown, derive a variational equation a(u,v) = L(v) withu € Vand v € V,
and then simply discretize the problem by saying that we choose finite-dimensional spaces for V
and V. This restriction of V implies that u becomes a discrete finite element function. In practice
this means that we turn our PDE problem into a continuous variational problem, create a mesh and
specify an element type, and then let V correspond to this mesh and element choice. Depending
upon whether V is infinite- or finite-dimensional, u# will be the exact or approximate solution.

It turns out to be convenient to introduce a unified notation for a linear weak form like (1.8):

a(u,v) = L(v). (1.9)

In the present problem we have that
a(u,v) = /Q Vu-Vodx, (1.10)
L(v) = /va dx. (1.11)

From the mathematics literature, a(u, v) is known as a bilinear form and L(v) as a linear form. We shall
in every linear problem we solve identify the terms with the unknown u and collect them in a(u, v),
and similarly collect all terms with only known functions in L(v). The formulas for a4 and L are then
coded directly in the program.

To summarize, before making a FEniCS program for solving a PDE, we must first perform two
steps:

1. Turn the PDE problem into a discrete variational problem: find u € V such that

a(u,v) =L(v) VYoeV. (1.12)

2. Specify the choice of spaces (V and V), which means specifying the mesh and type of finite
elements.

1.1.3 Implementation

The test problem so far has a general domain () and general functions uy and f. For our first
implementation we must decide on specific choices of ), 1y, and f. It will be wise to construct a
specific problem where we can easily check that the computed solution is correct. Let us start with
specifying an exact solution

te(x,y) = 14 x% 4 24 (1.13)

on some 2D domain. By inserting (1.13) in our Poisson problem, we find that ue(x, y) is a solution if

f(x’y):_6/ uo(x/y)=Me(X,y):1—|—x2—|—2y2,
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regardless of the shape of the domain. We choose here, for simplicity, the domain to be the unit
square,
Q=10,1] x[0,1].

The reason for specifying the solution (1.13) is that the finite element method, with a rectangular
domain uniformly partitioned into linear triangular elements, will exactly reproduce a second-order
polynomial at the vertices of the cells, regardless of the size of the elements. This property allows
us to verify the implementation by comparing the computed solution, called u in this document
(except when setting up the PDE problem), with the exact solution, denoted by u.: u should equal
u to machine precision at the nodes. Test problems with this property will be frequently constructed
throughout this tutorial.

A FEniCS program for solving the Poisson equation in 2D with the given choices of ug, f, and Q)
may look as follows:

Python code

from dolfin import x*

# Create mesh and define function space
mesh = UnitSquare(6, 4)
V = FunctionSpace(mesh, "Lagrange", 1)

# Define boundary conditions
ud = Expression("l + x[0]*x[0] + 2*x[1]*x[1]")

def u0@_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u@, ub®_boundary)

Define variational problem
TrialFunction(V)

TestFunction(V)

Constant(-6.0)

inner(nabla_grad(u), nabla_grad(v))=*dx
frvxdx

#
u
v
f
a
L

# Compute solution
u = Function(V)
solve(a == L, u, bc)

# Plot solution and mesh
plot(u)
plot(mesh)

# Dump solution to file in VTK format
file = File("poisson.pvd")
file << u

# Hold plot
interactive()

The complete code can be found in the file d1_p2D.py in the directory stationary/poisson.

We shall now dissect this FEniCS program in detail. The program is written in the Python pro-
gramming language. You may either take a quick look at a Python tutorial (The Python Tutorial)
to pick up the basics of Python if you are unfamiliar with the language, or you may learn enough
Python as you go along with the examples in the present tutorial. The latter strategy has proven to
work for many newcomers to FEniCS. Section 1.7.7 lists some relevant Python books.
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The listed FEniCS program defines a finite element mesh, the discrete function spaces V and V
corresponding to this mesh and the element type, boundary conditions for u (the function ug), a(u, v),
and L(v). Thereafter, the unknown trial function u is computed. Then we can investigate u visually
or analyze the computed values.

The first line in the program,

Python code

from dolfin import x*

imports the key classes UnitSquare, FunctionSpace, Function, and so forth, from the DOLFIN library.
All FEniCS programs for solving PDEs by the finite element method normally start with this line.
DOLFIN is a software library with efficient and convenient C++ classes for finite element computing,
and dolfin is a Python package providing access to this C++ library from Python programs. You
can think of FEniCS as an umbrella, or project name, for a set of computational components, where
DOLFIN is one important component for writing finite element programs. The dolfin package ap-
plies other components in the FEniCS suite under the hood, but newcomers to FEniCS programming
do not need to care about this.
The statement

Python code
mesh = UnitSquare(6, 4)

defines a uniform finite element mesh over the unit square [0,1] x [0,1]. The mesh consists of cells,
which are triangles with straight sides. The parameters 6 and 4 tell that the square is first divided into
6 x 4 rectangles, and then each rectangle is divided into two triangles. The total number of triangles
then becomes 48. The total number of vertices in this mesh is 7 - 5 = 35. DOLFIN offers some classes
for creating meshes over very simple geometries. For domains of more complicated shape one needs
to use a separate preprocessor program to create the mesh (see Section 1.4). The FEniCS program will
then read the mesh from file.
Having a mesh, we can define a discrete function space V over this mesh:

Python code

V = FunctionSpace(mesh, "Lagrange", 1)

The second argument reflects the type of element, while the third argument is the degree of the basis
functions on the element. The type of element is here "Lagrange", implying the standard Lagrange
family of elements (some FEniCS programs use "CG", for Continuous Galerkin, as a synonym for
"Lagrange"). With degree 1, we simply get the standard linear Lagrange element, which is a triangle
with nodes at the three vertices. Some finite element practitioners refer to this element as the “linear
triangle”. The computed u will be continuous and linearly varying in x and y over each cell in the
mesh. Higher-degree polynomial approximations over each cell are trivially obtained by increasing
the third parameter in FunctionSpace. Changing the second parameter to "DG" creates a function
space for discontinuous Galerkin methods.

In mathematics, we distinguish between the trial and test spaces V and V. The only difference
in the present problem is the boundary conditions. In FEniCS we do not specify the boundary
conditions as part of the function space, so it is sufficient to work with one common space V for the
test and trial functions in the program:

Python code

TrialFunction(V)
TestFunction(V)
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The next step is to specify the boundary condition: u = ug on d€). This is done by

Python code
bc = DirichletBC(V, u@, u®_boundary)

where u0 is an instance holding the uy values, and u6_boundary is a function (or object) describing
whether a point lies on the boundary where u is specified.

Boundary conditions of the type u = u are known as Dirichlet conditions, and also as essential
boundary conditions in a finite element context. Naturally, the name of the DOLFIN class holding the
information about Dirichlet boundary conditions is DirichletBC.

The u0 variable refers to an Expression object, which is used to represent a mathematical function.
The typical construction is

Python code

ud = Expression(formula)

where formula is a string containing the mathematical expression. This formula is written with
C++ syntax (the expression is automatically turned into an efficient, compiled C++ function, see
Section 1.7.3 and Chapter 10 for details on the syntax). The independent variables in the function
expression are supposed to be available as a point vector x, where the first element x[0] corresponds
to the x coordinate, the second element x[1] to the y coordinate, and (in a three-dimensional problem)
x[2] to the z coordinate. With our choice of ug(x,y) = 1+ x? + 2y?, the formula string must be
written as 1 + x[0]*x[0] + 2xx[1]*x[1]:

Python code

ud = Expression("1l + x[0]*x[0] + 2xx[1]xx[1]")

The information about where to apply the u@ function as boundary condition is coded in a func-
tion ud_boundary:

Python code

def u0@_boundary(x, on_boundary):
return on_boundary

A function like u@_boundary for marking the boundary must return a boolean value: True if the given
point x lies on the Dirichlet boundary and False otherwise. The argument on_boundary is supplied
by DOLFIN and equals True if x is on the physical boundary of the mesh. In the present case, where
we are supposed to return True for all points on the boundary, we can just return the supplied value
of on_boundary. The u6_boundary function will be called for every discrete point in the mesh, which
allows us to have boundaries where u are known also inside the domain, if desired.

One can also omit the on_boundary argument, but in that case we need to test on the value of the
coordinates in x:

Python code

def u0@_boundary(x):
return x[0] == 0 or x[1] == 0 or x[0] == 1 or x[1] ==

As for the formula in Expression objects, x in the u6_boundary function represents a point in space
with coordinates x[0], x[1], etc. Comparing floating-point values using an exact match test with
== is not good programming practice, because small round-off errors in the computations of the x
values could make a test x[0] == 1 become false even though x lies on the boundary. A better test is
to check for equality with a tolerance:
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Python code

def u@_boundary(x):
tol = 1E-15
return abs(x[0]) < tol or \
abs(x[1]) < tol or \
1
1

abs(x[0 ) < tol or \

1
abs(x[1 1) < tol

Before defining a(u,v) and L(v) we have to specify the f function:

Python code

f = Expression("-6")
When f is constant over the domain, f can be more efficiently represented as a Constant object:

Python code
f = Constant(-6.0)

Now we have all the objects we need in order to specify this problem’s a(u,v) and L(v):

Python code

a
L

inner(nabla_grad(u), nabla_grad(v))=*dx
frvxdx

In essence, these two lines specify the PDE to be solved. Note the very close correspondence between
the Python syntax and the mathematical formulas Vu - Vodx and fvdx. This is a key strength of
FEniCS: the formulas in the variational formulation translate directly to very similar Python code, a
feature that makes it easy to specify PDE problems with lots of PDEs and complicated terms in the
equations. The language used to express weak forms is called UFL (Unified Form Language) and is
an integral part of FEniCS.

Instead of nabla_grad we could also just have written grad in the examples in this tutorial. How-
ever, when taking gradients of vector fields, grad and nabla_grad differ. The latter is consistent
with the tensor algebra commonly used to derive vector and tensor PDEs, where V acts as a vector
operator, and therefore this author prefers to always use nabla_grad.

Having a and L defined, and information about essential (Dirichlet) boundary conditions in bc,
we can compute the solution, a finite element function u, by

Python code

u = Function(V)
solve(a == L, u, bc)

Some prefer to replace a and L by an equation variable, which is accomplished by this equivalent
code:

Python code

equation = inner(nabla_grad(u), nabla_grad(v))x*dx == fxv*dx
u = Function(V)
solve(equation, u, bc)

Note that we first defined the variable u as a TrialFunction and used it to represent the unknown
in the form a. Thereafter, we redefined u to be a Function object representing the solution; that is, the
computed finite element function u. This redefinition of the variable u is possible in Python and often
done in FEniCS applications. The two types of objects that u refers to are equal from a mathematical
point of view, and hence it is natural to use the same variable name for both objects. In a program,
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however, TrialFunction objects must always be used for the unknowns in the problem specification
(the form a), while Function objects must be used for quantities that are computed (known).
The simplest way of quickly looking at u and the mesh is to say

Python code

plot(u)
plot(mesh)
interactive()

The interactive() call is necessary for the plot to remain on the screen. With the left, middle, and
right mouse buttons you can rotate, translate, and zoom (respectively) the plotted surface to better
examine what the solution looks like. Figures 1.1 and 1.2 display the resulting u function and the
finite element mesh, respectively.

It is also possible to dump the computed solution to file, e.g., in the VIK format:

Python code

file = File("poisson.pvd")
file << u

Figure 1.1: Plot of the solution
in the first FEniCS example.
(A bounding box around the

»

mesh is added by pressing o in /

the plot window, and the /

mouse buttons are then used to /

rotate and move the plot, see 1.00 ’-75/_—159 > .25 4.00

Section 1.1.8.) B R

/
/V

/
/

Figure 1.2: Plot of the mesh in
the first FEniCS example.
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The poisson.pvd file can now be loaded into any front-end to VTK, say ParaView or Vislt. The
plot function is intended for quick examination of the solution during program development. More
in-depth visual investigations of finite element solutions will normally benefit from using highly
professional tools such as ParaView and Vislt.

The next three sections deal with some technicalities about specifying the solution method for
linear systems (so that you can solve large problems) and examining array data from the computed
solution (so that you can check that the program is correct). These technicalities are scattered around
in forthcoming programs. However, the impatient reader who is more interested in seeing the pre-
vious program being adapted to a real physical problem, and play around with some interesting
visualizations, can safely jump to Section 1.1.7. Information in the intermediate sections can be
studied on demand.

1.1.4 Controlling the solution process

Sparse LU decomposition (Gaussian elimination) is used by default to solve linear systems of equa-
tions in FEniCS programs. This is a very robust and recommended method for a few thousand
unknowns in the equation system, and may hence be the method of choice in many 2D and smaller
3D problems. However, sparse LU decomposition becomes slow and memory demanding in large
problems. This fact forces the use of iterative methods, which are faster and require much less
memory.

Preconditioned Krylov solvers is a type of popular iterative methods that are easily accessible
in FEniCS programs. The Poisson equation results in a symmetric, positive definite coefficient ma-
trix, for which the optimal Krylov solver is the Conjugate Gradient (CG) method. Incomplete LU
factorization (ILU) is a popular and robust all-round preconditioner, so let us try the CG-ILU pair:

Python code

solve(a == L, u, bc)
solver_parameters={"linear_solver": "cg",
"preconditioner": "ilu"})
# Alternative syntax
solve(a == L, u, bc,
solver_parameters=dict(linear_solver="cg",
preconditioner="ilu"))

Section 1.7.4 lists the most popular choices of Krylov solvers and preconditioners available in FEniCS.

The actual CG and ILU implementations that are brought into action depends on the choice of
linear algebra package. FEniCS interfaces several linear algebra packages, called linear algebra backends
in FEniCS terminology. PETSc is the default choice if DOLFIN is compiled with PETSc, otherwise
uBLAS. Epetra (Trilinos) and MTL4 are two other supported backends. Which backend to apply can
be controlled by setting

Python code

parameters["linear_algebra_backend"] = backendname

where backendname is a string, either "PETSc", "uBLAS", "Epetra", or "MTL4". All these backends offer
high-quality implementations of both iterative and direct solvers for linear systems of equations.

A common platform for FEniCS users is Ubuntu Linux. The FEniCS distribution for Ubuntu
contains PETSc, making this package the default linear algebra backend. The default solver is sparse
LU decomposition ("lu"), and the actual software that is called is then the sparse LU solver from
UMFPACK (which PETSc has an interface to).
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We will normally like to control the tolerance in the stopping criterion and the maximum number
of iterations when running an iterative method. Such parameters can be set by accessing the global
parameter database, which is called parameters and behaves as a nested dictionary. Write

Python code

info(parameters, True)

to list all parameters and their default values in the database. The nesting of parameter sets is indi-
cated through indentation in the output from info. According to this output, the relevant parameter
set is named "krylov_solver", and the parameters are set like this:

Python code

prm = parameters["krylov_solver"] # short form
prm["absolute tolerance"] = 1E-10
prm["relative_tolerance"] = 1lE-6
prm["maximum_iterations"] 1000

Stopping criteria for Krylov solvers usually involve the norm of the residual, which must be smaller
than the absolute tolerance parameter or smaller than the relative tolerance parameter times the initial
residual.

To see the number of actual iterations to reach the stopping criterion, we can insert

Python code

set_log_level(PROGRESS)
# or
set_log_level(DEBUG)

A message with the equation system size, solver type, and number of iterations arises from specifying
the argument PROGRESS, while DEBUG results in more information, including CPU time spent in the
various parts of the matrix assembly and solve process.

The complete solution process with control of the solver parameters now contains the statements

Python code

prm = parameters["krylov_solver"] # short form
prm["absolute_tolerance"] = 1E-10

prm["relative tolerance"] = 1E-6
prm["maximum_iterations"] = 1000
set_log_level(PROGRESS)
solve(a == L, u, bc,
solver_parameters={"linear_solver": "cg",
"preconditioner": "ilu"})

The demo program d2_p2D.py in the stationary/poisson directory incorporates the above shown
control of the linear solver and precnditioner, but is otherwise similar to the previous d1_p2D.py
program.

We remark that default values for the global parameter database can be defined in an XML file,
see the example file dolfin_parameters.xml in the directory stationary/poisson. If such a file is
found in the directory where a FEniCS program is run, this file is read and used to initialize the
parameters object. Otherwise, the file .config/fenics/dolfin_parameters.xml in the user’s home
directory is read, if it exists. The XML file can also be in gzip’ed form with the extension .xml.gz.
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1.1.5 Linear variational problem and solver objects

The solve(a == L, u, bc) callis just a compact syntax alternative to a slightly more comprehensive
specification of the variational equation and the solution of the associated linear system. This alter-
native syntax is used in a lot of FEniCS applications and will also be used later in this tutorial, so we
show it already now:

Python code

u = Function(V)

problem = LinearVariationalProblem(a, L, u, bc)
solver = LinearVariationalSolver(problem)
solver.solve()

Many objects have an attribute parameters corresponding to a parameter set in the global parameters
database, but local to the object. Here, solver.parameters play that role. Setting the CG method
with ILU preconditiong as solution method and specifying solver-specific parameters can be done
like this:

Python code

solver.parameters["linear_solver"] = "cg"
solver.parameters["preconditioner"] = "ilu"

cg_prm = solver.parameters["krylov_solver"] # short form
cg_prm["absolute_tolerance"] = 1E-7
cg_prm["relative_tolerance"] = 1lE-4
cg_prm["maximum_iterations"] = 1000

Calling info(solver.parameters, True) lists all the available parameter sets with default values
for each parameter. Settings in the global parameters database are propagated to parameter sets in
individual objects, with the possibility of being overwritten as done above.

The d3_p2D.py program modifies the d2_p2D.py file to incorporate objects for the variational
problem and solver.

1.1.6 Examining the discrete solution

We know that, in the particular boundary-value problem of Section 1.1.3, the computed solution
u should equal the exact solution at the vertices of the cells. An important extension of our first
program is therefore to examine the computed values of the solution, which is the focus of the
present section.

A finite element function like u is expressed as a linear combination of basis functions ¢;, spanning
the space V:

N
Y Ujg;. (1.14)
j=1

By writing solve(a == L, u, bc) in the program, a linear system will be formed from a4 and L, and

this system is solved for the Uj, ..., Uy values. The Uj, ..., Uy values are known as degrees of freedom
of u. For Lagrange elements (and many other element types) Uy is simply the value of u at the node
with global number k. (The nodes and cell vertices coincide for linear Lagrange elements, while for
higher-order elements there may be additional nodes at the facets and in the interior of cells.)

Having u represented as a Function object, we can either evaluate u(x) at any vertex x in the
mesh, or we can grab all the values U; directly by

Python code

u_nodal_values = u.vector()
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The result is a DOLFIN Vector object, which is basically an encapsulation of the vector object used in
the linear algebra package that is used to solve the linear system arising from the variational problem.
Since we program in Python it is convenient to convert the Vector object to a standard numpy array
for further processing:

Python code

u_array = u_nodal_values.array()

With numpy arrays we can write “MATLAB-like” code to analyze the data. Indexing is done with
square brackets: u_array[i], where the index i always starts at 0.
Mesh information can be gathered from the mesh object, e.g.,

* mesh.coordinates() returns the coordinates of the vertices as an M x d numpy array, M being
the number of vertices in the mesh and d being the number of space dimensions,

* mesh.num_cells() returns the number of cells (triangles) in the mesh,

® mesh.num_vertices() returns the number of vertices in the mesh (with our choice of linear
Lagrange elements this equals the number of nodes),

® str(mesh) returns a short “pretty print” description of the mesh, e.g.,

Output

<Mesh of topological dimension 2 (triangles) with
16 vertices and 18 cells, ordered>

and print mesh is actually the same as print str(mesh).

All mesh objects are of type Mesh so typing the command pydoc dolfin.Mesh in a terminal window
will give a list of methods! that can be called through any Mesh object. In fact, pydoc dolfin.X shows
the documentation of any DOLFIN name X.

Writing out the solution on the screen can now be done by a simple loop:

Python code

coor = mesh.coordinates()

if mesh.num_vertices() == len(u_array):
for i in range(mesh.num_vertices()):
print 'u(%89g,%8g) = %9’ % (coor[i][0], coor[i][1], u_array[i])

The beginning of the output looks like this:

Output

u( 0, 0) =1

u(0.166667, 0) = 1.02778

u(0.333333, 0) = 1.11111

u( 0.5, 0) = 1.25

u(0.666667, 0) = 1.44444

u(0.833333, 0) = 1.69444

u( 1, 0) =2

For Lagrange elements of degree higher than one, the vertices do not correspond to all the nodal
points and the if-test fails.

For verification purposes we want to compare the values of the computed u at the nodes (given
by u_array) with the exact solution u@ evaluated at the nodes. The difference between the computed

1A method in Python (and other languages supporting the class construct) is simply a function in a class.
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and exact solution should be less than a small tolerance at all the nodes. The Expression object
ud can be evaluated at any point x by calling u@(x). Specifically, u@(coor[i]) returns the value of
ud at the vertex or node with global number i. Alternatively, we can make a finite element field
u_e, representing the exact solution, whose values at the nodes are given by the u@ function. With
mathematics, e = ijil Ej¢;, where E; = uo(x]-,y]-), (x]-, y]-) being the coordinates of node number j.
This process is known as interpolation. FEniCS has a function for performing the operation:

Python code

u_e = interpolate(u@, V)
The maximum error can now be computed as

Python code

u_e_array = u_e.vector().array()
print "Max error:", numpy.abs(u_e_array - u_array).max()

The value of the error should be at the level of the machine precision (10~19).
To demonstrate the use of point evaluations of Function objects, we write out the computed u at
the center point of the domain and compare it with the exact solution:

Python code

center = (0.5, 0.5)
print "numerical u at the center point:", u(center)
print "exact u at the center point:", u@(center)

Trying a 3 x 3 mesh, the output from the previous snippet becomes

Output

numerical u at the center point: [ 1.83333333]
exact u at the center point: [ 1.75]

The discrepancy is due to the fact that the center point is not a node in this particular mesh, but a
point in the interior of a cell, and u varies linearly over the cell while u0 is a quadratic function.

We have seen how to extract the nodal values in a numpy array. If desired, we can adjust the nodal
values too. Say we want to normalize the solution such that the maximum value is 1. Then we must
divide all U; values by max{Uj, ..., Uy }. The following snippet performs the task:

Python code

max_u = u_array.max()

u_array /= max_u

u.vector()[:] = u_array

u.vector().set _local(u_array) # alternative
print u.vector().array()

That is, we manipulate u_array as desired, and then we insert this array into u’s Vector object. The
/= operator implies an in-place modification of the object on the left-hand side: all elements of the
u_array are divided by the value max_u. Alternatively, one could write u_array = u_array/max_u,
which implies creating a new array on the right-hand side and assigning this array to the name
u_array.

A call like u.vector().array() returns a copy of the data in u.vector(). One must therefore
never perform assignments like u.vector.array()[:]1 = ..., but instead extract the numpy array
(that is, a copy), manipulate it, and insert it back with u.vector()[:] = or u.set_local(...).

All the code in this subsection can be found in the file d4_p2D.py in the stationary/poisson
directory.
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1.1.7 Solving a real physical problem

Perhaps you are not particularly amazed by viewing the simple surface of u in the test problem
from Section 1.1.3. However, solving a real physical problem with a more interesting and amazing
solution on the screen is only a matter of specifying a more exciting domain, boundary condition,
and/or right-hand side f.

One possible physical problem regards the deflection D(x, y) of an elastic circular membrane with
radius R, subject to a localized perpendicular pressure force, modeled as a Gaussian function. The
appropriate PDE model is

—TAD = p(x,y) in Q= {(x,y)|x>+y> <R}, (1.15)

2 2

p(x,y) = %exp (—% (x Ux()) - % (y Uyo) ) (1.16)

Here, T is the tension in the membrane (constant), p is the external pressure load, A the amplitude
of the pressure, (xg, o) the localization of the Gaussian pressure function, and ¢ the “width” of this
function. The boundary of the membrane has no deflection, implying D = 0 as boundary condition.
For scaling and verification it is convenient to simplify the problem to find an analytical solution.

In the limit ¢ — oo, p — A/(2m0), which allows us to integrate an axi-symmetric version of the
equation in the radial coordinate r € [0,R] and obtain D(r) = (1> — R?)A/(87t¢T). This result
gives a rough estimate of the characteristic size of the deflection: |D(0)| = AR?/(87t¢T), which can

be used to scale the deflection. With R as characteristic length scale, we can derive the equivalent
dimensionless problem on the unit circle,

with

—Aw = f, (1.17)

with w = 0 on the boundary and with

F(x,y) = dexp <—% (Rx;x‘))z - % (@)j (1.18)

For notational convenience we have dropped introducing new symbols for the scaled coordinates in
(1.18). Now D is related to w through D = AR?>w/ (870 T).

Let us list the modifications of the d1_p2D.py program that are needed to solve this membrane
problem:

1. Initialize T, A, R, xg, yo, and o,

create a mesh over the unit circle,

make an expression object for the scaled pressure function f,

define the a and L formulas in the variational problem for w and compute the solution,

plot the mesh, w, and f,

S T

write out the maximum real deflection D,
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Some suitable values of T, A, R, xq, Yo, and ¢ are

Python code

10.0 # tension

1.0 # pressure amplitude
= 0.3 # radius of domain
heta = 0.2

X0 = 0.6xRxcos(theta)

y0 = 0.6*xRxsin(theta)

sigma = 0.025

T
A
R
t

A mesh over the unit circle can be created by

Python code

mesh = UnitCircle(n)

where n is the typical number of elements in the radial direction.

The function f is represented by an Expression object. There are many physical parameters in
the formula for f that enter the expression string and these parameters must have their values set by
keyword arguments:

Python code

f = Expression("4xexp(-0.5%(pow((Rxx[0] - x0)/sigma, 2)) "
" -0.5%(pow( (R*x[1] - y0)/sigma, 2)))",
R=R, x0=x0, y0O=y0, sigma=sigma)

The coordinates in Expression objects must be a vector with indices 0, 1, and 2, and with the name
x. Otherwise we are free to introduce names of parameters as long as these are given default values
by keyword arguments. All the parameters initialized by keyword arguments can at any time have
their values modified. For example, we may set

Python code

f.sigma = 50
f.x0 = 0.3

It would be of interest to visualize f along with w so that we can examine the pressure force and its
response. We must then transform the formula (Expression) to a finite element function (Function).
The most natural approach is to construct a finite element function whose degrees of freedom (values
at the nodes in this case) are calculated from f. That is, we interpolate f (see Section 1.1.6):

Python code
f = interpolate(f, V)

Calling plot(f) will produce a plot of f. Note that the assignment to f destroys the previous
Expression object f, so if it is of interest to still have access to this object another name must be used
for the Function object returned by interpolate.

We need some evidence that the program works, and to this end we may use the analytical
solution listed above for the case o — co. In scaled coordinates the solution reads

w(x,y) =1-x* -y~

Practical values for an infinite o may be 50 or larger, and in such cases the program will report the
maximum deviation between the computed w and the (approximate) exact we.

Note that the variational formulation remains the same as in the program from Section 1.1.3,
except that u is replaced by w and ug = 0. The final program is found in the file membranel.py, located
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in the stationary/poisson directory, and also listed below. We have inserted capabilities for iterative
solution methods and hence large meshes (Section 1.1.4), used objects for the variational problem and
solver (Section 1.1.5), and made numerical comparison of the numerical and (approximate) analytical
solution (Section 1.1.6).

Python code

from dolfin import x*

Set pressure function:

= 10.0 # tension

=1.0 # pressure amplitude

= 0.3 # radius of domain

theta = 0.2

x0 = 0.6*Rxcos(theta)

y0 = 0.6*xRxsin(theta)

sigma = 0.025

#sigma = 50 # large value for verification
n =40 # approx no of elements in radial direction
mesh = UnitCircle(n)

V = FunctionSpace(mesh, "Lagrange", 1)

o> %

# Define boundary condition w=0
def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, Constant(0.0), boundary)

# Define variational problem

w = TrialFunction(V)

v = TestFunction(V)

a = inner(nabla_grad(w), nabla_grad(v))x*dx

f = Expression("4xexp(-0.5%(pow((Rxx[0] - x0)/sigma, 2)) "
" -0.5%(pow( (R*x[1] - y0)/sigma, 2)))",
R=R, x0=x0, y0O=y0, sigma=sigma)

L = fxvxdx

# Compute solution
w = Function(V)
problem = LinearVariationalProblem(a, L, w, bc)

solver = LinearVariationalSolver(problem)
solver.parameters["linear_solver"] = "cg"
solver.parameters["preconditioner"] = "ilu"

solver.solve()

# Plot scaled solution, mesh and pressure
plot(mesh, title="Mesh over scaled domain")
plot(w, title="Scaled deflection")

f = interpolate(f, V)

plot(f, title="Scaled pressure")

# Find maximum real deflection

max_w = w.vector().array().max()

max_D = Axmax_w/(8xpixsigma*T)

print "Maximum real deflection is", max_D

# Verification for "flat" pressure (large sigma)
if sigma >= 50:
w_exact = Expression("1l - x[0]*x[0] - x[1]*x[1]1")
w_e = interpolate(w_exact, V)
dev = numpy.abs(w_e.vector().array() - w.vector().array()).max()
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print ’sigma=%g: max deviation=%e’ % (sigma, dev)

# Should be at the end
interactive()

Choosing a small width ¢ (say 0.01) and a location (xg,1p) toward the circular boundary (say
(0.6R cos8,0.6R sinf) for any 6 € [0,27]), may produce an exciting visual comparison of w and f that
demonstrates the very smoothed elastic response to a peak force (or mathematically, the smoothing
properties of the inverse of the Laplace operator). One needs to experiment with the mesh resolution
to get a smooth visual representation of f. You are strongly encouraged to play around with the
plots and different mesh resolutions.

1.1.8 Quick visualization with VTK

As we go along with examples it is fun to play around with plot commands and visualize what is
computed. This section explains some useful visualization features.

The plot(u) command launches a FEniCS component called Viper, which applies the VIK pack-
age to visualize finite element functions. Viper is not a full-fledged, easy-to-use front-end to VIK
(like Mayavi2, ParaView, or Vislt), but rather a thin layer on top of VIK’s Python interface, allowing
us to quickly visualize a DOLFIN function or mesh, or data in plain Numerical Python arrays, within
a Python program. Viper is ideal for debugging, teaching, and initial scientific investigations. The
visualization can be interactive, or you can steer and automate it through program statements. More
advanced and professional visualizations are usually better done with advanced tools like MayaVi2,
ParaView, or Vislt.

We have made a program membranelv.py for the membrane deflection problem in Section 1.1.7
and added various demonstrations of Viper capabilities. You are encouraged to play around with
membranelv.py and modify the code as you read about various features.

The plot function can take additional arguments, such as a title of the plot, or a specification of a
wireframe plot (elevated mesh) instead of a colored surface plot:

Python code

plot(mesh, title="Finite element mesh")
plot(w, wireframe=True, title="solution")

The three mouse buttons can be used to rotate, translate, and zoom the surface. Pressing h
in the plot window makes a printout of several key bindings that are available in such windows.
For example, pressing m in the mesh plot window dumps the plot of the mesh to an Encapsulated
PostScript (. eps) file, while pressing i saves the plot in PNG format. All file names are automatically
generated as simulationX.eps, where X is a counter 6000, 0001, 0002, etc., being increased every
time a new plot file in that format is generated (the extension of PNG files is .png instead of .eps).
Pressing o adds a red outline of a bounding box around the domain.

One can alternatively control the visualization from the program code directly. This is done
through a Viper object returned from the plot command. Let us grab this object and use it to 1) tilt
the camera —65 degrees in the latitude direction, 2) add x and y axes, 3) change the default name of
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the plot files, 4) change the color scale, and 5) write the plot to a PNG and an EPS file. Here is the
code:

Python code

viz w = plot(w,
wireframe=False,
title="Scaled membrane deflection",
rescale=False,
axes=True, # include axes
basename="deflection", # default plotfile name
)

viz_w.elevate(-65) # tilt camera -65 degrees (latitude dir)
viz_w.set_min_max(0, 0.5*max_w) # color scale
viz_w.update(w) # bring settings above into action
viz_w.write_png("deflection.png")
viz_w.write_ps("deflection", format="eps")

The format argument in the latter line can also take the values "ps" for a standard PostScript file
and "pdf" for a PDF file. Note the necessity of the viz_w.update(w) call — without it we will not see
the effects of tilting the camera and changing the color scale. Figure 1.3 shows the resulting scalar
surface.

1.1.9 Computing derivatives

In Poisson and many other problems the gradient of the solution is of interest. The computation is
in principle simple: since 1 = Zszl U;j¢j, we have that

N
Vu =) UV¢; (1.19)
j=1

Given the solution variable u in the program, its gradient is obtained by grad(u) or nabla_grad(u).
However, the gradient of a piecewise continuous finite element scalar field is a discontinuous vector
field since the ¢; has discontinuous derivatives at the boundaries of the cells. For example, using
Lagrange elements of degree 1, u is linear over each cell, and the numerical Vu becomes a piecewise

Figure 1.3: Plot of the deflection -1.00 0.00 1.00
of a membrane. z X
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constant vector field. On the contrary, the exact gradient is continuous. For visualization and data
analysis purposes we often want the computed gradient to be a continuous vector field. Typically, we
want each component of Vu to be represented in the same way as u itself. To this end, we can project
the components of Vu onto the same function space as we used for u. This means that we solve
w = Vu approximately by a finite element method. This process is known as projection. Looking at
the component du/dx of the gradient, we project the (discrete) derivative }; U;0¢;/dx onto a function
space with basis ¢1, ¢, ... such that the derivative in this space is expressed by the standard sum
Y_; Uj¢;, for suitable (new) coefficients U;.

The variational problem for w reads: find w € V(&) such that

a(w,0) = L(v) Yoe V8, (1.20)

where
a(w,v):/nwmdx, (1.21)
L(v):/QVu~vdx. (1.22)

The function spaces V(8) and V(&) (with the superscript g denoting “gradient”) are vector versions
of the function space for u, with boundary conditions removed (if V is the space we used for u,
with no restrictions on boundary values, V(& = V(8 = [V]¢, where d is the number of space
dimensions). For example, if we used piecewise linear functions on the mesh to approximate u, the
variational problem for w corresponds to approximating each component field of w by piecewise
linear functions.

The variational problem for the vector field w, called grad_u in the code, is easy to solve in FEniCS:

Python code

V_g = VectorFunctionSpace(mesh, "Lagrange", 1)
w = TrialFunction(V_g)
v = TestFunction(V_g)

a = inner(w, v)=dx

L = inner(grad(u), v)=dx
grad_u = Function(V_g)
solve(a == L, grad_u)

plot(grad_u, title="grad(u)")

The boundary condition argument to solve is dropped since there are no essential boundary condi-
tions in this problem. The new thing is basically that we work with a VectorFunctionSpace, since
the unknown is now a vector field, instead of the FunctionSpace object for scalar fields. Figure 1.4
shows an example of how Viper can visualize such a vector field.

The scalar component fields of the gradient can be extracted as separate fields and, e.g., visual-
ized:

Python code

grad_u_x, grad_u_y = grad_u.split(deepcopy=True) # extract components
plot(grad_u_x, title="x-component of grad(u)")
plot(grad_u_y, title="y-component of grad(u)")
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Figure 1.4: Example of

visualizing the vector field Vu 5.7
by arrows at the nodes.
2.79
f : / BtE
‘ 0.929
0.00

The deepcopy=True argument signifies a deep copy, which is a general term in computer science
implying that a copy of the data is returned. (The opposite, deepcopy=False, means a shallow copy,
where the returned objects are just pointers to the original data.)

The grad_u_x and grad_u_y variables behave as Function objects. In particular, we can extract
the underlying arrays of nodal values by

Python code

grad_u_x_array
grad_u_y_array

grad_u_x.vector().array()
grad_u_y.vector().array()

The degrees of freedom of the grad_u vector field can also be reached by

Python code

grad_u_array = grad_u.vector().array()

but this is a flat numpy array where the degrees of freedom for the x component of the gradient is
stored in the first part, then the degrees of freedom of the y component, and so on.

The program d5_p2D.py extends the code d4_p2D.py from Section 1.1.6 with computations and
visualizations of the gradient. Examining the arrays grad_u_x_array and grad_u_y_array, or looking
at the plots of grad_u_x and grad_u_y, quickly reveals that the computed grad_u field does not
equal the exact gradient (2x,4y) in this particular test problem where u = 1+ x2 + 2y. There are
inaccuracies at the boundaries, arising from the approximation problem for w. Increasing the mesh
resolution shows, however, that the components of the gradient vary linearly as 2x and 4y in the
interior of the mesh (as soon as we are one element away from the boundary). See Section 1.1.8 for
illustrations of this phenomenon.

Projecting some function onto some space is a very common operation in finite element programs.
The manual steps in this process have therefore been collected in a utility function project(q, W),
which returns the projection of some Function or Expression object named q onto the FunctionSpace
or VectorFunctionSpace named W. Specifically, the previous code for projecting each component of
grad(u) onto the same space that we use for u, can now be done by a one-line call:

Python code

grad_u = project(grad(u), VectorFunctionSpace(mesh, "Lagrange", 1))

The applications of projection are many, including turning discontinuous gradient fields into contin-
uous ones, comparing higher- and lower-order function approximations, and transforming a higher-
order finite element solution down to a piecewise linear field, which is required by many visualiza-
tion packages.
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1.1.10 A variable-coefficient Poisson problem

Suppose we have a variable coefficient p(x,y) in the Laplace operator, as in the boundary-value
problem

=V [p(x,y)Vu(x,y) = f(x,y) inQ,

u(x,y) = up(x,y) on oQ. (1.23)

We shall quickly demonstrate that this simple extension of our model problem only requires an
equally simple extension of the FEniCS program.

Let us continue to use our favorite solution u(x,y) = 1+ x? + 2y? and then prescribe p(x,y) =
x +y. It follows that up(x,y) = 1+ x> +2y? and f(x,y) = —8x — 10y.

What are the modifications we need to do in the d4_p2D.py program from Section 1.1.6?

1. f must be an Expression since it is no longer a constant,
2. anew Expression p must be defined for the variable coefficient,

3. the variational problem is slightly changed.

First we address the modified variational problem. Multiplying the PDE in (1.23) and integrating by
parts now results in

/QprVvdx—/ang—Zvds:/vadx. (1.24)

The function spaces for u and v are the same as in Section 1.1.2, implying that the boundary integral
vanishes since v = 0 on dQ) where we have Dirichlet conditions. The weak form a(u,v) = L(v) then
has

a(u,v) = /Q pVu-Vodx, (1.25)
L@:Aﬁm. (1.26)

In the code from Section 1.1.3 we must replace

Python code

a = inner(nabla_grad(u), nabla_grad(v))x*dx

Python code

a = pxinner(nabla_grad(u), nabla_grad(v))x*dx
The definitions of p and f read

Python code

Expression("x[0] + x[1]")
Expression("-8+x[0] - 10xx[1]1")

p
f

No additional modifications are necessary. The complete code can be found in in the file
vcp2D.py (variable-coefficient Poisson problem in 2D). You can run it and confirm that it recovers
the exact u at the nodes.

The flux —pVu may be of particular interest in variable-coefficient Poisson problems as it often
has an interesting physical significance. As explained in Section 1.1.9, we normally want the piece-
wise discontinuous flux or gradient to be approximated by a continuous vector field, using the same
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elements as used for the numerical solution u. The approximation now consists of solving w = —pVu
by a finite element method: find w € V(8) such that

a(w,0) = L(v) Yoe V8, (1.27)

where
a(w,v):/nw-vdx, (1.28)
L(v) :/Q(—qu)-vdx. (1.29)

This problem is identical to the one in Section 1.1.9, except that p enters the integral in L.
The relevant Python statements for computing the flux field take the form

Python code

V_g = VectorFunctionSpace(mesh, "Lagrange", 1)
w = TrialFunction(V_g)
v = TestFunction(V_g)

a inner(w, v)=*dx

L inner(-pxgrad(u), v)x*dx
flux = Function(V_g)
solve(a == L, flux)

The following call to project is equivalent to the above statements:

Python code

flux = project(-pxnabla_grad(u),
VectorFunctionSpace(mesh, "Lagrange", 1))

Plotting the flux vector field is naturally as easy as plotting the gradient in Section 1.1.9:

Python code
plot(flux, title="flux field")

flux_x, flux_y = flux.split(deepcopy=True) # extract components
plot(flux_x, title="x-component of flux (-pxgrad(u))")
plot(flux_y, title="y-component of flux (-pxgrad(u))")

For data analysis of the nodal values of the flux field we can grab the underlying numpy arrays:

Python code

flux_x_array
flux_y_array

flux_x.vector().array()
flux_y.vector().array()

The program vcp2D. py contains in addition some plots, including a curve plot comparing flux_x
and the exact counterpart along the line y = 1/2. The associated programming details related to this
visualization are explained in Section 1.1.12.

1.1.11 Computing functionals

After the solution u of a PDE is computed, we occasionally want to compute functionals of u, for
example,

1 1
-v2z-/V~Vd, 1.30
a2 =3 [ Fu- Vuds (130
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which often reflects some energy quantity. Another frequently occurring functional is the error

. 1/2
e — u]| = (./Qwe—u)zdx) , (131)

where 1, is the exact solution. The error is of particular interest when studying convergence proper-
ties. Sometimes the interest concerns the flux out of a part I' of the boundary 0(,

F—— /l;qu- ds, (1.32)

where 7 is an outward unit normal at I' and p is a coefficient (see the problem in Section 1.1.10 for a
specific example). All these functionals are easy to compute with FEniCS, and this section describes
how it can be done.

Energy functional. The integrand of the energy functional (1.30) is described in the UFL language in
the same manner as we describe weak forms:

Python code

energy = 0.5xinner(grad(u), grad(u))x*dx
E = assemble(energy)

The assemble call performs the integration. It is possible to restrict the integration to subdomains,
or parts of the boundary, by using a mesh function to mark the subdomains (this technique will be
explained in Section 1.5.3). The program membrane2.py carries out the computation of the elastic
energy

1 1/ AR \?
Ewoz_i(%) V]2 (1.33)

in the membrane problem from Section 1.1.7.

Convergence estimation. To illustrate error computations and convergence of finite element solutions,
we modify the d5_p2D.py program from Section 1.1.9 and specify a more complicated solution,

u(x,y) = sin(wmx) sin(wrmy) (1.34)

on the unit square. This choice implies f(x,y) = 2w?m?u(x,y). With w restricted to an integer it
follows that #y = 0. We must define the appropriate boundary conditions, the exact solution, and
the f function in the code:

Python code

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, Constant(0.0), boundary)
omega = 1.0
u_e = Expression("sin(omega*xpi*x[0])+*sin(omegaxpixx[1])",

omega=omega)

f = 2xpixx2xomegax*2xu_e
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The computation of (1.31) can be done by

Python code

error = (U - u_e)xx2xdx
E = sqrt(assemble(error))

Here, u_e will be interpolated onto the function space V. This implies that the exact solution used
in the integral will vary linearly over the cells, and not as a sine function, if V corresponds to linear
Lagrange elements. This situation may yield a smaller error u - u_e than what is actually true.

More accurate representation of the exact solution is easily achieved by interpolating the formula
onto a space defined by higher-order elements, say of third degree:

Python code

Ve = FunctionSpace(mesh, "Lagrange", degree=3)
u_e_Ve = interpolate(u_e, Ve)

error = (u - u_e_Ve)**x2xdx

E = sqrt(assemble(error))

To achieve complete mathematical control of which function space the computations are carried out
in, we can explicitly interpolate u too:

Python code

u_Ve = interpolate(u, Ve)
error = (u_Ve - u_e_Ve)xx2xdx

The square in the expression for error will be expanded and lead to a lot of terms that almost
cancel when the error is small, with the potential of introducing significant round-off errors. The
function errornorm is available for avoiding this effect by first interpolating u and u_e to a space with
higher-order elements, then subtracting the degrees of freedom, and then performing the integration
of the error field. The usage is simple:

Python code

E = errornorm(u_e, u, normtype="L2", degree=3)
It is illustrative to look at the short implementation of errornorm:

Python code
def errornorm(u_e, u, Ve):
u_Ve = interpolate(u, Ve)
u_e Ve = interpolate(u_e, Ve)
e_Ve = Function(Ve)
# Subtract degrees of freedom for the error field
e_Ve.vector()[:] = u_e_Ve.vector().array() - \
u_Ve.vector().array()
error = e_Vexx2xdx
return sqrt(assemble(error))

The errornorm procedure turns out to be identical to computing the expression (u_e - u)**2xdx
directly in the present test case.

Sometimes it is of interest to compute the error of the gradient field: ||V (u — uc)|| (often referred
to as the H! seminorm of the error). Given the error field e_Ve above, we simply write

Python code

Hlseminorm = sqrt(assemble(inner(grad(e_Ve), grad(e_Ve))x*dx))
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Finally, we remove all plot calls and printouts of u values in the original program, and collect the
computations in a function:

Python code

def compute(nx, ny, degree):
mesh = UnitSquare(nx, ny)
V = FunctionSpace(mesh, "Lagrange", degree=degree)

Ve = FunctionSpace(mesh, "Lagrange", degree=5)
E = errornorm(u_e, u, Ve)
return E

Calling compute for finer and finer meshes enables us to study the convergence rate. Define the
element size h = 1/n, where n is the number of divisions in x and y direction (nx=ny in the code).
We perform experiments with hg > h; > hy--- and compute the corresponding errors Ey, Eq, E3
and so forth. Assuming E; = Ch] for unknown constants C and r, we can compare two consecutive
experiments, E; = Ch} and E;_y = Ch!_,, and solve for r:

_ In(E;/Ei4)
" In(hi/hi ) (%

The r values should approach the expected convergence rate degree+1 as i increases.
The procedure above can easily be turned into Python code:

Python code

import sys
degree = int(sys.argv[l]) # read degree as 1st command-line arg
h =[] # element sizes
E [1 # errors
for nx in [4, 8, 16, 32, 64, 128, 264]:
h.append(1.0/nx)
E.append(compute(nx, nx, degree))

# Convergence rates
from math import log as ln # (log is a dolfin name too)
for i in range(1l, len(E)):

r = ln(E[11/E[i-1])/In(h[i]/h[i-1])

print "h=%10.2E r=%.2f" % (h[i], r)

The resulting program has the name d6_p2D.py and computes error norms in various ways. Running
this program for elements of first degree and w = 1 yields the output

Output
h=1.25E-01 E=3.25E-02 r=1.83
h=6.25E-02 E=8.37E-03 r=1.96
h=3.12E-02 E=2.11E-03 r=1.99
h=1.56E-02 E=5.29E-04 r=2.00
h=7.81E-03 E=1.32E-04 r=2.00
h=3.79E-03 E=3.11E-05 r=2.00

That is, we approach the expected second-order convergence of linear Lagrange elements as the
meshes become sufficiently fine.
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Running the program for second-degree elements results in the expected value r = 3,

Output
h=1.25E-01 E=5.66E-04 r=3.09
h=6.25E-02 E=6.93E-05 r=3.03
h=3.12E-02 E=8.62E-06 r=3.01
h=1.56E-02 E=1.08E-06 r=3.00
h=7.81E-03 E=1.34E-07 r=3.00
h=3.79E-03 E=1.53E-08 r=3.00

However, using (u - u_e)*x2 for the error computation, which implies interpolating u_e onto the
same space as u, results in r = 4 (!). This is an example where it is important to interpolate u_e to a
higher-order space (polynomials of degree 3 are sufficient here) to avoid computing a too optimistic
convergence rate.

Running the program for third-degree elements results in the expected value r = 4:

Output

h=1.25E-01 r=4.09
h=6.25E-02 r=4.03
h=3.12E-02 r=4.01
h=1.56E-02 r=4.00
h=7.81E-03 r=4.00

Checking convergence rates is the next best method for verifying PDE codes (the best being exact
recovery of a solution as in Section 1.1.6 and many other places in this tutorial).

Flux functionals. To compute flux integrals like (1.32) we need to define the n vector, referred to as
facet normal in FEniCS. If T is the complete boundary we can perform the flux computation by

Python code

n = FacetNormal(mesh)
flux = -pxdot(nabla_grad(u), n)=xds
total_flux = assemble(flux)

Although nabla_grad(u) and grad(u) are interchangeable in the above expression when u is a scalar
function, we have chosen to write nabla_grad(u) because this is the right expression if we generalize
the underlying equation to a vector Laplace/Poisson PDE. With grad(u) we must in that case write
dot(n, grad(u)).

It is possible to restrict the integration to a part of the boundary using a mesh function to mark
the relevant part, as explained in Section 1.5.3. Assuming that the part corresponds to subdomain
number i, the relevant form for the flux is -p*dot(nabla_grad(u), n)=*ds(i).

1.1.12  Visualization of structured mesh data

When finite element computations are done on a structured rectangular mesh, maybe with uniform
partitioning, VTK-based tools for completely unstructured 2D/3D meshes are not required. Instead
we can use visualization and data analysis tools for structured data. Such data typically appear in
finite difference simulations and image analysis. Analysis and visualization of structured data are
faster and easier than doing the same with data on unstructured meshes, and the collection of tools
to choose among is much larger. We shall demonstrate the potential of such tools and how they allow
for tailored and flexible visualization and data analysis.

A necessary first step is to transform our mesh object to an object representing a rectangle with
equally-shaped rectangular cells. The Python package scitools has this type of structure, called a
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UniformBoxGrid. The second step is to transform the one-dimensional array of nodal values to a two-
dimensional array holding the values at the corners of the cells in the structured grid. In such grids,
we want to access a value by its i and j indices, i counting cells in the x direction, and j counting
cells in the y direction. This transformation is in principle straightforward, yet it frequently leads
to obscure indexing errors. The BoxField object in scitools takes conveniently care of the details
of the transformation. With a BoxField defined on a UniformBoxGrid it is very easy to call up more
standard plotting packages to visualize the solution along lines in the domain or as 2D contours or
lifted surfaces.
Let us go back to the vcp2D. py code from Section 1.1.10 and map u onto a BoxField object:

Python code

import scitools.BoxField
u2 = u if u.ufl_element().degree() == 1 else \
interpolate(u, FunctionSpace(mesh, "Lagrange", 1))
u_box = scitools.BoxField.dolfin_function2BoxField(
u2, mesh, (nx,ny), uniform_mesh=True)

The function dolfin_function2BoxField can only work with finite element fields with linear (degree
1) elements, so for higher-degree elements we here simply interpolate the solution onto a mesh
with linear elements. We could also interpolate/project onto a finer mesh in the higher-degree case.
Such transformations to linear finite element fields are very often needed when calling up plotting
packages or data analysis tools. The u.ufl_element () method returns an object holding the element
type, and this object has a method degree() for returning the element degree as an integer. The
parameters nx and ny are the number of divisions in each space direction that were used when
calling UnitSquare to make the mesh object. The result u_box is a BoxField object that supports
“finite difference” indexing and an underlying grid suitable for numpy operations on 2D data. Also
1D and 3D meshes (with linear elements) can be turned into BoxField objects.

The ability to access a finite element field in the way one can access a finite difference-type of
field is handy in many occasions, including visualization and data analysis. Here is an example of
writing out the coordinates and the field value at a grid point with indices i and j (going from 0 to
nx and ny, respectively, from lower left to upper right corner):

Python code

X=0; Y=1; Z=0 # convenient indices

i=nx; j =ny # upper right corner

print "u(%g,%g)=%g" % (u_box.grid.coor[X][i],
u_box.grid.coor[Y][j],
u_box.values[i,j])

For instance, the x coordinates are reached by u_box.grid.coor[X]. The grid attribute is an instance
of class UniformBoxGrid.

Many plotting programs can be used to visualize the data in u_box. Matplotlib is now a very
popular plotting program in the Python world and could be used to make contour plots of u_box.
However, other programs like Gnuplot, VTK, and MATLAB have better support for surface plots at
the time of this writing. Our choice in this tutorial is to use the Python package scitools.easyviz,
which offers a uniform MATLAB-like syntax as interface to various plotting packages such as Gnu-
plot, matplotlib, VTK, OpenDX, MATLAB, and others. With scitools.easyviz we write one set of
statements, close to what one would do in MATLAB or Octave, and then it is easy to switch between
different plotting programs, at a later stage, through a command-line option, a line in a configuration
file, or an import statement in the program.
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Figure 1.5: Examples of plots created by transforming the finite element field to a field on a uniform,
structured 2D grid: (a) contour plot of the solution; (b) curve plot of the exact flux —pdu/dx against
the corresponding projected numerical flux.

A contour plot is made by the following scitools.easyviz command:

Python code

import scitools.easyviz as ev

ev.contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,
5, clabels="on")

ev.title("Contour plot of u")

ev.savefig("u_contours.eps")

# or more compact syntax:

ev.contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,
5, clabels="on",
savefig="u_contours.eps", title="Contour plot of u")

The resulting plot can be viewed in Figure 1.5a. The contour function needs arrays with the x
and y coordinates expanded to 2D arrays (in the same way as demanded when making vectorized
numpy calculations of arithmetic expressions over all grid points). The correctly expanded arrays are
stored in grid.coorv. The above call to contour creates 5 equally spaced contour lines, and with
clabels="on" the contour values can be seen in the plot.

Other functions for visualizing 2D scalar fields are surf and mesh as known from MATLAB:

Python code

import scitools.easyviz as ev

ev.figure()

ev.surf(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,
shading="interp", colorbar="on",
title="surf plot of u", savefig="u_surf.eps")

ev.figure()
ev.mesh(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,
title="mesh plot of u", savefig="u_mesh.eps")

Figure 1.6 exemplifies the surfaces arising from the two plotting commands above. You can type
pydoc scitools.easyviz in a terminal window to get a full tutorial. Note that scitools.easyviz
offers function names like plot and mesh, which clash with plot from dolfin and the mesh variable
in our programs. Therefore, we recommend the ev prefix.
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Figure 1.6: Examples of plots created by transforming the finite element field to a field on a uniform,
structured 2D grid: (a) a surface plot of the solution; (b) lifted mesh plot of the solution.

A handy feature of BoxField is the ability to give a start point in the grid and a direction, and
then extract the field and corresponding coordinates along the nearest grid line. In 3D fields one can
also extract data in a plane. Say we want to plot u along the line y = 1/2 in the grid. The grid points,
x, and the u values along this line, uval, are extracted by

Python code

start = (0, 0.5)
x, uval, y fixed, snapped = u_box.gridline(start, direction=X)

The variable snapped is true if the line had to be snapped onto a grid line and in that case y_fixed
holds the snapped (altered) y value. Plotting u versus the x coordinate along this line, using
scitools.easyviz, is now a matter of

Python code

ev.figure() # new plot window

ev.plot(x, uval, "r-") # "r--: red solid line
ev.title("Solution")

ev.legend("finite element solution")

# or more compactly:
ev.plot(x, uval, "r-", title="Solution",
legend="finite element solution")
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A more exciting plot compares the projected numerical flux in x direction along the line y = 1/2
with the exact flux:

Python code

ev.figure()
flux2_x = flux_x if flux_x.ufl_element().degree() == 1 else \
interpolate(flux_x, FunctionSpace(mesh, "Lagrange", 1))
flux_x_box = scitools.BoxField.dolfin_function2BoxField(
flux2_x, mesh, (nx,ny), uniform_mesh=True)
x, fluxval, y_ fixed, snapped = \
flux_x_box.gridline(start, direction=X)
y = y_fixed
flux_x_exact = - (X + y)*2%X
ev.plot(x, fluxval, "r-",
x, flux_x_exact, "b-",
legend=("numerical (projected) flux", "exact flux"),
title="Flux in x-direction (at y=%g)" % y_fixed,
savefig="flux.eps")

As seen from Figure 1.5b, the numerical flux is accurate except in the boundary elements.

The visualization constructions shown above and used to generate the figures are found in the
program vcp2D.py in the stationary/poisson directory.

It should be easy with the information above to transform a finite element field over a uniform
rectangular or box-shaped mesh to the corresponding BoxField object and perform MATLAB-style
visualizations of the whole field or the field over planes or along lines through the domain. By the
transformation to a regular grid we have some more flexibility than what Viper offers. However, we
must remark that comprehensive tools like Vislt, MayaVi2, or ParaView also have the possibility for
plotting fields along lines and extracting planes in 3D geometries, though usually with less degree
of control compared to Gnuplot, MATLAB, and matplotlib.

1.1.13 Combining Dirichlet and Neumann conditions

Let us make a slight extension of our two-dimensional Poisson problem from Section 1.1.1 and add
a Neumann boundary condition. The domain is still the unit square, but now we set the Dirichlet
condition u = ug at the left and right sides, x = 0 and x = 1, while the Neumann condition

ou
—— = 1.36
=3 (136)
is applied to the remaining sides y = 0 and y = 1. The Neumann condition is also known as a natural
boundary condition (in contrast to an essential boundary condition).

Let I'p and I'y denote the parts of dQ) where the Dirichlet and Neumann conditions apply, respec-
tively. The complete boundary-value problem can be written as

—Au=finQ, (1.37)
u =ugonIp, (1.38)
_a_u =gonly. (1.39)

on
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Again we choose u = 1+ x% + 2y as the exact solution and adjust f, g, and ug accordingly:

F=—6, (1.40)
_ ] 4 y=1

g—{ 0, y=0 (1.41)

up =1+ x% +2v2%. (1.42)

For ease of programming we may introduce a g function defined over the whole of () such that g
takes on the right values at y = 0 and y = 1. One possible extension is

g(x,y) = —4y. (1.43)

The first task is to derive the variational problem. This time we cannot omit the boundary term
arising from the integration by parts, because v is only zero on I'n. We have

—/ (Au)vdx:/ Vu-Vvdx—/ a—uvds, (1.44)
Ja o) 20 on

and since v =0 on I'p,

Jdu ou
_/ao%vds__/m %vds—/rNgvds, (1.45)

by applying the boundary condition on I'y. The resulting weak form reads

/Vu~Vvdx+/ gvds:/fvdx. (1.46)
Q I'n Q

Expressing (1.46) in the standard notation a(u,v) = L(v) is straightforward with
a(u,v) = / Vu-Vodx, (1.47)
Q
L(o) = [ fodx— [ gods. 148
(0) = [ fodr— [ gods 1.48)

How does the Neumann condition impact the implementation? The code in the file d4_p2D.py in
the directory stationary/poisson remains almost the same. Only two adjustments are necessary:

1. The function describing the boundary where Dirichlet conditions apply must be modified.
2. The new boundary term must be added to the expression in L.
Step 1 can be coded as

Python code

def Dirichlet_boundary(x, on_boundary):
if on_boundary:
if x[0] == 0 or x[0] == 1:
return True
else:
return False
else:
return False
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A more compact implementation reads

Python code

def Dirichlet_boundary(x, on_boundary):
return on_boundary and (x[0] == 0 or x[0] == 1)

As pointed out already in Section 1.1.3, testing for an exact match of real numbers is not good
programming practice so we introduce a tolerance in the test:

Python code

def Dirichlet_boundary(x, on_boundary):
tol = 1E-14  # tolerance for coordinate comparisons
return on_boundary and \
(abs(x[0]) < tol or abs(x[0] - 1) < tol)

The second adjustment of our program concerns the definition of L, where we have to add a
boundary integral and a definition of the g function to be integrated:

Python code

Expression("-4xx[1]")
fxvxdx - gxvxds

9
L

The ds variable implies a boundary integral, while dx implies an integral over the domain (). No
more modifications are necessary.

The file dnl_p2D.py in the stationary/poisson directory implements this problem. Running the
program verifies the implementation: u equals the exact solution at all the nodes, regardless of how
many elements we use.

1.1.14 Multiple Dirichlet conditions

The PDE problem from the previous section applies a function u(x, y) for setting Dirichlet conditions
at two parts of the boundary. Having a single function to set multiple Dirichlet conditions is seldom
possible. The more general case is to have m functions for setting Dirichlet conditions on m parts of
the boundary. The purpose of this section is to explain how such multiple conditions are treated in
FEniCS programs.

Let us return to the case from Section 1.1.13 and define two separate functions for the two Dirichlet
conditions:

—Au=—-6inQ), (1.49)
u = ug on Iy, (1.50)
u=ugonly, (1.51)

_a_u =gonly. (1.52)

on
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Here, Iy is the boundary x = 0, while I'y corresponds to the boundary x = 1. We have that u; =
1+ 2y?, ug = 2+ 2y?, and g = —4y. For the left boundary I'y we define the usual triple of a function
for the boundary value, a function for defining the boundary of interest, and a DirichletBC object:

Python code
u_L = Expression("1l + 2xx[1]*x[1]")
def left_boundary(x, on_boundary):
tol = 1E-14  # tolerance for coordinate comparisons

return on_boundary and abs(x[0]) < tol

Gamma_0 = DirichletBC(V, u_L, left_boundary)
For the boundary x = 1 we define a similar code:

Python code
U_R = Expression("2 + 2xx[1]*x[1]")
def right _boundary(x, on_boundary):
tol = 1E-14  # tolerance for coordinate comparisons

return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = DirichletBC(V, u_R, right_boundary)

The various essential conditions are then collected in a list and used in the solution process:

Python code

bcs = [Gamma_0, Gamma_1]

solve(a == L, u, bcs)

# or

problem = LinearVariationalProblem(a, L, u, bcs)
solver = LinearVariationalSolver(problem)

solver.solve()

If the u values are constant at a part of the boundary, we may use a simple Constant object instead
of an Expression object.

The file dn2_p2D.py contains a complete program which demonstrates the constructions above.
An extended example with multiple Neumann conditions would have been quite natural now, but
this requires marking various parts of the boundary using the mesh function concept and is therefore
left to Section 1.5.3.

1.1.15 A linear algebra formulation

Given a(u,v) = L(v), the discrete solution u is computed by inserting u = ZJ 1 Uj¢j into a(u,v) and
demanding a(u,v) = L(v) to be fulfilled for N test functions ¢, ..., $n. This implies

N
Y a(¢;, ¢i)U;=L(¢;), i=1,...,N, (1.53)
j=1

which is nothing but a linear system,
AU = b, (1.54)
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where the entries in A and b are given by

Aij = a(¢j, i), (1.55)
b; = L((ﬁi)'

The examples so far have specified the left- and right-hand side of the variational formulation
and then asked FEniCS to assemble the linear system and solve it. An alternative to is explicitly call
functions for assembling the coefficient matrix A and the right-side vector b, and then solve the linear
system AU = b with respect to the U vector. Instead of solve(a == L, u, bc) we now write

Python code

A = assemble(a)
b = assemble(L)
bc.apply(A, b)
u Function(V)
U = u.vector()

solve(A, U, b)

The variables a and L are as before; that is, a refers to the bilinear form involving a TrialFunction
object (say u) and a TestFunction object (v), and L involves a TestFunction object (v). From a and L,
the assemble function can compute the matrix elements A; ; and the vector elements b;.

The matrix A and vector b are first assembled without incorporating essential (Dirichlet) boundary
conditions. Thereafter, the call bc.apply(A, b) performs the necessary modifications of the linear
system. When we have multiple Dirichlet conditions stored in a list bcs, as explained in Section 1.1.14,
we must apply each condition in bcs to the system:

Python code

# bcs is a list of DirichletBC objects
for bc in bcs:
bc.apply(A, b)

There is an alternative function assemble_system, which can assemble the system and take bound-
ary conditions into account in one call:

Python code

A, b = assemble_system(a, L, bcs)

The assemble_system function incorporates the boundary conditions in the element matrices and
vectors, prior to assembly. The conditions are also incorporated in a symmetric way to preserve
eventual symmetry of the coefficient matrix. With bc.apply(A,b) the matrix A is modified in an
unsymmetric way.

Note that the solution u is, as before, a Function object. The degrees of freedom, U = A~1p, are
filled into u’s Vector object (u.vector()) by the solve function.

The object A is of type Matrix, while b and u.vector() are of type Vector. We may convert the
matrix and vector data to numpy arrays by calling the array () method as shown before. If you wonder
how essential boundary conditions are incorporated in the linear system, you can print out A and b
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before and after the bc.apply (A, b) call:

Python code

if mesh.num_cells() < 16: # print for small meshes only
print A.array()
print b.array()
bc.apply(A, b)
if mesh.num_cells() < 16:
print A.array()
print b.array()

With access to the elements in A as a numpy array we can easily do computations on this matrix,
such as computing the eigenvalues (using the numpy.linalg.eig function). We can alternatively
dump A and b to file in MATLAB format and invoke MATLAB or Octave to analyze the linear
system. Dumping the arrays A and b to MATLAB format is done by

Python code

import scipy.io
scipy.io.savemat("Ab.mat", {"A": A, "b": b})

Writing load Ab.mat in MATLAB or Octave will then make the variables A and b available for com-
putations.

Matrix processing in Python or MATLAB/Octave is only feasible for small PDE problems since
the numpy arrays or matrices in MATLAB file format are dense matrices. DOLFIN also has an interface
to the eigensolver package SLEPc, which is a preferred tool for computing the eigenvalues of large,
sparse matrices of the type encountered in PDE problems (see demo/la/eigenvalue in the DOLFIN
source code tree for a demo).

A complete code where the linear system AU = b is explicitly assembled and solved is found
in the file dn3_p2D.py in the directory stationary/poisson. This code solves the same problem as
in dn2_p2D.py (Section 1.1.14). For small linear systems, the program writes out A and b before and
after incorporation of essential boundary conditions and illustrates the difference between assemble
and assemble_system. The reader is encouraged to run the code for a 2 x 1 mesh (UnitSquare(2, 1)
and study the output of A.

By default, solve(A, U, b) applies sparse LU decomposition as solver. Specification of an itera-
tive solver and preconditioner is done through two optional arguments:

Python code
solve(A, U, b, "cg", "ilu")

Appropriate names of solvers and preconditioners are found in Section 1.7.4.
To control tolerances in the stopping criterion and the maximum number of iterations, one can
explicitly form a KrylovSolver object and set items in its parameters attribute (see Section 1.1.5):

Python code

solver = KrylovSolver("cg", "ilu")

solver.parameters["absolute tolerance"] = 1E-7
solver.parameters["relative_tolerance"] = 1lE-4
solver.parameters["maximum_iterations"] = 1000

u = Function(V)
U = u.vector()
set_log_level(DEBUG)
solver.solve(A, U, b)

The program dn4_p2D.py is a modification of dn3_p2D.py illustrating this latter approach.
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The choice of start vector for the iterations in a linear solver is often important. With the
solver.solve(A, U, b) call the default start vector is the zero vector. A start vector with random
numbers in the interval [-100, 100] can be computed as

Python code

n = u.vector().array().size

U = u.vector()

U[:] = numpy.random.uniform(-100, 100, n)
solver.parameters[’nonzero_initial_guess’] = True
solver.solve(A, U, b)

Note that we must turn off the default behavior of setting the start vector (“initial guess”) to zero. A
random start vector is included in the dn4_p2D.py code.

Creating the linear system explicitly in a program can have some advantages in more advanced
problem settings. For example, A may be constant throughout a time-dependent simulation, so
we can avoid recalculating A at every time level and save a significant amount of simulation time.
Sections 1.3.2 and 1.3.3 deal with this topic in detail.

1.1.16  Parameterizing the number of space dimensions

FEniCS makes it is easy to write a unified simulation code that can operate in 1D, 2D, and 3D.
We will conveniently make use of this feature in forthcoming examples. As an appetizer, go back
to the introductory program d1_p2D.py in the stationary/poisson directory and change the mesh
construction from UnitSquare(6, 4) to UnitCube(6, 4, 5). Now the domain is the unit cube with
6 x 4 x 5 cells. Run the program and observe that we can solve a 3D problem without any other
modifications (!). The visualization allows you rotate to the cube and observe the function values as
colors on the boundary.

The forthcoming material introduces some convenient technicalities such that the same program
can run in 1D, 2D, or 3D without any modifications. Consider the simple problem

u”(x)=2in{0,1], u(0)=0, u(l) =1, (1.56)

with exact solution u(x) = x%. Our aim is to formulate and solve this problem in a 2D and a 3D
domain as well. We may generalize the domain [0, 1] to a box of any size in the y and z directions
and pose homogeneous Neumann conditions du/dn = 0 at all additional boundaries y = const and
z = const to ensure that u only varies with x. For example, let us choose a unit hypercube as domain:
Q = [0,1]¢, where d is the number of space dimensions. The generalized d-dimensional Poisson
problem then reads

Au = 2 in(),

u = 0 onTy,

u = 1 onIjy, (1.57)
% = 0 ondQ\(LHuTy),

where I'y is the side of the hypercube where x = 0, and where I'; is the side where x = 1.
Implementing (1.57) for any d is no more complicated than solving a problem with a specific
number of dimensions. The only non-trivial part of the code is actually to define the mesh. We
use the command-line to provide user-input to the program. The first argument can be the degree
of the polynomial in the finite element basis functions. Thereafter, we supply the cell divisions in
the various spatial directions. The number of command-line arguments will then imply the number
of space dimensions. For example, writing 3 10 3 4 on the command-line means that we want to
approximate u by piecewise polynomials of degree 3, and that the domain is a three-dimensional
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cube with 10 x 3 x 4 divisions in the x, y, and z directions, respectively. Each of the 10 x 3 x 4 = 120
boxes will be divided into six tetrahedra. The Python code can be quite compact:

Python code

degree = int(sys.argv[1])

divisions = [int(arg) for arg in sys.argv[2:]]

d = len(divisions)

domain_type = [UnitInterval, UnitSquare, UnitCube]
mesh = domain_type[d-1](*divisions)

V = FunctionSpace(mesh, "Lagrange", degree)

First note that although sys.argv[2:] holds the divisions of the mesh, all elements of the list
sys.argv[2:] are string objects, so we need to explicitly convert each element to an integer. The
construction domain_type[d-1] will pick the right name of the object used to define the domain and
generate the mesh. Moreover, the argument *divisions sends each component of the list divisions
as a separate argument. For example, in a 2D problem where divisions has two elements, the
statement

Python code

mesh = domain_type[d-1](*divisions)
is equivalent to

Python code

mesh = UnitSquare(divisions[0], divisions[1])

The next part of the program is to set up the boundary conditions. Since the Neumann conditions
have du/dn = 0 we can omit the boundary integral from the weak form. We then only need to take
care of Dirichlet conditions at two sides:

Python code

tol = 1E-14  # tolerance for coordinate comparisons
def Dirichlet _boundary0(x, on_boundary):
return on_boundary and abs(x[0]) < tol

def Dirichlet _boundaryl(x, on_boundary):
return on_boundary and abs(x[0] - 1) < tol

bco DirichletBC(V, Constant(0), Dirichlet_boundary0)
bcl DirichletBC(V, Constant(1l), Dirichlet_boundaryl)
bcs = [bcO, bcl]

Note that this code is independent of the number of space dimensions. So are the statements defining
and solving the variational problem:

Python code

= TrialFunction(V)

= TestFunction(V)

= Constant(-2)

= inner(nabla_grad(u), nabla_grad(v))x*dx
= fxvxdx

r o < cC
|

u = Function(V)
solve(a == L, u, bcs)

The complete code is found in paD.py (Poisson problem in any-D).
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If we want to parameterize the direction in which u varies, say by the space direction number
e, we only need to replace x[0] in the code by x[e]. The parameter e could be given as a second
command-line argument. The reader is encouraged to perform this modification.

1.2 Nonlinear problems

Now we shall address how to solve nonlinear PDEs in FEniCS. Our sample PDE for implementation
is taken as a nonlinear Poisson equation:

-V - (qg(u)Vu) = f. (1.58)

The coefficient g(u) makes the equation nonlinear (unless g(u) is constant in u).

To be able to easily verify our implementation, we choose the domain, q(u), f, and the boundary
conditions such that we have a simple, exact solution u. Let Q) be the unit hypercube [0,1]? in d
dimensions, q(u) = (14+u)", f =0, u =0 for xg = 0, u = 1 for xp = 1, and du/0on = 0 at all other
boundaries x; = 0and x; =1,i =1,...,d — 1. The coordinates are now represented by the symbols
Xo,--.,%4—1. The exact solution is then

1/(m+1
u@w”qg):(QWH—lﬂm+0 (+)—L (1.59)

The variational formulation of our model problem reads: find u € V such that
F(u;v) =0 VoeV, (1.60)

where

F(u;v) = /Qq(u)Vu -Vodx, (1.61)
and

V={veH(Q):v=00nxy)=0and xg = 1},

1 (1.62)

V={veH (Q):v=00nxy=0andv=1onxy =1}.
The discrete problem arises as usual by restricting V and V to a pair of discrete spaces. As usual,
we omit any subscript on discrete spaces and simply say V and V are chosen finite dimensional
according to some mesh and element type. The nonlinear problem then reads: find u € V such that

F(u;9) =0 VYoeV, (1.63)

with u = Z]-lil U;¢;. Since F is a nonlinear function of u, (1.63) gives rise to a system of nonlinear
algebraic equations. From now on the interest is only in the discrete problem, and as mentioned in
Section 1.1.2, we simply write u instead of uj to get a closer resemblance in notation between the
mathematics and the Python code. When the exact solution needs to be distinguished, we denote it
by .

FEniCS can be used in alternative ways for solving a nonlinear PDE problem. We shall in the
following subsections go through four solution strategies: 1) a simple Picard-type iteration, 2) a
Newton method at the algebraic level, 3) a Newton method at the PDE level, and 4) an automatic
approach where FEniCS attacks the nonlinear variational problem directly. The “black box” strategy
4) is definitely the simplest one from a programmer’s point of view, but the others give more control
of the solution process for nonlinear equations (which also has some pedagogical advantages).
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1.2.1 Picard iteration

Picard iteration is an easy way of handling nonlinear PDEs: we simply use a known, previous
solution in the nonlinear terms so that these terms become linear in the unknown u. The strategy is
also known as the method of successive substitutions. For our particular problem, we use a known,
previous solution in the coefficient g(u). More precisely, given a solution u* from iteration k, we seek
a new (hopefully improved) solution #**1 in iteration k + 1 such that u¥*! solves the linear problem

V. (q(uk)wk“) =0, k=0,1,... (1.64)

The iterations require an initial guess u’. The hope is that u* — u as k — oo, and that u**! is
sufficiently close to the exact solution u of the discrete problem after just a few iterations.

We can easily formulate a variational problem for u**1 from Equation (1.64). Equivalently, we can
approximate g(u) by g(u¥) in (1.61) to obtain the same linear variational problem. In both cases, the
problem consists of seeking u¥*1 € V such that

F(u0)=0 YveV, k=0,1,..., (1.65)

with
F(uftL0) = /Qq(uk)Vuk+l -Vodx. (1.66)

Since this is a linear problem in the unknown u**1, we can equivalently use the formulation

a(uf1,0) = L(v), (1.67)

with
a(u,v) = /Q q(uF)Vu - Vodx, (1.68)
L(v) =0. (1.69)
The iterations can be stopped when € = ||[u**1 — u¥|| < tol, where tol is small, say 10~°, or when

the number of iterations exceed some critical limit. The latter case will pick up divergence of the
method or unacceptable slow convergence.
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k+1

In the solution algorithm we only need to store 1 and u**1, called u_k and u in the code below.

The algorithm can then be expressed as follows:

Python code

def q(u):
return (1+u)x**m

# Define variational problem for Picard iteration

u = TrialFunction(V)

v = TestFunction(V)

u_k = interpolate(Constant(0.0), V) # previous (known) u
a = inner(q(u_k)*nabla_grad(u), nabla_grad(v))*dx

f = Constant(0.0)

L = fxvxdx

# Picard iterations

u = Function(V) # new unknown function
eps = 1.0 # error measure ||u-u_k||
tol = 1.0E-5 # tolerance
iter = 0 # iteration counter
maxiter = 25 # max no of iterations allowed
while eps > tol and iter < maxiter:
iter +=1
solve(a == L, u, bcs)
diff = u.vector().array() - u_k.vector().array()

eps = numpy.linalg.norm(diff, ord=numpy.Inf)
print "iter=%d: norm=%g" % (iter, eps)
u_k.assign(u) # update for next iteration

We need to define the previous solution in the iterations, u_k, as a finite element function so that u_k
can be updated with u at the end of the loop. We may create the initial Function u_k by interpolating
an Expression or a Constant to the same vector space as u lives in (V).

In the code above we demonstrate how to use numpy functionality to compute the norm of the
difference between the two most recent solutions. Here we apply the maximum norm (¢e norm) on
the difference of the solution vectors (ord=1 and ord=2 give the ¢; and ¢, vector norms — other norms
are possible for numpy arrays, see pydoc numpy.linalg.norm).

The file picard_np.py (Picard iteration for a nonlinear Poisson problem) contains the complete
code for this problem. The implementation is d dimensional, with mesh construction and setting of
Dirichlet conditions as explained in Section 1.1.16. For a 33 x 33 grid with m = 2 we need 9 iterations
for convergence when the tolerance is 10~°.

1.2.2 A Newton method at the algebraic level

After having discretized our nonlinear PDE problem, we may use Newton’s method to solve the
system of nonlinear algebraic equations. From the continuous variational problem (1.60), the discrete
version (1.63) results in a system of equations for the unknown parameters Uy, ..., Uy (by inserting
u= 2]N:1 Uj¢; and v = ¢; in (1.63)):

N . N
F(Uy,..., Uy) =) / <q <2 Ug(l)g) Vq>]-u]-> -V$ijdx=0, i=1,...,N. (1.70)
j=170 =1
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Newton’s method for the system F;(Uj, ..., U]-) =0,i=1,...,N can be formulated as

N
2 F(Uf, ..., Uy)oU; = —F(Uy,... uy), i=1,...,N, (1.71)

u"+1 Uf+wsl;, j=1,...,N, (1.72)
where w € [0,1] is a relaxation parameter, and k is an iteration index. An initial guess u° must be
provided to start the algorithm. The original Newton method has w = 1, but in problems where it is
difficult to obtain convergence, so-called under-relaxation with w < 1 may help.

We need, in a program, to compute the Jacobian matrix dF;/dU; and the right-hand side vector
—F;. Our present problem has F; given by (1.70). The derivative dF;/dU; becomes

/ l Z U/4); 4)] Z uk¢] v4)z +q (Z uﬁ‘l’/) V§b] vfl)1‘| dx. (1.73)

o}
The following results were used to obtain (1.73):

a_u—iﬁu.._ . ivu_v. i(u)—/(u)- (1.74)
au; ~ au; & P T g T Vo g 1) = e '

We can reformulate the Jacobian matrix in (1.73) by introducing the short notation uk = Z M ngb]

oF; N .
aTFfj = [ [ )99 Vi + () V- V] dx. (1.75)

In order to make FEniCS compute this matrix, we need to formulate a corresponding variational
problem. Looking at the linear system of equations in Newton’s method,
N

Z l&U* —-F, i=1,...,N,

we can introduce v as a general test function replacing ¢;, and we can identify the unknown éu =
Zszl oU;¢;. From the linear system we can now go “backwards” to construct the corresponding
discrete weak form

/ {q’(uk)(SuVuk Vo +qF)Vou - Vv} dx = —/ g(uF)Vuk - Vo dx. (1.76)
o) o)
Equation (1.76) fits the standard form a(éu,v) = L(v) with

a(du,v) = /Q {q’(uk)éuVuk Vo + q(uF)Vou - Vv} dx (1.77)

L(v) = —/Qq(uk)Vuk-Vvdx. (1.78)

Note the important feature in Newton’s method that the previous solution u* replaces u in the
formulas when computing the matrix dF;/dU; and vector F; for the linear system in each Newton
iteration.
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We now turn to the implementation. To obtain a good initial guess u°, we can solve a simplified,

linear problem, typically with g(u) = 1, which yields the standard Laplace equation Au’ = 0. The
recipe for solving this problem appears in Sections 1.1.2, 1.1.3, and 1.1.13. The code for computing
u® becomes as follows:

Python code
tol = 1E-14
def left_boundary(x, on_boundary):
return on_boundary and abs(x[0]) < tol

def right_boundary(x, on_boundary):
return on_boundary and abs(x[0]-1) < tol

Gamma_0 = DirichletBC(V, Constant(0.
Gamma_1 = DirichletBC(V, Constant(1l.
bcs = [Gamma_0, Gamma_1]

0), left_boundary)
0),

), right_boundary)

H*

Define variational problem for initial guess (q(u)=1, m=0)
= TrialFunction(V)
TestFunction(V)
inner(nabla_grad(u), nabla_grad(v))x*dx
Constant(0.0)
frvxdx

, b = assemble_system(a, L, bcs)

_k = Function(V)
U_k = u_k.vector()
solve(A, U_k, b)

cC > +ho < C
U}

Here, u_k denotes the solution function for the previous iteration, so that the solution after each New-
ton iteration is u = u_k + omega*du. Initially, u_k is the initial guess we call #° in the mathematics.

The Dirichlet boundary conditions for the problem to be solved in each Newton iteration are
somewhat different than the conditions for u. Assuming that u* fulfills the Dirichlet conditions for u,
du must be zero at the boundaries where the Dirichlet conditions apply, in order for "1 = u* + wéu
to fulfill the right Dirichlet values. We therefore define an additional list of Dirichlet boundary
conditions objects for Ju:

Python code

Gamma_0_du = DirichletBC(V, Constant(0), left_boundary)
Gamma_1_du = DirichletBC(V, Constant(0), right_boundary)
bcs_du = [Gamma_0_du, Gamma_1_du]

The nonlinear coefficient and its derivative must be defined before coding the weak form of the
Newton system:

Python code

def q(u):
return (1+u)*xm

def Dq(u):
return mx(1+u)x**x(m-1)

du = TrialFunction(V) # u = u_k + omegax*du

a = inner(q(u_k)*nabla_grad(du), nabla_grad(v))*dx + \
inner(Dq(u_k)x*duxnabla_grad(u_k), nabla_grad(v))xdx

L = -inner(q(u_k)*nabla_grad(u_k), nabla_grad(v))x*dx
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The Newton iteration loop is very similar to the Picard iteration loop in Section 1.2.1:

Python code

du = Function(V)

u = Function(V) # u = u_k + omegax*du
omega = 1.0 # relaxation parameter
eps = 1.0

tol = 1.0E-5

iter = 0

maxiter = 25
while eps > tol and iter < maxiter:

iter += 1

A, b = assemble_system(a, L, bcs_du)

solve(A, du.vector(), b)

eps = numpy.linalg.norm(du.vector().array(), ord=numpy.Inf)
print "Norm:", eps

u.vector()[:] = u_k.vector() + omegaxdu.vector()

u_k.assign(u)

There are other ways of implementing the update of the solution as well:

Python code

u.assign(u_k) # u = u_k
u.vector().axpy(omega, du.vector())

# or
u.vector()[:] += omegaxdu.vector()

The axpy(a, y) operation adds a scalar a times a Vector y to a Vector object. It is usually a fast
operation calling up an optimized BLAS routine for the calculation.

Mesh construction for a d-dimensional problem with arbitrary degree of the Lagrange elements
can be done as explained in Section 1.1.16. The complete program appears in the file alg_newton_np.py.

1.2.3 A Newton method at the PDE level

Although Newton’s method in PDE problems is normally formulated at the linear algebra level; that
is, as a solution method for systems of nonlinear algebraic equations, we can also formulate the
method at the PDE level. This approach yields a linearization of the PDEs before they are discretized.
FEniCS users will probably find this technique simpler to apply than the more standard method of
Section 1.2.2.

Given an approximation to the solution field, 1k, we seek a perturbation du so that

Wkt =k 4 bu (1.79)

fulfills the nonlinear PDE. However, the problem for Ju is still nonlinear and nothing is gained. The
idea is therefore to assume that éu is sufficiently small so that we can linearize the problem with
respect to du. Inserting ! in the PDE, linearizing the g term as

() = q(u¥) + ' (u)ou + O((0u)?) = q(u*) + g’ (u*)ou, (1.80)
and dropping other nonlinear terms in du, we get

V- (q(uk)Vuk) +V. (q(uk)V(Su) +V. (q’(uk)(SuVuk) =0.
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We may collect the terms with the unknown Ju on the left-hand side,
V- (q(u)Vou) + - (¢ (h)ouvit) = —v - (q(u)virt), (1.81)

The weak form of this PDE is derived by multiplying by a test function v and integrating over (),
integrating the second-order derivatives by parts:

/Q ((u)Vu - Vo + ¢ (1)ouvuk - Vo) dx = — /Qq(uk)Vuk - Vodx. (1.82)
The variational problem reads: find du € V such that a(du,v) = L(v) for all v € V, where
a(éu,v) = / (q(uk)V(Su Vo + g (uF)ouvuk Vv) dx, (1.83)
Q

L(v) = — /Qq(uk)Vuk -Vodx. (1.84)

The function spaces V and v, being continuous or discrete, are as in the linear Poisson problem from
Section 1.1.2.

We must provide some initial guess, e.g., the solution of the PDE with g(u) = 1. The correspond-
ing weak form ag(u°, v) = Ly(v) has

ap(u,v) = /Q Vu-Vovdx, L(v)=0. (1.85)

Thereafter, we enter a loop and solve a(du,v) = L(v) for du and compute a new approximation
w1 = ¥ + Su. Note that du is a correction, so if u? satisfies the prescribed Dirichlet conditions on
some part I'p of the boundary, we must demand éu = 0 on I'p.

Looking at (1.83) and (1.84), we see that the variational form is the same as for the Newton method
at the algebraic level in Section 1.2.2. Since Newton’s method at the algebraic level required some
“backward” construction of the underlying weak forms, FEniCS users may prefer Newton’s method
at the PDE level, which is more straightforward. There is seemingly no need for differentiations to
derive a Jacobian matrix, but a mathematically equivalent derivation is done when nonlinear terms
are linearized using the first two Taylor series terms and when products in the perturbation du are
neglected.

The implementation is identical to the one in Section 1.2.2 and is found in the file
pde_newton_np.py. The reader is encouraged to go through this code to be convinced that the present
method actually ends up with the same program as needed for the Newton method at the linear al-
gebra level in Section 1.2.2.

1.2.4  Solving the nonlinear variational problem directly

The previous hand-calculations and manual implementation of Picard or Newton methods can be
automated by tools in FEniCS. In a nutshell, one can just write

Python code

problem = NonlinearVariationalProblem(F, u, bcs, J)
solver = NonlinearVariationalSolver(problem)
solver.solve()
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where F corresponds to the nonlinear form F(u;v), u is the unknown Function object, bcs represents
the essential boundary conditions (list of DirichletBC objects), and J is a variational form for the
Jacobian of F.

Let us explain in detail how to use the built-in tools for nonlinear variational problems and their
solution. The F form corresponding to (1.61) is straightforwardly defined as follows, assuming q(u)
is coded as a Python function:

Python code

\
u_
E

TestFunction(V)
Function(V) # the unknown
inner(q(u_)=*nabla_grad(u_), nabla_grad(v))x*dx

Note here that u_ is a Function (not a TrialFunction). An alternative and perhaps more intuitive
formula for F is to define F(u;v) directly in terms of a trial function for u and a test function for v,
and then create the proper F by

Python code

TrialFunction(V)

TestFunction(V)

inner(q(u)*nabla_grad(u), nabla_grad(v))*dx
Function(V) # most recently computed solution
action(F, u.)

-
o ononon

The latter statement is equivalent to F(u# = u_;v), where u_ is an existing finite element function
representing the most recently computed approximation to the solution.

The Jacobian or derivative J (3) of F (F) is formally the Gateaux derivative DF (uX; du,v) of F(u;v)
at u = u_ in the direction of Ju. Technically, this Gateaux derivative is derived by computing

. d
1135 %Fl(u_ + edu;v) (1.86)

The du is now the trial function and u_ is the previous approximation to the solution u. We start
with

d
T /Q Vo (q(u- +edu)V(u_ +edu)) dx (1.87)
and obtain
/Q Vo [q'(u_ +edu)ouV (u_ + edu) +q(u_ + edu)Véu| dx, (1.88)
which leads to
/Q Vo [q'(u_)ouv (u_) + q(u_)Vou] dx, (1.89)

as € — 0. This last expression is the Gateaux derivative of F. We may use | or a(du,v) for this
derivative, the latter having the advantage that we easily recognize the expression as a bilinear form.
However, in the forthcoming code examples J is used as variable name for the Jacobian.
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The specification of J goes as follows if du is the TrialFunction:

Python code

du = TrialFunction(V)

TestFunction(V)

Function(V) # the most recently computed solution
F = inner(q(u_)=*nabla_grad(u_), nabla_grad(v))x*dx

c <
|
o

J = inner(q(u_)=*nabla_grad(du), nabla_grad(v))=*dx + \
inner(Dq(u_)*duxnabla_grad(u_), nabla_grad(v))=*dx

The alternative specification of F, with u as TrialFunction, leads to

Python code

u = TrialFunction(V)

v = TestFunction(V)

u_ = Function(V) # the most recently computed solution
F = inner(q(u)*nabla_grad(u), nabla_grad(v))*dx

F = action(F, u.)

J = inner(q(u_)=*nabla_grad(u), nabla_grad(v))*dx + \
inner(Dq(u_)*uxnabla_grad(u_), nabla_grad(v))=dx

The UFL language, used to specify weak forms, supports differentiation of forms. This feature
facilitates automatic symbolic computation of the Jacobian J by calling the function derivative with F,
the most recently computed solution (Function), and the unknown (TrialFunction) as parameters:

Python code

du = TrialFunction(V)

v = TestFunction(V)

u_ = Function(V) # the most recently computed solution
F = inner(q(u_)=*nabla_grad(u_), nabla_grad(v))x*dx

J = derivative(F, u_, du) # Gateaux derivative in dir. of du
or
Python code
u = TrialFunction(V)
v = TestFunction(V)
u_ = Function(V) # the most recently computed solution
F = inner(q(u)*nabla_grad(u), nabla_grad(v))xdx
F = action(F, u.)
J = derivative(F, u_, u) # Gateaux derivative in dir. of u

The derivative function is obviously very convenient in problems where differentiating F by hand
implies lengthy calculations.

The preferred implementation of F and J, depending on whether du or u is the TrialFunction
object, is a matter of personal taste. Derivation of the Gateaux derivative by hand, as shown above,
is most naturally matched by an implementation where du is the TrialFunction, while use of auto-
matic symbolic differentiation through the derivative function is most naturally matched with an
implementation where u is the TrialFunction. We have implemented both approaches in two files:
vpl_np.py with u as TrialFunction, and vp2_np.py with du as TrialFunction. Both files are located
in the stationary/nonlinear_poisson directory. The first command-line argument determines if the
Jacobian is to be automatically derived or computed from the hand-derived formula.
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The following code defines the nonlinear variational problem and an associated solver based on
Newton’s method. We here demonstrate how key parameters in Newton’s method can be set, as well
as the choice of solver and preconditioner, and associated parameters, for the linear system occurring
in the Newton iteration.

Python code

problem = NonlinearVariationalProblem(F, u_, bcs, J)
solver = NonlinearVariationalSolver(problem)

prm = solver.parameters

prm["newton_solver"]["absolute tolerance"] = 1E-8

prm["newton_solver"]["relative tolerance"] = 1E-7

prm["newton_solver"]["maximum_iterations"] = 25
10

prm["newton_solver"]["relaxation_parameter"] = 1.0

if iterative_solver:

prm["krylov_solver"
prm["krylov_solver"
set_log_level(PROGRESS)

"gmres"]["restart"] = 40
"preconditioner"]["ilu"]["fill_level"] = 0

prm["linear_solver"] = "gmres"
prm["preconditioner"] = "ilu"
prm["krylov_solver"]["absolute_tolerance"] = 1E-9
prm["krylov_solver"]["relative tolerance"] = 1lE-7
prm["krylov_solver"]["maximum_iterations"] = 1000
[
[

Il
1M
Il
1M

solver.solve()

A list of available parameters and their default values can as usual be printed by calling info(prm,
True). The u_ we feed to the nonlinear variational problem object is filled with the solution by the
call solver.solve().

1.3 Time-dependent problems

The examples in Section 1.1 illustrate that solving linear, stationary PDE problems with the aid of
FEniCS is easy and requires little programming. That is, FEniCS automates the spatial discretization
by the finite element method. The solution of nonlinear problems, as we showed in Section 1.2, can
also be automated (see Section 1.2.4), but many scientists will prefer to code the solution strategy of
the nonlinear problem themselves and experiment with various combinations of strategies in difficult
problems. Time-dependent problems are somewhat similar in this respect: we have to add a time
discretization scheme, which is often quite simple, making it natural to explicitly code the details of
the scheme so that the programmer has full control. We shall explain how easily this is accomplished
through examples.

1.3.1 A diffusion problem and its discretization

Our time-dependent model problem for teaching purposes is naturally the simplest extension of the
Poisson problem into the time domain; that is, the diffusion problem
ou .
Fri Au—+ fin Q), fort >0, (1.90)
u = ugondQ), fort >0, (1.91)

u=1TIatt=0. (1.92)
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Here, u varies with space and time, e.g., u = u(x,y,t) if the spatial domain (2 is two-dimensional.
The source function f and the boundary values 1y may also vary with space and time. The initial
condition I is a function of space only.

A straightforward approach to solving time-dependent PDEs by the finite element method is to
first discretize the time derivative by a finite difference approximation, which yields a recursive set
of stationary problems, and then turn each stationary problem into a variational formulation.

Let superscript k denote a quantity at time t;, where k is an integer counting time levels. For

example, 1K means u at time level k. A finite difference discretization in time first consists in sampling
the PDE at some time level, say k:

0

Euk = AuF + fk. (1.93)

The time-derivative can be approximated by a finite difference. For simplicity and stability reasons
we choose a simple backward difference:

YL R P (1.94)
where dt is the time discretization parameter. Inserting (1.94) in (1.93) yields
k_ k=1
% = A+ fE (1.95)

This is our time-discrete version of the diffusion PDE (1.90). Reordering (1.95) so that uk appears
on the left-hand side only, shows that (1.95) is a recursive set of spatial (stationary) problems for u*
(assuming u*~1 is known from computations at the previous time level):

ud =1, (1.96)

uF — dtAu® = o1 4 dtfk, k=1,2,... (1.97)

Given I, we can solve for u%, u!, 42, and so on.

We use a finite element method to solve the equations (1.96) and (1.97). This requires turning the

equations into weak forms. As usual, we multiply by a test function v € V and integrate second-

derivatives by parts. Introducing the symbol u for u* (which is natural in the program too), the

resulting weak form can be conveniently written in the standard notation: ag(u,v) = Ly(v) for (1.96)
and a(u,v) = L(v) for (1.97), where

ao(it,0) = /Q wodx, (1.98)
Lo(@) = | Iodx, (1.99)
a(u,v) = /Q (o + AtV - Vo) dx, (1.100)
L(v) = /Q (w1 + def*) vdx. (1.101)

The continuous variational problem is to find u° € V such that ag(u°,v) = Ly(v) holds for all v € V,
and then find u* € V such that a(u¥,v) = L(v) forallv € V, k=1,2,....

Approximate solutions in space are found by restricting the functional spaces V and V to finite-
dimensional spaces, exactly as we have done in the Poisson problems. We shall use the symbol u for
the finite element approximation at time t;. In case we need to distinguish this space-time discrete
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approximation from the exact solution of the continuous diffusion problem, we use u. for the latter.
By u*~1 we mean, from now on, the finite element approximation of the solution at time #_;.

Note that the forms ag and Ly are identical to the forms met in Section 1.1.9, except that the test
and trial functions are now scalar fields and not vector fields. Instead of solving (1.96) by a finite
element method; that is, projecting I onto V via the problem ag(u,v) = Lo(v), we could simply
interpolate u° from I. That is, if u® = Zszl U]ngj, we simply set U; = I(x},y;), where (x;,y;) are the
coordinates of node number j. We refer to these two strategies as computing the initial condition by
either projecting I or interpolating I. Both operations are easy to compute through one statement,
using either the project or interpolate function.

1.3.2  Implementation

Our program needs to perform the time stepping explicitly, but can rely on FEniCS to easily compute
a9, Lo, a, and L, and solve the linear systems for the unknowns. We realize that a does not depend
on time, which means that its associated matrix also will be time independent. Therefore, it is
wise to explicitly create matrices and vectors as in Section 1.1.15. The matrix A arising from a
can be computed prior to the time stepping, so that we only need to compute the right-hand side
b, corresponding to L, in each pass in the time loop. Let us express the solution procedure in
algorithmic form, writing u for the unknown spatial function at the new time level (1) and u; for
the spatial solution at one earlier time level (uk=1y:

define Dirichlet boundary condition (1, Dirichlet boundary, etc.)
if uj is to be computed by projecting I
define ay and L
assemble matrix M from ay and vector b from L
solve MU = b and store U in u;
else: (interpolation)
let uy interpolate I
define a and L
assemble matrix A from a
set some stopping time T
t= dt
while t < T
assemble vector b from L
apply essential boundary conditions
solve AU = b for U and store in u
t—t+ dt
uy < u (be ready for next step)

Before starting the coding, we shall construct a problem where it is easy to determine if the
calculations are correct. The simple backward time difference is exact for linear functions, so we
decide to have a linear variation in time. Combining a second-degree polynomial in space with a
linear term in time,

u=1+x>+ay*+ pt, (1.102)

yields a function whose computed values at the nodes may be exact, regardless of the size of the
elements and dt, as long as the mesh is uniformly partitioned. Inserting (1.102) in the PDE problem
(1.90), it follows that uy must be given as (1.102) and that f(x,y,t) = p—2—2«a and I(x,y) =
1422 +ay?.

A new programming issue is how to deal with functions that vary in space and time, such as the
boundary condition ug given by (1.102). A natural solution is to apply an Expression object with
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time t as a parameter, in addition to the parameters a and p (see Section 1.1.7 for Expression objects
with parameters):

Python code

alpha = 3; beta = 1.2
ud = Expression("l + x[0]*x[0] + alphaxx[1]*x[1] + betaxt",
alpha=alpha, beta=beta, t=0)

The time parameter can later be updated by assigning values to u@. t.
The essential boundary conditions, along the whole boundary in this case, are set in the usual
way,

Python code

def boundary(x, on_boundary): # define the Dirichlet boundary
return on_boundary

bc = DirichletBC(V, u@, boundary)

We shall use u for the unknown u at the new time level and u_1 for u at the previous time level.
The initial value of u_1, implied by the initial condition on u, can be computed by either projecting
or interpolating I. The I(x,y) function is available in the program through u@, as long as u@.t is zero.
We can then do

Python code

u_l = interpolate(u@, V)
# or
u_l = project(u0, V)

Note that we could, as an equivalent alternative to using project, define gy and Ly as we did in
Section 1.1.9 and solve the associated variational problem. To actually recover (1.102) to machine
precision, it is important not to compute the discrete initial condition by projecting I, but by interpo-
lating I so that the nodal values are exact at ¢t = 0 (projection results in approximative values at the
nodes).

The definition of 4 and L goes as follows:

Python code
dt = 0.3 # time step
u = TrialFunction(V)
v = TestFunction(V)

f = Constant(beta - 2 - 2xalpha)

a = uxvxdx + dtxinner(nabla_grad(u), nabla_grad(v))xdx
L = (u_l + dtxf)*v*dx

A = assemble(a) # assemble only once, before the time stepping
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Finally, we perform the time stepping in a loop:

Python code

u = Function(V) # the unknown at a new time level
2 # total simulation time
dt

t

while t <= T:
b = assemble(L)
ub.t = t
bc.apply(A, b)
solve(A, u.vector(), b)

t += dt
u_l.assign(u)

Observe that u0.t must be updated before the bc.apply statement, to enforce computation of Dirich-
let conditions at the current time level.

The time loop above does not contain any comparison of the numerical and the exact solution,
which we must include in order to verify the implementation. As in many previous examples, we
compute the difference between the array of nodal values of u and the array of the interpolated exact
solution. The following code is to be included inside the loop, after u is found:

Python code

u_e = interpolate(u@, V)
maxdiff = numpy.abs(u_e.vector().array()-u.vector().array()).max()
print "Max error, t=%.2f: %-10.3f" % (t, maxdiff)

The right-hand side vector b must obviously be recomputed at each time level. With the construc-
tion b = assemble(L), a new vector for b is allocated in memory in every pass of the time loop. It
would be much more memory friendly to reuse the storage of the b we already have. This is easily
accomplished by

Python code

b = assemble(L, tensor=b)

That is, we send in our previous b, which is then filled with new values and returned from assemble.
Now there will be only a single memory allocation of the right-hand side vector. Before the time loop
we set b = None such that b is defined in the first call to assemble.

The complete program code for this time-dependent case is stored in the file d1_d2D.py in the
directory transient/diffusion.

1.3.3 Awvoiding assembly

The purpose of this section is to present a technique for speeding up FEniCS simulators for time-
dependent problems where it is possible to perform all assembly operations prior to the time loop.
There are two costly operations in the time loop: assembly of the right-hand side b and solution of
the linear system via the solve call. The assembly process involves work proportional to the number
of degrees of freedom N, while the solve operation has a work estimate of O(N*), for some « > 1.
As N — oo, the solve operation will dominate for & > 1, but for the values of N typically used on
smaller computers, the assembly step may still represent a considerable part of the total work at each
time level. Avoiding repeated assembly can therefore contribute to a significant speed-up of a finite
element code in time-dependent problems.
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To see how repeated assembly can be avoided, we look at the L(v) form in (1.101), which in
general varies with time through u*~1, fX, and possibly also with dt if the time step is adjusted
during the simulation. The technique for avoiding repeated assembly consists in expanding the
finite element functions in sums over the basis functions ¢;, as explained in Section 1.1.15, to identify
matrix-vector products that build up the complete system. We have 1~ = Z]-I\Ll U]]-‘*lcp]-, and we can

expand f* as fk = Zszl F]k¢j. Inserting these expressions in L(v) and using v = ¢; result in

k-1 k - k-1 - k 5
/Q(u +dtf)vdx:/0<]§uj ¢j+dtjgqu>j> $: dx,

(1.103)
al N k—1 al N k
j=1 j=1
Introducing Mjj = [, $i¢; dx, we see that the last expression can be written
N
z\/fl-]-u]’.‘*l + dt Yy MyFf, (1.104)
j=1 j=1
which is nothing but two matrix-vector products,
MU+ dtMF¥, (1.105)
if M is the matrix with entries M;; and
ut= (kL ugh T, (1.106)
and
FF=(F5...,F5)T. (1.107)

We have immediate access to U~ in the program since that is the vector in the u_1 function. The
F¥ vector can easily be computed by interpolating the prescribed f function (at each time level if f
varies with time). Given M, U*~1, and F¥, the right-hand side b can be calculated as

b = MU'+ deMF*. (1.108)

That is, no assembly is necessary to compute b.
The coefficient matrix A can also be split into two terms. We insert v = ¢; and u* = Zszl U]’Fqb]- in
the expression (1.100) to get

N R N .
) < /Q Pip; dx> Us+dty. < /Q V- Vo; dx> ur, (1.109)
j=1 j=1

which can be written as a sum of matrix-vector products,
MUF + dtKU* = (M 4 dtK)UF, (1.110)

if we identify the matrix M with entries M;; as above and the matrix K with entries

Kij = /Q V- Vep; dx. (1.111)



54 Chapter 1. A FEniCS tutorial

The matrix M is often called the “mass matrix” while “stiffness matrix” is a common nickname for
K. The associated bilinear forms for these matrices, as we need them for the assembly process in a
FEniCS program, become

ag(u,v) = /Q Vu-Vodx, (1.112)
aM(u,v):/ uvdx. (1.113)
Q

The linear system at each time level, written as AU¥ = b, can now be computed by first computing
M and K, and then forming A = M + dtK at t = 0, while b is computed as b = MU*~1 + dtMFF at
each time level.

The following modifications are needed in the d1_d2D.py program from the previous section in
order to implement the new strategy of avoiding assembly at each time level:

1. Define separate forms ay; and ag
Assemble ap; to M and ag to K
Compute A = M + dtK

Define f as an Expression

Interpolate the formula for f to a finite element function F¥

S T

Compute b = MU*! + dtMF*
The relevant code segments become

Python code

# 1.
a_K inner(nabla_grad(u), nabla_grad(v))x*dx

uxvxdx

and 3.
assemble(a_M)
assemble(a_K)
M + dt*K

> X = H
nmun N

FH*
LI

f Expression("beta - 2 - 2xalpha", beta=beta, alpha=alpha)

# 5. and 6.
while t <= T:
f_k = interpolate(f, V)
F_k = fk.vector()
b = Mxu_l.vector() + dtxMxF_k

The complete program appears in the file d2_d2D. py.

1.3.4 A physical example

With the basic programming techniques for time-dependent problems from Sections 1.3.3-1.3.2 we
are ready to attack more physically realistic examples. The next example concerns the question:
How is the temperature in the ground affected by day and night variations at the earth’s surface?
We consider some box-shaped domain () in d dimensions with coordinates xy, ..., x;_1 (the problem
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Figure 1.7: Sketch of a (2D)
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is meaningful in 1D, 2D, and 3D). At the top of the domain, x;_; = 0, we have an oscillating
temperature
To(t) = Tg + T4 sin(wt), (1.114)

where Ty is some reference temperature, T4 is the amplitude of the temperature variations at the
surface, and w is the frequency of the temperature oscillations. At all other boundaries we assume
that the temperature does not change anymore when we move away from the boundary; that is,
the normal derivative is zero. Initially, the temperature can be taken as T everywhere. The heat
conductivity properties of the soil in the ground may vary with space so we introduce a variable
coefficient «x reflecting this property. Figure 1.7 shows a sketch of the problem, with a small region
where the heat conductivity is much lower.
The initial-boundary value problem for this problem reads

aT

Qe = V- (kVT) in Q x (0, tstopl, (1.115)

T = Ty(t) on Ty, (1.116)

9T _)on d0\T 1.117)
an - 0s .

T=Tratt=0. (1.118)

Here, ¢ is the density of the soil, ¢ is the heat capacity, « is the thermal conductivity (heat conduction
coefficient) in the soil, and Iy is the surface boundary x;_1 = 0.
We use a f-scheme in time; that is, the evolution equation dP/dt = Q(t) is discretized as

Pk o Pk—l

= 60" + (1—6)Q" 1, (1.119)

where 6 € [0,1] is a weighting factor: 6 = 1 corresponds to the backward difference scheme, 6 = 1/2
to the Crank-Nicolson scheme, and 6 = 0 to a forward difference scheme. The 6-scheme applied to
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our PDE results in

Tk _ kal

ge——— =6V (x9T) + (1 - )V - (kvT). (1.120)

Bringing this time-discrete PDE into weak form follows the technique shown many times earlier in
this tutorial. In the standard notation a(T,v) = L(v) the weak form has

a(T,v) = /Q (ocTv+6dtxVT - Vo) dx, (1.121)
L(v) = /Q (ecT 10— (1-0) dixV T Vo) dx, (1.122)

Observe that boundary integrals vanish because of the Neumann boundary conditions.

The size of a 3D box is taken as W x W x D, where D is the depth and W = D/2 is the width.
We give the degree of the basis functions at the command-line, then D, and then the divisions of the
domain in the various directions. To make a box, rectangle, or interval of arbitrary (not unit) size, we
have the DOLFIN classes Box, Rectangle, and Interval at our disposal. The mesh and the function
space can be created by the following code:

Python code

degree = int(sys.argv[1])
D = float(sys.argv[2])

W =D/2.0
divisions = [int(arg) for arg in sys.argv[3:]]
d = len(divisions) # no of space dimensions
if d == 1:
mesh = Interval(divisions[0], -D, 0)
elif d == 2:
mesh = Rectangle(-W/2, -D, W/2, 0, divisions[0], divisions[1])
elif d == 3:

mesh = Box(-W/2, -W/2, -D, W/2, W/2, 0,
divisions[0], divisions[1l], divisions[2])
V = FunctionSpace(mesh, "Lagrange", degree)

The Rectangle and Box objects are defined by the coordinates of the “minimum” and “maximum”
corners.
Setting Dirichlet conditions at the upper boundary can be done by

Python code
TR=0; T A=1.0; omega = 2*pi

T_0 Expression("T_R + T_Axsin(omegaxt)",

T_R=T_R, T_A=T_A, omega=omega, t=0.0)

def surface(x, on_boundary):
return on_boundary and abs(x[d-1]) < 1E-14

bc = DirichletBC(V, T_0, surface)

The «x function can be defined as a constant «; inside the particular rectangular area with a special
soil composition, as indicated in Figure 1.7. Outside this area « is a constant xy. The domain of the
rectangular area is taken as

[—W/4,W/4] x [-W/4,W /4] x [-D/2,—~D/2+ D/4]
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in 3D, with [-W/4,W/4] x [-D/2,—D/2+ D/4] in 2D and [-D/2,—D/2+ D /4] in 1D. Since we
need some testing in the definition of the x(x) function, the most straightforward approach is to
define a subclass of Expression, where we can use a full Python method instead of just a C++ string
formula for specifying a function. The method that defines the function is called eval:

Python code

class Kappa(Function):
def eval(self, value, x):
"""x: spatial point, value[0]: function value."""
d = len(x) # no of space dimensions
material = 0 # 0: outside, 1: inside
if d == 1:
if -D/2. < x[d-1] < -D/2. + D/4.
material = 1
elif d == 2:
if -D/2. < x[d-1] < -D/2. + D/4. and \
-W/4. < x[0] < W/4.:
material =1
elif d == 3:
if -D/2. < x[d-1] < -D/2. + D/4. and \
-W/4. < x[0] < W/4. and -W/4. < x[1] < W/4.:
material =1
value[0] = kappa_0 if material == 0 else kappa_1l

The eval method gives great flexibility in defining functions, but a downside is that C++ calls up
eval in Python for each point x, which is a slow process, and the number of calls is proportional to
the number of nodes in the mesh. Function expressions in terms of strings are compiled to efficient
C++ functions, being called from C++, so we should try to express functions as string expressions if
possible. (The eval method can also be defined through C++ code, but this is more complicated and
not covered here.) Using inline if-tests in C++, we can make string expressions for «:

Python code

kappa_str = {}
kappa_str[1l] = "x[0] > -D/2 && x[0] < -D/2 + D/4 ? kappa_l : kappa_0"
kappa_str[2] = "x[0] > -W/4 && x[0] < W/4 "\
"&& x[1] > -D/2 && x[1] < -D/2 + D/4 ? "\
"kappa_1l : kappa_0"
kappa_str[3] = "x[0] > -W/4 && x[0] < W/4 "\
"x[1] > -W/4 && x[1] < W/4 "\
"&& x[2] > -D/2 && x[2] < -D/2 + D/4 ?"\
"kappa_l : kappa_0"

kappa = Expression(kappa_str[d],
D=D, W=W, kappa_O=kappa_0, kappa_l=kappa_1l)
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Let T denote the unknown spatial temperature function at the current time level, and let T_1 be
the corresponding function at one earlier time level. We are now ready to define the initial condition
and the a and L forms of our problem:

Python code
T 1 = interpolate(Constant(T_R), V)

rho = 1

c=1

period = 2xpi/omega

t_stop = 5*period

dt = period/20 # 20 time steps per period

theta = 1

T = TrialFunction(V)

v = TestFunction(V)

f = Constant(0)

a = rhoxcxT+xvxdx + thetaxdtxkappax\

inner(nabla_grad(T), nabla_grad(v))=*dx
L = (rhoxcxT_prevxv + dtxfxv -
(1-theta)*dtxkappaxinner(nabla_grad(T), nabla_grad(v)))x*dx

A = assemble(a)
= None # variable used for memory savings in assemble calls
T = Function(V) # unknown at the current time level

o
|

We could, alternatively, break a and L up in subexpressions and assemble a mass matrix and stiffness
matrix, as exemplified in Section 1.3.3, to avoid assembly of b at every time level. This modification
is straightforward and left as an exercise. The speed-up can be significant in 3D problems.

The time loop is very similar to what we have displayed in Section 1.3.2:

Python code

t = dt
while t <= t_stop:

b = assemble(L, tensor=b)

TO.t=1t

bc.apply(A, b)

solve(A, T.vector(), b)

# visualization statements

t += dt

T_prev.assign(T)

The complete code in sin_daD.py contains several statements related to visualization and animation
of the solution, both as a finite element field (plot calls) and as a curve in the vertical direction. The
code also plots the exact analytical solution,

T(x,t) = Tg + Tae™ sin(wt +ax), a= “;—ic (1.123)
which is valid when « = x5 = «3.
Implementing this analytical solution as a Python function taking scalars and numpy arrays as
arguments requires a word of caution. A straightforward function like

Python code
def T_exact(x):
a = sqrt(omegaxrhoxc/(2xkappa_0))
return T_R + T_Axexp(axx)*sin(omega*t + ax*x)
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will not work and result in an error message from UFL. The reason is that the names exp and sin are
those imported by the from dolfin import x statement, and these names come from UFL and are
aimed at being used in variational forms. In the T_exact function where x may be a scalar or a numpy
array, we therefore need to explicitly specify numpy.exp and numpy.sin:

Python code
def T_exact(x):

a = sqrt(omegaxrhoxc/(2xkappa_0))

return T_R + T_Axnumpy.exp(a*x)*numpy.sin(omega*t + axx)
The reader is encouraged to play around with the code and test out various parameter sets:
1. TR=0,Ta=1,x=x1=02,0=c=1,w=2n1
TR=0,Tg=1,%x=02,x=00l,0=c=1,w=2n

TR =0,Ta=1,%k=02,%x =0001,0=c=1w=27

L

TR = 10C, Ta = 10 C, g = 23K Ns™!, 1y = 100K 'Ns~!, o = 1500 kg/m?, ¢ =
1600 Nmkg 'K™!, w = 27/241/h =7.27-1051/s, D = 1.5 m

5. As above, but kg = 12.3 K"'Ns~! and x; = 10* K" 'Ns~!

Data set no. 4 is relevant for real temperature variations in the ground (not necessarily the large
value of k1), while data set no. 5 exaggerates the effect of a large heat conduction contrast so that it
becomes clearly visible in an animation.

1.4  Creating more complex domains

Up to now we have been very fond of the unit square as domain, which is an appropriate choice
for initial versions of a PDE solver. The strength of the finite element method, however, is its ease
of handling domains with complex shapes. This section shows some methods that can be used to
create different types of domains and meshes.

Domains of complex shape must normally be constructed in separate preprocessor programs.
Two relevant preprocessors are Triangle for 2D domains and NETGEN for 3D domains.

1.4.1 Built-in mesh generation tools

DOLEFIN has a few tools for creating various types of meshes over domains with simple shape:
UnitInterval, UnitSquare, UnitCube, Interval, Rectangle, Box, UnitCircle, and UnitSphere. Some
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of these names have been briefly met in previous sections. The hopefully self-explanatory code
snippet below summarizes typical constructions of meshes with the aid of these tools:

Python code

# 1D domains
mesh = UnitInterval(20) # 20 cells, 21 vertices
mesh = Interval(20, -1, 1) # domain [-1,1]

# 2D domains (6x10 divisions, 120 cells, 77 vertices)
mesh = UnitSquare(6, 10) # "right" diagonal is default
# The diagonals can be right, left or crossed

mesh = UnitSquare(6, 10, "left")

mesh = UnitSquare(6, 10, "crossed")

# Domain [0,3]x[0,2] with 6x10 divisions and left diagonals
mesh = Rectangle(0, 0, 3, 2, 6, 10, "left")

# 6x10x5 boxes in the unit cube, each box gets 6 tetrahedra:
mesh = UnitCube(6, 10, 5)

# Domain [-1,1]x[-1,0]x[-1,2] with 6x10x5 divisions
mesh = Box(-1, -1, -1, 1, 0, 2, 6, 10, 5)

# 10 divisions in radial directions
mesh = UnitCircle(10)
mesh = UnitSphere(10)

1.4.2  Transforming mesh coordinates

A mesh that is denser toward a boundary is often desired to increase accuracy in that region. Given
a mesh with uniformly spaced coordinates xo,...,xp/_1 in [a,b], the coordinate transformation § =
(x —a)/(b—a) maps x onto ¢ € [0,1]. A new mapping # = ¢°, for some s > 1, stretches the mesh
toward ¢ = 0 (x = a), while 7 = &'/5 makes a stretching toward & = 1 (x = b). Mapping the 7 € [0,1]
coordinates back to [a, b] gives new, stretched x coordinates,

f=a+(b—a)((x—a)b—a) (1.124)
toward x = a, or
) x—a 1/s
x—a+(b—a)<b_a) (1.125)

toward x = b

One way of creating more complex geometries is to transform the vertex coordinates in a rect-
angular mesh according to some formula. Say we want to create a part of a hollow cylinder of ®
degrees, with inner radius a and outer radius b. A standard mapping from polar coordinates to
Cartesian coordinates can be used to generate the hollow cylinder. Given a rectangle in (%, ) space
such that a < ¥ < band 0 < 7 < 1, the mapping

£ =xcos(®y), §=xsin(Oy), (1.126)

takes a point in the rectangular (¥,7) geometry and maps it to a point (£,7) in a hollow cylinder.
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The corresponding Python code for first stretching the mesh and then mapping it onto a hollow
cylinder looks as follows:

Python code

Theta = pi/2

a, b=1, 5.0

nr = 10 # divisions in r direction

nt = 20 # divisions in theta direction

mesh = Rectangle(a, 0, b, 1, nr, nt, "crossed")

# First make a denser mesh towards r=a
X = mesh.coordinates()[:,0]

y = mesh.coordinates()[:,1]

s = 1.3

def denser(x, y):
return [a + (b-a)*((x-a)/(b-a))*xx*s, y]

Xx_bar, y_bar = denser(x, y)

xy_bar_coor = numpy.array([x_bar, y_bar]).transpose()
mesh.coordinates()[:] = xy_bar_coor

plot(mesh, title="stretched mesh")

def cylinder(r, s):
return [rxnumpy.cos(Thetax*s), rxnumpy.sin(Thetaxs)]

x_hat, y_hat = cylinder(x_bar, y_bar)

xy_hat_coor = numpy.array([x_hat, y_hat]).transpose()
mesh.coordinates()[:] = xy_hat_coor

plot(mesh, title="hollow cylinder")

interactive()

The result of calling denser and cylinder above is a list of two vectors, with the x and y coordinates,
respectively. Turning this list into a numpy array object results in a 2 x M array, M being the number
of vertices in the mesh. However, mesh. coordinates() is by a convention an M X 2 array so we need
to take the transpose. The resulting mesh is displayed in Figure 1.8.

Setting boundary conditions in meshes created from mappings like the one illustrated above is
most conveniently done by using a mesh function to mark parts of the boundary. The marking is

- - A
Figure 1.8: A hollovy cylinder ‘V/Av:,/" o "AA
generated by mapping a QDN

rectangular mesh, stretched
toward the left side.
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easiest to perform before the mesh is mapped since one can then conceptually work with the sides
in a pure rectangle.

1.5 Handling domains with different materials

Solving PDEs in domains made up of different materials is a frequently encountered task. In FEniCS,
these kind of problems are handled by defining subdomains inside the domain. The subdomains
may represent the various materials. We can thereafter define material properties through functions,
known in FEniCS as mesh functions, that are piecewise constant in each subdomain. A simple example
with two materials (subdomains) in 2D will demonstrate the basic steps in the process.

1.5.1 Working with two subdomains

Suppose we want to solve
V - [k(x,y)Vu(x,y)] =0, (1.127)

in a domain () consisting of two subdomains where k takes on a different value in each subdomain.
For simplicity, yet without loss of generality, we choose for the current implementation the domain
Q= [0,1] x [0,1] and divide it into two equal subdomains, as depicted in Figure 1.9,

Qo =1[0,1]x[0,1/2], O =[0,1] x (1/2,1]. (1.128)

We define k(x,y) = ko in Qg and k(x,y) = ky in Oy, where kg > 0 and k; > 0 are given constants. As
boundary conditions, we choose u =0aty =0, u =1aty =1,and du/dn =0atx =0and x = 1.
One can show that the exact solution is now given by

Zykl
Forkr/ ys1/2
u(x,y) = { By ok v 3 1/2 (1.129)

ko+kq 4

VoA

As long as the element boundaries coincide with the internal boundary y = 1/2, this piecewise linear
solution should be exactly recovered by Lagrange elements of any degree. We use this property to
verify the implementation.

y
u=1
M

ou __ ou __

2 =0 =0
Figure 1.9: Sketch of a Poisson O
problem with a variable 0
coefficient that is constant in
each of the two subdomains )

and (). u=20 *
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Physically, the present problem may correspond to heat conduction, where the heat conduction
in () is ten times more efficient than in {)g. An alternative interpretation is flow in porous media
with two geological layers, where the layers’ ability to transport the fluid differs by a factor of 10.

1.5.2  Implementation

The new functionality in this subsection regards how to define the subdomains () and ;. For this
purpose we need to use subclasses of class SubDomain, not only plain functions as we have used so
far for specifying boundaries. Consider the boundary function

Python code

def boundary(x, on_boundary):
tol = 1E-14
return on_boundary and abs(x[0]) < tol

for defining the boundary x = 0. Instead of using such a stand-alone function, we can create an
instance? of a subclass of SubDomain, which implements the inside method as an alternative to the
boundary function:

Python code

class Boundary(SubDomain)
def inside(x, on_boundary):
tol = 1E-14
return on_boundary and abs(x[0]) < tol

boundary = Boundary()
bc = DirichletBC(V, Constant(0), boundary)

A subclass of SubDomain with an inside method offers functionality for marking parts of the
domain or the boundary. Now we need to define one class for the subdomain )y where y < 1/2 and
another for the subdomain )y where y > 1/2:

Python code

class Omega0(SubDomain):
def inside(self, x, on_boundary):
return True if x[1] <= 0.5 else False

class Omegal(SubDomain):
def inside(self, x, on_boundary):
return True if x[1] >= 0.5 else False

Notice the use of <= and >= in both tests. For a cell to belong to, e.g., )1, the inside method must
return True for all the vertices x of the cell. So to make the cells at the internal boundary y = 1/2
belong to ()1, we need the test x[1] >= 0.5.

The next task is to use a MeshFunction to mark all cells in )y with the subdomain number 0 and
all cells in Q)1 with the subdomain number 1. Our convention is to number subdomains as 0,1, 2, .. ..

A MeshFunction is a discrete function that can be evaluated at a set of so-called mesh entities.
Examples of mesh entities are cells, facets, and vertices. A MeshFunction over cells is suitable to
represent subdomains (materials), while a MeshFunction over facets is used to represent pieces of
external or internal boundaries. Mesh functions over vertices can be used to describe continuous
fields.

2The term instance means a Python object of a particular type (such as SubDomain, Function, FunctionSpace, etc.). Many
use instance and object as interchangeable terms. In other computer programming languages one may also use the term variable
for the same thing. We mostly use the well-known term object in this text.
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Since we need to define subdomains of () in the present example, we must make use of a
MeshFunction over cells. The MeshFunction constructor is fed with three arguments: 1) the type
of value: "int" for integers, "uint" for positive (unsigned) integers, "double" for real numbers, and
"bool" for logical values; 2) a Mesh object, and 3) the topological dimension of the mesh entity in
question: cells have topological dimension equal to the number of space dimensions in the PDE
problem, and facets have one dimension lower. Alternatively, the constructor can take just a filename
and initialize the MeshFunction from data in a file.

We start with creating a MeshFunction whose values are non-negative integers ("uint") for num-
bering the subdomains. The mesh entities of interest are the cells, which have dimension 2 in a
two-dimensional problem (1 in 1D, 3 in 3D). The appropriate code for defining the MeshFunction for
two subdomains then reads

Python code

subdomains = MeshFunction("uint", mesh, 2)
# Mark subdomains with numbers 0 and 1
subdomain® = OmegaO()
subdomain®.mark(subdomains, 0)

subdomainl = Omegal()
subdomainl.mark(subdomains, 1)

Calling subdomains.array() returns a numpy array of the subdomain values. That is,
subdomain.array()[i] is the subdomain value of cell number i. This array is used to look up
the subdomain or material number of a specific element.

We need a function k that is constant in each subdomain )y and ). Since we want k to be a finite
element function, it is natural to choose a space of functions that are constant over each element. The
family of discontinuous Galerkin methods, in FEniCS denoted by "DG", is suitable for this purpose.
Since we want functions that are piecewise constant, the value of the degree parameter is zero:

Python code

VO = FunctionSpace(mesh, "DG", 0)
k Function(V0)

To fill k with the right values in each element, we loop over all cells (the indices in subdomain.array()),
extract the corresponding subdomain number of a cell, and assign the corresponding k value to the
k.vector() array:

Python code

k_values = [1.5, 50] # values of k in the two subdomains

for cell_no in range(len(subdomains.array())):
subdomain_no = subdomains.array()[cell_no]
k.vector()[cell_no] = k_values[subdomain_no]

Long loops in Python are known to be slow, so for large meshes it is preferable to avoid such
loops and instead use vectorized code. Normally this implies that the loop must be replaced by calls to
functions from the numpy library that operate on complete arrays (in efficient C code). The function-
ality we want in the present case is to compute an array of the same size as subdomain.array(), but
where the value i of an entry in subdomain.array() is replaced by k_values[i]. Such an operation
is carried out by the numpy function choose:

Python code

help = numpy.asarray(subdomains.array(), dtype=numpy.int32)
k.vector()[:]1 = numpy.choose(help, k values)
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The help array is required since choose cannot work with subdomain.array() because this array has
elements of type uint32. We must therefore transform this array to an array help with standard
int32 integers.

Having the k function ready for finite element computations, we can proceed in the normal
manner with defining essential boundary conditions, as in Section 1.1.14, and the a(u,v) and L(v)
forms, as in Section 1.1.10. All the details can be found in the file mat2_p2D. py.

1.5.3 Multiple Neumann, Robin, and Dirichlet conditions

Let us go back to the model problem from Section 1.1.14 where we had both Dirichlet and Neumann
conditions. The term vx*gx*ds in the expression for L implies a boundary integral over the complete
boundary, or in FEniCS terms, an integral over all exterior facets. However, the contributions from
the parts of the boundary where we have Dirichlet conditions are erased when the linear system is
modified by the Dirichlet conditions. We would like, from an efficiency point of view, to integrate
vxg+ds only over the parts of the boundary where we actually have Neumann conditions. And more
importantly, in other problems one may have different Neumann conditions or other conditions
like the Robin type condition. With the mesh function concept we can mark different parts of the
boundary and integrate over specific parts. The same concept can also be used to treat multiple
Dirichlet conditions. The forthcoming text illustrates how this is done.

Essentially, we still stick to the model problem from Section 1.1.14, but replace the Neumann
condition at y = 0 by a Robin condition®:

Ju
—a = p(u—q), (1.130)

where p and g are specified functions. Since we have prescribed a simple solution in our model
problem, u = 1+ x? + 2y?, we adjust p and g such that the condition holds at y = 0. This implies
that ¢ = 1+ x? + 2y? and p can be arbitrary (the normal derivative at y = 0: du/dn = —du/dy =
—4y = 0).

Now we have four parts of the boundary: I'y which corresponds to the upper side y = 1, I'g
which corresponds to the lower part y = 0, I'g which corresponds to the left part x = 0, and I'y which
corresponds to the right part x = 1. The complete boundary-value problem reads

—Au=—-6in (), (1.131)
u = ur on Iy, (1.132)
u=ugonly, (1.133)

ou

3, = p(u—q) onTg, (1.134)

ou

5. = gonIy. (1.135)

The involved prescribed functions are u; = 1+ 2y?, ug = 2 +2y%, g = 1+ x> + 2y?, p is arbitrary,
and g = —4y.
Integration by parts of — [, vAu dx becomes as usual

—/ vAudx:/ Vu-Vvdx—/ a—uvds. (1.136)
Q Q a0 on

3The Robin condition is most often used to model heat transfer to the surroundings and arise naturally from Newton’s
cooling law.
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The boundary integral vanishes on I'g U T';, and we split the parts over I'y and I'z since we have
different conditions at those parts:

Jdu ou Jdu
—/anv%ds——/FNU%ds—/er%ds—/I_Nvgds—i—/erp(u—q)ds. (1.137)
The weak form then becomes
Vi Vod / d/ - d:/ dx, 1138
/Q u-Vodx + rNgv s+ er(u g)vds va X ( )

We want to write this weak form in the standard notation a(u,v) = L(v), which requires that we
identify all integrals with both 1 and v, and collect these in a(u, v), while the remaining integrals with
v and not u go into L(v). The integral from the Robin condition must of this reason be split in two
parts:

/ p(u—q)vds:/ puvds—/ pqo ds. (1.139)
.FR 1—‘R 'rR
We then have
a(u,v) = / Vu-Vodx + / puvds, (1.140)
Ja JTg
L) = [ fodx— [ gods+ [ pgods 1141
(v) ./va x rNgU S+.FRP‘W s ( )

A natural starting point for implementation is the file stationary/poisson/dn2_p2D.py. The new
aspects are

1. definition of a mesh function over the boundary,
2. marking each side as a subdomain, using the mesh function,
3. splitting a boundary integral into parts.

Task 1 makes use of the MeshFunction object, but contrary to Section 1.5.2, this is not a function
over cells, but a function over cell facets. The topological dimension of cell facets is one lower than
the cell interiors, so in a two-dimensional problem the dimension becomes 1. In general, the facet
dimension is given as mesh.topology().dim()-1, which we use in the code for ease of direct reuse
in other problems. The construction of a MeshFunction object to mark boundary parts now reads

Python code

boundary_parts = \
MeshFunction("uint", mesh, mesh.topology().dim()-1)

As in Section 1.5.2 we use a subclass of SubDomain to identify the various parts of the mesh function.
Problems with domains of more complicated geometries may set the mesh function for marking
boundaries as part of the mesh generation. In our case, the y = 0 boundary can be marked by

Python code

class LowerRobinBoundary(SubDomain):
def inside(self, x, on_boundary):
tol = 1E-14  # tolerance for coordinate comparisons
return on_boundary and abs(x[1]) < tol

Gamma_R = LowerRobinBoundary()
Gamma_R.mark(boundary_parts, 0)
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The code for the ¥ = 1 boundary is similar and is seen in dnr_p2D.
The Dirichlet boundaries are marked similarly, using subdomain number 2 for I'y and 3 for I'y:

Python code

class LeftBoundary(SubDomain):
def inside(self, x, on_boundary):
tol = 1E-14  # tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol

Gamma_0 = LeftBoundary()
Gamma_0.mark(boundary_parts, 2)

class RightBoundary(SubDomain):
def inside(self, x, on_boundary):
tol = 1E-14  # tolerance for coordinate comparisons
return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = RightBoundary()
Gamma_1l.mark(boundary_parts, 3)

Specifying the DirichletBC objects may now make use of the mesh function (instead of a SubDomain
subclass object) and an indicator for which subdomain each condition should be applied to:

Python code

u_L = Expression("1l + 2xx[1]*x[1]")

u_R = Expression("2 + 2xx[1]*x[1]")

bcs = [DirichletBC(V, u_L, boundary_parts, 2),
DirichletBC(V, u_R, boundary_parts, 3)]

Some functions need to be defined before we can go on with the a and L of the variational
problem:

Python code

g = Expression("-4xx[11")

q = Expression("1l + x[0]*x[0] + 2*x[1]1*x[1]")

p = Constant(100) # arbitrary function can go here
u = TrialFunction(V)

v = TestFunction(V)

f

= Constant(-6.0)

The new aspect of the variational problem is the two distinct boundary integrals. Having a mesh
function over exterior cell facets (our boundary_parts object), where subdomains (boundary parts)
are numbered as 0,1,2,..., the special symbol ds(0) implies integration over subdomain (part) 0O,
ds (1) denotes integration over subdomain (part) 1, and so on. The idea of multiple ds-type objects
generalizes to volume integrals too: dx(0), dx(1), etc., are used to integrate over subdomain 0, 1, etc.,
inside Q).

The variational problem can be defined as

Python code

a = inner(nabla_grad(u), nabla_grad(v))*dx + pxuxvxds(0)
L = fxvxdx - gxvxds(1l) + pxq*vxds(0)
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For the ds(0) and ds(1) symbols to work we must obviously connect them (or a and L) to the mesh
function marking parts of the boundary. This is done by a certain keyword argument to the assemble
function:

Python code

A
b

assemble(a, exterior_facet_domains=boundary_parts)
assemble(L, exterior_facet domains=boundary_parts)

Then essential boundary conditions are enforced, and the system can be solved in the usual way:

Python code

for bc in bcs: bc.apply(A, b)
u = Function(V)
U = u.vector()
solve(A, U, b)

The complete code is in the dnr_p2D. py file in the stationary/poisson directory.

1.6  More examples

Many more topics could be treated in a FEniCS tutorial, e.g., how to solve systems of PDEs, how to
work with mixed finite element methods, how to create more complicated meshes and mark bound-
aries, and how to create more advanced visualizations. However, to limit the size of this tutorial,
the examples end here. There are, fortunately, a rich set of FEniCS demos. The FEniCS documenta-
tion explains a collection of PDE solvers in detail: the Poisson equation, the mixed formulation for
the Poisson equation, the Biharmonic equation, the equations of hyperelasticity, the Cahn-Hilliard
equation, and the incompressible Navier—Stokes equations. Both Python and C++ versions of these
solvers are explained. An eigenvalue solver is also documented. In the dol1fin/demo directory of the
DOLFIN source code tree you can find programs for these and many other examples, including the
advection-diffusion equation, the equations of elastodynamics, a reaction-diffusion equation, various
finite element methods for the Stokes problem, discontinuous Galerkin methods for the Poisson and
advection-diffusion equations, and an eigenvalue problem arising from electromagnetic waveguide
problem with Nédélec elements. There are also numerous demos on how to apply various functional-
ity in FEniCS, e.g., mesh refinement and error control, moving meshes (for ALE methods), computing
functionals over subsets of the mesh (such as lift and drag on bodies in flow), and creating separate
subdomain meshes from a parent mesh.

The project CBC.Solve (https://launchpad.net/cbc.solve) offers more complete PDE solvers
for the Navier-Stokes equations (Chapter 29), the equations of hyperelasticity (Chapter 27), fluid—
structure interaction (Chapter 29), viscous mantle flow (Chapter 31), and the bidomain model of elec-
trophysiology. Another project, CBC.RANS (https://launchpad.net/cbc.rans), offers an environ-
ment for very flexible and easy implementation of Navier—Stokes solvers and turbulence (Mortensen
et al., 2011b,a). For example, CBC.RANS contains an elliptic relaxation model for turbulent flow
involving 18 nonlinear PDEs. FEniCS proved to be an ideal environment for implementing such
complicated PDE models. The easy construction of systems of nonlinear PDEs in CBC.RANS has
been further generalized to simplify the implementation of large systems of nonlinear PDEs in gen-
eral. The functionality is found in the CBC.PDESys package (https://launchpad.net/cbcpdesys).
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1.7 Miscellaneous topics

1.7.1 Glossary

Below we explain some key terms used in this tutorial.

FEniCS: name of a software suite composed of many individual software components (see
fenicsproject.org). Some components are DOLFIN and Viper, explicitly referred to in this tu-
torial. Others are FFC and FIAT, heavily used by the programs appearing in this tutorial, but never
explicitly used from the programs.

DOLFIN: a FEniCS component, more precisely a C++ library, with a Python interface, for performing
important actions in finite element programs. DOLFIN makes use of many other FEniCS compo-
nents and many external software packages.

Viper: a FEniCS component for quick visualization of finite element meshes and solutions.

UFL: a FEniCS component implementing the unified form language for specifying finite element forms
in FEniCS programs. The definition of the forms, typically called a and L in this tutorial, must have
legal UFL syntax. The same applies to the definition of functionals (see Section 1.1.11).

Class (Python): a programming construction for creating objects containing a set of variables and
functions. Most types of FEniCS objects are defined through the class concept.

Instance (Python): an object of a particular type, where the type is implemented as a class. For
instance, mesh = UnitInterval(10) creates an instance of class UnitInterval, which is reached by
the name mesh. (Class UnitInterval is actually just an interface to a corresponding C++ class in the
DOLFIN C++ library.)

Class method (Python): a function in a class, reached by dot notation: instance_name.method_name.

self parameter (Python): required first parameter in class methods, representing a particular object
of the class. Used in method definitions, but never in calls to a method. For example, if method (self,
x) is the definition of method in a class Y, method is called as y.method(x), where y is an instance of
class Y. In a call like y.method(x), method is invoked with self=y.

Class attribute (Python): a variable in a class, reached by dot notation: instance_name.attribute_
name.

1.7.2 Owerview of objects and functions

Most classes in FEniCS have an explanation of the purpose and usage that can be seen by using the
general documentation command pydoc for Python objects. You can type

Output
pydoc dolfin.X

to look up documentation of a Python class X from the DOLFIN library (X can be UnitSquare,
Function, FunctionSpace, etc.). Below is an overview of the most important classes and functions in
FEniCS programs, in the order they typically appear within programs.

UnitSquare(nx, ny): generate mesh over the unit square [0, 1] x [0,1] using nx divisions in x direc-
tion and ny divisions in y direction. Each of the nxxny squares are divided into two cells of triangular
shape.

UnitInterval, UnitCube, UnitCircle, UnitSphere, Interval, Rectangle, and Box: generate mesh over
domains of simple geometric shape, see Section 1.4.
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FunctionSpace(mesh, element_type, degree): a function space defined over a mesh, with a given
element type (e.g., "Lagrange" or "DG"), with basis functions as polynomials of a specified degree.

Expression(formula, pl=vl, p2=v2, ...): a scalar- or vector-valued function, given as a mathe-
matical expression formula (string) written in C++ syntax. The spatial coordinates in the expression
are named x[0], x[1], and x[2], while time and other physical parameters can be represented as
symbols pl, p2, etc., with corresponding values v1, v2, etc., initialized through keyword arguments.
These parameters become attributes, whose values can be modified when desired.

Function(V): a scalar- or vector-valued finite element field in the function space V. If V is a Function
Space object, Function(V) becomes a scalar field, and with V as a VectorFunctionSpace object,
Function(V) becomes a vector field.

SubDomain: class for defining a subdomain, either a part of the boundary, an internal boundary, or a
part of the domain. The programmer must subclass SubDomain and implement the inside(self, x,
on_boundary) function (see Section 1.1.3) for telling whether a point x is inside the subdomain or
not.

Mesh: class for representing a finite element mesh, consisting of cells, vertices, and optionally faces,
edges, and facets.

MeshFunction: tool for marking parts of the domain or the boundary. Used for variable coefficients
(“material properties”, see Section 1.5.1) or for boundary conditions (see Section 1.5.3).

DirichletBC(V, value, where): specification of Dirichlet (essential) boundary conditions via a func-
tion space V, a function value(x) for computing the value of the condition at a point x, and a spec-
ification where of the boundary, either as a SubDomain subclass instance, a plain function, or as a
MeshFunction instance. In the latter case, a 4th argument is provided to describe which subdomain
number that describes the relevant boundary.

TrialFunction(V): define a trial function on a space V to be used in a variational form to represent
the unknown in a finite element problem.

TestFunction(V): define a test function on a space V to be used in a variational form.

assemble(X): assemble a matrix, a right-hand side, or a functional, given a from X written with UFL
syntax.

assemble_system(a, L, bcs): assemble the matrix and the right-hand side from a bilinear (a) and
linear (L) form written with UFL syntax. The bcs parameter holds one or more DirichletBC objects.

LinearVariationalProblem(a, L, u, bcs): define a variational problem, given a bilinear (a) and
linear (L) form, written with UFL syntax, and one or more DirichletBC objects stored in bcs.

LinearVariationalSolver(problem): create solver object for a a linear variational problem object
(problem).

solve(A, U, b): solve a linear system with A as coefficient matrix (Matrix object), U as unknown
(Vector object), and b as right-hand side (Vector object). Usually, U = u.vector(), where u is a
Function object representing the unknown finite element function of the problem, while A and b are
computed by calls to assemble or assemble_system.

plot(q): quick visualization of a mesh, function, or mesh function g, using the Viper component in
FEniCS.

interpolate(func, V): interpolate a formula or finite element function func onto the function
space V.

project(func, V): project a formula or finite element function func onto the function space V.
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1.7.3  User-defined functions
When defining a function in terms of a mathematical expression inside a string formula, e.g.,

Python code

myfunc = Expression("sin(x[0])*cos(x[1])")

the expression contained in the first argument will be turned into a C++ function and compiled to
gain efficiency. Therefore, the syntax used in the expression must be valid C++ syntax. Most Python
syntax for mathematical expressions are also valid C++ syntax, but power expressions make an
exception: p++a must be written as pow(p,a) in C++ (this is also an alternative Python syntax). The
following mathematical functions can be used directly in C++ expressions when defining Expression
objects: cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, exp, frexp, ldexp, log, 1og10, modf,
pow, sqrt, ceil, fabs, floor, and fmod. Moreover, the number 7 is available as the symbol pi. All the
listed functions are taken from the cmath C++ header file, and one may hence consult documentation
of cmath for more information on the various functions.

1.7.4  Linear solvers and preconditioners

The following solution methods for linear systems can be accessed in FEniCS programs:

Name Method
“lu" sparse LU factorization (Gaussian elim.)
"cholesky" sparse Cholesky factorization
"cg" Conjugate gradient method
“gmres" Generalized minimal residual method
"bicgstab" Biconjugate gradient stabilized method
"minres" Minimal residual method
"tfgmr" Transpose-free quasi-minimal residual method

"richardson" Richardson method

Possible choices of preconditioners include

Name Method
"none" No preconditioner
"ilu® Incomplete LU factorization
"icc" Incomplete Cholesky factorization
"jacobi" Jacobi iteration
"bjacobi” Block Jacobi iteration
"sor" Successive over-relaxation
"amg" Algebraic multigrid (BoomerAMG or ML)
"additive_schwarz" Additive Schwarz
"hypre_amg" Hypre algebraic multigrid (BoomerAMG)
"hypre_euclid" Hypre parallel incomplete LU factorization
"hypre_parasails"  Hypre parallel sparse approximate inverse
"ml_amg" ML algebraic multigrid

Many of the choices listed above are only offered by a specific backend, so setting the backend
appropriately is necessary for being able to choose a desired linear solver or preconditioner.
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An up-to-date list of the available solvers and preconditioners in FEniCS can be produced by

Python code

list_linear_solver_methods()
list_krylov_solver_preconditioners()

1.7.5 Installing FEniCS

The FEniCS software components are available for Linux, Windows and Mac OS X platforms. De-
tailed information on how to get FEniCS running on such machines are available at the fenicsproject.
org website. Here are just some quick descriptions and recommendations by the author.

To make the installation of FEniCS as painless and reliable as possible, the reader is strongly
recommended to use Ubuntu Linux*. Any standard PC can easily be equipped with Ubuntu Linux,
which may live side by side with either Windows or Mac OS X or another Linux installation. Basically,
you download Ubuntu from http://www.ubuntu.com/getubuntu/download, burn the file on a CD or
copy it to a memory stick, reboot the machine with the CD or memory stick, and answer some usually
straightforward questions (if necessary). On Windows, Wubi is a tool that automatically installs
Ubuntu on the machine. Just give a user name and password for the Ubuntu installation, and Wubi
performs the rest. The graphical user interface (GUI) of Ubuntu is quite similar to both Windows
7 and Mac OS X, but to be efficient when doing science with FEniCS this author recommends to
run programs in a terminal window and write them in a text editor like Emacs or Vim. You can
employ integrated development environment such as Eclipse, but intensive FEniCS developers and
users tend to find terminal windows and plain text editors more user friendly.

Instead of making it possible to boot your machine with the Linux Ubuntu operating system, you
can run Ubuntu in a separate window in your existing operation system. There are several solutions
to chose among: the free VirtualBox and VMWare Player, or the commercial tools VMWare Fusion and
Parallels (just search for the names to download the programs).

Once the Ubuntu window is up and running, FEniCS is painlessly installed by

Bash code

sudo apt-get install fenics

Sometimes the FEniCS software in a standard Ubuntu installation lacks some recent features and bug
fixes. Visiting the detailed download page on fenicsproject.org and copying a few Unix commands
is all you have to do to install a newer version of the software.

1.7.6  Books on the finite element method

There are a large number of books on the finite element method. The books typically fall in either
of two categories: the abstract mathematical version of the method and the engineering “structural
analysis” formulation. FEniCS builds heavily on concepts in the abstract mathematical exposition.
An easy-to-read book, which provides a good general background for using FEniCS, is Gockenbach
(2006). The book Donea and Huerta (2003) has a similar style, but aims at readers with interest in
fluid flow problems. Hughes (1987) is also highly recommended, especially for those interested in
solid mechanics and heat transfer applications.

Readers with background in the engineering “structural analysis” version of the finite element
method may find Bickford (1994) as an attractive bridge over to the abstract mathematical formulation
that FEniCS builds upon. Those who have a weak background in differential equations in general

“Even though Mac users now can get FEniCS by a one-click install, I recommend using Ubuntu on Mac, unless you have
high Unix competence and much experience with compiling and linking C++ libraries on Mac OS X.
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should consult a more fundamental book, and Eriksson et al. (1996) is a very good choice. On the
other hand, FEniCS users with a strong background in mathematics and interest in the mathematical
properties of the finite element method, will appreciate the texts Brenner and Scott (2008), Braess
(2007), Ern and Guermond (2004), Quarteroni and Valli (2008), or Ciarlet (2002).

1.7.7  Books on Python

Two very popular introductory books on Python are “Learning Python” (Lutz, 2007) and “Prac-
tical Python” (Hetland, 2002). More advanced and comprehensive books include “Programming
Python” (Lutz, 2006), and “Python Cookbook” (Martelli and Ascher, 2005) and “Python in a Nut-
shell” (Martelli, 2006). The web page http://wiki.python.org/moin/PythonBooks lists numerous
additional books. Very few texts teach Python in a mathematical and numerical context, but the
references Langtangen (2008, 2011); Kiusalaas (2009) are exceptions.
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