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Abstract We review some mathematical programming models that capture the

optimal bidding problem that power producers face in day-ahead electricity auction

markets. The models consider both price-taking and non-price taking assumptions.

The models include linear and non-linear integer programming models, mathemat-

ical programs with equilibrium constraints, and stochastic programming models

with recourse. Models are emphasized where the producer must self-schedule units

and therefore must integrate optimal bidding with unit commitment decisions. We

classify models according to whether competition from competing producers is

directly incorporated in the model.
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1 Introduction

The transformation from regulation to competition in power industries around the

world have led to the development of markets for power. Day-ahead electricity

markets are emerging as an important medium through which power is allocated in

many de-regulated environments. A day-ahead electricity market is a short term

hedge market that operates a day in advance of the actual physical delivery of

power. In these environments, the generation decisions for the next day are in most

cases the result of a double (two-sided) auction where producing (selling) and

consuming (buying) agents submit a set of price-quantity curves (bids). The bids

must be submitted by a deadline on the day before actual delivery of power.
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A clearing price based on the submitted bids is determined by the ISO (Independent

System Operator) or market making agent and all subsequent trades are settled at

this price.

A significant amount of power is allocated through day-ahead markets. For

example in the Nord Pool day-ahead market in Scandinavia, Elspot, the volume

of power traded in 2007 was more than 290 TWh which amounts to more than 65%

of all consumption in the Nordic countries for that year [1]. Irastorza and Fraser [2]

find that in the United States most electricity is traded through day-ahead markets or

through bilateral forward contracts. Day-ahead markets are beneficial since they

act as a short term forward market for power that in conjunction with a real-time

market offers significant benefits to both producers and consumers of power

through price transparency, the reduction of price uncertainty, reduction of strategic

gaming, unit commitment certainty, and facilitation of demand-side (consumer)

participation.

In a day-ahead market, a producer of power must decide their offer curve and a

consumer must decide their bid curve. In addition, the ISO or market maker must

clear the market by finding the equilibrium clearing price of the auction based on

the submitted bids. Given the importance of the role of day-ahead markets in the

generation and allocation of power normative models for the agents have been

emerging in the literature over the last decade on optimal bid construction, unit

commitment, and payment/pricing and other decisions in the context of day-ahead

markets. In this paper, we give a review of the literature on the various types of

optimization modeling of the power producers i.e. those agents that generate and

supply power into the market.

The purpose of this chapter is to classify and characterize the emerging literature

of optimization models for producers participating in day-ahead markets. Producer

models considered in this paper involve a diverse set of mathematical programming

approaches including non-linear integer programs, stochastic programming with

recourse, and mathematical programs with equilibrium constraints.

We focus on models where producers and not the ISO have the responsibility of

unit commitment decisions and so must integrate these decisions with the offer or

bidding strategy. There are advantages to not having an ISO perform a centralized

unit commitment as cost information of competing producers must be revealed to

the ISO. Also, a centralized unit commitment in a decentralized market setting

can be problematic for individual units. In particular, small cost changes in the

centralized unit commitment can result in large differences to individual units/

generators [3]. Transmission and congestion issues when included are dealt within

models and we do not consider separate for models for a congestion or transmission

entity. We do not intend to give an exhaustive coverage of the literature, but select

models that represent the current state of the art or represent the major issues in

modeling of optimal producer bidding strategy in the context of day-ahead markets.

Modeling approaches for producers in the day-ahead market environment reflect

the decentralized nature of the market. In this setting separate models for entities

(agents) of the market are developed e.g. models for optimal producer bidding. This

is in marked contrast to models for energy under the older regulated environments
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where for example a public utility would schedule generation and decide unit

commitment without the presence of competitive bids. Most of these models are

centralized cost minimization models. For a good review of this class models see

Hobbs [4]. For an excellent review of general market modeling trends see Ventosa

et al. [5]. In addition, see Wallace and Fleten [6] for stochastic programming

models in regulated environments. Wallace and Fleten [6] discuss models in

de-regulated environments e.g. day-ahead models as well but in the current paper

we address and focus on day-ahead markets in a more comprehensive and detailed

manner and consider other modeling approaches in addition to stochastic program-

ming models.

2 Producer Models

The main focus of models of producers in day-ahead markets is on constructing

optimal offer curves to submit to the market coordinator e.g. ISO or market maker.

The producers of power in the market have a multitude of important considerations

in developing offers for power in the day-ahead market. A bidding model for a

producer will depend on the particular market structure e.g. auction rules and

protocols. In addition, producers face uncertainty in demand for power and in

many cases uncertainty in the behavior of competing power producers. In addition,

in some environments the unit commitment decisions may be the responsibility of

the producer and thus any bids for power must consider the cost of operating

generation units as well as inter-temporal operating constraints. The integration

will depend on whether an ISO or other agent decides unit commitment.

It is typical in day-ahead markets to require producers to submit supply functions

(offer curves) for each of the 24 h of the day-ahead schedule. The supply functions

give for each hour the price per unit of power associated with a volume of power

that the producer is willing to sell at. Offer curves are typically non-decreasing. We

classify the models we consider in this chapter broadly into two classes. The first

class of models directly incorporates bidding behavior of competing producers. The

second class does not incorporate competition directly into the model. We call the

first class “Producer models with strategy” and the second class “Producer models

without strategy”.

3 Producer Models with Strategy

This class of models considers a producer’s optimal bidding problem where impor-

tant model attributes include self-scheduling, integration with unit-commitment,

and incorporation of demand load and competing producer bidding behavior.

We emphasize the structural aspects of all models in general but note that the

incorporation of competing producers will involve important estimation techniques
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(these techniques are complementary to the structural development/description of

models and will not be pursued in detail in this chapter.) We give detailed examples

for two representative models. They differ dramatically in how competition is

incorporated. The first example is a non-equilibrium approach (i.e. does not use

mathematical programming formulations with equilibrium constraints, MPEC) and

the second example is an MPEC model i.e. an explicit equilibrium programming

approach.

3.1 Non-equilibrium Example

The first model we present is by Wen and David [7]. The modeling framework was

developed for day-ahead markets in California that pre-dates the California energy

crisis of 2000–2001. In the pre-crisis environment, there was an ISO that managed

the grid, and a separate market maker called PX (Power Exchange), that coordi-

nated the day-ahead market. The structure of the newly emerging post-crisis energy

markets in California will include a day-ahead market, however, the ISO now will

act as the market coordinator. The framework of Wen and David [7] is nevertheless

instructive for environments where ISOs are not the market coordinators and

producers consider the strategies of other producers and self-unit commitment in

the construction of offer curves. It is assumed that the producers are thermal

producers of electricity.

In this framework, producer i submits linear non-decreasing offer curve (bid

price) of the form BðtÞðiÞðPðiÞðtÞÞ ¼ aiðtÞ þ bi
ðtÞ � PðiÞðtÞ for each hour of in the day

ahead market (there are 24 h) where aiðtÞ and bi
ðtÞ are bidding coefficients for

producer i and PðiÞðtÞ is the generation output.

3.1.1 Market Maker Model (i.e. PX Model)

The market maker, PX, after receiving bids from the producers computes the

market clearing price Rt and solves the following problem in a manner similar to

solving a classical economic dispatch problem to compute the generation output for

each producer.

Rt ¼ aiðtÞ þ bi
ðtÞ � PðiÞðtÞ t ¼ 1; 2; 3; :::; 24 (1)

Xn
j¼1

Pj
ðtÞ ¼ Qt t ¼ 1; 2; 3; :::; 24 (2)

Pjmin
ðtÞ � Pj

ðtÞ � Pjmax
ðtÞ j ¼ 1; 2; ; :::; n t ¼ 1; 2; 3; :::; 24 (3)
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In (1), generation is assigned to each producer so that bid prices coincide with

the market clearing price for each hour. Equation 2 ensures that generation is

assigned so that the load for each hour Qt is met by total of generation from all

producers. Equation 3 ensure that all generation is assigned this is between the

lower and upper bounds for each producer where Pjmin
ðtÞ and Pjmax

ðtÞ are the

respective bounds for each producer.

3.1.2 Producer Strategies

The strategy of a producer in this framework is to determine offer curves for each

hour with the aim of “maximizing hourly benefit” or providing “minimum stable

output”. The two strategies ensure that enough generation is dispatched so that offer

curves are profitable of at least enough generation output dispatched for the

generator to remain in continuous operation. The producer considers an optimiza-

tion model for each of these problems and then formulates a unit commitment

model that that incorporates the strategies from the previous two models.

3.1.3 The Producer Hourly Benefit Model

This model seeks to find generation offers that would maximize hourly benefit

given data about estimated loads and estimated bidding behavior of other bidders

(power producers). The model is as follows:

maximizecðtÞðaiðtÞ; biðtÞÞ ¼ RtP
ðtÞ
i � CiðPi

ðtÞÞ (4)

subject to (1) to (3)

where CiðPi
ðtÞÞ is the cost of generation for producer i which is a function of the

generation. cðtÞðaiðtÞ; biðtÞÞ is the hourly benefit objective function which is a

measure of hourly benefit or profit. It should be noted that constraint (1) in the

context of the producer model requires that the bidding coefficients of other

producers to be estimated since a producer would not have access to this informa-

tion directly see Wen and David [7] for details. In this approach, they use a joint

probability distribution to estimate all other producers and then the hourly benefit

model becomes a stochastic optimization problem.

3.1.4 Minimum Stable Output Bidding Strategy

This model aims to ensure that average output from a producer achieves near the

minimum generation level. The model is as follows:

Minimize BðtÞða; bÞ ¼ j �PðtÞ
i � Pmin

ðtÞj þ gð �PðtÞ
i � P

ðtÞ
minÞ2 (5)
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subject toPimin
ðtÞ � �P

ðtÞ
i � Pimax

ðtÞ (6)

where g is a positive penalty parameter.

3.1.5 Overall Producer Bidding Model

This model integrates the strategies from the hourly benefit and the minimum stable

output models to determine which generators are to be on for each time period.

Maximize : OðmtÞ ¼ M þ
X24
t¼1

½mtcðtÞðaðtÞi ; bðtÞi Þ � SðtÞmtð1� mt�1Þ� (7)

subject to
X24
t¼1

ðmt � mt�1Þ2 � N (8)

where the objective function in (7) is constructed to be positive (M is a sufficiently

large number) in all cases since the formulation will be solved be a genetic

algorithm representing the fitness of bidding strategies. mt is a binary variable that

is 1 if a unit is up for hour t, 0 otherwise and SðtÞ is the start up cost of the generator.
Constraint (8) ensures that a unit has a maximum number of start ups and

shutdowns in a day.

Recent papers similar to Wen and David [7] that make estimates of load forecast

and competitor behavior have emerged that also incorporate reserve markets as well

as the spot (day-ahead) markets. Attaviriyanupap et al. [8] consider thermal pro-

ducer optimization models that incorporate self-scheduling and unit commitment

based on estimates of competing producers in both spot and reserve markets. The

resulting producer models are non-convex and non-differentiable and evolutionary

programming heuristics are used to solve the models. An alternative approach by

Swinder [9] considers the spot market to be a price-taking market but assumes that

bidders behave strategically in the reserve market and that the behavior is captured

in a joint probability distribution. A simultaneous bidding model is developed that

is a stochastic non-linear profit maximization model.

Other models that incorporate competitor behavior and load estimates include

Zhang et al. [10] in which they consider a Lagrangian relaxation-based approach

after obtaining a closed form solution for the ISO problem. A Lagrangian relaxation

approach is also adopted in Gross and Finlay [11] where the load forecast and

competitor behavior is incorporated. An ordinal optimization approach is presented

in Guan et al. [12] where the idea is to generate good enough solutions. Anderson

and Philpott [13] consider the more general problem of a producer that makes offers

into a wholesale power market for which the prices are determined by a sealed-bid

auction (this case would be applicable to day-ahead markets). Demand and behav-

ior of competing producers are represented in a probability distribution for which
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models are then defined and necessary optimality conditions are derived for these

models.

3.2 Equilibrium Approaches for Producer Models

Next, we consider an MPEC (mathematical program with equilibrium constraints)

model by Bakirtzis et al. [14] for a generator’s offering strategy with step-wise

offers. An MPEC model is a non-linear programming problem in which there are

constraints defined by a parametric variational inequality or complementarity

system [15]. The MPEC framework is useful for modeling strategic interaction

that follows a Stackleberg game [16]. In this model, a “leader” producer can affect

the market price and estimates the demand declarations as well as the supply

functions of competing producers to be used in the leader’s optimal offering

strategy problem. The competing producers are the “followers” in the sense that

the “leader” producer faces a residual demand function of the aggregate of the

competing producers. An MPEC generator model will have an outer problem of

maximizing profit given that the ISO will solve an economic dispatch problem (this

latter problem is the inner problem). The ISO problem (given supply functions from

all generators) is to minimize revealed cost while determining the dispatched

quantity for each generator. In the model of Bakirtzis et al. [14], a producer j
constructs optimal energy offers in the form of non-decreasing step-wise bids i.e.

selects a numberBj of steps and a set of quantity-price pairs ðQjb; pjbÞ for each step

b 2 f1; :::;Bjg where Qjb is the quantity offered by producer j for block b and pjb is
the corresponding offer price.

The deterministic ISO problem is of the following form:

Minimize
X
j

X
b

pjb � qjb (9)

subject to (10) to (12)

The objective (9) is to minimize the cost of dispatched energy with respect to

the revealed price of energy where qjb is the dispatched power for unit j step b. The
constraints are defined as follows:

X
j

X
b

qjb ¼ d (10)

qjb � Qjb for all j 2 A; b 2 Bj (11)

qjb � 0 for all j 2 A; b 2 Bj (12)
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Constraint (10) ensures that demand d is met through all dispatched power and

(11) ensures that accepted power does not exceed the offered volume (i.e. a

producer is never dispatched more power then bid for).

The producer model assumes a 1 h horizon and pertains to a producer with a set

of thermal unitsA and is defined as follows:

Maximize
X
s2S

(
ps
X
j2A

X
b2Bj

lsqsjb � cj
X
b2B

qsjb

 !" #)
(13)

subject to (14) to (28)

The objective (13) is to maximize the expected profit where the system marginal

price for power in scenario s is ls and qsjb is the quantity of step b of unit j offer
accepted by the ISO in scenario s. cjð�Þ is the hourly non-linear cost of unit j as a
function of generation level.

3.2.1 Producer Constraints

0 � Qjb � Qmax
j for all j 2 A; b 2 Bj (14)

X
b

Qjb ¼ Qmax
j for all j 2 A (15)

Qjq � d � Qmax
j for all j 2 A (16)

Constraints (14) ensure that any offer is not greater than the capacity of a unit j and
(15) ensures that all of the capacity of a unit j is offered. Constraint (16) ensures that
the first step of an offer is a fraction of the available capacity of a unit j (as required
by Greek power markets).

0 � pjb � pmax for all j 2 A; b 2 Bj (17)

pjb � pjðbþ1Þ for all j 2 A; b ¼ 1; :::;Bj � 1 (18)

pjb � MVCj for all j 2 A; b ¼ 1; :::;Bj (19)

X
b2Bj

Qjb � pjb � MVCj �
X
b2Bj

Qjb for all j 2 A (20)

Constraint (17) places a price cap of all price offers and (18) ensures the offer

prices are non-decreasing. Constraints (19) and (20) ensure that offer prices are at

least the minimum variable cost, MVCj, for a unit j.
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3.2.2 ISO Market Clearing Problem

X
j;b

qsjb ¼ ds for all s 2 S (21)

qsjb � Qjb for all j 2 A; b 2 Bj; s 2 S (22)

qsjb � �Qs
jb for all j 2 A; b 2 Bj; s 2 S (23)

qsjb � 0 for all j 2 J; b 2 Bj; s 2 S (24)

msjb � 0 for all j 2 J; b 2 Bj; s 2 S (25)

pjb þ msjb � ls for all j 2 A; b 2 Bj; s 2 S (26)

�pjb þ msjb � ls for all j 2 A; b 2 Bj; s 2 S (27)

X
j2A;b2Bj

pjbqsjb þ
X

j2A;b2Bj

msjbQjb þ
X

j2A;b2Bj

�psjbq
s
jb þ

X
j2A;b2Bj

msjb �Q
s
jb ¼ lsds for all s 2 S

(28)

Constraints (21) to (28) represent the expected value (scenario-based) ISO problem

via the Karush-Kuhn-Tucker conditions wherels is the dual multiplier associated

with demand balance constraint (10) for scenario s and msjb is the dual multiplier for

the constraint (11) for scenarios s.
It should be noted that the producer MPEC formulation is converted to a mixed

integer linear program by a binary expansion of the offer prices and quantities using

the techniques in Pereira et al. [17]. Other bi-level level mathematical programming-

based approaches which involve an outer and an inner problem corresponding to

producer and ISO, respectively, include Gountis et al. (2004) [29] where each

producer submits a linear supply curve and estimates the competing producers and

demand behavior using Monte Carlo approaches. In addition, risk aversion is

modeled and is seen to have an impact on optimal offer strategies. Earlier bi-level

model is given in Weber and Overbye [18].

4 Producer Models Without Strategy

In this section, we consider producer models where there is no explicit incorpo-

ration of competing producers in the models. We detail two models. The first is a

deterministic mixed integer linear programming modeling framework and the
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second a stochastic integer programming model. Both models are price-taking in

the sense that the model assumes that the producer can not impact the market

clearing price.

4.1 Mixed Integer Linear Programming Model

The first modeling framework is by Conejo et al. [19] for constructing offer curves

for price-taking thermal producers (producers). In this approach, hourly prices are

forecast and a self-schedule is obtained by an optimization model. The framework

is for general pool type electricity markets. Generators submit a bid for each hour

in the day-ahead time frame and consists a set of blocks of power along with

corresponding unit prices. Then, hourly offer curves are constructed based on the

optimal self-schedule by the use of a simple bidding strategy.

The producer (price-taking) optimization model is

MaximizeEl1;:::;lT

XT
t¼1

ltpt

( )
�
XT
t¼1

ct (29)

subject to pt 2 P (30)

where lt are the random prices of power for hour t (the distributions are approxi-

mately lognormal), ct is the (non-linear) cost of generating for hour t (see Conejo

et al. [19] for details), pt is the power generation for hour t, and P is the set of

feasible generation outputs that satisfy operational constraints with respect to

minimum up and down times, ramping, and power output limits. Thus, the model

seeks to maximize optimal expected profit subject to operating constraints. This

model is seen to be equivalent to a mixed integer program (MIP), where P is

defined by the following constraints:

pt � P vðtÞ for all t ¼ 1; :::; T (31)

pt � P ½vðtÞ � zðtþ 1Þ� þ zðtþ 1ÞSD for all t ¼ 1; :::; T (32)

these constraints ensure the lower and upper limits on power production (zðtÞ(vðtÞ)is
a binary variable which is equal to 1 is the generator is shut down (on-line) at the

start of hour t, SD is the shut down ramp rate limit in MW/h.)

pt � pt�1 þ RUvðt� 1Þ þ SUyðtÞ for all t ¼ 1; :::; T (33)

pt�1 � pt þ RDvðtÞ þ SDzðtÞ for all t ¼ 1; :::; T (34)
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these constraints ensure that ramp rates are obeyed (where RU (RD) is the ramp-up

(ramp-down) rate limit and SD is the shut down ramp rate limit)

XG
t¼1

½1� vðtÞ� ¼ 0 (35)

XtþUT�1

j¼t

vð jÞ � UTyðtÞ t ¼ Gþ 1; :::; T � UT þ 1 (36)

XT
j¼t

½vð jÞ � yðtÞ� � 0 t ¼ T � UT þ 2; :::; T (37)

XF
t¼1

vðtÞ ¼ 0 (38)

XtþDT�1

j¼t

½1� vð jÞ� � DTzðtÞ t ¼ Fþ 1; :::; T � DT þ 1 (39)

XT
j¼t

½1� vð jÞ � zðtÞ� � 0 t ¼ T � DT þ 2; :::; T (40)

Constraints (35) to (40) ensure that the minimum up and down times of a

generator are satisfied where DT (UT) is the minimum downtime (uptime) and F

(G) is the required number of time intervals that a generating unit must be off-line

(on-line) because of downtime (uptime) constraints.

yðtÞ � zðtÞ ¼ vðtÞ � vðt� 1Þ t ¼ 1; :::; T (41)

yðtÞ þ zðtÞ � 1 t ¼ 1; :::; T (42)

zðtÞ 2 f0; 1g t ¼ 1; :::; T (43)

Constraints (41) to (43) ensure the correct logical relationship between a gener-

ator’ shut-down, start-up, and running states.

The offer curve for a generator is obtained by solving the MIP model to obtain

the optimal production schedulep	t for each of the 24 h in the day-ahead time frame.

Then the bidding strategy to realizep	t for hour t is summarized as follows:

1. If p	t ¼ 0 then offer curve will consist of a single block of power equivalent to

maximum capacity of a thermal generator, P , at unit price of lestt þ atsestt

2. If 0<p	t<P , then the offer curve will consist of two blocks of power p	t and

P�p	t at prices l
est
t � btsestt and lestt þ atsestt , respectively.

3. If p	t ¼ P , then the offer curve will be a block of power p	t ¼ P at a price per unit

of lestt � btsestt .
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where lestt is the expected value of lt and sestt the estimate of the standard deviation

of lt. The prices (i.e. coefficients at and bt) are chosen so that the offer curves

guarantee with a level of 99% confidence that the power accepted by the market

maker is the specified power amount in the offer curve.

Other price–taking producer models without strategy include Ladurantaye et al.

[20] where a bidding model for a price-taking hydro-producer is formulated.

Gonzalez et al. [21] consider a profit-based hydro-producer model for day-ahead

markets. Risk aversion is incorporated into the model via the conditional Value at

Risk (CVaR) measure [22]. Scenarios are generated for market prices via hidden

markov models. Also considered are minimum profit-based models. The resulting

formulations are mixed integer linear programs. Conejo et al. [23], Yamin et al.

(2004) [31] and Dicorato et al. [24] also incorporate risk aversion into producer

bidding models where the first two consider as a measure of risk the variance of

market clearing price and the latter the CVaR measure.

4.2 Stochastic Programming Model

Stochastic programming has been emerging as an important modeling framework

for problems arising in the energy sector such as hydro and thermal scheduling [6],

unit commitment (Takriti et al. 1996) [30] and structuring energy forward contracts

[25] among many other classes of problems. Uncertainty in deregulated energy

markets often takes the form of uncertainty in spot prices and uncertainty in weather

which relates to uncertainty in demand (load). For an excellent survey of the use of

stochastic programming in both regulated and deregulated energy markets see

Wallace and Fleten [6].

We detail the model of Fleten and Kristoffersen [26] where a two-stage stochas-

tic programming model is developed for optimizing the offer strategy for a Nordic

hydropower producer for the day-ahead market in the Nord Pool, the Elspot. The

hydropower producer is assumed to be a price-taker and the model incorporates

price uncertainty. Another stochastic programming model in the same spirit of

Fleten and Kristoffersen [26] is given in Ladurantaye et al. [20]. The rationale for

stochastic programming with recourse stems from the fact that the clearing price

cannot be known before dispatch making it a challenge to commit generators before

the actual trading price is known. In particular, a decision (offer curve) must be

made now before uncertainty of price is resolved. Ideally, the “here and now”

decision should reflect the possible recourse (corrective actions) required after

price uncertainty has resolved e.g. the actual production decisions occurring in

the future based on realized prices at that time. Furthermore, the “here and now”

decision should be constructed as to minimize the costs of recourse actions over all

possible random outcomes. Stochastic programming with recourse is a natural

framework for this situation. The stochastic programming model incorporates a

finite set of scenarios that capture different price possibilities to generate offers that

are robust to price uncertainty. There are two major decision stages where the first
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stage involves decisions related to day-ahead bid construction i.e. offer volume and

the second stage “recourse” decisions reflect production of power e.g. hydro power
production and dispatch subject to operating and balance constraints. The model

assumes a simple hydro-plant with two reservoirs in a cascade, one larger upper

reservoir and one smaller reservoir downstream.

4.2.1 Bid Structure

A hydro-producer can submit hourly bids, block bids, of flexible hourly bids. An

hourly bid has the form ðxit; piÞ where the first component is the amount of power

offered (i.e. bid volume) by a producer for hour t and the second component is the

associated unit price of power (the i indexes a finite set of predetermined prices).

These bids are seen to be points on a bidding curve constructed by making an linear

interpolation between the points. For example, the unit price rt for hour t associated
with a volume yt is given by

rt ¼ pi�1 þ p2 � p1
x2t � x1t

yt � x1tð Þ for xi�1;t � yt � xit: (44)

4.2.2 Two-stage Stochastic Programming Model

First Stage decisions: xit (xib) represents offer volume for hour t (block b)
Second Stage decisions: (Scenario dependent decisions) yst (y

s
b) volume dis-

patched for hourly (block) bids, zþ;s
t (z�;s

t ) is the positive (negative) imbalance

between volume dispatched and volume produced, lsjt is storage level for reservoir
j for time period t, msjt is the on or off state of a generator, and vsjt is the volume of

discharge from generator j for time period t. (Scenario independent decisions) wjt is

the generation level for generator j for time period t, and ljt is the storage level for
reservoir j for time period t.

Parameters: ps is the probability of occurrence of scenario s, rst is the unit price
of power for hour t in scenario s, rsb is the average unit price of power in block b in
scenario s, mþt (m

�
t ) are the penalty (reward) for power imbalances.

Maximize
X
s2S

ps
�X

t2S
rst y

s
t þ
X
b2B

rsby
s
b �

X
t2T

ðmþt zþ;s
t � m�t z

�;s
t Þ

�
X
j2T

ðVjðlsj0Þ � VjðlsjTÞÞ �
X
t2T

X
j2J

Sjðmsjt�1; m
s
jtÞ
� (45)

subject to (46) to (59)

The objective (45) is to maximize the expected profit from offers and power

production where the function Vjð�Þ is such that
P
j2T

ðVjðlsj0Þ � VjðlsjTÞÞ gives the
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opportunity costs of storing water for generator j and Sjðmsjt�1; m
s
jtÞ is the direct cost

function of starting up a generator (the functions are defined to so that the model

will correspond to a linear MIP).

yst ¼
rst � riðt;sÞ

riðt;sÞþ1 � riðt;sÞ
xiðt;sÞþ1t þ

riðt;sÞþ1 � rst
riðt;sÞþ1 � riðt;sÞ

xiðt;sÞt for all t 2 T; s 2 S (46)

Constraint (46) gives the representation of the actual dispatch in hour

t under scenario s implied by the piecewise linear offer curve (44) where

iðt; sÞ ¼ maxfi 2 I : pi � rstg:

xit � xiþ1t for i 2 InI; b 2 B (47)

ysb ¼
X

j�iðb;sÞ
xjb for b 2 B; s 2 S (48)

Constraint (47) ensures that bid (offer) curve is non-decreasing, and (48) relates

the actual power dispatched for block bids to offer volumes under all scenarios.

ws
1t ¼ ms1tw

max
1 for t 2 T and s 2 S (49)

ms2tw
min
2 � ws

2t � ms2tw
max
2 for t 2 T, s 2 S (50)

vmin
j � vsjt � vmax

j for j 2 J, t 2 T, s 2 S (51)

lmin
j � lsjt � lmax

j for j 2 J, t 2 T, s 2 S (52)

Constraints (49) to (52) impose water discharge bounds e.g. (49) enforces that

the maximum amount of water is discharged or no water is discharged whereas (50)

allows the second reservoir to discharge any amount between specified upper and

lower bounds.

ls1t � ls1t�1 þ vs1t þ rs1t ¼ vs1t for t 2 T, s 2 S (53)

ls2t � ls2t�1 þ vs2t þ rs2t ¼ vs1t�t for t 2 T, s 2 S (54)

Constraints (53) to (54) are the reservoir balance equations.

ws
jt ¼ gjv

s
jt for j 2 J,t 2 T,s 2 S (55)

Constraint (55) gives the generation efficiency of reservoirs.

yst þ
X

b2B:t2b
ysb �

X
j2J

ws
jt ¼ zþ;s

t � z�;s
t for t 2 T, s 2 S (56)
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Constraint (56) measures the imbalances between volumes produced and

volumes dispatched.

xit; xib 2 Rþ for i 2 I, t 2 T, b 2 B (57)

msjt ¼ 0 or 1 (58)

yst ; y
s
b; z

þ;s
t ; z�;s

t ; vsjt;w
s
jt; l

s
jt 2 Rþ for j 2 J, t 2 T, b 2 B,s 2 S (59)

The stochastic programming model above has been extended by Faria and Fleten

[1] to incorporate the adjustment market called the Elbas in NordPool. The Elbas

market allows adjustment in accepted bids up to 1 h before scheduled dispatch. The

rationale is that accepted offers are made before prices, loads, and inflow are known so

after realization of these uncertainties a rebalancing or recourse should occur. It is

found, however, that the incorporation of the Elbas does not significantly change

bidding.Nowak et al. [27] consider a stochastic integer program for incorporating day-

ahead trading in hydro-thermal unit commitment decisions made for a week ahead for

a German power utility. The main sources of uncertainty are the bids made by

competitors. The stochastic model is fully linear which allows a Lagrangian-based

branch and bound procedure to be applied.

5 Discussion of Model Features

Common to most models that incorporate strategy is the need for estimation of

demand load and competitor bidding behavior while models without competitive

behavior need estimation of market clearing prices. In addition, Table 1 lists

additional features (as done in a manner analogous to Ventosa et al. [5]) for models

that incorporate strategy and Table 2 lists features for those models without

strategy. Besides the classification of a model as one with or without strategy and

author names, the features in Tables 1 and 2 include the type of optimization model

e.g. integer program, solution methodology, features particular to a specific model,

and intended market.

Almost all day-ahead producer models are seen to be non-convex and non-

differentiable e.g. mixed-integer programming models with the exception of

Dicorato et al. [24], where the unit commitment decisions are assumed to have

been made ex ante. Thus, the computational tractability is an issue for most day-

ahead producer models as bidding and unit commitment (which alone is a difficult

problem to solve) are combined and is dealt with using a variety of methods as seen

in Tables 1 and 2. The most common techniques involve commercial branch and

bound solvers, Lagrangian relaxation, and evolutionary heuristics such as genetic

algorithms. Some models deal with the complexity of the producer optimization by

decoupling and solving separately the bidding strategy and scheduling of power
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producing units with subsequent integration of these sets of decisions e.g. Wen and

David [7] and Conejo et al. [19]. It is also seen that most producer models that

include risk aversion are in models that have price-taking assumptions i.e. models

without strategy.

6 Conclusion

Some representative models for producers (producers) for power in day-ahead

markets were given in this chapter. The models have spanned across price-taking

and non-price-taking assumptions. The primary focus has been on models that

emphasize self-scheduling by a producer i.e. models that integrate offer decisions

with unit commitment decisions. These models take of the form of non-linear

Table 1 Models with strategy

Strategic models Year Model-type/solution

technique

Features Intended

market

Wen and David 2001 Mixed-integer program/

genetic algorithms

Integrates two bidding

strategies: (1) hourly

benefit and (2)

minimum stable output

California

(pre-

crisis i.e.

before

2000)

Attaviriyanupap

et al.

2005 Mixed-integer program/

evolutionary heuristics

Power and reserve markets

are incorporated

Swider 2007 Stochastic non-linear

optimization

Power markets assumed to

be price-taking;

strategic behavior in

reserve markets

Germany

Zhang et al. 2000 Mixed-integer

programming/

Lagrangian relaxation

ISO problem is analytically

solved

New

England

Gross and Finlay 2000 Mixed-integer

programming/

Lagrangian relaxation

Analytic solution under

perfect competition

England

and

Wales

Guan et al. 2001 Mixed-integer program/

Lagrangian relaxation

Approximate solutions

obtained via ordinal

optimization theory

California

Bakirtzis et al. 2007 Mathematical program with

equilibrium constraints

(MPEC)/mixed integer

programming

MPEC model is converted

into a mixed integer

program

Greece

Gountis et al. 2004 Bi-level program/genetic

algorithms

Incorporates risk aversion

and Monte Carlo

simulation is used to

compute expected

profit

Weber and

Overbye

1999 Bi-level program Transmission constraints

are incorporated
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integer programs, MPECs, and stochastic programming with recourse models. An

important facet of many of the models is the incorporation of demand load and

competitor behavior estimates. In addition, the incorporation of risk aversion into

producer models is emerging and will continue to be an important development as

preferences and utilities of producing agents are in general not the same. A

universal assumption of the models was that the clearing mechanism by an ISO

was performed as a single round auction, thus a produce model would need to be

solved only once given all the relevant input parameters. An interesting future

development will be day-ahead markets that have multiple round auction formats

[28]. The benefits of such an auction would be in the information provided by

results of a single round of the auction which could then be used to improve bidding

for the producers in subsequent auctions. In such a case, a producer would have to

repeatedly solve offer models based on updated results for a round of the auction.

Table 2 Models without strategy

Non-strategic

models

Year Model-type/solution

technique

Features Intended market

Conejo et al. 2002 Mixed-integer

program/branch

and bound

Derives bidding strategy that

achieves optimal self-schedule;

requires estimation of day

ahead hourly prices

(probability distribution)

Spain/general pool

type markets

Ladurantaye et al. 2007 Stochastic program/

successive linear

programming

Integrates bidding with hydro-

electric production

Gonzalez et al. 2007 Mixed-integer linear

program/under

relaxation with

branch and bound

Risk aversion is incorporated

through the conditional value

at risk (CVaR) measure

Conejo et al. 2004 Mixed-integer

quadratic

program/branch

and bound

Risk averse version of [19] where

variance of market clearing

price is a measure of risk

Spain/general pool

type market

Yamin et al. 2004 Mixed-integer

quadratic

program/

Lagrangian

relaxation

Risk aversion incorporated in self-

scheduling where variance of

market clearing price is a

measure of risk

Dicorato et al. 2009 Convex optimization

model

Risk aversion is incorporated by

using the CVaR measure.

Hydro-electric and thermal

units are considered.

Fleten and

Kristoffersen

2007 Stochastic integer

program/ branch

and bound

Integrates bidding with hydro-

electric production

Nord Pool

Faria and Fleten 2009 Stochastic integer

program/branch

and bound

Similar to Fleten et al. 2007 but

with incorporation of reserve

markets

Nord Pool

Nowak et al. 2005 Stochastic integer

program/

Lagrangian-based

branch and bound

Incorporating bidding into hydro-

thermal unit commitment.

Main source of uncertainty is

bids by competitors

Germany
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