Optimization-Based Bidding in Day-Ahead
Electricity Auction Markets: A Review
of Models for Power Producers

Roy H. Kwon and Daniel Frances

Abstract We review some mathematical programming models that capture the
optimal bidding problem that power producers face in day-ahead electricity auction
markets. The models consider both price-taking and non-price taking assumptions.
The models include linear and non-linear integer programming models, mathemat-
ical programs with equilibrium constraints, and stochastic programming models
with recourse. Models are emphasized where the producer must self-schedule units
and therefore must integrate optimal bidding with unit commitment decisions. We
classify models according to whether competition from competing producers is
directly incorporated in the model.

Keywords Auctions ¢ Bidding ¢ Day-ahead electricity markets ¢ Day-ahead
markets « Mathematical programming ¢ Unit commitment

1 Introduction

The transformation from regulation to competition in power industries around the
world have led to the development of markets for power. Day-ahead electricity
markets are emerging as an important medium through which power is allocated in
many de-regulated environments. A day-ahead electricity market is a short term
hedge market that operates a day in advance of the actual physical delivery of
power. In these environments, the generation decisions for the next day are in most
cases the result of a double (two-sided) auction where producing (selling) and
consuming (buying) agents submit a set of price-quantity curves (bids). The bids
must be submitted by a deadline on the day before actual delivery of power.
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A clearing price based on the submitted bids is determined by the ISO (Independent
System Operator) or market making agent and all subsequent trades are settled at
this price.

A significant amount of power is allocated through day-ahead markets. For
example in the Nord Pool day-ahead market in Scandinavia, Elspot, the volume
of power traded in 2007 was more than 290 TWh which amounts to more than 65%
of all consumption in the Nordic countries for that year [1]. Irastorza and Fraser [2]
find that in the United States most electricity is traded through day-ahead markets or
through bilateral forward contracts. Day-ahead markets are beneficial since they
act as a short term forward market for power that in conjunction with a real-time
market offers significant benefits to both producers and consumers of power
through price transparency, the reduction of price uncertainty, reduction of strategic
gaming, unit commitment certainty, and facilitation of demand-side (consumer)
participation.

In a day-ahead market, a producer of power must decide their offer curve and a
consumer must decide their bid curve. In addition, the ISO or market maker must
clear the market by finding the equilibrium clearing price of the auction based on
the submitted bids. Given the importance of the role of day-ahead markets in the
generation and allocation of power normative models for the agents have been
emerging in the literature over the last decade on optimal bid construction, unit
commitment, and payment/pricing and other decisions in the context of day-ahead
markets. In this paper, we give a review of the literature on the various types of
optimization modeling of the power producers i.e. those agents that generate and
supply power into the market.

The purpose of this chapter is to classify and characterize the emerging literature
of optimization models for producers participating in day-ahead markets. Producer
models considered in this paper involve a diverse set of mathematical programming
approaches including non-linear integer programs, stochastic programming with
recourse, and mathematical programs with equilibrium constraints.

We focus on models where producers and not the ISO have the responsibility of
unit commitment decisions and so must integrate these decisions with the offer or
bidding strategy. There are advantages to not having an ISO perform a centralized
unit commitment as cost information of competing producers must be revealed to
the ISO. Also, a centralized unit commitment in a decentralized market setting
can be problematic for individual units. In particular, small cost changes in the
centralized unit commitment can result in large differences to individual units/
generators [3]. Transmission and congestion issues when included are dealt within
models and we do not consider separate for models for a congestion or transmission
entity. We do not intend to give an exhaustive coverage of the literature, but select
models that represent the current state of the art or represent the major issues in
modeling of optimal producer bidding strategy in the context of day-ahead markets.

Modeling approaches for producers in the day-ahead market environment reflect
the decentralized nature of the market. In this setting separate models for entities
(agents) of the market are developed e.g. models for optimal producer bidding. This
is in marked contrast to models for energy under the older regulated environments
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where for example a public utility would schedule generation and decide unit
commitment without the presence of competitive bids. Most of these models are
centralized cost minimization models. For a good review of this class models see
Hobbs [4]. For an excellent review of general market modeling trends see Ventosa
et al. [5]. In addition, see Wallace and Fleten [6] for stochastic programming
models in regulated environments. Wallace and Fleten [6] discuss models in
de-regulated environments e.g. day-ahead models as well but in the current paper
we address and focus on day-ahead markets in a more comprehensive and detailed
manner and consider other modeling approaches in addition to stochastic program-
ming models.

2 Producer Models

The main focus of models of producers in day-ahead markets is on constructing
optimal offer curves to submit to the market coordinator e.g. ISO or market maker.
The producers of power in the market have a multitude of important considerations
in developing offers for power in the day-ahead market. A bidding model for a
producer will depend on the particular market structure e.g. auction rules and
protocols. In addition, producers face uncertainty in demand for power and in
many cases uncertainty in the behavior of competing power producers. In addition,
in some environments the unit commitment decisions may be the responsibility of
the producer and thus any bids for power must consider the cost of operating
generation units as well as inter-temporal operating constraints. The integration
will depend on whether an ISO or other agent decides unit commitment.

It is typical in day-ahead markets to require producers to submit supply functions
(offer curves) for each of the 24 h of the day-ahead schedule. The supply functions
give for each hour the price per unit of power associated with a volume of power
that the producer is willing to sell at. Offer curves are typically non-decreasing. We
classify the models we consider in this chapter broadly into two classes. The first
class of models directly incorporates bidding behavior of competing producers. The
second class does not incorporate competition directly into the model. We call the
first class “Producer models with strategy” and the second class “Producer models
without strategy”.

3 Producer Models with Strategy

This class of models considers a producer’s optimal bidding problem where impor-
tant model attributes include self-scheduling, integration with unit-commitment,
and incorporation of demand load and competing producer bidding behavior.
We emphasize the structural aspects of all models in general but note that the
incorporation of competing producers will involve important estimation techniques
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(these techniques are complementary to the structural development/description of
models and will not be pursued in detail in this chapter.) We give detailed examples
for two representative models. They differ dramatically in how competition is
incorporated. The first example is a non-equilibrium approach (i.e. does not use
mathematical programming formulations with equilibrium constraints, MPEC) and
the second example is an MPEC model i.e. an explicit equilibrium programming
approach.

3.1 Non-equilibrium Example

The first model we present is by Wen and David [7]. The modeling framework was
developed for day-ahead markets in California that pre-dates the California energy
crisis of 2000-2001. In the pre-crisis environment, there was an ISO that managed
the grid, and a separate market maker called PX (Power Exchange), that coordi-
nated the day-ahead market. The structure of the newly emerging post-crisis energy
markets in California will include a day-ahead market, however, the ISO now will
act as the market coordinator. The framework of Wen and David [7] is nevertheless
instructive for environments where ISOs are not the market coordinators and
producers consider the strategies of other producers and self-unit commitment in
the construction of offer curves. It is assumed that the producers are thermal
producers of electricity.

In this framework, producer i submits linear non-decreasing offer curve (bid
price) of the form B @ (P 0) = o, + ﬁim X Py () for each hour of in the day
ahead market (there are 24 h) where o) and ﬁ,-gf) are bidding coefficients for
producer i and P(i)(t> is the generation output.

3.1.1 Market Maker Model (i.e. PX Model)

The market maker, PX, after receiving bids from the producers computes the
market clearing price R’ and solves the following problem in a manner similar to
solving a classical economic dispatch problem to compute the generation output for
each producer.

R =) + B0 5Py 1=1,2,3,..,24 (1)

n

S PO =0, 1=1,23,..,2 @)
=1

Pimin) <P <P j=1,2,,.on t=1,2,3,...,24 3)
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In (1), generation is assigned to each producer so that bid prices coincide with
the market clearing price for each hour. Equation 2 ensures that generation is
assigned so that the load for each hour Q, is met by total of generation from all
producers. Equation 3 ensure that all generation is assigned this is between the
lower and upper bounds for each producer where ijin(’) and ijax(’> are the
respective bounds for each producer.

3.1.2 Producer Strategies

The strategy of a producer in this framework is to determine offer curves for each
hour with the aim of “maximizing hourly benefit” or providing “minimum stable
output”. The two strategies ensure that enough generation is dispatched so that offer
curves are profitable of at least enough generation output dispatched for the
generator to remain in continuous operation. The producer considers an optimiza-
tion model for each of these problems and then formulates a unit commitment
model that that incorporates the strategies from the previous two models.

3.1.3 The Producer Hourly Benefit Model

This model seeks to find generation offers that would maximize hourly benefit
given data about estimated loads and estimated bidding behavior of other bidders
(power producers). The model is as follows:

maximize ) (0,0, ;) = R,Pl@ — (P 4)

subject to (1) to (3)
where C,-(P,-(’) is the cost of generation for producer i which is a function of the
generation. ) (0;, f,7)) is the hourly benefit objective function which is a
measure of hourly benefit or profit. It should be noted that constraint (1) in the
context of the producer model requires that the bidding coefficients of other
producers to be estimated since a producer would not have access to this informa-
tion directly see Wen and David [7] for details. In this approach, they use a joint
probability distribution to estimate all other producers and then the hourly benefit
model becomes a stochastic optimization problem.

3.1.4 Minimum Stable Output Bidding Strategy

This model aims to ensure that average output from a producer achieves near the
minimum generation level. The model is as follows:

Minimize ¢ (o, ) = [P — Poin | + (P — P} )? )

min
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subject t0 Pimin < P < P; )

1

where ) is a positive penalty parameter.

3.1.5 Opverall Producer Bidding Model

This model integrates the strategies from the hourly benefit and the minimum stable
output models to determine which generators are to be on for each time period.

24
Maximize : Qi) =M + Y [ (@’ p) = S@ (1 = )] (D)
t=1

2
subject to Z (4, —p, )* <N 8)
=1

where the objective function in (7) is constructed to be positive (M is a sufficiently
large number) in all cases since the formulation will be solved be a genetic
algorithm representing the fitness of bidding strategies. y, is a binary variable that
is 1 if a unit is up for hour t, 0 otherwise and S(7) is the start up cost of the generator.
Constraint (8) ensures that a unit has a maximum number of start ups and
shutdowns in a day.

Recent papers similar to Wen and David [7] that make estimates of load forecast
and competitor behavior have emerged that also incorporate reserve markets as well
as the spot (day-ahead) markets. Attaviriyanupap et al. [8] consider thermal pro-
ducer optimization models that incorporate self-scheduling and unit commitment
based on estimates of competing producers in both spot and reserve markets. The
resulting producer models are non-convex and non-differentiable and evolutionary
programming heuristics are used to solve the models. An alternative approach by
Swinder [9] considers the spot market to be a price-taking market but assumes that
bidders behave strategically in the reserve market and that the behavior is captured
in a joint probability distribution. A simultaneous bidding model is developed that
is a stochastic non-linear profit maximization model.

Other models that incorporate competitor behavior and load estimates include
Zhang et al. [10] in which they consider a Lagrangian relaxation-based approach
after obtaining a closed form solution for the ISO problem. A Lagrangian relaxation
approach is also adopted in Gross and Finlay [11] where the load forecast and
competitor behavior is incorporated. An ordinal optimization approach is presented
in Guan et al. [12] where the idea is to generate good enough solutions. Anderson
and Philpott [13] consider the more general problem of a producer that makes offers
into a wholesale power market for which the prices are determined by a sealed-bid
auction (this case would be applicable to day-ahead markets). Demand and behav-
ior of competing producers are represented in a probability distribution for which
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models are then defined and necessary optimality conditions are derived for these
models.

3.2 Equilibrium Approaches for Producer Models

Next, we consider an MPEC (mathematical program with equilibrium constraints)
model by Bakirtzis et al. [14] for a generator’s offering strategy with step-wise
offers. An MPEC model is a non-linear programming problem in which there are
constraints defined by a parametric variational inequality or complementarity
system [15]. The MPEC framework is useful for modeling strategic interaction
that follows a Stackleberg game [16]. In this model, a “leader” producer can affect
the market price and estimates the demand declarations as well as the supply
functions of competing producers to be used in the leader’s optimal offering
strategy problem. The competing producers are the “followers” in the sense that
the “leader” producer faces a residual demand function of the aggregate of the
competing producers. An MPEC generator model will have an outer problem of
maximizing profit given that the ISO will solve an economic dispatch problem (this
latter problem is the inner problem). The ISO problem (given supply functions from
all generators) is to minimize revealed cost while determining the dispatched
quantity for each generator. In the model of Bakirtzis et al. [14], a producer j
constructs optimal energy offers in the form of non-decreasing step-wise bids i.e.
selects a numberB’ of steps and a set of quantity-price pairs (Qjs, 7,) for each step
b € {1,...,B'} where Qj, is the quantity offered by producer j for block b and 7y, is
the corresponding offer price.
The deterministic ISO problem is of the following form:

Minimize Z Z Ty - qjp ©))
i b

subject to (10) to (12)

The objective (9) is to minimize the cost of dispatched energy with respect to
the revealed price of energy where g, is the dispatched power for unit j step b. The
constraints are defined as follows:

YD ap=d (10)
i b

gy < Qpp forall j € A,b € B/ (11)

gy > 0foralljc AbecB (12)
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Constraint (10) ensures that demand d is met through all dispatched power and
(11) ensures that accepted power does not exceed the offered volume (i.e. a
producer is never dispatched more power then bid for).

The producer model assumes a 1 h horizon and pertains to a producer with a set
of thermal unitsA and is defined as follows:

Maximize ) {ps > [Z gy — ¢ (Z qu>] } (13)

sES jeA |bepi beB

subject to (14) to (28)

The objective (13) is to maximize the expected profit where the system marginal
price for power in scenario s is A° and gj, is the quantity of step b of unit j offer
accepted by the ISO in scenario s. c;(e) is the hourly non-linear cost of unit j as a
function of generation level.

3.2.1 Producer Constraints

0 < Qj < Q" for allje A,be B (14)
ZQJ-;, = QM forall j € A (15)

b
Qg <9o- Q;“ax for all j € A (16)

Constraints (14) ensure that any offer is not greater than the capacity of a unit j and
(15) ensures that all of the capacity of a unit j is offered. Constraint (16) ensures that
the first step of an offer is a fraction of the available capacity of a unit j (as required
by Greek power markets).

0<my<n™ forallj€A,becB (17)
Ty < Migpen) forall j€A,b=1,...,B — 1 (18)

njp > MVCiforallj€ A,b=1,...,B (19)
> 0py - mip = MVC; - Qp forall j € A (20)
beB! beB/

Constraint (17) places a price cap of all price offers and (18) ensures the offer
prices are non-decreasing. Constraints (19) and (20) ensure that offer prices are at
least the minimum variable cost, MVC;, for a unit j.
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3.2.2 ISO Market Clearing Problem

Zq‘;b =d’forall seS 21

b
g, <QpforalljeA,beB ses (22)
4, <0}, foralljeA,beB,seS (23)
g, >0foralljel,beB seS (24)
w,>0foralljes beB ses (25)
njb—l—u;bZ)»‘v forall jeA,beB ,seS (26)
i+ ), > A’ forall je A,b B s€S (27)

s K =5 8 s S 95 gs
E v}y + E 1,05 + § T + E WpQy = A'd’ forall s € §
jeAbeBi JjEAbeB JEAbEBI jeA,beBi

(28)

Constraints (21) to (28) represent the expected value (scenario-based) ISO problem
via the Karush-Kuhn-Tucker conditions where/’ is the dual multiplier associated
with demand balance constraint (10) for scenario s and ,ujh is the dual multiplier for
the constraint (11) for scenarios s.

It should be noted that the producer MPEC formulation is converted to a mixed
integer linear program by a binary expansion of the offer prices and quantities using
the techniques in Pereira et al. [17]. Other bi-level level mathematical programming-
based approaches which involve an outer and an inner problem corresponding to
producer and ISO, respectively, include Gountis et al. (2004) [29] where each
producer submits a linear supply curve and estimates the competing producers and
demand behavior using Monte Carlo approaches. In addition, risk aversion is
modeled and is seen to have an impact on optimal offer strategies. Earlier bi-level
model is given in Weber and Overbye [18].

4 Producer Models Without Strategy

In this section, we consider producer models where there is no explicit incorpo-
ration of competing producers in the models. We detail two models. The first is a
deterministic mixed integer linear programming modeling framework and the
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second a stochastic integer programming model. Both models are price-taking in
the sense that the model assumes that the producer can not impact the market
clearing price.

4.1 Mixed Integer Linear Programming Model

The first modeling framework is by Conejo et al. [19] for constructing offer curves
for price-taking thermal producers (producers). In this approach, hourly prices are
forecast and a self-schedule is obtained by an optimization model. The framework
is for general pool type electricity markets. Generators submit a bid for each hour
in the day-ahead time frame and consists a set of blocks of power along with
corresponding unit prices. Then, hourly offer curves are constructed based on the
optimal self-schedule by the use of a simple bidding strategy.
The producer (price-taking) optimization model is

t=1

T T
Maximize E;, ,, {Z )»[pr} - Z ¢ (29)
=1

subject top, € I1 30)

where 4, are the random prices of power for hour t (the distributions are approxi-
mately lognormal), ¢, is the (non-linear) cost of generating for hour t (see Conejo
et al. [19] for details), p, is the power generation for hour t, and IT is the set of
feasible generation outputs that satisfy operational constraints with respect to
minimum up and down times, ramping, and power output limits. Thus, the model
seeks to maximize optimal expected profit subject to operating constraints. This
model is seen to be equivalent to a mixed integer program (MIP), where II is
defined by the following constraints:

pr>Py(t) forallt=1,..,T 31)

P <P(1) —z(t+ )]+ z(t + 1)SD forall t = 1,...,T (32)
these constraints ensure the lower and upper limits on power production (z(7)(v(¢))is
a binary variable which is equal to 1 is the generator is shut down (on-line) at the
start of hour ¢, SD is the shut down ramp rate limit in MW/h.)

Pr <Pt +RUV(t — 1) + SUy(¢) for all t = 1,...,T 33)

Pi—1 —p: +RDv(t) + SDz(t) forall t = 1,...,T (34)
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these constraints ensure that ramp rates are obeyed (where RU (RD) is the ramp-up
(ramp-down) rate limit and SD is the shut down ramp rate limit)

G
Z [1—v(t (35)

t=1

t+UT—1
S ()= UTy() t=G+1,...,T-UT+1 (36)
j=t
T
S ) -y =0 t=T—-UT+2,..,T (37)
j=t
F
S v =0 (38)
t=1
t+DT—1
> I =v()] =DT=(r) t=F+1,...,T—DT +1 (39)
J=t
T
S lt=v(j)—z()] >0 t=T-DT+2,..,T (40)
j=t

Constraints (35) to (40) ensure that the minimum up and down times of a
generator are satisfied where DT (UT) is the minimum downtime (uptime) and F
(G) is the required number of time intervals that a generating unit must be off-line
(on-line) because of downtime (uptime) constraints.

y(t) —z(t) =v(t) —=v(t—1) t=1,..,T 41)
yoO)+z) <1 r=1,..,T (42)
z(r) e {0,1} ¢=1,..,T 43)

Constraints (41) to (43) ensure the correct logical relationship between a gener-
ator’ shut-down, start-up, and running states.

The offer curve for a generator is obtained by solving the MIP model to obtain
the optimal production schedulep; for each of the 24 h in the day-ahead time frame.
Then the bidding strategy to realizep; for hour ¢ is summarized as follows:

1. If p; = O then offer curve will consist of a single block of power equivalent to
maximum capacity of a thermal generator, 13, at unit price of A A "+a &

2. If O<p;‘<f_’, then the offer curve will consist of two blocks of power p; and
P —p? at prices A" — b,6%" and 2% + a,5¢", respectively.

3. Ifp} = P, then the offer curve will be a block of power D, = P at a price per unit
of A% — b,o?.
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where /" is the expected value of /, and ¢ the estimate of the standard deviation
of A;. The prices (i.e. coefficients a, and b;) are chosen so that the offer curves
guarantee with a level of 99% confidence that the power accepted by the market
maker is the specified power amount in the offer curve.

Other price—taking producer models without strategy include Ladurantaye et al.
[20] where a bidding model for a price-taking hydro-producer is formulated.
Gonzalez et al. [21] consider a profit-based hydro-producer model for day-ahead
markets. Risk aversion is incorporated into the model via the conditional Value at
Risk (CVaR) measure [22]. Scenarios are generated for market prices via hidden
markov models. Also considered are minimum profit-based models. The resulting
formulations are mixed integer linear programs. Conejo et al. [23], Yamin et al.
(2004) [31] and Dicorato et al. [24] also incorporate risk aversion into producer
bidding models where the first two consider as a measure of risk the variance of
market clearing price and the latter the CVaR measure.

4.2 Stochastic Programming Model

Stochastic programming has been emerging as an important modeling framework
for problems arising in the energy sector such as hydro and thermal scheduling [6],
unit commitment (Takriti et al. 1996) [30] and structuring energy forward contracts
[25] among many other classes of problems. Uncertainty in deregulated energy
markets often takes the form of uncertainty in spot prices and uncertainty in weather
which relates to uncertainty in demand (load). For an excellent survey of the use of
stochastic programming in both regulated and deregulated energy markets see
Wallace and Fleten [6].

We detail the model of Fleten and Kristoffersen [26] where a two-stage stochas-
tic programming model is developed for optimizing the offer strategy for a Nordic
hydropower producer for the day-ahead market in the Nord Pool, the Elspot. The
hydropower producer is assumed to be a price-taker and the model incorporates
price uncertainty. Another stochastic programming model in the same spirit of
Fleten and Kristoffersen [26] is given in Ladurantaye et al. [20]. The rationale for
stochastic programming with recourse stems from the fact that the clearing price
cannot be known before dispatch making it a challenge to commit generators before
the actual trading price is known. In particular, a decision (offer curve) must be
made now before uncertainty of price is resolved. Ideally, the “here and now”
decision should reflect the possible recourse (corrective actions) required after
price uncertainty has resolved e.g. the actual production decisions occurring in
the future based on realized prices at that time. Furthermore, the “here and now”
decision should be constructed as to minimize the costs of recourse actions over all
possible random outcomes. Stochastic programming with recourse is a natural
framework for this situation. The stochastic programming model incorporates a
finite set of scenarios that capture different price possibilities to generate offers that
are robust to price uncertainty. There are two major decision stages where the first
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stage involves decisions related to day-ahead bid construction i.e. offer volume and
the second stage “recourse” decisions reflect production of power e.g. hydro power
production and dispatch subject to operating and balance constraints. The model
assumes a simple hydro-plant with two reservoirs in a cascade, one larger upper
reservoir and one smaller reservoir downstream.

4.2.1 Bid Structure

A hydro-producer can submit hourly bids, block bids, of flexible hourly bids. An
hourly bid has the form (x;, p;) where the first component is the amount of power
offered (i.e. bid volume) by a producer for hour t and the second component is the
associated unit price of power (the i indexes a finite set of predetermined prices).
These bids are seen to be points on a bidding curve constructed by making an linear
interpolation between the points. For example, the unit price p, for hour t associated
with a volume y, is given by

P2 — D1
—(

Vi — Xlt) for Xic1 Sy < Xip. (44)
Xor — X1t

Py =Di-1 T

4.2.2 Two-stage Stochastic Programming Model

First Stage decisions: x;; (x;5) represents offer volume for hour ¢ (block b)

Second Stage decisions: (Scenario dependent decisions) yj(y;) volume dis-
patched for hourly (block) bids, 2%z, ) is the positive (negative) imbalance
between volume dispatched and volume produced, I}, is storage level for reservoir
J for time period ¢, 1;; is the on or off state of a generator, and vj, is the volume of
discharge from generator j for time period ¢. (Scenario independent decisions) wy; is
the generation level for generator j for time period 7, and [ is the storage level for
reservoir j for time period .

Parameters: 7° is the probability of occurrence of scenario s, pf is the unit price
of power for hour # in scenario s, pj is the average unit price of power in block b in
scenario s, 4, (u;") are the penalty (reward) for power imbalances.

MaximizeZns(pry,—f-ZPbyh Z Fz =)

ses teS beB teT

-y - ,<1;T>>—22sj<u;;_l,u;>)

= €T jel

(45)

subject to (46) to (59)
The objective (45) is to maximize the expected profit from offers and power
production where the function V;(e) is such that E( i) = Vi(liy)) gives the
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opportunity costs of storing water for generator j and S ,~(,uj-H , ,uj.t) is the direct cost
function of starting up a generator (the functions are defined to so that the model
will correspond to a linear MIP).

p; — P Pi(ts)+1 — Pt
yi= T L T g foralli €T, s€S (46)
Pi(ts)+1 ~ Pi(rs) Pi(rs)+1 ~ Pi(rs)

Constraint (46) gives the representation of the actual dispatch in hour
t under scenario s implied by the piecewise linear offer curve (44) where
i(t,s) =max{i € I : p; < pi}.

Xit < Xiyqy fori € I\[, beB 47
v, = ijbforbeB,seS (48)
J<i(bys)

Constraint (47) ensures that bid (offer) curve is non-decreasing, and (48) relates
the actual power dispatched for block bids to offer volumes under all scenarios.

wi, =muwi* forte Tandse S (49)
Wi < w, < s, Wi for t € T,s € S (50)
;“m<v SvmaxforJEJteTseS (51)
M < <™ forjelteT,seSs (52)

Constraints (49) to (52) impose water discharge bounds e.g. (49) enforces that
the maximum amount of water is discharged or no water is discharged whereas (50)
allows the second reservoir to discharge any amount between specified upper and
lower bounds.

L,—=08,_ +v),+r,=v,forteT,seSs (53)
B,—bL, +vy,+r,=v,_ forteT,seSs (54)

Constraints (53) to (54) are the reservoir balance equations.
w—yj CforjelreTseS (55)

Constraint (55) gives the generation efficiency of reservoirs.

¥+ Z N Zw =z -z forteT,seS (56)

beB:tch jer
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Constraint (56) measures the imbalances between volumes produced and
volumes dispatched.

Xit,Xip €ER, forie,t e T,b€B 57
,ujs-t =0orl (58)
ViV 2z Vi wis b € Ry forje Tt e T, b eBs €S (59)

The stochastic programming model above has been extended by Faria and Fleten
[1] to incorporate the adjustment market called the Elbas in NordPool. The Elbas
market allows adjustment in accepted bids up to 1 h before scheduled dispatch. The
rationale is that accepted offers are made before prices, loads, and inflow are known so
after realization of these uncertainties a rebalancing or recourse should occur. It is
found, however, that the incorporation of the Elbas does not significantly change
bidding. Nowak et al. [27] consider a stochastic integer program for incorporating day-
ahead trading in hydro-thermal unit commitment decisions made for a week ahead for
a German power utility. The main sources of uncertainty are the bids made by
competitors. The stochastic model is fully linear which allows a Lagrangian-based
branch and bound procedure to be applied.

5 Discussion of Model Features

Common to most models that incorporate strategy is the need for estimation of
demand load and competitor bidding behavior while models without competitive
behavior need estimation of market clearing prices. In addition, Table 1 lists
additional features (as done in a manner analogous to Ventosa et al. [5]) for models
that incorporate strategy and Table 2 lists features for those models without
strategy. Besides the classification of a model as one with or without strategy and
author names, the features in Tables 1 and 2 include the type of optimization model
e.g. integer program, solution methodology, features particular to a specific model,
and intended market.

Almost all day-ahead producer models are seen to be non-convex and non-
differentiable e.g. mixed-integer programming models with the exception of
Dicorato et al. [24], where the unit commitment decisions are assumed to have
been made ex ante. Thus, the computational tractability is an issue for most day-
ahead producer models as bidding and unit commitment (which alone is a difficult
problem to solve) are combined and is dealt with using a variety of methods as seen
in Tables 1 and 2. The most common techniques involve commercial branch and
bound solvers, Lagrangian relaxation, and evolutionary heuristics such as genetic
algorithms. Some models deal with the complexity of the producer optimization by
decoupling and solving separately the bidding strategy and scheduling of power



56

Table 1 Models with strategy

R.H. Kwon and D. Frances

Strategic models Year Model-type/solution Features Intended
technique market
Wen and David 2001 Mixed-integer program/ Integrates two bidding California
genetic algorithms strategies: (1) hourly (pre-
benefit and (2) crisis i.e.
minimum stable output before
2000)
Attaviriyanupap 2005 Mixed-integer program/ Power and reserve markets
et al. evolutionary heuristics are incorporated
Swider 2007 Stochastic non-linear Power markets assumed to Germany
optimization be price-taking;
strategic behavior in
reserve markets
Zhang et al. 2000 Mixed-integer ISO problem is analytically New
programming/ solved England
Lagrangian relaxation
Gross and Finlay 2000 Mixed-integer Analytic solution under England
programming/ perfect competition and
Lagrangian relaxation Wales
Guan et al. 2001 Mixed-integer program/ Approximate solutions California
Lagrangian relaxation obtained via ordinal
optimization theory
Bakirtzis et al. 2007 Mathematical program with MPEC model is converted Greece

Gountis et al. 2004

Weber and
Overbye

1999

equilibrium constraints
(MPEC)/mixed integer
programming

Bi-level program/genetic
algorithms

Bi-level program

into a mixed integer
program

Incorporates risk aversion
and Monte Carlo
simulation is used to
compute expected
profit

Transmission constraints
are incorporated

producing units with subsequent integration of these sets of decisions e.g. Wen and
David [7] and Conejo et al. [19]. It is also seen that most producer models that
include risk aversion are in models that have price-taking assumptions i.e. models
without strategy.

6 Conclusion

Some representative models for producers (producers) for power in day-ahead
markets were given in this chapter. The models have spanned across price-taking
and non-price-taking assumptions. The primary focus has been on models that
emphasize self-scheduling by a producer i.e. models that integrate offer decisions
with unit commitment decisions. These models take of the form of non-linear
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Table 2 Models without strategy
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Non-strategic
models

Year

Model-type/solution
technique

Features

Intended market

Conejo et al.

Ladurantaye et al.

2002

2007

Mixed-integer
program/branch
and bound

Stochastic program/
successive linear

Derives bidding strategy that
achieves optimal self-schedule;
requires estimation of day
ahead hourly prices
(probability distribution)

Integrates bidding with hydro-
electric production

Spain/general pool
type markets

programming
Gonzalez et al. 2007 Mixed-integer linear  Risk aversion is incorporated
program/under through the conditional value
relaxation with at risk (CVaR) measure
branch and bound
Conegjo et al. 2004 Mixed-integer Risk averse version of [19] where  Spain/general pool
quadratic variance of market clearing type market
program/branch price is a measure of risk
and bound
Yamin et al. 2004 Mixed-integer Risk aversion incorporated in self-
quadratic scheduling where variance of
program/ market clearing price is a
Lagrangian measure of risk
relaxation
Dicorato et al. 2009 Convex optimization  Risk aversion is incorporated by
model using the CVaR measure.
Hydro-electric and thermal
units are considered.
Fleten and 2007 Stochastic integer Integrates bidding with hydro- Nord Pool
Kristoffersen program/ branch electric production
and bound
Faria and Fleten 2009 Stochastic integer Similar to Fleten et al. 2007 but Nord Pool
program/branch with incorporation of reserve
and bound markets
Nowak et al. 2005 Stochastic integer Incorporating bidding into hydro- ~ Germany
program/ thermal unit commitment.

Lagrangian-based
branch and bound

Main source of uncertainty is
bids by competitors

integer programs, MPECs, and stochastic programming with recourse models. An
important facet of many of the models is the incorporation of demand load and
competitor behavior estimates. In addition, the incorporation of risk aversion into
producer models is emerging and will continue to be an important development as
preferences and utilities of producing agents are in general not the same. A
universal assumption of the models was that the clearing mechanism by an ISO
was performed as a single round auction, thus a produce model would need to be
solved only once given all the relevant input parameters. An interesting future
development will be day-ahead markets that have multiple round auction formats
[28]. The benefits of such an auction would be in the information provided by
results of a single round of the auction which could then be used to improve bidding
for the producers in subsequent auctions. In such a case, a producer would have to
repeatedly solve offer models based on updated results for a round of the auction.
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